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Abstract

Let G be a graph and T be a vertex subset of G with even cardinality. A T -join of G is a subset

J of edges such that a vertex of G is incident with an odd number of edges in J if and only if the

vertex belongs to T . Minimum T -joins have many applications in combinatorial optimizations. In this

paper, we show that a minimum T -join of a connected graph G has at most |E(G)| − 1

2
|E( Ĝ )| edges

where Ĝ is the maximum bidegeless subgraph of G. Further, we are able to use this result to show

that every flow-admissible signed graph (G, σ) has a signed-circuit cover with length at most 19

6
|E(G)|.

Particularly, a 2-edge-connected signed graph (G, σ) with even negativeness has a signed-circuit cover

with length at most 8

3
|E(G)|.

Keywords: T -joins, circuit covers, signed graphs,

1 Introduction

In this paper, a graph may have multiple edges and loops. A loop is also treated as an edge. We follow the

notation from the book [25]. A cycle is a connected 2-regular graph. An even graph is a graph in which

every vertex has even degree. An Eulerian graph is a connected even graph. In a graph G, a circuit is the

same as a cycle, which is minimal dependent set of the graphic matroid defined on G. A circuit cover C

of a graph is a family of circuits which cover all edges of G. The length of a circuit cover is defined as

ℓ(C) =
∑

C∈C
|E(C)|. It is a classic optimization problem initiated by Itai et. al. [18] to investigate circuit

covers of graphs with shortest length. Thomassen [22] show that it is NP-complete to determine whether a

bridgeless graph has a circuit cover with length at most k for a given integer k. A well-known conjecture,

the Shortest Cycle Cover Conjecture, in this area was made by Alon and Tarsi [1] as follows.

Conjecture 1.1 (Alon and Tarsi [1]). Every bridgeless graph G has a circuit cover with length at most
7

5
|E(G)|.
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If the Shortest Cycle Cover Conjecture is true, then the bound given in the conjecture will be optimal

as the shortest cycle cover of Petersen graph attains the bound. It is known that there connections of the

Shortest Cycle Cover Conjecture to other problems in graph theory, such as, the Jeager’s Petersen Flow

Conjecture [14] and the Circuit Double Cover Conjecture (cf. [15]) due to Seymour [20] and Szekeres [19].

The best bound toward the Shortest Cycle Cover Conjecture is due to Bermond, Jackson and Jaeger [2],

and independently due to Alon and Tarsi [1] as follows, which was further generalized by Fan [10] to

weighted bridgeless graphs.

Theorem 1.2 (Bermond, Jackson and Jaeger [2], Alon and Tarsi [1]). Every bridgeless graph G has a

circuit cover with length at most 5

3
|E(G)|.

The circuit cover problem is studied for matroids (cf. [12, 21]). Recently, a great deal of attention

has been paid to the shortest circuit cover problem of signed graphs (or signed-graphical matroids) (cf.

[4, 5, 16, 17, 23]).

A signed graph is a graph G associated with a mapping σ : E(G) → {−1,+1}. A cycle of a signed graph

(G, σ) is positive if it contains an even number of negative edges, and negative otherwise. A short barbell

is a union of two negative cycles C1 and C2 such that C1 ∩C2 is a single vertex, and a long barbell consists

of two disjoint negative cycles C1 and C2 joined by a minimal path P (which does not contain a subpath

joining C1 and C2). A barbell of a signed graph (G, σ) could be a short barbell or a long barbell. A circuit

or signed-circuit of a signed graph (G, σ) is a positive cycle or a barbell, which is a minimal dependent

set in the signed graphic matroid associated with (G, σ). A signed-circuit admits a nowhere-zero 3-flow

[3]. A signed graph with a signed-circuit cover must admits a nowhere-zero integer flow. (For definition of

nowhere-zero flow, readers may refer to [3, 25].) In fact, a signed graph has a signed-circuit cover if and

only if it admits a nowhere-zero flow, so-called, flow-admissible [3].

It has been evident in [23] that a 3-connected signed-graph may not have a signed-circuit double cover,

i.e., every edge is covered twice. This fact leads the current authors to ask, whether every flow-admissible

signed graph (G, σ) has a signed-circuit cover with length at most 2|E(G)|? The first bound on the shortest

circuit cover of signed graphs was obtained by Máčajová et. al. [17] as follows.

Theorem 1.3 (Máčajová, Raspaud, Rollová and Škoviera, [17]). Every flow-admissible signed graph (G, σ)

has a signed-circuit cover with length at most 11|E(G)|.

The above result has been significently improved by Cheng et. al. [5] as follows.

Theorem 1.4 (Cheng, Lu, Luo and Zhang [5]). Every flow-admissible signed graph (G, σ) has a signed-

circuit cover with length at most 14

3
|E(G)|.

The bound of Cheng et. al. has been further improved recently by Chen and Fan [4].

Theorem 1.5 (Chen and Fan [4]). Every flow-admissible signed graph (G, σ) has a signed-circuit cover

with length at most 25

6
|E(G)|.

Recently, Kaiser et. al. [16] announce that every flow-admissible signed graph has a signed-circuit cover

with length at most 11

3
|E(G)|. For a 2-edge-connected cubic signed graph (G, σ), the present authors [23]

show that (G, σ) has a signed-circuit cover with length less than 26

9
|E(G)|.
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In this paper, we investigate the minimum T -join and the shortest signed-circuit cover problem. We

show that a minimum T -join of a connected graph G has at most |E(G)| − 1

2
|E( Ĝ )| edges where Ĝ is the

maximal bridgeless subgraph of G. The bound is tight. Further, we are able to use the bound of the size of

a minimum T -join to show the following result, which improves previous bounds on the length of shortest

signed-circuit cover.

Theorem 1.6. Every flow-admissible signed graph (G, σ) has a signed-circuit cover with length less than
19

6
|E(G)|.

Particularly, if (G, σ) is 2-edge-connected and has even negativeness (a detailed definition is given in

the next section), then (G, σ) has a signed-circuit cover with length less than 8

3
|E(G)|.

2 Circuit covers and T -joins

Let G be a graph. The maximal bridgeless subgraph of G is denoted by Ĝ . If G is a bridgeless graph,

then Ĝ = G. A circuit k-cover of a graph G is a family of circuits which covers every edge of G exactly k

times.

Theorem 2.1 (Bermond, Jackson and Jeager [2]). Every bridgeless graph G has a 4-cover by 7 even-

subgraphs.

Let G be a graph and T be a set of vertices of G. A T -join J of G with respect to T is a subset of

edges of G such that dJ(v) ≡ 1 (mod 2) if and only if v ∈ T , where dJ(v) is the number of edges of J

incident with the vertex v. A T -join in a connected graph G is easy to construct: partition T into |T |/2

pairs of vertices; and, for each pair of vertices, find a path joining them; and then the symmetric difference

of all edge sets of these |T |/2 paths generates a T -join of G. On the other hand, the subgraph induced by

a T -join always contains |T |/2 paths joining |T |/2 pairs of vertices of T which form a partition of T . The

symmetric difference of a T -join and the edge set of an even-subgraph is another T -join of G.

A T -join is minimum if it has minimum number of edges among all T -joins. A minimum T -join J

induces an acyclic subgraph of G (otherwise, the symmetric difference of J and a cycle induced by edges

of J is a smaller T -join of G). There is a strong polynomial-time algorithm to find a minimum T -join in a

given graph G (see [7]). The minimum T -join problem and its variations have applications to many other

problems in combinatorial optimization and graph theory, for example, the Chinese postman problem [7],

Traveling Salesman Problem (TSP) [6] and others (see [11, 13]).

Theorem 2.2. Let G be a connected graph and T be a set of vertices of even size. Then a minimum T -join

of G has at most |E(G)| − 1

2
|E( Ĝ )| edges.

Proof. Let G be a connected graph and J be a minimum T -join of G. Note that Ĝ is bridgeless. By

Lemma 2.1, Ĝ has 7-even-subgraph 4-cover {H1, H2, . . . , H7}. Since each Hi is an even-subgraph, the

symmetric difference Hi⊕J is still a T -join of G, denoted by Ji for i ∈ {1, 2, . . . , 7}. Let J = {J, J1, . . . , J7}.

By the choice of J , it holds that |J | ≤ |Ji| for i ∈ {1, 2, . . . , 7}.
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Let e be an edge of Ĝ . If e /∈ J , then e ∈ Ji if and only if e ∈ E(Hi) for i ∈ {1, . . . , 7}. Hence

e is covered exactly four times by the family of T -joins J if e /∈ J . If e ∈ J , then e ∈ Ji if and only

if e /∈ E(Hi) for i ∈ {1, . . . , 7}. Since {H1, . . . , H7} covers e exactly four times, there are exactly three

T -joins in {J1, . . . , J7} containing e. Together with J , the family of T -joins J covers e exactly four times.

Therefore, J covers every edge e of Ĝ exactly four times.

For an edge e ∈ E(G)\E( Ĝ ), it is covered by J at most eight times. Hence, J covers every edge of Ĝ

exactly four times and other edges of G at most eight times. Therefore,

|J | ≤
1

8

(
|J |+

7∑

i=1

|E(Ji)|
)
≤

1

8

(
4| Ĝ |+ 8(|E(G)| − |E( Ĝ )|)

)

= |E(G)| −
1

2
|E( Ĝ )|.

This completes the proof.

For 2-edge-connected graphs, the following result is a direct corollary of Theorem 2.2.

Corollary 2.3. Let G be a 2-edge-connected graph and T be an even subset of vertices. Then G has a

T -join of size at most |E(G)|/2.

Remark. The bounds in Theorem 2.2 and Corollary 2.3 are sharp. For example, G is a tree with all

even-degree vertices having degree two and T is the set of all odd-degree vertices, or G is an even cycle

and T consists of the two antipodal vertices.

In the following, Theorem 2.2 and Corollary 2.3 will be applied to prove technical lemmas on signed-

circuit covers, which are particularly useful in the proofs of our main results.

For a signed graph (G, σ), denote the set of all negative edges of (G, σ) by E−(G, σ) and the set of

all positive edges by E+(G, σ). We always use G+ to denote the subgraph of G induced by all edges in

E+(G, σ). Then Ĝ+ stands for the maximal bridgeless subgraph of G+.

Lemma 2.4. Let (G, σ) be a signed graph such that G+ is connected. For any S ⊆ E−(G, σ), the signed

graph (G, σ) has an even-subgraph H such that

S ⊆ H ⊆ G+ ∪ S and |E(H)| ≤ |E(G)| −
1

2
|E(Ĝ+)|.

Proof. Let (G, σ) is a signed graph with G+ being connected. For any S ⊆ E−(G, σ), let G[S] be the

subgraph G[S] of G induced by edges in S. Let T be the set of all vertices of odd-degree in G[S], which

has an even number of vertices. Let J be a minimum T -join of G+ with respect to T . By Theorem 2.2, it

follows that |J | ≤ |E(G+)| − 1

2
|E(Ĝ+)|.

Let H = G[S] ∪ J . Then H is an even-subgraph which satisfies

S ⊆ H ⊆ G+ ∪ S.

Since S ∩ E(G+) = ∅, it follows

|E(H)| = |E(G[S] ∪ J)| = |S|+ |J | ≤ |S|+ |E(G+)| −
1

2
|E(Ĝ+)|

≤ |E(G)| −
1

2
|E(Ĝ+)|.
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This completes the proof.

Now, we are going to define a function on signed graphs, which plays a key role in our proofs. Let B

be the union of all barbells of (G, σ). For any barbell B ∈ B, recall that B̂ is the maximum bridgeless

subgraph of B, which is the union of two negative cycles of B. Define

τ(G, σ) =

{
|E(G)| if B = ∅;

min
{
|E( B̂ )|

∣∣B ∈ B
}

otherwise.

The following result connects the function τ(G, σ) and signed-circuit cover, which is the key lemma to

prove our main theorem.

Lemma 2.5. Let (G, σ) be a 2-edge-connected signed graph such that G+ is connected. If S ⊆ E−(G, σ)

has an even number of edges, then (G, σ) has a family F of signed-circuits such that:

(i) F covers S and all 2-edge-cuts containing an edge from S;

(ii) the length of F satisfies

ℓ(F) ≤
1

2

(
3|E(G)| − |E(Ĝ+)| − τ(G, σ)

)
;

(iii) each negative loop of S (if exists) is contained in exactly one barbell of F.

Proof. By Lemma 2.4, (G, σ) has an even-subgraph H such that

S ⊆ H ⊆ G+ ∪ S and |E(H)| ≤ |E(G)| −
1

2
|E(Ĝ+)|.

Note that, for a 2-edge-cut R of G, either R∩E(H) = ∅ or R ⊂ E(H) because H is an even-subgraph. So

all edges of 2-edge-cuts containing an edge from S belong to E(H). For (i), it suffices to show that (G, σ)

has a family of signed-circuits covering all edges of H .

Since H is an even-subgraph, it has a cycle decomposition, i.e., its edges can be decomposed into

edge-disjoint cycles. Choose a cycle decomposition C of H such that the number of positive cycles in C

is maximum over all cycle decompositions of H . Then for any two negative cycles C and C′ of C, we

have |V (C) ∩ V (C′)| ≤ 1. Otherwise C ∪ C′ contains a positive cycle and can be decomposed into a

family of cycles C′, in which at least one cycle is positive. Then C′ ∪ (C\{C,C′}) is a cycle decomposition

of H which has more positive cycles than C, contradicting the choice of C. For two negative cycles

C and C′ with exactly one common vertex, the union C ∪ C′ is a short barbell of (G, σ). Let F =

{D1, D2, . . . , Dm, C1, C2, . . . , C2k−1, C2n} such that Di for i ∈ {1, . . . ,m} is either a positive cycle of C

or a short barbell consisting of two negative cycles of C with exactly one common vertex, and Ci for

i ∈ {1, . . . 2n} is a negative cycle of C. (Note that F has an even number of negative cycle because |S| is

even.) By the above choices, we have Ci ∩ Cj = ∅ for i, j ∈ {1, . . . , 2n} and i 6= j.

If n = 0, then F is a signed-circuit cover of H with length

ℓ(F) = |E(H)| ≤ |E(G)| −
1

2
|E(Ĝ+)| =

1

2

(
3|E(G)| − |E(Ĝ+)| − |E(G)|

)

≤
1

2

(
3|E(G)| − |E(Ĝ+)| − τ(G, σ)

)
.
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The last inequality above follows from the fact that τ(G, σ) ≤ |E(G)|. So F is a family of signed-circuits

of the type we seek.

So, in the following, assume that n ≥ 1. Let Q =
⋃

Ci∈F
Ci, and let G′ be the resulting graph

obtained from G by contracting each cycle Ci for i ∈ {1, 2, . . . , 2n} to a single vertex ui. Then E(G′) =

E(G)\(
⋃

Ci∈F
E(Ci)) = E(G)\E(Q).

Let U = {u1, u2, . . . , u2n} and J be a minimum T -join of G′ with respect to U . In the graph G′, the

subgraph induced by J has n edge-disjoint paths P1, P2, . . . , Pn such that each Pk joins two distinct vertices

from U . By Corollary 2.3, it follows that

|J | ≤
1

2
|E(G′)| =

1

2
(|E(G)| − |E(Q)|). (1)

Let J0 be the subgraph of G induced by edges in J . Then each endvertex ui of n edge-disjoint paths of

J0 becomes a vertex vi ∈ Ci of G. Let U ′ = {v1, v2, ..., v2n} where vi ∈ Ci for i ∈ {1, 2, . . . , 2n}. Note that,

the edges of each Pk with k ∈ {1, . . . , n} may induce a disconnected graph in G consisting of subpaths of Pk.

Then, for each path Pk, join all subpaths of Pk ∩ J0 by using a segment from each cycle Ci corresponding

to an intermediate vertex vi ∈ U ′ of Pk, and the edge set J1 of the resulting subgraph is a T -join of G with

respect to U ′ satisfying J1 ∩ E(G′) = J and J1 ⊆ J ∪ E(Q).

Among all T -joins J1 of G with respect to U ′ such that J1 ⊆ J ∪E(Q) and J1 ∩E(G′) = J , let J ′ be a

such T -join with |J ′∩E(H)| being minimum. If J ′ induces a cycle, let C be a such cycle. If E(C) ⊆ E(Q),

then J ′\E(C) is still a T -join of G with respect to U ′ and has fewer edges than J ′ which contradicts that

|J ′ ∩ E(H)| is minimum. If E(C)\E(Q) 6= ∅, then contracting edges of C from E(Q) generates a cycle of

J0 which contradicts that J is a minimum T -join of G′. Hence J ′ induces an acyclic subgraph of G.

Claim: |J ′ ∩ E(Q)| ≤ 1

2
(|E(Q)| − τ(G, σ)).

Proof of the claim. The subgraph induced by J ′ in G is acyclic and hence has at least two vertices of

degree 1. Since J ′ is a T -join of G with respect to {v1, . . . , v2n}. We may assume that dJ′(v1) = 1 and

dJ′(v2) = 1 (relabelling if necessary). So J ′ ∩ E(Ci) = ∅ for i ∈ {1, 2}. Note that C1 and C2 are disjoint.

Since G is 2-edge-connected, G has a path joining C1 and C2 and hence G has a barbell containing C1 and

C2. It follows that τ(G, σ) ≤ |E(C1)|+ |E(C2)|.

Let Q′ = Q\(C1 ∪ C2) and let J ′′ = J ′ ⊕ E(Q′), the symmetric difference of J ′ and Q′. Since

Q′ ⊆ Q and E(G′) = E(G)\E(Q), it follows that J ′′ is a T -join of G with respect to U ′ such that

|J ′′ ∩ E(G′)| = |J ′ ∩ E(G′)| = |J ∩ E(G′)|. By the choice of J ′, we have |J ′ ∩ E(Q)| ≤ |J ′′ ∩ E(Q)|.

Furthermore, J ′′ ∩ E(Ci) = J ′ ∩ E(Ci) = ∅ for i ∈ {1, 2}. Therefore, J ′ ∩ E(Q) and J ′′ ∩ E(Q) form a

partition of E(Q′). Hence,

|J ′ ∩ E(Q)| ≤
1

2
(|J ′ ∩E(Q)|+ |J ′′ ∩ E(Q)|) =

1

2
|E(Q′)|

=
1

2
(|E(Q)| − (|E(C1)|+ |E(C2)|))

≤
1

2
(|E(Q)| − τ(G, σ)).

This completes the proof of the claim.
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Note that the subgraph induced by J ′ in G has n edge-disjoint paths joining n pairs of vertices of

U ′, and these n pairs of vertices form a partition of U ′. So these n edge-disjoint paths together with the

negative cycles Ci’s containing the endvertices of the paths form n barbells, denoted by B1, B2, . . . , Bn.

Let F′ = {D1, D2, . . . , Dm, B1, B2, . . . , Bn}. Then F′ is a signed-circuit cover of H . So the conclusion (i)

follows. By the claim and (1),

|J ′| = |J ′ ∩E(G′)|+ |J ′ ∩ E(Q)| = |J |+ |J ′ ∩ E(Q)|

≤
1

2
(|E(G)| − |E(Q)|) +

1

2
(|E(Q)| − τ(G, σ))

=
1

2
(|E(G)| − τ(G, σ)).

So the length of F′ satisfies

ℓ(F′) = |E(H)|+ |J ′| ≤ |E(H)|+
1

2
(|E(G)| − τ(G, σ)) ≤

1

2
(3|E(G)| − |E(Ĝ+)| − τ(G, σ)),

which completes the proof of (ii).

If (G, σ) has a negative loop, then the negative loop is not contained in J ′ by the minimality of J ′. So

a negative loop (if exists) is contained in exactly one barbell of F′, and (iii) follows.

3 Shortest signed-circuit covers

Let (G, σ) be a signed graph. An edge cut R of (G, σ) is a minimal set of edges whose removal disconnects

G. A switching operation ζ on R is a mapping ζ : E(G) → {−1, 1} such that ζ(e) = −1 if e ∈ R and

ζ(e) = 1, otherwise. Two signatures σ and σ′ are equivalent if there exists an edge cut R such that

σ(e) = ζ(e) · σ′(e) where ζ is the switching operation on R [24]. The negativeness of a signed graph (G, σ)

is the smallest number of negative edges over all equivalent signatures of σ, denoted by ǫ(G, σ). A signed

graph is balanced if ǫ(G, σ) = 0. In other words, a balanced signed graph is equivalent to a graph (a signed

graph without negative edges). It is known that a signed graph (G, σ) has a circuit cover if and only if

ǫ(G, σ) 6= 1 and every cut-edge of G does not separate a balanced component, so-called sign-bridgeless (cf.

[5, 17]). The length of a shortest signed-circuit cover of a signed graph (G, σ) is denoted by scc(G, σ). The

following are some usefuly observations given in [23].

Observation 3.1. Let (G, σ) be a flow-admissible signed graph and σ′ be an equivalent signature of σ.

Then scc(G, σ) = scc(G, σ′).

By Observation 3.1, for shortest circuit cover problem, it is sufficient to consider all flow-admissible

signed graphs (G, σ) with ǫ(G, σ) negative edges.

Observation 3.2. Let (G, σ) be a signed graph with |E−(G, σ)| = ǫ(G, σ). Then every edge cut contains

at most half the number of edges being negative.

By Observation 3.2, G+ is connected if (G, σ) is connected and has minimum number of negative edges

over all equivalent signatures, i.e., |E−(G, σ)| = ǫ(G, σ). Before proceed to prove our main result, we have

the following result for 2-edge-connected signed graphs with even negativeness.
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Theorem 3.3. Let (G, σ) be a 2-edge-connected signed graph with even negativeness. Then (G, σ) has a

signed-circuit cover with length less than 8

3
|E(G)|.

Proof. By Observation 3.1, without loss of generality, we may assume that (G, σ) has minimum number of

negative edges, i.e., |E−(G, σ)| = ǫ(G, σ) ≡ 0 (mod 2). If ǫ(G, σ) = 0, the result follows from Theorem 1.2.

So, in the following, assume that |E−(G, σ)| = ǫ(G, σ) ≥ 2.

By Observation 3.2, G+ is connected. By Lemma 2.5, (G, σ) has a family of signed-circuits F1 covering

all edges in E(G)\E(Ĝ+) with length

ℓ(F1) ≤
1

2
(3|E(G)| − |E(Ĝ+)| − τ(G, σ)) ≤

1

2
(3|E(G)| − |E(Ĝ+)|).

By Theorem 1.2, Ĝ+ has a circuit cover F2 with length ℓ(F2) ≤ 5

3
|E(Ĝ+)|. Note that F = F1 ∪ F2 is a

signed-circuit cover of (G, σ). Since |E(Ĝ+)| ≤ |E(G)| − |E−(G, σ)|, it follows that

ℓ(F) ≤ ℓ(F1) + ℓ(F2) ≤
1

2
(3|E(G)| − |E(Ĝ+)|) +

5

3
|E(Ĝ+)|

=
3

2
|E(G)|+

7

6
|E(Ĝ+)| <

3

2
|E(G)| +

7

6
|E(G)|

=
8

3
|E(G)|.

This completes the proof.

In the following, we are going to prove our main result, Theorem 1.6. First, we need a variation of

Lemma 2.5 as follows.

Lemma 3.4. Let (G, σ) be a 2-edge-connected flow-admissible signed graph with a negative loop e such

that G+ is connected. Then, for any integer t ∈ {1, 2}, there is a family of circuits Ft of (G, σ) such that:

(i) Ft covers all edges of E(G)\E(Ĝ+);

(ii) the length of Ft satisfies

ℓ(F) ≤ 2|E(G)| −
1

2
|E(Ĝ+)|;

(iii) e is contained in exactly t barbells of F.

Proof. Since (G, σ) is flow-admissible and e is a negative loop, (G− e, σ) has a negative edge e′ and hence

has a negative cycle (for example, a cycle in G+∪ e′ containing e′). Let Ce be a negative cycle of (G− e, σ)

with minimum number of edges and let Be be a barbell consisting of e and Ce with minimum length.

Claim. |E(Be)| ≤
1

2
(|E(G)| + τ(G, σ)).

Proof of the claim. Let B be a barbell of (G, σ) such that |E( B̂ )| = τ(G, σ). Suppose C1 and C2 are two

negative cycles contained in B.

The minimality Ce implies that |E(Ce)| ≤ max{|E(C1)|, |E(C2)|}. Note that 1 ≤ min{|E(C1)|, |E(C2)|}.

Therefore,

τ(G, σ) ≤ |E(B̂e)| = |E(Ce)|+ 1 ≤ |E(C1)|+ |E(C2)| = τ(G, σ).
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Hence, |E(B̂e)| = τ(G, σ). Since (G, σ) is 2-edge-connected, there exist two edge-disjoint minimal paths

P1 and P2, joining e and Ce. So

|E(Be)| ≤
1

2
(|E(P1 ∪ B̂e)|+ |E(P2 ∪ B̂e)|)

=
1

2

(
(|E(P1)|+ |E(P2)|+ |B̂e|) + |B̂e|

)

≤
1

2
(|E(G)| + |E(B̂e)|) =

1

2
(|E(G)| + τ(G, σ)).

This completes the proof of the claim.

If |E−(G, σ)| is even, by Lemma 2.5, (G, σ) has a family of signed-circuits F1 which satisfies (i) covering

E−(G, σ) and all 2-edge-cuts containing a negative edge, and hence covering all edges of E(G)\E(Ĝ+); (ii)

having length

ℓ(F1) ≤
1

2
(3|E(G)| − |E(Ĝ+)| − τ(G, σ)) ≤ 2|E(G)| −

1

2
|E(Ĝ+)|;

and (iii) e is contained in exactly one barbell of F1. So Lemma 3.4 follows if t = 1. Now, assume that

t = 2. By the claim, let F2 = F1 ∪{Be} which is a family of signed-circuits satisfying (i) and having length

ℓ(F2) ≤ ℓ(F1) + |E(Be)|

≤
1

2

(
3|E(G)| − |E(Ĝ+)| − τ(G, σ)

)
+

1

2
(|E(G)| + τ(G, σ))

= 2|E(G)| −
1

2
|E(Ĝ+)|.

Then F2 is a family of signed-circuits of the type we seek.

In the following, assume that |E−(G, σ)| is odd. Let S1 = E−(G, σ)\e and let S2 = E−(G, σ)\e′ where

e′ is a negative edge in Ce. For each St with t ∈ {1, 2}, by Lemma 2.5, (G, σ) has a family of signed-circuits,

denoted by FSt
, which covers St and all 2-edge-cuts containing an edge in St and has length

ℓ(FSt
) ≤

1

2
(3|E(G)| − |E(Ĝ+)| − τ(G, σ)).

Particularly, the loop e is not covered by FS1
but is contained in exactly one barbell of FS2

.

Let Ft = FSt
∪ {Be} for t ∈ {1, 2}. Then Ft with t ∈ {1, 2} covers E−(G, σ) and all 2-edge-cuts

containing an negative edge (a 2-edge-cut containing e′ is covered by Be). Hence Ft covers all edges of

E(G)\E(Ĝ+). By the claim, the length of Ft with t ∈ {1, 2} satisfies

ℓ(Ft) = ℓ(FSt
) + |E(Be)|

≤
1

2

(
3|E(G)| − |E(Ĝ+)| − τ(G, σ)

)
+

1

2
(|E(G)| + τ(G, σ))

= 2|E(G)| −
1

2
|E(Ĝ+)|.

Note that e is contained in exactly t barbells of Ft for t ∈ {1, 2}. This completes the proof.

Lemma 3.5. Let (G, σ) be a 2-edge-connected signed graph such that |E−(G, σ)| ≥ 2 and G+ is connected.

Then (G, σ) has a signed-circuit D such that D contains a negative edge in its cycle and

|E(D)| ≤
1

2
(τ(G, σ) + |E(G)|).
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Proof. First assume that (G, σ) does not contain a barbell. Then τ(G, σ) = |E(G)|. Let e, e′ ∈ E−(G, σ)

and S = {e, e′}. By Lemma 2.4, there exists an even subgraph H such that S ⊆ E(H) ⊆ G+ ∪ S and

|E(H)| ≤ |E(G)| −
1

2
|E(Ĝ+)|.

Let Ce and Ce′ be two cycle of H containing e and e′, respectively. Then either Ce = Ce′ or |V (Ce ∩

Ce′)| ≥ 2. Otherwise, (G, σ) has a barbell, which contradicts to the assumption. No matter Ce = Ce′ or

|V (Ce ∩ Ce′)| ≥ 2, H has a cycle containing both e and e′, denoted by D. Since D ⊆ H ⊆ G+ ∪ S, D has

exactly two negative edges and hence is a positive cycle (a signed-circuit) of (G, σ). Furthermore,

|E(D)| ≤ |E(H)| ≤ |E(G)| −
1

2
|E(Ĝ+)| ≤ |E(G)| =

1

2
(τ(G, σ) + |E(G)|).

In the following, assume that (G, σ) does have a barbell. If (G, σ) itself is a short barbell, then let

D = (G, σ) and τ(G, σ) = |E(D)|. Hence |E(D)| = |E(G)| = 1

2
(τ(G, σ) + |E(G)|) and the lemma holds

trivially. Therefore, assume that (G, σ) is not a barbell. Then τ(G, σ) < |E(G)|.

Among all barbells B of (G, σ) with |E( B̂ )| = τ(G, σ), let D be a such barbell with minimum number

of edges. Then D has a negative cycle which contains a negative edge. Let P be the path of D joining the

two negative cycles. By the minimality of D, the path P has the shortest length among all minimal paths

joining the two cycles of D. Since (G, σ) is 2-edge-connected, there exists two edge-disjoint minimal paths

P1 and P2 joining the two negative cycles of D. Then |E(D)| ≤ |E( D̂ )| + |E(Pi)| for i ∈ {1, 2}. By the

minimality of P ,

|E(D)| ≤
1

2

(
2|E( D̂ )|+ |E(P1)|+ |E(P2)|

)
≤

1

2

(
|E( D̂ )|+ |E(G)|

)
=

1

2
(τ(G, σ) + |E(G)|).

This completes the proof.

Theorem 3.6. Let (G, σ) be a flow-admissible signed graph. Then (G, σ) has a family of circuits F covering

all edges in E(G)\E(Ĝ+) such that every negative loop is covered at most twice and its length satisfies

ℓ(F) ≤ 2|E(G)| −
1

2
|E(Ĝ+)|+ b(G, σ),

where b(G, σ) is the number of cut-edges of (G, σ).

Proof. Note that, the theorem is ture if it holds for every connected component of (G, σ). So, without

loss of generality, assume that (G, σ) is connected. By Observation 3.1, we may assume that (G, σ) has

|E−(G, σ)| = ǫ(G, σ). If ǫ(G, σ) = 0, then E(G)\E(G+) = ∅ and the result holds trivially. So assume that

ǫ(G, σ) 6= 0. Since (G, σ) is flow-admissible, it follows that |E−(G, σ)| ≥ 2.

We apply induction on b(G, σ) to prove the theorem. First, we verify the base case b(G, σ) = 0. In

other words, (G, σ) is 2-edge-connected.

If ǫ(G, σ) is even, by Lemma 2.5, (G, σ) has a family of signed-circuits F covering all 2-edge-cut con-

taining a negative edge such that each negative loop is covered exactly once and

ℓ(F) ≤
1

2
(3|E(G)| − |E(Ĝ+)| − τ(G, σ)) ≤ 2|E(G)| −

1

2
τ(G, σ).
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Then F is a family of signed-circuits of the type desired. So assume that ǫ(G, σ) is odd and ǫ(G, σ) ≥ 3.

By Lemma 3.5, (G, σ) has a signed-circuit D such that D has a cycle containing a negative edge and

|E(D)| ≤
1

2
(τ(G, σ) + |E(G)|).

Let e be a negative edge which is contained in a cycle of D, and let S = E−(G, σ)\e. By Lemma 2.5, (G, σ)

has a family of signed-circuits F′ covering S and all 2-edge-cuts containing an edge from S such that each

negative loop of S is covered exactly once and

ℓ(F′) ≤
1

2

(
3|E(G)| − |E(Ĝ+)| − τ(G, σ)

)
.

Let F = F′ ∪ {D}. Since S ∪ {e} = E−(G, σ), it follows from Observation 3.2 that every positive edge in

E(G)\E(Ĝ+) is contained in a 2-edge-cut which contains an edge from E−(G, σ). Therefore, F is a family

of circuits of (G, σ) covering all edges of E(G)\E(Ĝ+) such that

ℓ(F) = ℓ(F′) + |E(D)|

≤
1

2

(
3|E(G)| − |E(Ĝ+)| − τ(G, σ)

)
+

1

2
(τ(G, σ) + |E(G)|)

= 2|E(G)| −
1

2
|E(Ĝ+)|.

Note that every negative loop is covered by exactly one barbell of F′, and D is a signed-circuit. Hence F

covers every negative loop at most twice. So the theorem holds if b(G, σ) = 0.

So, in the following, assume that b(G, σ) 6= 0 and the theorem holds for all flow-admissible signed graph

with at most b(G, σ)− 1 cut-edges.

Since b(G, σ) 6= 0, the graph G has a cut-edge. Let uv be a cut-edge of G such that G\uv consists

of two components Q1 and Q2, one of which, say Q2, contains no cut-edges. Without loss of generaility,

assume that u ∈ V (Q1) and v ∈ V (Q2). Since (G, σ) is flow-admissible, both Q1 and Q2 are not balanced

and hence contain a negative edge. Hence Q2 is either a negative loop or 2-edge-connected.

Let (G1, σ) be the resulting signed graph constructed from (Q1, σ) by adding a negative loop e1 attached

to u. Then (G1, σ) is flow-admissible and b(G1, σ) = b(G, σ)−1 < b(G, σ). By induction hypothesis, (G1, σ)

has a family of signed-circuits F1 covering all edges in E(G1)\E(Ĝ+
1 ) such that

ℓ(F1) ≤ 2|E(G1)| −
1

2
|E(Ĝ+

1 )|+ b(G1, σ)

and every negative loop is contained in at most two barbells of F1. Assume that e1 is contained in t barbells

of F1 with t ∈ {1, 2}.

Let (G2, σ) be the resulting graph constructed from (Q2, σ) by attaching a negative loop e2 to v. Then

(G2, σ) is flow-admissible and 2-edge-connected. By Lemma 3.4, (G2, σ) has a family of signed-circuits F2

covering all edges in E(G2)\E(Ĝ+

2 ) such that

ℓ(F2) ≤ 2|E(G2)| −
1

2
|E(Ĝ+

2 )|

and e2 is contained in exactly t barbells of F2.
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Let B′

i with 1 ≤ i ≤ t be the barbells of F1 containing e1, and B′′

i with 1 ≤ i ≤ t be the barbells

of F2 containing e2. (Note that, t ≤ 2.) Let Bi = (B′

i\e1) ∪ (B′′

i \e2) ∪ uv which is a barbell of (G, σ)

for 1 ≤ i ≤ t, and let F = (F1\{B′

i|1 ≤ i ≤ t}) ∪ (F2\{B′′

i |1 ≤ i ≤ t}) ∪ {Bi|1 ≤ i ≤ t}. Since

|E(Bi)| = |E(B′

i)|+ |E(B′′

i )| − 1 for each i with 1 ≤ i ≤ t. Then

ℓ(F) = ℓ(F1) + ℓ(F2)− t ≤
(
2|E(G1)| −

1

2
|E(Ĝ+

1 )|+ b(G1, σ)
)
+
(
2|E(G2)| −

1

2
|E(Ĝ+

2 )|
)
− t. (2)

Since Ĝ+

1 ∪ Ĝ+

2 = Ĝ+ and Ĝ+

1 ∩ Ĝ+

2 = ∅, we have |E(Ĝ+

1 )|+ |E(Ĝ+

2 )| = |E(Ĝ+)|. Note that b(G1, σ) =

b(G, σ)− 1 and |E(G1)|+ |E(G2)| = |E(G)|+ 1. It follows from (2) that

ℓ(F) ≤ 2(|E(G)|+ 1)−
1

2
|E(Ĝ+)|+ (b(G, σ)− 1)− t ≤ 2|E(G)| −

1

2
|E(Ĝ+)|+ b(G, σ).

Note that a negative loop of (G, σ) (if exists) is contained in one or two barbells of either F1 or F2 (but

not both). Hence a negative loop of (G, σ) is contained in either one or two barbells in F. This completes

the proof.

Now, we are ready to prove our main result, Theorem 1.6.

Proof of Theorem 1.6. Let (G, σ) be a flow-admissible signed graph. By observation 3.1, we may assume

that |E−(G, σ)| = ǫ(G, σ). If ǫ(G, σ) = 0, then the results follows directly from Theorem 1.2. So assume

that ǫ(G, σ) ≥ 2. By Observation 3.2, G+ is connected.

By Theorem 3.6, (G, σ) has a family of signed-circuits F1 covering all edges in E(G)\E(Ĝ+) with length

ℓ(F1) ≤ 2|E(G)| −
1

2
|E(Ĝ+)|+ b(G, σ),

where b(G, σ) is the number of cut-edges of (G, σ). By Theorem 1.2, the subgraph Ĝ+ has a signed-circuit

cover F2 with length ℓ(F2) ≤
5

3
|E(Ĝ+)|. Therefore, F = F1 ∪ F2 is a signed-circuit cover of (G, σ), and

ℓ(F) = ℓ(F1) + ℓ(F2) ≤ 2|E(G)| −
1

2
|E(Ĝ+)|+ b(G, σ) +

5

3
|E(Ĝ+)|

≤ 2|E(G)|+
7

6
|E(Ĝ+)|+ b(G, σ)

< 2|E(G)|+
7

6
|E(G)| =

19

6
|E(G)|.

This completes the proof of Theorem 1.6.

Remark. Let (P10, σ) be the signed graph with P10 being the Petersen graph and E−(P10, σ) inducing a

5-cycle. Máčajová et. al. [17] show that a shortest circuit cover of (P10, σ) has length exactly 5

3
|E(P10)|.

The optimal upper bound for the shortest signed-circuit cover remains to be investigated.
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