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IN SDP RELAXATIONS, INACCURATE SOLVERS DO ROBUST

OPTIMIZATION∗

JEAN-BERNARD LASSERRE†
AND VICTOR MAGRON‡

Abstract. We interpret some wrong results (due to numerical inaccuracies) already observed
when solving SDP-relaxations for polynomial optimization on a double precision floating point SDP
solver. It turns out that this behavior can be explained and justified satisfactorily by a relatively
simple paradigm. In such a situation, the SDP solver, and not the user, performs some “robust
optimization” without being told to do so. Instead of solving the original optimization problem
with nominal criterion f , it uses a new criterion f̃ which belongs to a ball B∞(f, ε) of small radius
ε > 0, centered at the nominal criterion f in the parameter space. In other words the resulting
procedure can be viewed as a “max−min” robust optimization problem with two players (the solver
which maximizes on B∞(f, ε) and the user who minimizes over the original decision variables). A
mathematical rationale behind this “autonomous” behavior is described.

Key words. polynomial optimization, min-max optimization, robust optimization, semidefinite
relaxations.

AMS subject classifications. 90C22, 90C26.

1. Introduction. Certified optimization algorithms provide a way to ensure the
safety of several systems in engineering sciences, program analysis as well as cyber-
physical critical components. Since these systems often involve nonlinear functions,
such as polynomials, it is highly desirable to design certified polynomial optimization
schemes and to be able to interpret the behaviors of numerical solvers implementing
these schemes. Wrong results (due to numerical inaccuracies) in some output results
from semidefinite programming (SDP) solvers have been observed in quite different
applications, and notably in recent applications of the Moment-SOS hierarchy for
solving polynomial optimization problems, see e.g., [21, 20]. In fact this particular
application has even become a source of illustrating examples for potential patholog-
ical behavior of SDP solvers [17]. An intuitive mathematical rationale for the wrong
results has been already provided informally in [9] and [14], but does not yield a
satisfactory picture for the whole process.

An immediate and irrefutable negative conclusion is that double precision float-
ing point SDP solvers are not robust and cannot be trusted as they sometimes pro-
vide wrong results in these so-called “pathological” cases. The present paper (with
a voluntarily provocative title) is an attempt to provide a different and more posi-
tive viewpoint around the interpretation of such inaccuracies in SDP solvers, at least
when applying the Moment-SOS hierarchy of semidefinite relaxations in polynomial
optimization as described in [8, 10].

We claim that in such a situation, in fact the floating point SDP solver, and not
the user, is precisely doing some robust optimization, without being told to do so.
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It solves a “max−min" problem in a two-player zero-sum game where the solver is
the leader who maximizes (over some ball of radius ε > 0) in the parameter space
of the criterion, and the user is a “follower” who minimizes over the original decision
variables. In traditional robust optimization, one solves the “min−max" problem
where the user (now the leader) minimizes to find a “robust decision variable”, whereas
the SDP solver (now the follower) maximizes in the same ball of the parameter space.
In this convex relaxation case, both min−max and max−min problems give the same
solution. So it is fair to say that the solver is doing what the optimizer should have
done in robust optimization.

As an active (and even leader) player of this game, the floating point SDP solver
can also play with its two parameters which are (a) the threshold level for eigenvalues
to declare a matrix positive semidefinite, and (b) the tolerance level at which to declare
a linear equality constraint to be satisfied. Indeed, the result of the “max−min" game
strongly depends on the absolute value of both levels, as well as on their relative values.

Of course and so far, the rationale behind this viewpoint which provides a more
positive view of inaccurate results from semidefinite solvers, is proper to the context of
semidefinite relaxations for polynomial optimization. Indeed in such a context we can
exploit a mathematical rationale to explain and support this view. An interesting issue
is to validate this viewpoint to a larger class of semidefinite programs and perhaps
the canonical form of SDPs:

min
X

{ 〈F0,X〉 : 〈Fα,X〉 = cα; X � 0 } ,

in which case the SDP solver would solve the robust optimization problem

max
c̃∈B∞(c,ε)

min
X

{ 〈F0,X〉 : 〈Fα,X〉 = c̃α; X � 0 } ,

where 〈·〉 stands for the matrix trace and “� 0” means positive semidefinite. This
point of view is briefly analyzed and discussed in Section 3.4.

2. SDP solvers and the Moment-SOS hierarchy.

Notation. For a fixed j ∈ N, let us note R[x]2j the set of polynomials of degree
at most 2j and Sn,j the set of real symmetric matrices of size

(
n+j
n

)
. For any real

symmetric matrix M, denote by ‖M‖∗ its nuclear norm and recall that if M � 0 then
‖M‖∗ = 〈I,M〉. We also note Σ[x]j for the convex cone of SOS polynomials of degree
at most 2j. Let N

n
2d := {(α1, . . . , αn) ∈ N

n : α1 + · · · + αn ≤ 2d}. In the sequel, we
will use a generalization of Von Neumann’s minimax theorem, namely the following
Sion’s minimax theorem [18]:

Theorem 2.1. Let B be a compact convex subset of a linear topological space and
Y be a convex subset of a linear topological space. If h is a real-valued function on
B×Y with h(b, ·) lower semi-continuous and quasi-convex on Y, for all b ∈ B and
h(·,y) upper semi-continuous and quasi-concave on B, for all y ∈ Y, then

max
b∈B

inf
y∈Y

h(b,y) = inf
y∈Y

max
b∈B

h(b,y) .

The Moment-SOS hierarchy was introduced in [8] to solve the global polynomial
optimization problem

P : f⋆ = min
x

{ f(x) : x ∈ K },
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where f is a polynomial and K := {x ∈ R
n : gl(x) ≥ 0, l = 1, . . . ,m } is a basic closed

semi-algebraic set with (gℓ) ⊂ R[x]. Let us note g0 := 1 and dℓ := deg gℓ, for each
ℓ = 0, . . . ,m.

A systematic numerical scheme consists of solving a hierarchy of convex relax-
ations:

(2.1) Pj : ρj = min
y

{Ly(f) : y0 = 1; y ∈ Cj(g1, . . . , gm) } ,

where (Cj(g1, . . . , gm))j∈N is an appropriate nested family of convex cones, such as
the one given in (3.3). The dual of (2.1) reads

(2.2) Dj : δj = max
λ

{λ : f − λ ∈ Cj(g1, . . . , gm)⋆ },

where (Cj(g1, . . . , gm)⋆)j∈N ⊂ R[x] is a nested family of convex cones contained in
C(K), the convex cone of polynomials nonnegative on K, and Ly : R[x] → R is the
Riesz Linear functional:

f
(
=
∑

α

fα xα
)
7→ Ly(f) =

∑

α

fα yα .

When Cj(g1, . . . , gm)⋆ comes from an appropriate SOS-based (Putinar) representation
of polynomials positive on K, both Pj and Dj are semidefinite programs (SDP). When
K is compact then (under a weak archimedean condition), ρj = δj ↑ f⋆ as j → ∞,
and generically the convergence is even finite [16], i.e., f⋆ = ρj for some j ∈ N. In
such case, one may also extract global minimizers from an optimal solution of the
corresponding semidefinite relaxation Pj [15]. For more details on the Moment-SOS
hierarchy, the interested reader is referred to [10].

At step j in the hierarchy, one has to solve the SDP-relaxation Pj , for which
efficient modern softwares are available. These numerical solvers all rely on interior-
point methods, and are implemented either in double precision arithmetics, e.g., Se-
DuMi [19], SDPA [22], Mosek [1], or with arbitrary precision arithmetics, e.g., SDPA-
GMP [13]. When relying on such numerical frameworks, the input data considered by
solvers might differ from the ones given by the user. Thus the input data, consisting
of the cost vector and matrices, are subject to uncertainties. In [4] the authors study
semidefinite programs whose input data depend on some unknown but bounded per-
turbation parameters. For the reader interested in robust optimization in general, we
refer to [2].

2.1. Two examples of surprising phenomenons. In general, when applied
for solving P, the Moment-SOS hierarchy [8] is quite efficient, modulo its scalability
(indeed for large size problems one has to exploit sparsity often encountered in the
description of P). However, in some cases, some quite surprising phenomena have been
observed and provided additional support to the pessimistic and irrefutable conclusion
that: Results returned by double precision floating point SDP solvers cannot be trusted
as they are sometimes completely wrong.

Let us briefly describe two such phenomena, already analyzed and commented in
[21, 14].

Case 1: When K = R
n (unconstrained optimization) then the Moment-SOS

hierarchy collapses to the single SDP ρd = maxλ {λ : f − λ ∈ Σ[x]d } (with 2d being
the degree of f). Equivalently, one solves the semidefinite program:

(2.3) Dd : ρd = max
X�0,λ

{λ : fα − λ 1α=0 = 〈X,Bα〉, α ∈ N
n
2d }
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for some appropriate real symmetric matrices (Bα)α∈Nn
2d

; see e.g. [8].

Only two cases can happen: if f−f∗ ∈ Σ[x]d then ρd = f∗ and ρd < f∗ otherwise
(with possibly ρd = −∞). Solving ρj = maxλ {λ : f −λ ∈ Σ[x]j } for j > d is useless
as it would yield ρj = ρd because if f − f∗ is SOS, then it has to be in Σ[x]d ⊂ Σ[x]j
anyway.

The Motzkin-like polynomial x 7→ f(x) = x2y2(x2+y2−1)+1/27 is nonnegative
(with d = 3 and f∗ = 0) and has 4 global minimizers, but the polynomial x 7→
f(x) − f∗ (= f) is not an SOS and ρ3 = −∞, which also implies ρj = −∞ for all j.
However, as already observed in [5], by solving (2.3) with j = 8 and a double precision
floating point SDP solver, we obtain ρ8 ≈ −10−4. In addition, one may extract 4
global minimizers close the global minimizers of f up to four digits of precision! The
same occurs with j > 8 and the higher is j the better is the result. So undoubtly the
SDP solver is returning a wrong solution as f − ρj cannot be an SOS, no matter the
value of ρj .

In this case, a rationale for this behavior is that f̃ = f + ε(1 + x16 + y16) is an
SOS for small ε > 0, provided that ε is not too small (in [9] it is shown that every
nonnegative polynomial can be approximated as closely as desired by a sequence
of polynomials that are sums of squares). After inspection of the returned optimal
solution, the equality constraints

(2.4) fα − λ 1α=0 = 〈X,Bα〉, α ∈ N
n
2j ,

when solving Dj in (2.3), are not satisfied accurately and the result can be interpreted
as if the SDP solver has replaced f with the perturbated criterion f̃ = f + ε, with
ε(x) =

∑

α εα Xα ∈ R[x]2d, so that

fα + εα
︸ ︷︷ ︸

f̃α

−λ 1α=0 = 〈X,Bα〉, α ∈ N
n
2j ,

and in fact it has done so. A similar “mathematical paradox” has also been investigated
in a non-commutative (NC) context [14]. NC polynomials can also be analyzed thanks
to an NC variant of the Moment-SOS hierarchy (see [3] for a recent survey). As in
the above commutative case, it is explained in [14] how numerical inaccuracies allow
to obtain converging lower bounds for positive Weyl polynomials that do not admit
SOS decompositions.

Case 2: Another surprising phenomenon occurred when minimizing a high-degree
univariate polynomial f with a global minimizer at x = 100 and a local minimizer
at x = 1 with value f(1) > f∗ but very close to f∗ = f(100). The double precision
floating point SDP solver returns a single minimizer x̃ ≈ 1 with value very close to f∗,
providing another irrefutable proof that the double precision floating point SDP solver
has returned a wrong solution. It turns out that again the result can be interpreted
as if the SDP solver has replaced f with a perturbated criterion f̃ , as in Case 1.

When solving (2.3) in Case 1, one has voluntarily embedded f ∈ R[x]6 into R[x]2j
(with j > 3) to obtain a perturbation f̃ ∈ R[x]2j whose minimizers are close enough
to those of f . Of course the precision is in accordance with the solver parameters
involved in controlling the semidefiniteness of the moment matrix X and the accu-
racy of the linear equations (2.4). Indeed, if one tunes these parameters to a much
stronger threshold, then the solver returns a more accurate answer with a much higher
precision.

In both contexts, we can interpret what the SDP solver does as perturbing the
coefficients of the input polynomial data. One approach to get rid of numerical un-
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certainties consists of solving SDP problems in an exact way [6], while using symbolic
computation algorithms. However, such exact algorithms only scale up to moder-
ate size instances. For situations when one has to rely on more efficient, yet inexact
numerical algorithms, there is a need to understand the behavior of the associated nu-
merical solvers. In [21], the authors investigate strange behaviors of double-precision
SDP solvers for semidefinite relaxations in polynomial optimization. They compute
the optimal values of the SDP relaxations of a simple one-dimensional polynomial
optimization problem. The sequence of SDP values practically converges to the op-
timal value of the initial problem while they should converge to a strict lower bound
of this value. One possible remedy, used in [21], is to rely on an arbitrary-precision
SDP solver, such as SDPA-GMP [13] in order to make this paradoxal phenomenon
disappear. Relying on such arbitrary-precision solvers comes together with a more ex-
pensive cost but paves a way towards exact certification of nonnegativity. In [11], the
authors present a hybrid numeric-symbolic algorithm computing exact SOS certifi-
cates for a polynomial lying in the interior of the SOS cone. This algorithm uses SDP
solvers to compute an approximate SOS decomposition after additional perturbation
of the coefficients of the input polynomial. The idea is to benefit from the pertur-
bation terms added by the user to compensate the numerical uncertainties added by
the solver. The present note focuses on analyzing specifically how the solver modifies
the input and perturbates the polynomials of the initial optimization problem.

2.2. Contribution. We claim that there is also another possible and more op-
timistic conclusion if one looks at the above results with new “robust optimization"
glasses, not from the viewpoint of the user but rather from the view point of the solver.
More precisely, given a polynomial optimization problem f⋆ = minx{f(x) : x ∈ K}
and its semidefinite relaxation Pj defined in (2.1) (with dual Dj in (2.2)),
We interpret the above behavior as the (double precision floating point) SDP solver
doing “Robust Optimization" without being told to do so. In the case of individual

trace equality perturbations ε, it solves the max-min problem:

(2.5) ρjε = max
f̃∈B

j
∞(f,ε)

{ inf
y

{Ly(f̃) : y0 = 1; y ∈ Cj(g1, . . . , gm) } },

where Bj
∞(f, ε) := { f̃ ∈ R[x]2j : ‖f̃ − f‖∞ ≤ ε } ,

and we provide some numerical experiments to support this claim. Interestingly, if
the user would do robust optimization, then he would solve the min-max problem:

(2.6) inf
y

{ max
f̃∈B

j
∞(f,ε)

{Ly(f̃) }; y0 = 1, y ∈ Cj(g1, . . . gm) } ,

which is (2.5) in which the “max" and “min" operators have been switched. It turns
out that in this convex case, by Theorem 2.1, the optimal value of (2.6) is ρjε.

So from a robustness view point of the solver (not the user), it is quite reasonable
to solve (2.5) rather than the original relaxation Pj of P with nominal polynomial f .
However since ρjε is equal to the optimal value of (2.6), the result is the same as if the
user decided to do “robust optimization"! In other words, solving Pj with nominal f
and numerical inaccuracies is the same as solving the robust problem (2.5) or (2.6)
with infinite precision.

3. A “noise" model. Given a finite sequence of matrices (Fα)α∈Nn
2j

⊂ Sn,j , a

(primal) cost vector c = (cα)α∈Nn
2j

, we recall the standard form of primal semidefinite
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program (SDP) solved by numerical solvers such as SDPA [22]:

(3.1)

min
y

∑

α∈Nn
2j

cα yα

s.t.
∑

06=α∈Nn
2j

Fα yα � F0 ,

whose dual is the following SDP optimization problem:

(3.2)

max
X

〈F0,X〉

s.t. 〈Fα,X〉 = cα , α ∈ N
n
2j , α 6= 0 ,

X � 0 , X ∈ Sn,j .

We are interested in the numerical analysis of the moment-SOS hierarchy [8] to solve

P : min
x∈K

f(x) ,

where f ∈ R[x]2j . Given α, β ∈ N
n, let 1α=β stands for the function which returns

1 if α = β and 0 otherwise. At step d of the hierarchy, one solves the SDP primal
program (2.1). For the standard choice of the convex cone Cj(g1, . . . , gm), given by

Cj(g1, . . . , gm) = {y : Mj−dℓ
(gℓ y) � 0, ℓ = 0, . . . ,m} ,(3.3)

it reads

(3.4) ρj = inf
y

{Ly(f) : y0 = 1; Mj−dℓ
(gℓ y) � 0, ℓ = 0, . . . ,m } ,

whose dual is the SDP:

(3.5)
δj = sup

Xℓ,λ

{λ : fα − λ 1α=0 =

m∑

ℓ=0

〈Cℓ
α,Xℓ〉 , α ∈ N

n
2j ,

Xℓ � 0 , Xℓ ∈ Sn,j−dℓ
, ℓ = 0, . . . ,m }

,

where we have written Mj−dℓ
(gℓ y) =

∑

α∈Nn
2j
Cℓ

α yα; the matrix Cℓ
α has rows and

columns indexed by N
n
j−dℓ

with (β, γ) entry equal to
∑

β+γ+δ=α gℓ,δ. In particular

for m = 0, one has g0 = 1 and the matrix Bα := C0
α has (β, γ) entry equal to 1β+γ=α.

For every j ∈ N, let

Qj(g) =

{
m∑

ℓ=0

σℓ gℓ : deg(σℓ gℓ) ≤ 2j , σℓ ∈ Σ[x]

}

be the “truncated" quadratic module associated with the gℓ’s.
Then the dual SDP (3.5) can be rewritten as

(3.6)
δj = sup

λ

{λ : f − λ ∈ Qj(g)} = sup
λ,σℓ

{λ : f − λ =

m∑

ℓ=0

σℓ gℓ ,

deg(σℓ gℓ) ≤ 2j , σℓ ∈ Σ[x] }.

Strong duality of Lasserre’s hierarchy is guaranteed when the following condition
(slightly stronger than compactness of K) holds:

6



Assumption 3.1. There exists N ∈ N such that one of the polynomials describing
the set K reads gK(x) := N − ‖x‖22.

Then it follows from [7] that this ball constraint implies strong duality between (3.4)
and (3.6). Note that if the set K is bounded, then one can add the redundant
constraint N − ‖x‖22 ≥ 0, without modifying K. In the sequel, we suppose that
Assumption 3.1 holds.

In floating point computation, the numerical SDP solver treats all (ideally) equal-
ity constraints as the following inequality constraints

(3.7)

m∑

ℓ=0

〈Cℓ
α,Xℓ〉+ λ1α=0 − fα = 0 , α ∈ N

n
2j ,

of (3.5) with the following inequality constraints

(3.8)

∣
∣
∣
∣

m∑

ℓ=0

〈Cℓ
α,Xℓ〉+ λ1α=0 − fα

∣
∣
∣
∣
≤ ε , α ∈ N

n
2j ,

for some a priori fixed tolerance ε > 0 (for instance ε = 10−8). Similarly, we assume
that for each ℓ = 0, . . . ,m, the SDP constraint Xℓ � 0 of (3.5) is relaxed to Xℓ � −η I
for some prescribed individual semidefiniteness tolerance η > 0. This latter relaxation
of � 0 to � −ηI is used here as an idealized situation for modeling purpose; in practice
it seems to be more complicated, as explained later on at the beginning of Section 4.

That is, all iterates (Xℓ,k)k∈N of the implemented minimization algorithm satisfy
(3.8) and Xℓ,k � −ηI instead of the idealized (3.7) and Xℓ,k � 0.

Therefore we interpret the SDP solver behavior by considering the following
“noise" model which is the (ε, η)-perturbed version of SDP (3.5):

(3.9)
sup
Xℓ,λ

{λ : −ε ≤

m∑

ℓ=0

〈Cℓ
α,Xℓ〉+ λ1α=0 − fα ≤ ε , α ∈ N

n
2j ,

Xℓ � −η I , Xℓ ∈ Sn,j−dℓ
, ℓ = 0, . . . ,m },

now assuming exact computations.

Proposition 3.2. The dual of Problem (3.9) is the convex optimization problem

(3.10)
inf
y

{Ly(f) + η

m∑

ℓ=0

‖Mj−dℓ
(gℓ y)‖∗ + ε‖y‖1 :

s.t. y0 = 1; Mj−dℓ
(gℓ y) � 0, ℓ = 0, . . . ,m }

which is an SDP.

Proof. Let y±α be the nonnegative dual variables associated with the constraints

±

(
m∑

ℓ=0

〈Cℓ
α,Xℓ〉+ λ1α=0 − fα

)

≤ ε, α ∈ N
n
2j ,

and let Sℓ � 0 be the dual matrix variable associated with the SDP constraint Xℓ �
−η I, ℓ = 0, . . . ,m. Then the dual of (3.9) is a semidefinite program which reads:

(3.11)

inf
Sℓ�0,y±

α ≥0

{ ∑

α

(fα (y+α − y−α ) + ε (y+α + y−α )) + η
∑

ℓ

〈I,Sℓ〉 :

Sℓ −
∑

α Cℓ
α (y+α − y−α ) = 0, ℓ = 0, . . . ,m ,

y+0 − y−0 = 1
}
. 7



In view of the nonnegative terms ε
∑

α(y
+
α + y−α ) in the criterion, at an optimal

solution we necessarily have y+α y−α = 0, for all α. Therefore letting yα := y+α − y−α ,
on obtains y+α + y−α = |yα| for all α, and

∑

α(y
+
α + y−α ) = ‖y‖1. Similarly as Sℓ � 0,

〈I,Sℓ〉 = ‖Sℓ‖1, ℓ = 0, . . . ,m. This yields the formulation (3.10).

Remark 3.3. Notice that the criterion of (3.10) consists of the original criterion
Ly(f) perturbated with a sparsity-inducing norm ε ‖y‖1 for the variable y and a low-
rank-inducing norm η

∑

ℓ ‖Mj−dℓ
(gℓ y)‖∗ for the localizing matrices. Considering

this low-rank-inducing term can be seen as the convexification of a more realistic
penalization with a logarithmic barrier function used in interior-point methods for
SDP, namely −η log det

(∑m
ℓ=0 Mj−dℓ

(gℓ y)
)
. One could also consider to replace each

SDP constraint Mj−dℓ
(gℓ y) � 0 with Mj−dℓ

(gℓ y) � ε3I, in the primal moment
problem (3.4). This corresponds to add −ε3‖X‖∗ in the related perturbation of the
dual SOS problem (3.5). One can in turn interpret this term as a convexification of the
more standard logarithmic barrier penalization term log detX. Even though interior-
point algorithms could practically perform such logarithmic barrier penalizations, we
do not have a simple interpretation for the related noise model.

We now distinguish among two particular cases.

3.1. Priority to trace equalities. With ε = 0 and individual semidefiniteness-
tolerance η, Problem (3.10) becomes

(3.12)
ρjη = inf

y
{Ly(f) + η

m∑

ℓ=0

‖Mj−dℓ
(gℓ y)‖∗

s.t. y0 = 1; Mj−dℓ
(gℓ y) � 0, ℓ = 0, . . . ,m }.

Given η > 0, j ∈ N, let us define:

Bj
∞(f,K, η) := { f + θ

m∑

ℓ=0

gℓ(x)
∑

β∈Nn
j−dℓ

x2β : |θ| ≤ η } ,(3.13)

B∞(f,K, η) :=
⋃

j∈N

Bj
∞(f,K, η) .

Recall that SDP (3.12) is the dual of SDP (3.9) with ε = 0, that is,

(3.14)
sup
Xℓ,λ

{λ : fα − λ1α=0 =

m∑

ℓ=0

〈Cℓ
α,Xℓ〉 , α ∈ N

n
2j ,

Xℓ � −η I , Xℓ ∈ Sn,j−dℓ
, ℓ = 0, . . . ,m },

Fix j ∈ N and consider the following robust polynomial optimization problem

(3.15) Pmax
η : max

f̃ ∈B∞(f,K,η)
{min
x∈K

{f̃(x)} } .

If in (3.15), we restrict ourselves to Bj
∞(f,K, η) and we replace the inner minimization

by its step-j relaxation, we obtain

Pmax,j
η : max

f̃ ∈B
j
∞(f,K,η)

{

inf
y

{Ly(f̃) : y0 = 1; Mj−dℓ
(gℓ y) � 0, ℓ = 0, . . . ,m }

}

.

Observe that Problem Pmax,j
η is a strenghtening of Problem Pmax

η , that is, the optimal
value of the former is smaller than the optimal value of the latter.
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Proposition 3.4. Under Assumption 3.1, there is no duality gap between pri-
mal SDP (3.12) and dual SDP (3.14). In addition, Problem Pmax,j

η is equivalent
to SDP (3.12). Therefore, solving primal SDP (3.12) (resp. dual SDP (3.14)) can
be interpreted as solving exactly, i.e., with no semidefiniteness-tolerance, the step-j
strenghtening Pmax,j

η associated with Problem Pmax
η .

Proof. Remind that for every ℓ = 0, . . . ,m, one has Mj−dℓ
(gℓ y) � 0 and

‖Mj−dℓ
(gℓ y)‖∗ = Trace (Mj−dℓ

(gℓ y)) = Ly

(
∑

β∈Nn
j−dℓ

x2β gℓ(x)

)

.

For f̃ = f + η
∑

β∈Nn
j−dℓ

x2β gℓ(x), one has Ly(f̃) = Ly(f) + η
∑m

ℓ=0 ‖Mj−dℓ
(gℓ y)‖∗.

Thus, the primal SDP (3.12) (resp. dual SDP (3.14)) boils down to solving the pri-
mal SDP (3.4) (resp. (3.5)) after replacing f by f̃ . By Assumption 3.1, there is no
duality gap between (3.4) and (3.5), thus there is also no duality gap between (3.12)
and (3.14).

In addition, since f̃ is feasible for Problem Pmax,j
η , the optimal value of Prob-

lem Pmax,j
η is greater than the value of SDP (3.12). By Theorem 2.1, Problem Pmax,j

η

is equivalent to

(3.16) inf
y

max
f̃ ∈B

j
∞(f,K,η)

{Ly(f̃) : y0 = 1; Mj−dℓ
(gℓ y) � 0, ℓ = 0, . . . ,m } .

For all f̃ ∈ Bj
∞(f,K, η), Ly(f̃) ≤ Ly(f)+ η

∑m
ℓ=0 ‖Mj−dℓ

(gℓ y)‖∗, which proves that
the optimal value of (3.16) is less than the value of SDP (3.12).

This yields the equivalence between Problem Pmax,j
η and SDP (3.12).

In the unconstrained case, i.e. when m = 0, solving Pmax,j
η boils down to minimize

the perturbed polynomial fη,j(x) := f(x) + η
∑

|β|≤j x
2β , that is the sum of f and

all monomial squares of degree up to 2j with coefficient magnitude η. As a direct
consequence from [9], the next result shows that for given nonnegative polynomial f
and perturbation η > 0, the polynomial fη,j is SOS for large enough j.

Corollary 3.5. Let assume that f ∈ R[x] is nonnegative over R
n and let us fix

η > 0. Then fη,j ∈ Σ[x], for large enough j.

Proof. For fixed nonnegative f ∈ R[x] and η > 0, it follows from [9, Theo-
rem 4.2 (ii)] that there exists jη (depending on f and η) such that the polynomial

f + η

j
∑

k=0

n∑

i=1

x2k
i

k!
,

is SOS for any d ≥ dη. Let us select j := jη. Notice that

fη,j = f + η
∑

|β|≤j

x2β = f + η

j
∑

k=0

n∑

i=1

x2k
i

k!
+ η

j
∑

k=0

n∑

i=1

(

1−
1

k!

)

x2k
i + η qj ,

where qj is a sum of monomial squares. Since (1 − 1
k! ) ≥ 0, the second sum of the

right hand side is SOS, yielding the desired claim.
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3.2. Priority to semidefiniteness inequalities. Problem (3.10) with η = 0
and individual trace equality perturbation ε becomes

(3.17)
ρjε = inf

y
{Ly(f) + ε ‖y‖1 :

s.t. y0 = 1; Mj−dℓ
(gℓ y) � 0, ℓ = 0, . . . ,m }.

Given ε > 0, j ∈ N, let us define

Bj
∞(f, ε) := { f̃ ∈ R[x]2j : ‖f − f̃‖∞ ≤ ε } , B∞(f, ǫ) :=

⋃

j∈N

Bj
∞(f, ǫ) .(3.18)

Recall that (3.17) is the dual of (3.9) with η = 0, that is,

(3.19)
sup
f̃ ,λ

{λ : f̃ − λ ∈ Qj(g); |fα − f̃α| ≤ ε , α ∈ N
n
2j ,

λ ∈ R , f̃ ∈ R[x]2j }.

Fix j ∈ N and consider the following robust polynomial optimization problem:

(3.20) Pmax
ε : max

f̃ ∈B∞(f,ǫ)
{min
x∈K

{f̃(x)} }.

If in (3.20), we restrict ourselves to Bj
∞(f, ǫ) in the outer maximization problem and

we replace the inner minimization by its step-j relaxation, we obtain

Pmax,j
ε : max

f̃ ∈B
j
∞(f,ǫ)

{ sup
λ

{λ : f̃ − λ ∈ Qj(g)} }

= max
f̃ ∈B

j
∞(f,ǫ)

{ inf
y

{Ly(f̃) : y0 = 1; Mj(gℓ y) � 0, ℓ = 0, . . . ,m} }(3.21)

Here, we rely again on Assumption 3.1 to ensure strong duality and obtain (3.21).
Problem Pmax,j

ε is a strengthening of Pmax
ε and whose dual is exactly (3.17), that is:

Proposition 3.6. Under Assumption 3.1, solving (3.17) (equivalently (3.19))
can be interprated as solving exactly, i.e. with no trace-equality tolerance, the step-j
reinforcement Pmax,j

ε associated with Pmax
ε .

3.3. A two-player game interpretation. If we now assume that one can per-
form computations exactly, we can interpret the whole process in Pmax,j

η (resp. Pmax,j
ε )

as a two-player zero-sum game in which:
• Player 1 (the solver) chooses a polynomial f̃ ∈ Bj

∞(f,K, η) (resp. f̃ ∈
Bj

∞(f, ε)).
• Player 2 (the optimizer) then selects a minimizer y⋆(f̃) in the inner mini-

mization of (3.21), e.g., with an exact interior point method.
As a result, Player 1 (the leader) obtains an optimal polynomial f̃⋆ ∈ Bj

∞(f,K, η)
(resp. f̃⋆ ∈ Bj

∞(f, ε)) and Player 2 (the follower) obtains an associated minimizer
y⋆(f̃⋆).
The polynomial f̃⋆ is the worst polynomial in Bj

∞(f,K, η) (resp. Bj
∞(f, ε)) for the

step-j semidefinite relaxation associated with the optimization problem minx{ f̃(x) :
x ∈ K}. This max−min problem is then equivalent to the single min-problem (3.12)
(resp. (3.17)) which is a convex relaxation and whose convex criterion is not linear as
it contains the sum of ℓ∞-norm terms

∑m
ℓ=0 ‖Mj−dℓ

(gℓ y)‖∗ (resp. the ℓ1-norm term
‖y‖1).
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Notice that in this scenario the optimizer (Player 2) is not active; initially he
wanted to solve the convex relaxation associated with f . It is Player 1 (the adversary
uncertainty in the solver) who in fact gives the exact algorithm his own choice of
the function f̃ ∈ Bj

∞(f,K, η) (resp. f̃ ∈ Bj
∞(f, ε)). But in fact, as we are in the

convex case, Theorem 2.1 implies that this max−min game is also equivalent to the
min−max game. Indeed, Pmax,j

η is equivalent to

inf
y

max
f̃ ∈B

j
∞(f,K,η)

{Ly(f̃) : y0 = 1; Mj(gℓ y) � 0, ℓ = 0, . . . ,m } ,

and Pmax,j
ε is equivalent to

inf
y

max
f̃ ∈B

j
∞(f,ε)

{Ly(f̃) : y0 = 1; Mj(gℓ y) � 0, ℓ = 0, . . . ,m } ,

So now in this scenario (which assumes exact computations):
• Player 1 (the robust optimizer) chooses a feasible moment sequence y with
y0 = 1 and Mj−dℓ

(gℓ y) � 0, ℓ = 0, . . . ,m.
• When priority is given to trace equalities, Player 2 (the solver) then selects
f̃(y) = argmax{Ly(f̃) : f̃ ∈ Bj

∞(f,K, η)} to obtain the value Ly(f) +
η
∑m

ℓ=0 ‖Mj−dℓ
(gℓ y)‖∗.

When priority is given to semidefinitess inequalities, Player 2 selects f̃(y) =
argmax{Ly(f̃) : f̃ ∈ Bj

∞(f, ε)} to obtain the value Ly(f) + ε‖y‖1, that is

f̃(y)α = fα + sign(yα) ε, α ∈ N
n
2j .

Here the optimizer (now Player 1) is “active" as he decides to compute a “robust"
optimal relaxation y assuming uncertainty in the function f in the criterion Ly(f).

Since both scenarii are equivalent it is fair to say that the SDP solver is indeed
solving the robust convex relaxation that the optimizer whould have given to a solver
with exact arithmetic (if he had wanted to solve robust relaxations)

Relating to robust optimization. Suppose that there is no computation errror
but we want to solve a robust version of the optimization problem min{f(x) : x ∈ K}
because there is some uncertainty in the coefficients of the nominal polynomial f ∈
R[x]d. So assume that f ∈ R[x]d can be considered as potentially of degree at most
2j (after perturbation).

When priority is given to trace equalities, the robust optimization problem reads:

(3.22) Pmin,j
η : min

x∈K
{ max
f̃∈B

j
∞(f,K,η)

{f̃(x)} }.

Straightforward calculation reduces (3.22) to:

(3.23) Pmin,j
η : min

x∈K

[
f(x) + η

∑

β∈Nn
j−dℓ

x2β gℓ(x)
]
.

which is a polynomial optimization problem.

Theorem 3.7. Suppose that Assumption 3.1 holds. Assume that after solving
SDP (3.12), one obtains y⋆ such that Mj(y

⋆) is a rank-one matrix. Then, the optimal
value of Pmin,j

η is equal to ρjη and Pmin,j
η is equivalent to Pmax,j

η .

Proof. Since Mj(y
⋆) is a rank-one matrix, the sequence y⋆ comes from a Dirac

measure supported on x⋆ ∈ K. Then one has

Ly⋆(f) + η

m∑

ℓ=0

‖Mj−dℓ
(gℓ y

⋆)‖∗ = f(x⋆) + η
∑

β∈Nn
j−dℓ

x⋆2β gℓ(x
⋆) ,
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Let P(K) be the space of probability measures supported on K. Then, one has

f(x⋆) + η

m∑

ℓ=0

∑

β∈Nn
j−dℓ

x⋆2β gℓ(x
⋆) ≥ min

x∈K

[
f(x) + η

m∑

ℓ=0

∑

β∈Nn
j−dℓ

x2β gℓ(x)
]

= inf
µ∈P(K)

[∫

fdµ+ η

m∑

ℓ=0

∑

β∈Nn
j−dℓ

∫

x2β gℓ(x)dµ
]

≥ ρjη = Ly⋆(f) + η

m∑

ℓ=0

‖Mj−dℓ
(gℓ y

⋆)‖∗ .

This implies that x⋆ is the unique optimal solution of Pmin,j
η and that the optimal value

of Pmin,j
η is equal to ρjη. Eventually, Proposition 3.4 yields the desired equivalence.

When priority is given to semidefiniteness inequalities, the robust optimization
problem reads:

(3.24) Pmin,j
ε : min

x∈K
{ max
f̃∈B

j
∞(f,ε)

{f̃(x)} }.

It is easy to see that (3.24) reduces to

(3.25) Pmin,j
ε : min

x∈K

[
f(x) + ε

∑

α∈Nn
2j

|xα|
]
.

which is not a polynomial optimization problem (but is still a semi-algebraic opti-
mization problem). As for Theorem 3.7, one proves the following result:

Theorem 3.8. Suppose that Assumption 3.1 holds. Assume that after solving
SDP (3.17), one obtains y⋆ such that Mj(y

⋆) is a rank-one matrix. Then, the optimal
value of Pmin,j

ε is equal to ρjε and Pmin,j
ε is equivalent to Pmax,j

ε .

Notice an important conceptual difference between the two approaches. In the
latter one, i.e. when considering Pmin

η (resp. Pmin
ε ), the user is active. Indeed the user

decides to choose some optimal f̂ ∈ Bj
∞(f,K, η) (resp. Bj

∞(f, ε)). In the former one,
i.e., when considering Pmax

η (resp. Pmax
ε ), the user is passive, as indeed he imposes f

but the solver decides to choose some optimal f⋆ ∈ Bj
∞(f,K, η) (resp. Bj

∞(f, ε)).
If after solving SDP (3.12) (resp. SDP (3.17)), one obtains y⋆ where Mj(y

⋆) is rank-
one (which is to be expected), one obtains the same solution: in other words, we can
interpret what the solver does as performing robust polynomial optimization.

In the sequel, we show how this interpretation relates with a more general robust
SDP framework, when priority is given to semidefinitess inequalities.

3.4. Link with robust semidefinite programming. Let c = (cj) ∈ R
n, Fj

be real symmetric t × t matrix, j = 0, 1, . . . , n, and let F(y) :=
∑n

j=1 Fj yj − F0.
Consider the canonical semidefinite program (SDP):

(3.26) P : inf
y

{ cTy : F(y) � 0 }

with dual

(3.27) P∗ : sup
X�0

{〈F0,X〉 : 〈Fj ,X〉 = cj , j = 1, . . . , n }.
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Given ε > 0 fixed, let B∞(c, ǫ) := { c̃ : ‖c̃− c‖∞ ≤ ε } and consider the max-min
problem associated with P:

(3.28) ρ = max
c̃∈B∞(c,ε)

inf
y

{ c̃T y : F(y) � 0 }.

As in Section 3.3, there is a simple two-player game interpretation of (3.28). Player
1 (the leader) searches for the “best" cost function c̃ ∈ B∞(c, ε) which is “robust"
against the worst decision y made by Player 2 (the follower, the decision maker), once
Player 1’s choice c̃ is known.

Proposition 3.9. Assume that there exists ŷ such that F(ŷ) ≻ 0. Then solving
the max-min problem (3.28) is equivalent to solving :

(3.29) inf
y

{ cT y + ε ‖y‖1 : F(y) � 0 }.

Proof. F(ŷ) ≻ 0 implies that Slater’s condition holds for the inner (minimization)
SDP of (3.28). Therefore, by standard conic duality:

(3.30) ρ = max
c̃

sup
X�0

{ 〈F0,X〉 : 〈Fj ,X〉 = c̃j , | c̃j − cj |≤ ε, j = 1, . . . , n },

which in turn is equivalent to:

(3.31) sup
X�0

{ 〈F0,X〉 : | 〈Fj ,X〉 − cj |≤ ε , j = 1, . . . , n }.

As in the proof of Proposition 3.2, we prove that the dual of SDP (3.31) is (3.29).

So again, with an appropriate value of ε related the the numerical precision of SDP
solvers, (3.31) can be considered as a fair model of treating inaccuracies by relaxing the
equality constraints of (3.27) up to some tolerance level ε. That is, instead of solving
exactly (3.27) with nominal criterion c, Player 1 (the SDP solver) is considering a
related robust version where it solves (exactly) (3.27) but now with some optimal
choice of a new cost vector c̃ ∈ B∞(c, ε). But this is a robustness point of view from
the solver (not from the decision maker) and the resulting robust solution is some
optimal cost vector c̃∗ ∈ B∞(c, ε).

In the particular case of SDP relaxations for polynomial optimization, we re-
trieve (3.17) as an instance of (3.29) and (3.19) as an instance of (3.31).

Robust SDP. On the other hand, the objective function c̃Ty is bilinear in (c̃,y),
the set Bj

∞(c, ε) is convex and compact, and the set Y := {y : F(y) � 0} is convex.
Hence by Theorem 2.1, (3.28) is equivalent to solving the min-max problem:

(3.32) ρ = inf
y

{ max
c̃∈B∞(c,ε)

{ c̃Ty } : F(y) � 0 },

which is a “robust" version of (3.26) from the point of view of the decision maker
when there is uncertainty in the cost vector. That is, the cost vector c̃ is not known
exactly and belongs to the uncertainty set B∞(c, ε). The decision maker has to make
a robust decision y∗ with is the best against all possible values of the cost function
c̃ ∈ B∞(c, ε). This well-known latter point of view is that of robust optimization in
presence of uncertainty for the cost vector; see e.g. [4].

So if the latter robustness point of view (of the decision maker) is well-known,
what is perhaps less known (but not so surprising) is that it can be interpreted in
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terms of a robustness point of view from an inexact “solver" when treating equality
constraints with inaccuracies in a problem with nominal criterion. Given problem
(3.26) with nominal criterion c, and without being asked to do so, the solver behaves
as if it is solving exactly the robust version (3.32) (from the decision maker view-
point), whereas the decision maker is willing to solve (3.26) exactly. In other words,
Sion’s minimax theorem validates the informal (and not surprising) statement that
the treatment of inaccuracies by the SDP solver can be viewed as a robust treatment
of uncertainties in the cost vector.

However, in the case of SDP relaxations for polynomial optimization, this be-
havior is indeed more surprising and even spectacular. Indeed, some unconstrained
optimization instances such as minimizing Motzkin-like polynomials (i.e., when f−f∗

is not SOS), cannot be theoretically handled by SDP relaxations (assuming that one
relies on exact SDP solvers). Yet, double floating point SDP solvers solve them in a
practical manner, provided that higher-order relaxations are allowed so that a poly-
nomial of degree d can be (and indeed is!) treated as a higher degree polynomial (but
with zero coefficients for monomials of degree higher than d).

In general, similar phenomena can occur while relying on general floating point
algorithms. We presume that they could also appear when handling polynomial
optimization problems with alternative convex programming relaxations relying on
interior-point algorithms, for instance linear/geometric programming.

4. Examples. All experimental results are obtained by computing the solutions
of the primal-dual SDP relaxations (3.4)-(3.5) of Problem P. These SDP relaxations
are implemented in the RealCertify [12] library, available within Maple, and inter-
faced with the SDP solvers SDPA [22] and SDPA-GMP [13].

For the two upcoming examples, we rely on the procedure described in [5] to
extract the approximate global minimizer(s) of some given objective polynomial func-
tions. We compare the results obtained with (1) the SDPA solver implemented in
double floating point precision, which corresponds to ǫ = 10−7 and (2) the arbitrary-
precision SDPA-GMP solver, with ǫ = 10−30. The value of our robust-noise model
parameter ε roughly matches with the one of the parameter epsilonStar of SDPA.

We also noticed that decreasing the value of the SDPA parameter lambdaStar

seems to boil down to increasing the value of our robust-noise model parameter η. An
expected justification is that lambdaStar is used to determine a starting point X0 for
the interior-point method, i.e., such that X0 = lambdaStar× I (the default value of
lambdaStar is equal to 102 in SDPA and is equal to 104 in SDPA-GMP). A similar
behavior occurs when decreasing the value of the parameter betaBar, which controls
the search direction of the interior-point method when the matrix X is not positive
semidefinite.

However, the correlation between the values of lambdaStar (resp. betaBar) and
η appears to be nontrivial. Thus, our robust-noise model would be theoretically
valid if one could impose the value of a parameter η, ensuring that X � −η I when
the interior-point method terminates. From the best of our knowledge, this feature
happens to be unavailable in modern SDP solvers. For that reason, our experimental
comparisons are performed by changing the value of epsilonStar in the parameter
file of the SDP solver.

4.1. Motzkin polynomial. Here, we consider the Motkzin polynomial f =
1
27+x2

1x
2
2(x

2
1+x2

2−1). This polynomial is nonnegative but is not SOS. The minimum f⋆

of f is 0 and f has four global minimizers with coordinates x1 = ±
√
3
3 and x2 = ±

√
3
3 .
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As noticed in [5, Section 4], one can retrieve these global minimizers by solving the
primal-dual SDP relaxations (3.4)-(3.5) of Problem P at relaxation order j = 8:

(1) With ǫ = 10−7, we obtain an approximate lower bound of −1.81 · 10−4 ≤ f⋆,
as well as the four global minimizers of f with the extraction procedure.
The dual SDP (3.5) allows to retrieve the approximate SOS decomposition
f(x) = σ(x) + r(x), where σ is an SOS polynomial and the corresponding
polynomial remainder r has coefficients of approximately equal magnitude,
and which is less than 10−8.

(2) With ǫ = 10−30, we obtain an approximate lower bound of −1.83 · 101 ≤ f⋆

and the extraction procedure fails. The corresponding polynomial remainder
has coefficients of magnitude less than 10−31.

We notice that the support of r contains only terms of even degrees, i.e., terms
of the form x2β , with |β| ≤ 8. Hence we consider a perturbation f̃γ of f defined by

f̃γ(x) = f(x) + γ
∑

|β|≤j x
2β , with γ = 10−8. By solving the SDP relaxation (with

j = 8) associated to f̃γ , with ε = 10−30, we retrieve again the four global minimizers
of f .

4.2. Univariate polynomial with minimizers of different magnitudes.

We start by considering the following univariate optimization problem:

f⋆ = min
x∈R

f(x) ,

with f(x) = (x − 100)2
(

(x− 1)2 + γ
992

)

and γ ≥ 0.

Note that the minimum of f is f⋆ = 0 = f(100) and f(1) = γ.
We first examine the case where γ = 0. In this case, f has two global minimizers

1 and 100. At relaxation order j, with 2 ≤ j ≤ 5, we retrieve the following results
(rounded to four significant digits):

(1) With ǫ = 10−7, we obtain x̂(1) = 0.9999 ≃ 1, corresponding to the smallest
global minimizer of f .

(2) With ǫ = 10−30, we obtain x̂ = 50.5000 = 1+100
2 , corresponding to the average

of the two global minimizers of f .
We also used the realroot procedure, available within Maple, to compute the

local minimizers of the following function on [0,∞):

f̃ε,j(x) = f(x) + ε
∑

|α|≤2j

|xα| = f(x) + ε
∑

|α|≤2j

xα ,(4.1)

(1) With ǫ = 10−7, we obtain x̃(1) = 0.9961 ≃ x̂(1).
(2) With ǫ = 10−30, we obtain x̃(1) = 0.9961 ≃ x̂(1) and x̃(2) = 99.9960 ≃ 100,

the largest global minimizer of f . The corresponding values of f̃ε,j are 0.1496
and 0.1495, respectively.

These experiments confirm our explanations that the solver computes the solution of
SDP relaxations associated to the perturbed function f̃ε,j from (4.1). With double
floating point precision (1), this perturbed function has a single minimizer, retrieved
by the extraction procedure. With higher precision (2), this perturbed function has
two local minimizers, whose average is retrieved by the extraction procedure.

Next, we examine the case where γ = 10−3. In this case, f has a single global
minimizer, equal to 100 and another local minimizer At relaxation order j, with
2 ≤ j ≤ 5, we retrieve the following results (rounded to four significant digits):
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(1) With ǫ = 10−7, we obtain x̂(1) = 0.9999 ≃ 1, corresponding to the smallest
global minimizer of f when γ = 0.

(2) With ǫ = 10−30, we obtain x̂(2) = 99.1593 ≃ 100, corresponding to the single
global minimizer of f .

We also compute the local minimizers of f̃ε,j with realroot:
(1) With ǫ = 10−7, we obtain x̃(1) = 1.0039 ≃ x̂(1).
(2) With ǫ = 10−30, we obtain x̃(1) = 1.0039 ≃ x̂(1) and x̃(2) = 99.9961 ≃ 100,

the single global minimizer of f . The corresponding values of f̃ε,j are 0.1505
and 0.1495, respectively. This confirms that x̃(2) is the single global minimizer
of f̃ε,j, approximately extracted, as x̂(2).

Here again, our robust-noise model, relying on the perturbed polynomial function
f̃ε,j , fits with the above experimental observations. This perturbed function has a
single global minimizer, whose value depends on the parameter ε, and which can be
approximately retrieved by the extraction procedure.

5. Discussion. By considering the hierarchy of SDP relaxations associated to a
given polynomial optimization problem, we are facing with a dilemma when relying
on numerical SDP solvers. On the one hand, we might want to increase the precision
of the solver to get rid of the numerical uncertainties and obtain an accurate solution
of the SDP relaxations. On the other hand, working with low precision may allow
to obtain hints related to the solution of the initial problem. This has already hap-
pened in both commutative and non-commutative contexts, to compute the global
minimizers of the Motzkin polynomial in [5] or the bosonic energy levels from [14].
Our theoretical robust-noise model could be extended to problems addressed with
structured SDP programs (as, for instance, the moment and localizing matrices com-
ing from polynomial optimization problems). We believe that the use of “inaccurate”
SDP solvers could also provide hints for the solutions of such problems. One could
estimate how close are the optimal values of duals (3.12) and (3.17) of noise models,
to the optimal values of the initial optimization problem P. For some instances in this
article and other papers from the literature, the optimal values seem to not exceed the
optimal value of P for higher orders sufficiently large. Such experimental observations
remain to be explained and/or validated.
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