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PACKING AND COVERING INDUCED SUBDIVISIONS

O-JOUNG KWON AND JEAN-FLORENT RAYMOND

Abstract. A class F of graphs has the induced Erdős-Pósa property if there exists a
function f such that for every graph G and every positive integer k, G contains either
k pairwise vertex-disjoint induced subgraphs that belong to F , or a vertex set of size
at most f(k) hitting all induced copies of graphs in F . Kim and Kwon (SODA’18)
showed that for a cycle Cℓ of length ℓ, the class of Cℓ-subdivisions has the induced
Erdős-Pósa property if and only if ℓ ≤ 4. In this paper, we investigate whether or not
the class of H-subdivisions has the induced Erdős-Pósa property for other graphs H .

We completely settle the case when H is a forest or a complete bipartite graph.
Regarding the general case, we identify necessary conditions on H for the class of H-
subdivisions to have the induced Erdős-Pósa property. For this, we provide three basic
constructions that are useful to prove that the class of the subdivisions of a graph does
not have the induced Erdős-Pósa property. Among remaining graphs, we prove that
if H is either the diamond, the 1-pan, or the 2-pan, then the class of H-subdivisions
has the induced Erdős-Pósa property.

1. Introduction

All graphs in this paper are finite and without loops or parallel edges. In this paper
we are concerned with the induced version of the Erdős-Pósa property. This property
expresses a duality between invariants of packing and covering related to a class of
graphs. Its name originates from the following result.

Theorem 1.1 (Erdős-Pósa Theorem, [EP62]). There is a function f(k) = O(k log k)
such that for every graph G and every positive integer k, G contains either k vertex-
disjoint cycles, or a vertex set X of size at most f(k) such that G−X has no cycle.

In general, we say that a class of graphs has the Erdős-Pósa property if a similar
statement holds: either we can find in a graph many occurrences of members of the class,
or we hit them all with a small number of vertices. Since the proof of Theorem 1.1 by
Paul Erdős and Lajós Pósa, the line of research of identifying new classes that have the
Erdős-Pósa property has been very active (see surveys [Ree97, RT17]). These results
are not only interesting because they express some duality between two parameters:
they can also be used to design algorithms (see e.g. [Tho88, FLM+16, CRST17]).

Several authors attempted to extend Theorem 1.1 in various directions. One of them
is to consider long cycles, i.e. cycles of length at least ℓ for some fixed integer ℓ ≥ 3.

Theorem 1.2 ([MNŠW17], see also [BBR07, FH14]). There is a function f(k, ℓ) =
O(kℓ + k log k) such that for every graph G and every positive integer k, G contains
either k vertex-disjoint cycles of length at least ℓ, or a vertex set X of size at most
f(k, ℓ) such that G−X has no such cycle.

This research has been supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program, ERC consolidator grant DISTRUCT, agree-
ment No 648527. O-joung Kwon was also supported by the National Research Foundation of Korea
(NRF) grant funded by the Ministry of Education (No. NRF-2018R1D1A1B07050294).
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2 O. KWON AND J.-F. RAYMOND

As every cycle contains an induced cycle, Theorem 1.1 also holds if one replaces cycle
with induced cycle in its statement. This is not so clear with Theorem 1.2 since a long
cycle in a graph does not always contain a long induced cycle. In [JP17], Jansen and
Ma. Pilipczuk asked whether Theorem 1.2 holds for induced cycles of length at least ℓ
for ℓ = 4. This was recently proved to be true by Kim and the first author:

Theorem 1.3 ([KK17]). There is a function f(k) = O(k2 log k) such that, for every
graph G and every positive integer k, either G has k vertex-disjoint induced cycles of
length at least 4, or it contains a vertex set X of size at most f(k) such that G−X has
no such cycle.

They also showed that the Erdős-Pósa type statement in Theorem 1.3 cannot be
extended to induced cycles of length at least ℓ for fixed ℓ > 4 (even with a different
order of magnitude for f).

The aim of this paper is to investigate if a statement as that of Theorem 1.3 holds for
other induced structures. In order to present it formally, we introduce some notions. A
class F of graphs has the induced Erdős-Pósa property if there exists a bounding function
f : N → R such that for every graph G and every positive integer k, G contains either
k pairwise vertex-disjoint induced subgraphs that belong to F , or a vertex set of size at
most f(k) hitting all induced copies of graphs in F .1

A subdivision of H (H-subdivision for short) is a graph obtained from H by subdivid-
ing some of its edges. A subgraph of a graph G is called an induced subdivision of H (or
induced H-subdivision) if it is an induced subgraph of G that is a subdivision of H . For
graphs H and G, we denote by νH(G) the maximum size of a collection of vertex-disjoint
induced subdivisions of H in G (called packing). We denote by τH(G) the minimum size
of a subset X ⊆ V (G) (called hitting set) such that G−X has no induced subdivision
of H . By definition, the class of H-subdivisions has the induced Erdős-Pósa property
if there is a bounding function f : N → R such that τH(G) ≤ f(νH(G)) for every graph
G. To avoid a long terminology, we allow to say that H-subdivisions have the induced
Erdős-Pósa property.

Theorem 1.3 can be reformulated in terms of the induced Erdős-Pósa property of C4-
subdivisions. The authors of [KK17] noted that it is an interesting topic to investigate
the induced Erdős-Pósa property of subdivisions of other graphs.

In this paper, we determine whether H-subdivisions have the induced version of
the Erdős-Pósa property or not, for various graphs H . We note that the classic (i.e.
non-induced) Erdős-Pósa property of subdivisions has been investigated before [Tho88,
Liu17, BH17, MNŠW17].

Our results. Towards a classification of graphs based on the induced Erdős-Pósa prop-
erty of their subdivisions, we consider several simple extensions of cycles, depicted in
Figure 1 (see Section 2 for a formal definition).

Theorem 1.4. If H is either the diamond, the 1-pan, or the 2-pan, then H-subdivisions
have the induced Erdős-Pósa property with a polynomial bounding function.

For 1- and 2-pans, we furthermore give a polynomial-time algorithm that constructs
a packing or a hitting set of bounded size. For diamond, we give an algorithm that

1We decided to use this terminology because the classic Erdős-Pósa property considers the subgraph
relation as a containment relation and therefore the sentence “induced H-subdivisions have the Erdős-
Pósa property” might be confusing.
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1-pan 2-pan Diamond

Figure 1. The graphs mentioned in the statement of Theorem 1.4.

runs in time kO(k) · |G|c for some constant c. This will be explicitly mentioned in the
statement of the theorems for each of the graphs.

We then give negative results for graphs satisfying certain general properties.

Theorem 1.5. Let H be a graph which satisfies one of the following:

(1) H is a forest and two vertices of degree at least 3 lie in the same connected
component;

(2) H contains an induced cycle of length at least 5;
(3) H contains a cycle C and two adjacent vertices having no neighbors in C;
(4) H contains a cycle C and three vertices having no neighbors in C;
(5) H = K2,n with n ≥ 3;
(6) H is not planar.

Then H-subdivisions do not have the induced Erdős-Pósa property.

We remark that if a forest F has no two vertices of degree at least 3 in the same
connected component, then F is a disjoint union of subdivisions of stars, and therefore
every subdivision of F contains F as an induced subgraph. Thus, for such a forest F ,
F -subdivisions trivially have the induced Erdős-Pósa property (see Lemma 3.3). By
item (1) of Theorem 1.5, other forests F will not satisfy this property. Therefore, we
can focus on graphs containing a cycle.

The rest of Theorem 1.5 provides, for graphs that have cycles, necessary conditions
for their subdivisions to have the induced Erdős-Pósa property. By combining together
Theorems 1.3, 1.4, and 1.5, we obtain the following dichotomies.

Corollary 1.6.

(1) Let F be a forest. Then F -subdivisions have the induced Erdős-Pósa property
if and only if each connected component of F has at most one vertex of degree
more than 2.

(2) Let n,m be positive integers with n ≤ m. Then Kn,m-subdivisions have the
induced Erdős-Pósa property if and only if n ≤ 1 or m ≤ 2.

(3) Let n be a positive integer. Then the subdivisions of the n-pan have the induced
Erdős-Pósa property if and only if n ≤ 2.

We also show that if H has a cycle and no vertex of degree more than 3, then there
is no o(k log k) bounding function for H (Theorem 7.1).

Our techniques. To obtain negative results, we describe three constructions. Their
common point is that any induced subdivision of the considered graph H that they
contain has a strictly constrained position. This will ensure that two distinct induced
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H-subdivisions meet. On the other hand, they contain several distinct induced H-
subdivisions, so one needs many vertices to hit them all. Compared to their non-
induced counterparts, induced subdivisions of a fixed graph do not appear in very dense
subgraphs such as cliques, which leaves more freedom in the design of our constructions.

The proofs of the positive results for 1-pan and 2-pan start similarly. We first show
that if S is a smallest 1-pan- (resp. 2-pan-) subdivision in G that hits all other induced
subdivisions of the 1-pan (resp. 2-pan), then either G contains k pairwise vertex-disjoint
induced subdivisions of the 1-pan, or all the 1-pan-(resp. 2-pan-)subdivisions can be
hit with O(k log k) vertices. By applying inductively this result we can conclude that
the subdivisions of the 1-pan (resp. 2-pan) have the induced Erdős-Pósa property with
gap O(k2 log k). The proof for the diamond is much more involved.

Organization of the paper. We introduce the definitions and some of the external
results that we need in Section 2. In sections from 3 to 7, we present general con-
structions and use them to obtain the negative results contained in this paper. The
positive results about pans and diamonds are proved in Sections 8 and 9, respectively.
We conclude in Section 10 with remarks and possible directions for future research. The
sections from 3 to 9 are mostly independent and can be read separately.

2. Preliminaries

Basics. We denote by R the set of reals and by N the set of non-negative integers. For
an integer p ≥ 1, we denote by N≥p the set of integers greater than or equal to p. Let
G be a graph. We denote by V (G) and E(G) its vertex set and edge set, respectively.
For every X ⊆ V (G) (resp. X ⊆ E(G)), we denote by G − X the graph obtained by
removing all vertices (resp. edges) of X from G. For every S ⊆ V (G), we denote by
G[S] the subgraph of G induced by S. We use |G| as a shorthand for |V (G)|.

For two graphs G and H , G∪H is the graph with vertex set V (G)∪ V (H) and edge
set E(G) ∪ E(H).

For a subgraph H of a graph G and v ∈ V (G) \ V (H), we say that v dominates H if
v is adjacent to every vertex of H . In this case, we also say that v is a H-dominating
vertex.

For v, w ∈ V (G), we denote by distG(v, w) the number of edges of a shortest path
from v to w in G; that is the distance between v and w in G. This notation is extended
to sets V,W ⊆ V (G) as distG(V,W ) = min(v,w)∈V ×W distG(v, w). When V consists of
one vertex v, we write distG(v,W ) for distG({v},W ). Let r ∈ N≥1. The r-neighborhood
of a subset S ⊆ V (G), that we denote by N r

G[S], is the set of all vertices w such that
distG(w, S) ≤ r.

Subdivisions. We recall the definition of subdivision given in the introduction. The
operation of subdividing an edge e of a graph G adds a new vertex of degree 2 adjacent
to the endpoints of e and removes e. We say that a graph H ′ is a subdivision of a graph
H if H ′ can be obtained from H by a sequence of edge subdivisions. We also say that
G has an induced subdivision of H , or shortly an induced H-subdivision, if there is an
induced subgraph of G that is isomorphic to an H-subdivision.

Models. We formulate an induced subdivision of H in a graph G as a mapping from
H to G. A model of H in G is an injective function ϕ with domain V (H) ∪E(H) that
maps vertices of H to vertices of G and edges of H to induced paths of G such that:
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• for every edge uv ∈ E(H), ϕ(u) and ϕ(v) are the endpoints of ϕ(uv);
• for distinct edges u1v1, u2v2 ∈ E(H), there is no edge between V (ϕ(u1v1)) \
{ϕ(u1), ϕ(v1)} and V (ϕ(u2v2)) \ {ϕ(u2), ϕ(v2)};

• for every edge uv ∈ E(H) and a vertex w ∈ V (H)\{u, v}, ϕ(w) has no neighbors
in V (ϕ(uv)) \ {ϕ(u), ϕ(v)};

• for two non-adjacent vertices u, v ∈ V (H), ϕ(u)ϕ(v) /∈ E(G).
It is easy to see that a graph G contains an induced subdivision of a graph H if and

only if there is a model of H in G. We will often used this fact implicitly. If H ′ is
an induced subgraph of H , then we denote by ϕ(H ′) the subgraph of G induced by
⋃

v∈V (H′) V (ϕ(v)).

Small graphs. We denote by Kn the complete graph on n vertices, and by Cn the
cycle on n vertices. The claw is the complement of the disjoint union of K3 and K1.
The n-pan is the graph obtained from the disjoint union of a path on n edges and K3

by identifying one endpoint of the path with a vertex in K3. The diamond is the graph
obtained by removing an edge in K4.

General tools. We collect in this subsection general results that will be used in the
paper. The first one is a lemma used by Simonovits [Sim67] to give a new proof of
Theorem 1.1.

Lemma 2.1 ([Sim67], see also [Die10, Lemma 2.3.1]). Let k be a positive integer. If a
cubic multigraph has at least 24k log k vertices, then it contains at least k vertex-disjoint
cycles. Furthermore, such k cycles can be found in time O(|G|3).

The second one is related to an Erdős-Pósa type problem about paths intersecting
a fixed set of vertices. Let G be a graph and A ⊆ V (G). An A-path in G is a path
with both end vertices in A and all internal vertices in V (G) \A. An A-cycle is a cycle
containing at least one vertex of A.

Theorem 2.2 ([Gal64]). Let G be a graph, A ⊆ V (G), and k be a positive integer.
Then one can find in time O(k|G|2) either k vertex-disjoint A-paths, or a vertex set X
of G with |X| ≤ 2k − 2 such that G−X has no A-paths.

We use the regular partition lemma introduced in [CKOW17]. For a sequence (A1, . . . , Aℓ)
of finite subsets of an interval I ⊆ R, a partition {I1, . . . , Ik} of I into intervals is called
a regular partition of I with respect to (A1, . . . , Aℓ) if each i ∈ {1, . . . , k} satisfies one
of the following:
(RP1) A1 ∩ Ii = A2 ∩ Ii = · · · = Aℓ ∩ Ii 6= ∅.
(RP2) |A1∩Ii| = |A2∩Ii| = · · · = |Aℓ∩Ii| > 0, and for all j, j′ ∈ {1, . . . , ℓ} with j < j′,

max(Aj ∩ Ii) < min(Aj′ ∩ Ii).
(RP3) |A1∩Ii| = |A2∩Ii| = · · · = |Aℓ∩Ii| > 0, and for all j, j′ ∈ {1, . . . , ℓ} with j < j′,

max(Aj′ ∩ Ii) < min(Aj ∩ Ii).
The number of parts k is called the order of the regular partition. The following can
be obtained using multiple applications of the Erdős-Szekeres Theorem [ES87].

Lemma 2.3 (Regular partition lemma [CKOW17]). Let I ⊆ R be an interval. There
exists a function N such that for all positive integers n, ℓ, the value N = N(n, ℓ) satisfies
the following. For every sequence (A1, . . . , AN) of n-element subsets of I, there exist a
subsequence (Aj1, . . . , Ajℓ) of (A1, . . . , AN) and a regular partition of I with respect to
(Aj1, . . . , Ajℓ) that has order at most n.
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We will use this lemma with n ∈ {2, 3, 4}. We note that for fixed n, the function
N(n, ℓ) is a polynomial function in ℓ, but the known upper bound following from the
proof of the result is big. For instance, N(2, ℓ) = O(ℓ40) and N(3, ℓ) = O(ℓ968).

3. Negative results using the triangle-wall

We prove in this section items (1) and (5) of Theorem 1.5. The cornerstone of both
proofs is the use of a triangle-wall, which we describe hereafter. These results are then
used to show the dichotomies (1) and (2) of Corollary 1.6.

Let n ∈ N≥2. The n-garland is the graph obtained from the path x0y0 . . . xiyi . . . xn−1yn−1

by adding, for every i ∈ {0, . . . , n− 1}, a new vertex zi adjacent to xi and yi. Let
Q0, . . . , Qn−1 be n copies of the 2n-garland. For every i ∈ {0, . . . , n− 1} and j ∈
{0, . . . , 2n− 1}, we respectively denote by xi

j , y
i
j, z

i
j the copies of the vertices xj , yj, zj

in Qi. The graph Γn (informally called triangle-wall) is constructed from the disjoint
union of Q0, . . . , Qn−1 as follows:

• for every even i ∈ {0, . . . , n− 1} and every odd j ∈ {0, . . . , 2n− 1}, we add an
edge between the vertex zij and the vertex zi+1

j ;
• for every odd i ∈ {0, . . . , n− 1} and every even j ∈ {0, . . . , 2n− 1}, we add an

edge between the vertex zij and the vertex zi+1
j .

a0 a1 a2 a3

b0b1b2b3

Figure 2. The graph Γ4, with C0 depicted in green.

For i ∈ {0, . . . , n− 1}, we set

ai = z02i, bi =

{

zp2(n−i−1) if n is even,
zp2(n−i)−1 otherwise.

,

and Ci =

n−1
⋃

j=0

{xj
2i, y

j
2i, z

j
2i, x

j
2i+1, y

j
2i+1, z

j
2i+1}.

Intuitively, the Qi’s form the rows of Γn and the Ci’s its columns. The graph Γ4 is
depicted in Figure 2. Observe that there is no induced claw in Γn.
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3.1. Complete bipartite patterns. In this section, we complete the study of the
induced Erdős-Pósa property of subdivisions of complete bipartite graphs by proving
item (2) of Corollary 1.6.

Lemma 3.1 (item (5) of Theorem 1.5). For every integer r ≥ 3, the subdivisions of
K2,r do not have the induced Erdős-Pósa property.

Proof. We construct an infinite family (Gn)n∈N≥1
of graphs such that νK2,r

(Gn) = O(1)
while τK2,r

(Gn) = Ω(n).
For n ∈ N≥1, the graph Gn is obtained as follows from the graph Γrn:

• for every i ∈ {0, . . . , n− 1}, add a new vertex ui and make it adjacent to
air, air+1, . . . , a(i+1)r−1;

• for every i ∈ {0, . . . , n− 1}, add a new vertex vi and make it adjacent to
bir, bir+1, . . . , b(i+1)r−1;

• for every distinct i, j ∈ {0, . . . , n− 1}, add all possible edges between {ui, vi}
and {uj, vj} (thus, ui and vj are not adjacent iff i = j).

Let us show that νK2,r
(Gn) ≤ 1. For this we consider a model ϕ of K2,r in Gn. Notice

that ϕ(K2,r) has exactly two vertices of degree r, and that they are not adjacent. As
each of them has r ≥ 3 pairwise non-adjacent neighbors, we observe that none of these
two vertices of degree r belongs to the subgraph Γrn of Gn. Furthermore, as they are
not adjacent, one is ui and the other one vi, for some i ∈ {0, . . . , n− 1}.

Let us now focus on the (ui, vi)-paths of ϕ(K2,r). Observe there is no edge between
the internal vertices of two distinct (ui, vi)-paths of ϕ(K2,r). Therefore if two such
paths contain a vertex of {uj, vj : j ∈ {0, . . . , n− 1} \ {i}} each, one of these vertices
is uj and the other one is vj, for some j ∈ {0, . . . , n− 1}. As r ≥ 3, we deduce
that at least one (ui, vi)-path of ϕ(K2,r) does not contain any vertex of {uj, vj : j ∈
{0, . . . , n− 1} \ {i}}. The set of internal vertices of this path lies in Γrn and connects
a neighbor of ui to a neighbor of vi, i.e. a vertex of {air, air+1, . . . , a(i+1)r−1} to a vertex
of {bir, bir+1, . . . , b(i+1)r−1}.

We just proved that every induced subdivision of K2,r in Gn contains a path of the sub-
graph Γrn connecting a vertex of {air, air+1, . . . , a(i+1)r−1} to a vertex of {bir, bir+1, . . . , b(i+1)r−1},
for some i ∈ {1, . . . , n}. As every two such paths meet for different values of i, we deduce
νK2,r

(Gn) ≤ 1.
We now show that when n ≥ 2r, τK2,r

(Gn) ≥
n
2
. For this we consider the sets defined

for every i ∈ {0, . . . , n− 1} as follows:

C+
i = {ui, vn−i−1} ∪

ir
⋃

j=(i+1)r−1

Cj.

The set C+
i contains ui, vn−i−1 and the vertices that are, intuitively, in the columns that

are between them. Let X be a subset of V (Gn) with
⌈

n
2

⌉

− 1 vertices. Observe that for
distinct i, j ∈ {1, . . . , n}, the sets C+

i and C+
j are disjoint. Hence the ⌈n/2⌉ sets

{

C+
i ∪ C+

n−i−1, i ∈

{

0, . . . ,

⌈

n− 1

2

⌉}}

are disjoint. As |X| =
⌈

n
2

⌉

− 1, we have X ∩ (C+
i ∪ C+

n−i−1) = ∅ for some i ∈
{

0, . . . ,
⌈

n−1
2

⌉}

.
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Recall that Γn is composed of n disjoint garlands Q0, . . .Qn−1 connected together. As
|X| < n

2
and r ≤ n

2
, some r of these garlands do not intersect X. Let π : {1, . . . , r} →

{1, . . . , n} be an increasing function such that Qπ(i) ∩X = ∅, for every i ∈ {1, . . . , r}.
Then there is a collection of disjoint paths P1, . . . , Pr of G−X so that Pj connects air+j

to b(i+1)r−1−j , for every j ∈ {1, . . . , r}. The path Pj can be obtained by following in
Gn[Cir+j] (intuitively, the j-th column of C+

i ) a shortest path from air+j to Qπ(r−1−j),
then chordlessly following Qπ(r−1−j) up to a vertex of C(i+1)r−1−j and finally following
a chordless path to b(i+1)r−1−j in Gn[C(i+1)r−1−j ]. We deduce that G − X contains a
model of K2,r. As this argument holds for every X ⊆ V (G) such that |X| ≤

⌈

n
2

⌉

− 1,
we deduce that τK2,r

(Gn) ≥
n
2
.

Therefore νK2,r
(Gn) = O(1) and τK2,r

(Gn) = Ω(n). This concludes the proof. �

Corollary 3.2 (item (2) of Corollary 1.6). Let r, r′ be positive integers with r ≤ r′.
Then the Kr,r′-subdivisions have the induced Erdős-Pósa property if and only if r ≤ 1
or r′ ≤ 2.

Proof. When r = 1, the result holds by Lemma 3.3 (to be proved in the next section).
When r = r′ = 2, K2,r is a cycle on four vertices and the result holds by Theorem 1.3.
When r = 2 and r′ ≥ 3, the result follows from Lemma 3.1. In the case where r ≥ 3,
then Kr,r′ is not planar and the result follows from Lemma 6.2. �

3.2. Acyclic patterns. We show in this section that if a graph is acyclic, then its sub-
divisions either have the induced Erdős-Pósa property with a linear bounding function
(Lemma 3.3), or they do not have the induced Erdős-Pósa property (Lemma 3.4). This
proves item (1) of Corollary 1.6.

Lemma 3.3. Let H be a graph whose connected components are paths or subdivided
stars. Then the subdivisions of H have the induced Erdős-Pósa property with a bounding
function of order O(k).

Proof. We show that for every graph G we have τH(G) ≤ νH(G) · |H|. Towards a
contradiction we assume that the above statement has a counterexample G, that we
choose to have the minimum number of vertices. Clearly νH(G) ≥ 1. Let M be
an induced subdivision of H with minimum number of vertices. As the connected
components of H are paths and subdivided stars, M is a copy of H . Hence |M | = |H|.
By minimality of G, we have τH(G−V (M)) ≤ νH(G−V (M)) · |H| ≤ (νH(G)−1) · |H|.
We deduce

τH(G) ≤ τH(G− V (M)) + |M |

≤ (νH(G)− 1)|H|+ |H|

= νH(G) · |H|.

This contradicts the definition of G. �

Lemma 3.4 (item (1) of Theorem 1.5). Let H be a forest, one connected component of
which contains at least two vertices of degree at least 3. Then the subdivisions of H do
not have the induced Erdős-Pósa property.

Proof. Our goal is to construct an infinite family of graphs (Gn)n∈N≥1
such that νH(Gn) =

O(1) while τH(Gn) = Ω(n). Let J be a connected component of H which contains at
least two vertices of degree at least 3 and let u and u′ be two such vertices, that are at
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minimal distance of each other. Let {v, v′} be an edge of the path connecting u to u′,
with the convention that u is closer to v than to v′. We call T the connected component
of H−{vv′} that contains v, T ′ that that contains v′, and D the union of the remaining
connected components. We also call F (resp. F ′) the graph obtained from T (resp. T ′)
by removing the vertices of the path from u to v (resp. u′ to v′). See Figure 3 for an
illustration.

v. . .u.
.
.FT

v′ . . . u′ .
.
. F ′ T ′ D

Figure 3. The forest H .

Recall that the triangle-wall Γn is defined in Section 2 and has special vertices called
ai and bi. For every n ∈ N≥1, we construct the graph Gn from a copy of Γn as follows:

(1) for every i ∈ {0, . . . , n− 1}, we add a new copy Ti of T and add an edge from
the copy of v to ai, and let Fi be the copy of F in Ti;

(2) for every i ∈ {0, . . . , n− 1}, we add a new copy T ′
i of T ′ and add an edge from

the copy of v′ to bi, and let F ′
i be the copy of F in T ′

i ;
(3) for every i ∈ {0, . . . , n− 1}, we add a new copy Di of D;
(4) for every distinct i, j ∈ {0, . . . , n− 1}, we add all edges between Fi ∪ Di and

Fj ∪Dj , between F ′
i ∪Di and F ′

j ∪Dj and between Fi ∪Di and F ′
j ∪Dj .

a0
. . .

u0.
.
.F0

a1
. . .

u1.
.
.F1

a2
. . .

u2.
.
.F2

a3
. . .

u3.
.
.F3

b0
. . .

u′
0

F ′
0

b1
. . .

u′
1

F ′
1

b2
. . .

u′
2

F ′
2

b3
. . .

u′
3

F ′
3

Figure 4. The graph G4. The Di’s and the edges between the V (Fi) ∪
V (F ′

i )’s (framed) are not depicted.

Let n ∈ N and let us show that every induced subdivision of H in Gn has a very
restricted position. For convenience we refer to the copy of Γn in Gn as Γn and if w is
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a vertex of H , we refer by wi to its copy in Ti, T ′
i , or Di. We denote by Pxy the unique

path of T (resp. T ′) with endpoints x, y ∈ V (T ) (resp. x, y ∈ V (T ′)) and similarly for
Pxiyi in Ti and T ′

i .
Let ϕ be a model of H in Gn.

Claim 3.5. There is an integer i ∈ {0, . . . , n− 1} such that every vertex of degree at
least 3 of ϕ(H) belongs to V (Ti) ∪ V (T ′

i ) ∪ V (Di).

Proof. Let x, y be two vertices of degree 3 in ϕ(H). As mentioned above, these vertices
do not belong to Γn. Let us assume towards a contradiction that for distinct i, j ∈
{0, . . . , n− 1} we have

x ∈ V (Ti) ∪ V (T ′
i ) ∪ V (Di) and y ∈ V (Tj) ∪ V (T ′

j) ∪ V (Dj).

The first case we consider is when x ∈ {ui, u
′
i}. Then at most one of its neighbors

(in ϕ(H)) belongs to Puivi or Pu′
iv

′
i

so x has two neighbors x1 and x2 that belong to
V (Fi) ∪ V (F ′

i ) ∪ V (Di). If additionally y ∈ {uj, u
′
j}, then we can similarly deduce that

it has (in ϕ(H)) two neighbors that belong to V (Fj)∪V (F ′
j). By construction they are

both adjacent to x1 and x2 and form together with them an induced C4, a contradiction.
We deduce y /∈ {uj, u

′
j}, i.e. y ∈ V (Fj) ∪ V (F ′

j). But then y is adjacent to x1 and x2,
which again forms an induced C4 and hence is not possible. Notice that the case where
x /∈ {ui, u

′
i} and y ∈ {uj, u

′
j} is symmetric.

The only remaining case to consider is then when x /∈ {ui, u
′
i} and y /∈ {uj, u

′
j}. Then

xy ∈ E(ϕ(H)). At most one neighbor of x (in ϕ(H)) is ui, so x has a neighbor x1 6= y in
V (Fk)∪V (F ′

k)∪V (Dk) for some k ∈ {1, . . . , n}. As this neighbor cannot be adjacent to
y without creating a cycle, it belongs in fact to V (Fj)∪V (F ′

j)∪V (Dj). Symmetrically,
y has a neighbors distinct from x in V (Fi)∪ V (F ′

i )∪ V (Di). But then Gn[{x, x1, y, y1}]
contains a cycle, a contradiction. This concludes the proof. ⋄

Let i be as in the statement of Claim 3.5. Observe that ϕ(H) contains no vertex of
V (Tj) ∪ V (T ′

j) ∪ V (Dj) for j ∈ {0, . . . , n− 1} \ {i}, otherwise it would contain a cycle:

V (ϕ(H)) ⊆ V (Ti) ∪ V (T ′
i ) ∪ V (Di) ∪ V (Γn).

By construction |E(Ti∪T ′
i ∪Di)| = |E(H)|−1. We deduce that ϕ(H) contains a path Q

from a vertex x of Ti to a vertex y of T ′
i . As Q does not intersect V (Tj)∪V (T ′

j)∪V (Dj)
for j ∈ {0, . . . , n− 1} \ {i}, a subpath of it links ai to bi in Γn.

We proved that if there is an induced subdivision of H in Gn, it contains an path of Γn

from ai to bi for some i ∈ {0, . . . , n− 1}. Notice that two such paths meet for distinct
values of i. Consequently, νH(Gn) ≤ 1. On the other hand, Gp[V (Ti)∪ V (P )∪ V (T ′

i )∪
V (Di)] is an induced subdivision of H for every i ∈ {1, . . . , n} and every chordless path
P of Γn connecting ai to bi. Hence νH(Gn) = 1.

We now show that τH(Gn) = Ω(n).

Claim 3.6. For every n ∈ N, τH(Gn) ≥
n
2
.

Proof. This proof is similar to the end of the proof of Lemma 3.1. Let n ∈ N. We
consider a set X of

⌈

n
2

⌉

− 1 vertices of Gn and show that Gn − X contains a induced
subdivision of H . For every i ∈ {0, . . . , n− 1}, we set

C+
i = V (Ti) ∪ V (Di) ∪ V (T ′

p−i−1) ∪ Ci.

Intuitively Ci contains the vertices of the copies Ti and Tp−i+1, a path linking them, and
Di; see Figure 4 for a depiction of C1 in G4 (in green). As in the proof of Lemma 3.1 we
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deduce the existence of an integer i such that none of C+
i and C+

n−i−1 intersects X. As
|X| < n, for some j ∈ {0, . . . , n− 1} the garland Qj (which is a subgraph of Γn) does
not contain a vertex of X. Besides, any of these garlands intersect each of C0, . . . , Cn−1.
We deduce that in G−X, Ci and Cn−i−1 (which by definition of i do not intersect X)
belong to the same connected component. An induced subdivision of H can then be
found by connecting the vertex ai of Ti to the vertex bi of Tn−i−1 using a chordless path.
As this argument works for every X ⊆ V (G) such that |X| ≤

⌈

n
2

⌉

− 1, we deduce that
τH(Gn) ≥

n
2
. ⋄

We constructed a family (Gn)n∈N of graphs such that νH(Gn) = O(1) and τH(Gn) =
Ω(n). This proves that subdivisions of H do not have the induced Erdős-Pósa property.

�

4. Negative results using hypergraphs

We prove in this section negative results about the induced Erdős-Pósa property of
the subdivisions of graphs containing long cycles and of graphs that have an edge away
from a cycle, which are respectively items (2) and (3) of Theorem 1.5. We start with
an easy lemma.

Lemma 4.1. Let H be a graph containing a cycle C, let H ′ be a subdivision of H, and
let e be an edge of H ′ contained in the subdivision of C. Then H ′−{e} does not contain
an induced subdivision of H.

Proof. For a graph G, let c(G) denote the number of distinct (and not disjoint) cycles in
G. Observe that there is a bijection between the cycles of G and those of a subdivision
G′ of G, hence c(G) = c(G′). Besides, if G′ is a subgraph of G, then every cycle of G′

is a cycle of G, hence c(G′) ≤ c(G).
As e belongs to a cycle, c(H ′ − {e}) < c(H ′) = c(H). If H ′ − {e} contained a

subdivision H ′′ of H we would have the following contradiction:

c(H) = c(H ′′) ≤ c(H ′ − {e}) < c(H ′) = c(H). �

Our proofs rely on a suitable modification of the construction given in [KK17] to show
that for ℓ ≥ 5, Cℓ-subdivisions have no induced Erdős-Pósa property.

A pair (X,E) consisting of a set X and a family E of non-empty subsets of X is
called a hypergraph. Each element in E is called a hyperedge, and for a hypergraph H ,
let E(H) denote the set of hyperedges in H . A subset Y of X is called a hitting set
if for every F ∈ E, Y ∩ F 6= ∅. For positive integers a, b with a ≥ b, let Ua,b be the
hypergraph (X,E) such that X = {1, . . . , a} and E is the set of all subsets of X of size
b. It is not hard to observe that for every positive integer k, every two hyperedges of
U2k−1,k intersect and that the minimum size of a hitting set of U2k−1,k is precisely k.

The bipartite graph UBk with bipartition (A,B) is defined as follows:
• A = {1, . . . , 2k − 1};
• for every hyperedge F = {a1, a2, . . . , ak} of U2k−1,k with a1 < · · · < ak, we add

fresh vertices pF1 , . . . , p
F
k+1 to B and the edges of the path PF = pF1 a1p

F
2 a2 · · ·p

F
k akp

F
k+1.

We also set P(UBk) = {PF : F ∈ E(U2k−1,k)}.
We are ready to prove one of the main results of this section.

Theorem 4.2 (item (2) of Theorem 1.5). If a graph H contains an induced cycle of
length at least 5, then the subdivisions of H have no induced Erdős-Pósa property.
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Proof. Let H be a graph containing an induced cycle C of length at least 5, and let
m := |H|. We construct an infinite family (Gn)n∈N≥m

of graphs such that νH(Gn) = 1
while τH(Gn) ≥ n for every n ∈ N≥m.

Let n ≥ m be an integer and let us fix an edge uv of C. Let H ′ be the graph obtained
from H by subdividing each edge into a path of length 2n. In particular, we subdivide
uv into uw1w2 · · ·w2n−1v. We construct a graph G = Gn from UBn as follows:

• for each path P of P(UBn), we take a copy HP of H ′ and identify the copy of
uw1w2 · · ·w2n−1w with the path P , in the same order

• then we add all possible edges between V (HP )\A and V (HP ′)\A for two distinct
paths P and P ′ in P(UBn).

Note that A is still an independent set in G. Clearly, each HP is an induced subdi-
vision of H .

Claim 4.3. Every induced subdivision of H in G is contained in V (HP ) ∪ A for some
P ∈ P(UBn), and contains the path P .

Proof. Let ϕ be a model of H in G and C ′ := ϕ(C).
We first show that C ′ is contained in HP for some P ∈ P(UBn). Since A is an

independent set, C ′ contains a vertex v of HP − A for some P ∈ P(UBn). Suppose
for contradiction that C ′ is not contained in HP . Then C ′ also contains a vertex v′ of
HP ′ −A for some P ′ ∈ P(UBn), P ′ 6= P . By construction v is adjacent to v′.

As C ′ contains no triangle, C ′ does not contain any vertex in HP ′′ for P ′′ ∈ P(UBn)\
{P, P ′}.

We now analyze the order of C ′[A]. Let us observe that if I is an independent set
of a cycle M , we have |NM(I)| ≥ |I| since we can define an injective mapping from
I to V (M) \ I by mapping v ∈ V (T ) to its left neighbor. Since C ′[V (C ′) ∩ A] is an
independent set in G, the previous observation implies that |C ′ −A| ≥ |C ′[V (C ′)∩A]|.

Suppose C ′−({v, v′}∪A) has two vertices w and w′. Then either C ′ has a vertex with
three neighbors in C ′ (when both w and w′ belong to one of HP −A and HP ′ − A), or
it contains an induced C4 (when {w,w′} intersects both V (HP −A) and V (HP ′ −A)).
This is not possible as C ′ is an induced cycle of length at least 5. We deduce that C ′−A
has at most three vertices.

Observe that if |C ′−A| = |V (C ′)∩A| = 3, then C ′ is a C6 and C ′−A is an independent
set. This is not possible as vv′ ∈ E(C ′ − A), hence |C ′| ≤ 5. Since V (C ′) ∩ A is an
independent set in C ′, we deduce |V (C ′) ∩ A| ≤ 2.

Now, if |V (C ′)∩A] = 2, then C ′−A has three vertices and only one edge, contradicting
the fact that it intersects both HP − A and HP ′ − A. Consequently, C ′ has length 4,
which is a contradiction.

We conclude that C ′ is contained in V (HP )∪A for some P ∈ P(UBn). Note that every
cycle in HP contains more than m vertices of HP − V (P ), by construction. Therefore,
if ϕ(H) contains a vertex of HP ′ − A for some P ′ ∈ P(UBn), P ′ 6= P , then this vertex
should have degree at least m in ϕ(H), which cannot happen in an induced subdivision
of H . Thus, all other vertices are also contained in V (HP ) ∪ A, which proves the first
part of the claim. Since P is a part of the subdivisions of the cycle of H in HP , by
Lemma 4.1, the subdivision of H should contain the path P . ⋄

Since every induced subdivision of H in G contains a path in P(UBn), no two induced
subdivisions of H in G are vertex-disjoint, hence νH(G) = 1. For every vertex subset
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S of size at most n − 1, there exists P ∈ P(G) such that HP contains no vertex of S.
Therefore τH(G) ≥ n, as required. �

Using the same construction, we can also prove the following.

Theorem 4.4 (item (3) of Theorem 1.5). Let H be a graph containing a cycle C and
two adjacent vertices having no neighbors in C. Then the subdivisions of H do not have
the induced Erdős-Pósa property.

Proof. We use the same construction in Theorem 4.2. Similarly, we claim that every
induced subdivision of H in G is contained in V (HP ) ∪A for some P ∈ P(UBn).

Let ϕ be a model of H in G and let C ′ := ϕ(C). Let vw be an edge of ϕ(H) having no
neighbors in C ′. Such an edge exists by the assumption that H contains two adjacent
vertices having no neighbors in C.

As A is independent, one of v and w is not contained in A. Without loss of generality,
we assume v ∈ V (HP ) \ A for some P ∈ P(UBn). Since v has no neighbor in C ′, C ′

should be contained in V (HP ) ∪ A. By construction, C ′ has at least |H| vertices in
HP −A. Thus, if ϕ(H) contained a vertex in HP ′−A for some P ′ ∈ P(UBn)\{P}, then
it would have degree at least |H|, which is not possible. This implies that V (ϕ(H)) ⊆
V (HP )∪A, and again by Lemma 4.1, ϕ(H) contains P . The remaining part is the same
as in Theorem 4.2. �

5. Negative results using the semi-grid

In this section, we show that if H contains a cycle and three vertices that have no
neighbors in C, then H-subdivisions have no induced Erdős-Pósa property. For example,
we may consider a graph F that is the disjoint union of C3 and three isolated vertices.
Clearly, triangle-walls contain F as an induced subgraph. Also, in the construction
based on hypergraphs in Section 4, we have an independent set A, and we can choose
some C4 by picking two vertices from each of V (HP ) \ A and V (HP ′) \ A for some
distinct P, P ′ ∈ P(UBn), and then choose three vertices in A having no neighbors in
C4 (for this, we choose P, P ′ so that A \ (V (P )∪ V (P ′)) has 3 vertices). Therefore, the
constructions presented in the previous sections do not seem helpful to deal with this
case. Let us introduce a new one.

For n ∈ N≥3, we define the semi-grid SGn of order n as follows:
(1) V (SGn) = {vi,j : i, j ∈ {1, . . . , n}, i ≥ j};
(2) for every i ∈ {1, . . . , n}, we add the edges of the path Pi, defined as the concate-

nation of vi,1 · · · vi,i and vi,i · · · vn,i;
(3) additionally, we add an edge between two vertices v and w if there is no i ∈

{1, . . . , n} such that v, w ∈ V (Pi).
An example is depicted in Figure 5.
Observe that SGn satisfies the following, for every i, j ∈ {1, . . . , n} with i < j:

• Pi is an induced path;
• for i, j ∈ {1, 2, . . . n} with i < j, V (Pi) ∩ V (Pj) = {vj,i};
• every vertex of SGn belongs to at most two paths of P1, . . . , Pn;
• V (SGn) \ V (Pi) has at least n − 2 neighbors in Pi (this is because a vertex in
V (SGn) \ V (Pi) belongs to at most two paths of P1, . . . , Pn, which may contain
non-neighbors of v on their intersections with Pi).
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v1,1

v2,1 v2,2

v3,1 v3,2 v3,3

v4,1 v4,2 v4,3 v4,4

v5,1 v5,2 v5,3 v5,4 v5,5

P1

P2

P3

P4

P5

Figure 5. The graph SG5. The Pi’s are drawn with different colors.
The edges added in step (3) are not depicted.

Theorem 5.1 (item (4) of Theorem 1.5). Let H be a graph that contains a cycle C and
three vertices having no neighbors in C. Then the subdivisions of H do not have the
induced Erdős-Pósa property.

Proof. Let m := |H|. We construct an infinite family (Gn)n∈N≥m+2
of graphs such that

νH(Gn) = 1 while τH(Gn) ≥
n
2

for every n ∈ N≥m+2.
Let us fix an edge uv of C. Let n ≥ m + 2 be an integer and let H ′ be the graph

obtained from H by subdividing each edge into a path of length n + 1. In particular,
we subdivide the edge uv into uw1w2 · · ·wnv. The graph G = Gn is constructed from
SGn as follows:

• we take copies H1, H2, . . . , Hn of H ′ and for each j ∈ {1, . . . , n}, we identify the
copy of w1w2 · · ·wn in Hj with the path Pj;

• then we add all possible edges between V (Hj) \ V (Pj) and V (G) \ V (Hj).
Clearly, each Hj is an induced subdivision of H . We show that every induced subdivision
of H in G is Hj for some j ∈ {1, . . . , n}.

Claim 5.2. Every induced subdivision of H in G is contained in Hj for some j ∈
{1, . . . , n} and contains the path Pj.

Proof. Let ϕ be a model of H in G, and let F := ϕ(H) and C ′ := ϕ(C), and Z =
{z1, z2, z3} be a set of three vertices in F having no neighbors in C ′. Such a set Z exists
because H contains three vertices having no neighbors in C.

We consider two cases depending on whether Z contains a vertex of V (Hj) \ V (Pj)
for some j ∈ {1, . . . , n}, or not.

(First case: Z contains a vertex of V (Hj) \ V (Pj) for some j ∈ {1, 2, . . . , n}.)
By construction, for all a ∈ V (Hj) \ V (Pj) and b ∈ V (G) \ V (Hj), a is adjacent to b.

As Z has no neighbors in C ′, C ′ is contained in Hj. Furthermore, since Pj is a path, C ′

contains a vertex of V (Hj) \ V (Pj). It implies that Z is also contained in Hj .
First assume that C ′ contains Pj . In this case, every vertex in V (G) \ V (Hj) has at

least n−2 ≥ m neighbors in Pj. As the maximum degree of H is less than m, no vertex
of F belongs to V (G) \ V (Hj). Hence F is an induced subgraph of Hj. By assumption,
F contains Pj so we are done.

In the remaining case, C ′ does not contain Pj. As V (C ′) ⊆ V (Hj) and Pj is a path,
we deduce that all vertices of C ′ belong to V (Hj)\V (Pj). By construction every vertex
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in V (G) \ V (Hj) dominates C ′. Since C ′ contains at least m vertices while H has
maximum degree less than m, all other vertices of F are contained in Hj . If F does
not contain an edge in Pj, then F contains no induced subdivision of H by Lemma 4.1.
Therefore, F contains Pj, as required.

(Second case: Z ⊆ V (SGn).)
First assume that z1, z2, z3 are all contained in Pi for some i ∈ {1, . . . , n}. We can

observe that every vertex of V (G) \ V (Pi) has a neighbor in {z1, z2, z3}. Thus, C ′ is an
induced subgraph of Hi. Since Pi is a path and z1 is already in Pi, C ′ is contained in
V (Hi) \ V (Pi). Since C ′ contains at least m vertices and every vertex in V (G) \ V (Hi)
dominates C ′, all other vertices of F are contained in Hi. If F does not contain an
edge in Pi, then F contains no induced subdivision of H by Lemma 4.1. Therefore, F
contains Pi.

We can assume that two of z1, z2, z3 are not contained in the same path Pi of SGn.
Without loss of generality, we assume that z1 ∈ V (Pa)∩V (Pa′) and z2 ∈ V (Pb)∩V (Pb′)
such that

• {a, a′} ∩ {b, b′} = ∅,
• if a = a′, then z1 := va,a,
• if b = b′, then z2 := vb,b.

Therefore the four vertices ua,b ∈ V (Pa)∩V (Pb), ua,b′ ∈ V (Pa)∩V (Pb′), ua′,b ∈ V (Pa′)∩
V (Pb), and ua′,b′ ∈ V (Pa′) ∩ V (Pb′) are the only vertices in G that are not adjacent to
both z1 and z2. Thus, V (C ′) ⊆ {ua,b, ua′,b, ua,b′, ua′,b′}.

Observe that z3 is contained in at least one and at most two paths of Pa, Pa′ , Pb, Pb′. If
z3 is contained in exactly one path of them, say Q, then z3 is adjacent to the vertices of
{ua,b, ua′,b, ua,b′, ua′,b′}\V (Q). But every cycle in {ua,b, ua′,b, ua,b′, ua′,b′} contains a vertex
of {ua,b, ua′,b, ua,b′, ua′,b′} \ V (Q), a contradiction. We may assume that z3 is contained
in two paths of them, say Px and Py. Then z3 = ux,y, and the other three vertices form
a triangle C ′. But then z3 is adjacent to the vertex in {ua,b, ua′,b, ua,b′, ua′,b′} \ (V (Px) ∪
V (Py)), a contradiction.

This concludes the proof of the claim. ⋄

By Claim 5.2, every induced subdivision of H in G contains Pj for some j ∈ {1, . . . , n}.
Thus, two induced subdivisions of H always intersect, and hence νH(G) = 1. Let S be
a vertex subset of size less than n

2
. Clearly each vertex of S hits at most two models

in the graph. Thus, S hits less than 2(n
2
) = n models, and G− S contains an induced

subdivision of H . This implies that τH(G) ≥ n
2
, as required. �

6. Negative results for non-planar graphs

We prove here item (6) of Theorem 1.5 (which is Lemma 6.2): subdivisions of a
non-planar graph never have the induced Erdős-Pósa property.

We use the notion of Euler genus of a graph G. The Euler genus of a non-orientable
surface Σ is equal to the non-orientable genus g̃(Σ) (or the crosscap number). The
Euler genus of an orientable surface Σ is 2g(Σ), where g(Σ) is the orientable genus of
Σ. We refer to the book of Mohar and Thomassen [MT01] for more details on graph
embedding. The Euler genus γ(G) of a graph G is the minimum Euler genus of a surface
where G can be embedded.

We will adapt the proof of [RT17, Lemma 5.2] (similar to that of [RS86, Lemma 8.14]
but dealing with subdivisions) to the setting of induced subdivisions.
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Lemma 6.1 (from the proof of [RT17, Lemma 5.2]). For every non-planar graph H,
there is a family of graphs (Gn)n∈N such that, for every n ∈ N,

(i) γ(Gn) = γ(H); and
(ii) Gn −X contains a subdivision of H, for every X ⊆ V (Gn) with |X| < n.

Lemma 6.2. For every non-planar graph H, the subdivisions of H do not have the
induced Erdős-Pósa property.

Proof. We construct a family of graphs (Ġn)n∈N such that νH(Ġn) = 1 and τH(Ġn) ≥ n,
for every n ∈ N.

For every n ∈ N, let Gn be the graph of Lemma 6.1 and let Ġn be the graph obtained
by subdividing once every edge of Gn. Notice that for every subdivision G′ of a graph
G we have γ(G) = γ(G′) (an embedding of one in a given surface can straightforwardly
be deduced from an embedding of the other). Hence γ(Ġn) = γ(Gn) = γ(H). As in
the proof of [RT17, Lemma 5.2]), we observe that since H is not planar the disjoint
union of two subdivisions of H has Euler genus larger than that of H (see [BHK62]).
Therefore Ġn does not contain two disjoint (induced) subdivisions of H : νH(Ġn) ≤ 1.
For every subgraph J of Gn, the subgraph of Ġn obtained by subdividing once every
edge of J is induced. Hence property (ii) of (Gn)n∈N implies that for every X ⊆ V (Ġn)
with |X| < n the graph Ġn −X contains an induced subdivision of H . In other words
τH(Ġn) ≥ n. �

7. A lower-bound on the bounding function

We proved in the previous sections that subdivisions of graphs with certain properties
do not have the induced Erdős-Pósa property. In this section we give a negative result
of a different type by proving that the bounding function for the induced Erdős-Pósa
property of subdivisions cannot be too small. Our proof is an adaptation to the induced
setting of an observation already known for the non-induced Erdős-Pósa property.

We first need a few more definitions. For every graph G, the girth of G, denoted
by girth(G) is the minimum order of a cycle in G. The treewidth of G, denoted by
tw(G) is a graph invariant that can be defined using tree-decompositions. We avoid
the technical definition here and only state the two well-known properties of treewidth
that we use:

• deleting a vertex or an edge in a graph decreases its treewidth by at most one;
• for every planar graph H of maximum degree 3, there is a constant c ∈ N such

that every graph of treewidth at least c contains a subdivision of H (Grid Minor
Theorem, [RS86]).

We refer the reader to [Die10] for an introduction to treewidth.

Theorem 7.1. Let H be a graph that has a cycle and no vertex of degree more than
3. There is no function f(k) = o(k log k) such that subdivisions of H have the induced
Erdős-Pósa property with bounding function f .

Proof. When H is not planar, the result follows from Lemma 6.2. We therefore assume
for now that H is planar. By the Grid Minor Theorem, there is a constant c such that
every graph G satisfying tw(G) ≥ c contains a subdivision of H . We will construct
sequences (Gn)n∈N (graphs) and (kn)n∈N (integers) such that νH(Gn) = O(kn) while
τH(Gn) = Ω(kn log kn).
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We start with an infinite family (Rn)n∈N of 3-regular graphs (of increasing order),
called Ramanujan graphs, whose existence is proved in [Mor94, Theorem 5.13]. These
graphs have the following properties:

(1) ∀n ∈ N, girth(Rn) ≥
2
3
log |Rn| ([Mor94, Theorem 5.13]);

(2) ∃n′ ∈ N, ∃α ∈ R>0, ∀n ∈ N, n ≥ n′ ⇒ tw(Rn) ≥ α|Rn| (see [BEM+04,
Corollary 1]).

Recall that n 7→ |Rn| is increasing. We denote by n′′ the minimum integer that is
larger than n′ and such that |Rn| ≥

c
α

for every n ≥ n′′. For every integer n ≥ n′′, we
define kn as the maximum positive integer such that

1

α
(c+ kn log kn) ≤ |Rn|

Such a value exists by definition of n′′. Notice that n 7→ kn is non-decreasing and is not
upper-bounded by a constant. Observe that for every n ≥ n′′, tw(Rn) ≥ c+ kn log kn.

Let us define, for every integer n ∈ N, Gn as the graph obtained from Rn by subdi-
viding once every edge. We then have, for every n ≥ n′′:

|Gn| =
5

2
· |Rn|

≥
5

2α
(c+ kn log kn) and(1)

girth(Gn) = 2 · girth(Rn)

≥
4

3
· log

(

2

5
· |Gn|

)

.(2)

Claim 7.2. For every integer n ≥ n′′, τH(Gn) ≥ kn log kn.

Proof. Let X ⊆ V (Gn) be such that |X| < kn log kn. We show that Gn − X contains
an induced subdivision of H . Recall that each vertex of degree 2 of Gn was obtained
by subdividing an edge of Rn. We define Xe as the set of edges of Rn corresponding to
the vertices of degree 2 in X and set Xv = X ∩ V (Rn). As the deletion of an edge or a
vertex in a graph decreases its treewidth by at most one, the graph obtained from Rn

by deleting Xv and Xe has treewidth at least c. By definition of c, this graph contains
a subdivision S of H . Notice that the corresponding subdivision of H in Gn (i.e. that
obtained by subdividing once every edge of S) is induced and does not contain any
vertex of X. As this holds for every subset of V (Gn) with less than kn log kn vertices,
we deduce that τH(Gn) ≥ kn log kn. ⋄

Claim 7.3. There is a n′′′ ∈ N, such that for every n ≥ n′′′, νH(Gn) < kn.

Proof. Let n ≥ n′′ and let us assume that G contains kn disjoint induced subdivisions
of H . As H has a cycle, the order of each of these subdivisions is at least the girth of G.
We deduce:

|Gn| ≥ kn · girth(Gn)

≥ kn ·
4

3
· log

(

2

5
· |Gn|

)

by (2)

≥ kn ·
4

3
· log

(

1

α
(c+ kn log kn)

)

by (1).
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On the other hand, from the maximality of kn we get:

|Gn| <
5

2α
(c+ kn log kn).

Combining these bounds together we obtain:

kn ·
4

3
· log

(

1

α
(c+ kn log kn)

)

<
5

2α
(c+ kn log kn).(3)

The left-hand side of (3) is a Ω(kn log(kn log kn)) while its right-hand side is a O(kn log kn).
As n 7→ kn is not upper-bounded by a constant, there is a positive integer n′′′ ≥ n′′

such that for every n ≥ n′′′, (3) does not hold. Therefore, when n ≥ n′′′ we have
νH(Gn) < kn. ⋄

The sequences (Gn)n∈N and (kn)n∈N have the property that τH(Gn) = Ω(kn log kn)
(Claim 7.2) while νH(Gn) = O(kn) (Claim 7.3), as required.

�

8. Subdivisions of 1-pan or 2-pan have the induced Erdős-Pósa property

Recall that for p ∈ N≥1, the p-pan is the graph obtained by adding an edge between a
triangle and an end vertex of a path on p vertices. We show in this section that for every
p ∈ {1, 2}, the subdivisions of the p-pan have the induced Erdős-Pósa property with
bounding function O(k2 log k) (Theorem 8.2 and Theorem 8.7). For p ≥ 3, the p-pan
has an edge that has no neighbor in its triangle, and by Theorem 4.4, the subdivisions of
the p-pan do not have the induced Erdős-Pósa property. This proves the dichotomy (3)
of Corollary 1.6. Furthermore, the proofs of our positive results yield polynomial-time
algorithms for finding a packing of induced subdivisions of the p-pan or a hitting set of
size O(k2 log k).

The proofs for 1-pan and 2-pan start similarly. Let p ∈ {1, 2} and let G and H be
graphs such that:

• H is an induced subdivision of the p-pan in G with minimum number of vertices,
• G− V (H) has no induced subdivision of the p-pan.

With these assumptions, we will show that for every k ∈ N, G contains either k pairwise
vertex-disjoint induced subdivisions of the p-pan, or a vertex set S of size O(k log k)
hitting all induced subdivisions of the p-pan. By applying inductively this result we can
conclude that a graph contains either k pairwise vertex-disjoint induced subdivisions
of the p-pan, or a vertex set of size O(k2 log k) hitting all induced subdivisions of the
p-pan.

The following algorithm to find an induced subdivision of the p-pan will be necessary.

Lemma 8.1. Let p be a positive integer. Given a graph G, one can find an induced sub-
division of the p-pan with minimum number of vertices, if one exists, in time O(|G|p+5).

Proof. We first describe how, given vertices v1, v2, . . . , vp and w1, w2, w3, one can in
O(|G|2) steps determine whether there exists an induced subdivision of the p-pan H
such that

• {v1, v2 . . . , vp, w1, w2, w3} ⊆ V (H),
• v1 . . . vpw2 is an induced path of G,
• both w1 and w3 are adjacent to w2,
• H − {v1, v2, . . . , vp, w2} is an induced path of G from w1 to w3,
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Figure 6. Two neighbors w1 and w2 of v with minimum distC(w1, w2) in Lemma 8.3.

and output such an induced subdivision with minimum order if one exists. Since it is an
induced subdivision of the p-pan, there should not exist an edge between {v1, v2, . . . , vp}
and the induced path H − {v1, v2, . . . , vp, w2}, and furthermore, there should not exist
an edge between w2 and the internal vertices of the path.

We may check the first three conditions in time O(p2). If one of them is not satisfied,
then we answer negatively.

We then compute a shortest path P from w1 to w3 in

G− {v1, v2, . . . , vp, w2} − (NG({v1, v2, . . . , vp, w2}) \ {w1, w3}).

It can be done in time |G|2, for instance using Dijkstra’s algorithm. If such a path does
not exist, then we answer negatively. Otherwise, G[{v1, v2, . . . , vp, w2} ∪ V (P )] is the
desired induced subdivision of the p-pan.

We apply the above procedure for every choice of p+ 3 vertices of G. In the end, we
output an induced subdivision of the p-pan of minimum order among those returned,
if any. Overall this takes O(|G|p+5) steps. If S is an induced subdivision of the p-pan
in G, then one choice of v1v2 · · · vpw2 corresponds to the path of length p of S and w1

and w3 to the two neighbors of w2 on the cycle. A shortest path from w1 to w3 yields
an induced subdivision of the p-pan of order at most |S|. This guarantees that the
algorithm outputs an induced subdivision of the p-pan with minimum order. �

8.1. On induced subdivisions of the 1-pan. The aim of this section is to prove the
following theorem.

Theorem 8.2. There is a polynomial-time algorithm which, given a graph G and a
positive integer k, finds either k vertex-disjoint induced subdivisions of the 1-pan in G
or a vertex set of size O(k2 log k) hitting every induced subdivision of the 1-pan in G.

Let us refer to an induced subdivision of the 1-pan as a pair (v, C), where v is the
vertex of degree one and C is the cycle. We start with structural lemmas.

Lemma 8.3. Let G be a graph and let H = (u, C) be an induced subdivision of the 1-pan
in G with minimum number of vertices. If |C| ≥ 5, then every vertex of V (G) \ V (H)
has at most one neighbor in C.

Proof. Suppose for contradiction that there exists a vertex v ∈ V (G) \ V (H) having
at least two neighbors in C. We choose two neighbors w1, w2 of v with minimum
distC(w1, w2). Let Q be a shortest path from w1 to w2 in C. See Figure 6 for an
illustration. Then G[V (Q) ∪ {v}] is an induced cycle, and it is strictly shorter than C,
as |C| ≥ 5 and

|Q|+ 1 ≤
|C|

2
+ 2 < |C|.
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If V (C) = V (Q), then w1 is adjacent to w2, and by the choice of Q, Q also has length
1. This is not possible. So we know that C − V (Q) has at least one vertex.

For each i ∈ {1, 2}, let w′
i be the neighbor of wi in C, which is not on the path Q.

If w′
1 = w′

2, then Q has length at most 2, and |C| ≤ 4, a contradiction. So, we may
assume that w′

1 6= w′
2.

Since H is an induced subdivision with minimum number of vertices, for each i ∈
{1, 2}, G[V (Q) ∪ {v, w′

i}] is not an induced subdivision of the 1-pan. It implies that
v is adjacent to both w′

1 and w′
2. Note that w′

1 is not adjacent to w′
2; otherwise,

distC(w1, w2) ≤ distC(w
′
1, w

′
2) = 1 and we would have |C| ≤ 4, a contradiction. There-

fore, G[{v, w1, w
′
1, w

′
2}] is isomorphic to the 1-pan, contradicting the assumption that H

is an induced subdivision with minimum number of vertices.
We conclude that every vertex in V (G) \ V (H) has at most one neighbor in C. �

Suppose (u, C) is an induced subdivision of the 1-pan in a graph G. In the next
lemmas, we explain how to extract many induced subdivisions of the 1-pan from a set
of V (C)-paths of G−E(C). For an induced cycle U of G and q ∈ V (G) \V (U), we call
(q, U) a good pair if G[{q} ∪ V (U)] contains an induced subdivision of the 1-pan.

Lemma 8.4. Let C = v1v2 · · · vmv1 be an induced cycle of length at least 4 in a graph
G, and let v ∈ V (G)\V (C) such that v is adjacent to v3, and non-adjacent to v1, v2, v4.
Then G[V (C) ∪ {v}] contains an induced subdivision of the 1-pan.

Proof. If v has no neighbors in V (C) \ {v1, v2, v3, v4}, then it is clear. We may assume
v has a neighbor in V (C) \ {v1, v2, v3, v4}. We choose a neighbor vi of v in V (C) \
{v1, v2, v3, v4} with minimum i. Then G[{v, v2, v3, v4, . . . , vi}] is an induced subdivision
of the 1-pan in G. �

Lemma 8.5. Let k ≥ 2 be an integer, let G be a graph, and (v, C) be an induced
subdivision of the 1-pan in G with minimum number of vertices. Given a set P of
vertex-disjoint V (C)-paths in G − E(C) with |P| ≥ 108k log k, one can find k vertex-
disjoint induced subdivisions of the 1-pan in time O(|G|3).

Proof. The existence of such a set P guarantees that C has length at least 5.
For each P ∈ P, let end(P ) be the set of end vertices of P . We construct a subset P ′

of P with the following property:
• ∀P1, P2 ∈ P ′, distC(end(P1), end(P2)) ≥ 3,
• |P ′| ≥ 12k log k.

This can be done by repeatedly choosing a path P in P and discarding from P all paths
that have an endpoint at distance at most 4 from one of end(P ) in C. For each path
added to P ′, at most 8 are discarded, hence |P ′| ≥ |P|/9 ≥ 12k log k.

We consider the subgraph H on the vertex set V (C) ∪ (
⋃

P∈P ′ V (P )) and edge set
E(C) ∪ (

⋃

P∈P ′ E(P )). This graph has maximum degree 3 and has at least 24k log k
vertices of degree 3, as each path of P ′ contributes for two vertices of degree 3.

According to Lemma 2.1, one can in time |G|3 construct a set Q′ of k vertex-disjoint
cycles in H . Observe that C intersects all other cycles, and thus, C is not contained in
Q′. Note that for each cycle U of Q′, G[V (U)] contains an induced cycle that has at
least one edge of C. This is always possible: in the cycle U , every chord e divides the
cycle into two paths, one of which, together with e, is again a cycle containing an edge
of C and less chords. Let Q be a collection of k resulting induced cycles of G obtained
from Q′.
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Figure 7. Four consecutive vertices u, v, w, z of U and the neighbor q
of v in C other than w, described in Lemma 8.5. Since U is an induced
cycle, such a neighbor q exists.

For each cycle U ∈ Q, there are four consecutive vertices u, v, w, z of U such that
vw ∈ E(C) ∩ E(U) and u /∈ V (C). See Figure 7 for an illustration. Note that the
neighbor of v in C other than w is not contained in U , because U has no vertex of
degree 3 in G. Let q be the neighbor of v in C other than w. Observe that q is adjacent
to v but has no neighbors in {u, w, z} by Lemma 8.3. Indeed, if z is in C, then q is not
adjacent to z because |C| ≥ 5, and if z is not in C, then q is not adjacent to z because
q has a neighbor w in C. Therefore, G[{q} ∪ V (U)] contains an induced subdivision of
the 1-pan by Lemma 8.4, that is, (q, U) is a good pair.

Following the above procedure, for each Ui ∈ Q, we choose a vertex qi as q. Observe
that for distinct cycles Ui, Uj ∈ Q, qi 6= qj because otherwise

distC(V (Ui) ∩ V (C), V (Uj) ∩ V (C)) ≤ 2,

and it implies that for some P, P ′ ∈ P ′,

distC(end(P ), end(P ′)) ≤ 2.

It contradicts our choice of P ′. Therefore, q1, q2, . . . , qk are distinct vertices, and

(q1, U1), (q2, U2), . . . , (qk, Uk)

are pairwise disjoint k good pairs. Using Lemma 8.4, one can output k vertex-disjoint
induced subdivisions of the 1-pan in linear time. �

We are now ready to prove the main result of this section.

Proof of Theorem 8.2. If k = 1, then there is nothing to show. We assume that k ≥ 2.
We construct sequences of graphs G1, . . . , Gℓ+1 and F1, . . . , Fℓ with maximum ℓ such

that
• G1 = G,
• for every i ∈ {1, . . . , ℓ}, Fi is an induced subdivision of the 1-pan in Gi with

minimum number of vertices,
• for every i ∈ {1, . . . , ℓ}, Gi+1 = Gi − V (Fi).

Such a sequence can be constructed in polynomial time repeatedly applying Lemma 8.1.
If ℓ ≥ k, then we have found a packing of k induced subdivisions of the 1-pan. Hence,
we may assume that ℓ ≤ k − 1.

Let µk := 216k log k + 12k − 11. The rest of the proof relies on the following claim.

Claim 8.6. Let j ∈ {1, . . . , ℓ+ 1}. One can find in polynomial time either k vertex-
disjoint induced subdivisions of the 1-pan, or a vertex set Xj of Gj of size at most
(ℓ+ 1− j)µk such that Gj −Xj has no induced subdivision of the 1-pan.
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Proof. We prove the claim by induction for j = ℓ+1 down to j = 1. The claim trivially
holds for j = ℓ + 1 with Xℓ+1 = ∅ because Gℓ+1 has no induced subdivision of the
1-pan. Let us assume that for some j ≤ ℓ, we obtained a required vertex set Xj+1 of
Gj+1 of size at most (ℓ − j)µk. Then in Gj − Xj+1, Fj is an induced subdivision of
the 1-pan with minimum number of vertices. If Fj has at most 5 vertices, then we set
Xj := Xj+1 ∪ V (Fj). Clearly, |Xj| ≤ (ℓ− j +1)µk. We may thus assume that Fj has at
least 6 vertices. Let Fj := (u, C). Observe that |C| ≥ 5.

We first apply Gallai’s A-path Theorem (Theorem 2.2) with A = V (C) for finding at
least 108k log k pairwise vertex-disjoint V (C)-paths in (Gj −Xj+1)−E(C). Assume it
outputs such V (C)-paths. Then, by applying Lemma 8.5 to Gj −Xj+1 and V (C), one
can find in polynomial time k vertex-disjoint induced subdivisions of the 1-pan. Thus,
we may assume that Theorem 2.2 outputs a vertex set S of size at most 216k log k
hitting all V (C)-paths in (Gj −Xj+1)− E(C).

Now, we consider the graph G′
j := Gj − (Xj+1 ∪ S ∪ {u}). Suppose G′

j contains an
induced subdivision Q = (d,D) of the 1-pan. Then G′

j [V (C) ∩ V (Q)] is connected;
otherwise, G′

j contains a V (C)-path in (Gj − Xj+1) − E(C), contradicting with that
S hits all such V (C)-paths. Furthermore, G′

j [V (C) ∩ V (Q)] contains no edge of D;
otherwise, we also have a V (C)-path in (Gj − Xj+1) − E(C). Thus, we have that
|V (C) ∩ V (Q)| ≤ 2.

To hit such remaining induced subdivisions of the 1-pan, we recursively construct sets
U ⊆ V (C) \ S and J as follows. At the beginning, set U := ∅ and J := ∅. For every
set of four consecutive vertices v1, v2, v3, v4 of C with v2, v3 /∈ U and v2, v3 /∈ S, we test
whether G′

j[(V (G′
j) \ V (C))∪ {v2, v3}] contains an induced subdivision H of the 1-pan,

and if so, add vertices v1, v2, v3, v4 to U , and add H to J and increase the counter by
1. If the counter reaches k, then we stop.

Observe that graphs in J are pairwise vertex-disjoint; otherwise, we can find a V (C)-
path in (Gj − Xj+1) − E(C), a contradiction. Thus, if the counter reaches k, we can
output k pairwise vertex-disjoint induced subdivisions of the 1-pan in polynomial time.

Assume that the counter does not reach k. Then we have |U | ≤ 4(k − 1). We take
the 1-neighborhood U ′ of U in C, and observe that |U ′| ≤ 12(k − 1). We claim that
G′

j−U ′ has no induced subdivision of the 1-pan. Suppose for contradiction that there is
an induced subdivision F of the 1-pan in G′

j −Uj . The intersection of F on C is a set of
at most two consecutive vertices, say T . In case when |T | = 1, neighbors of T in C are
not contained in U , as U ′ is the 1-neighborhood of U in C. Thus, we can increase the
counter by adding this induced subdivision to J , a contradiction. Therefore, G′

j − U ′

has no induced subdivision of the 1-pan, and

Xj := Xj+1 ∪ (S ∪ {u} ∪ U ′)

satisfies the claim. ⋄

The result follows from the claim with j = 1. �

8.2. On induced subdivisions of the 2-pan. This section is devoted to the proof of
the following result.

Theorem 8.7. There is a polynomial-time algorithm which, given a graph G and a
positive integer k, finds either k vertex-disjoint induced subdivisions of the 2-pan in G
or a vertex set of size O(k2 log k) hitting every induced subdivision of the 2-pan in G.
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Figure 8. Two neighbors w1 and w2 of v with minimum distC(w1, w2) in Lemma 8.8.

We refer to an induced subdivision of the 2-pan as a tuple (v1, v2, C), where v1, v2
are respectively the vertices of degree one and two that are not contained in the cycle,
and C is the cycle.

As in the 1-pan case, we first obtain a structural property.

Lemma 8.8. Let G be a graph and let H = (v1, v2, C) be an induced subdivision of the
2-pan in G with minimum number of vertices such that |C| ≥ 11. For every vertex v in
V (G) \ V (H), either v has at most one neighbor in C or it dominates C.

Proof. Suppose there exists a vertex v ∈ V (G) \ V (H) such that it has at least two
neighbors in C and has a non-neighbor z. We choose two neighbors w1, w2 of v and a
non-neighbor z such that

(1) distC(w1, w2) is minimum,
(2) subject to (1), distC(w1, z) + distC(w2, z) is minimum.

Let Q be a shortest path of C from w1 to w2. Then G[V (Q)∪ {v}] is an induced cycle,
and it is strictly shorter than C, because |Q|+ 1 ≤ |C|/2 + 2 < |C|.

For each i ∈ {1, 2}, let xi be the neighbor of wi in C, which is not on the path Q,
and let yi be the neighbor of xi in C other than wi. See Figure 8 for an illustration.
Note that {x1, y1} ∩ {x2, y2} = ∅ and furthermore, there are no edges between {x1, y1}
and {x2, y2}; otherwise, C would have length at most 10, a contradiction.

Observe that for each i ∈ {1, 2}, v has a neighbor in {xi, yi}; otherwise, G[V (Q) ∪
{v, xi, yi}] is an induced subdivision of the 2-pan, which has smaller number of vertices
than H .

We claim that v is complete to {x1, y1, x2, y2}. Suppose not. Without loss of gener-
ality, we may assume that v has a non-neighbor in {x1, y1}. Since v has a neighbor in
{x2, y2}, there is an induced cycle C ′ in G[{v, w2, x2, y2}] that contains v. Depending
which of x1, y1 is not adjacent to v, one of (x1, y1, C

′) and (y1, x1, C
′) is an induced subdi-

vision of the 2-pan with less vertices than H . This is a contradiction, and consequently,
v is complete to {x1, y1, x2, y2}.

By the choice of w1, w2, this also implies that w1 and w2 are adjacent. But then
z ∈ V (C)\{x1, y1, w1, w2, x2, y2}, and z is closer on C to one of {x1, y1} and {x2, y2} than
to {w1, w2}. As this contradicts the choice of w1, w2, z, we conclude that v dominates
C. �

The following is a 2-pan counterpart of Lemma 8.4.

Lemma 8.9. Let C = v1v2 · · · vmv1 be an induced cycle of length at least 4 in a graph
G and w1, w2, w3, w4 ∈ V (G) \ V (C) such that

(1) v2w1w2w3w4 is an induced path,
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(2) v2w1 is the only edge between {v1, v2, v3, v4} and {w1, w2, w3, w4}, and
(3) each vertex in C has at most one neighbor in {w1, w2, w3, w4}.

Then G[V (C) ∪ {w1, w2, w3, w4}] contains an induced subdivision of the 2-pan.

Proof. If v2w1 is the only edge between {w1, w2} and C, then (w1, w2, C) is an induced
subdivision of the 2-pan. Thus, we may assume that C has length at least 5, and w1 or
w2 has a neighbor in C − {v1, v2, v3, v4}. We choose i ∈ {5, . . . , m} such that:

• vi has a neighbor in {w1, w2}; and
• no internal vertex of the path P = vivi+1 . . . vmv1v2 has a neighbor in {w1, w2}.

We may assume that i = 5; otherwise, the induced cycle in G[V (P ) ∪ {w1, w2}] that
contains vi together with v3, v4 forms an induced subdivision of the 2-pan. On the other
hand, we can observe that P contains at most 2 internal vertices; otherwise the induced
cycle in G[{w1, w2, v2, v3, v4, v5}] that contains vi together with two internal vertices in
P forms an induced subdivision of the 2-pan.

We distinguish cases depending the number of internal vertices of P .

First case: P has a unique internal vertex, i.e. m = 5. As v5 has a neighbor in {w1, w2},
it has none in {w3, w4} by our assumption. Therefore, G[V (P ) ∪ {w1, w2, w3, w4}] con-
tains an induced subdivision of the 2-pan.

Second case: P has exactly 2 internal vertices, i.e. m = 6. Note that v6 has no
neighbors in {w1, w2}. If v6 has a neighbor in {w3, w4}, then the induced cycle in
G[{v6, v1, v2, w1, w2, w3, w4}] that contains v2 together with v3, v4 induces a subdivision
of the 2-pan. Hence we may assume that v6 has no neighbors in {w1, w2, w3, w4}. Since
v5 has no neighbor in {w3, w4} (as above), G[V (P ) ∪ {w1, w2, w3, w4}] contains an in-
duced subdivision of the 2-pan.

This concludes the lemma. �

Lemma 8.10. Let k be a positive integer, G be a graph, (v1, v2, C) be an induced
subdivision of the 2-pan in G with minimum number of vertices, and D be the set of all
vertices dominating C. Given a set P of vertex-disjoint V (C)-paths in G−E(C)−D with
|P| ≥ 396k log k, one can find in polynomial time k vertex-disjoint induced subdivisions
of the 2-pan.

Proof. For each P ∈ P, let end(P ) be the set of end vertices of P . We construct a
subset P ′ of P with the following property:

∀P1, P2 ∈ P ′, distC(end(P1), end(P2)) ≥ 9.

This can be done by repeatedly choosing a path P in P and discarding from P all paths
Q that have an endpoint at distance at most 8 from one of P . For each path added to
P ′, at most 32 are discarded, hence |P ′| ≥ |P|/33 ≥ 12k log k.

We consider the subgraph H on the vertex set V (C) ∪ (
⋃

P∈P ′ V (P )) and edge set
E(C) ∪ (

⋃

P∈P ′ E(P )). This graph has maximum degree 3 and has at least 24k log k
vertices of degree 3, as each path of P ′ contributes for two vertices of degree 3. According
to Lemma 2.1, one can in polynomial time construct a set Q of k vertex-disjoint cycles
of C. Observe that C intersects all other cycles, and thus, C is not contained in Q.

As in the proof of Lemma 8.5 we note that for each cycle U of Q, G[V (U)] has an
induced cycle containing at least one edge of C. Let Q′ be a collection of k resulting
induced V (C)-cycles obtained from Q.
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C

U

b c d

a

tU2tU3tU4tU5

Figure 9. A cycle U in Q′ and four selected vertices in Lemma 8.10.

For each cycle U in Q′, we want to find 4 consecutive vertices of C that are not
contained in

⋃

F∈Q′(V (F )∩V (C)) such that the last vertex has an edge of C to U . See
Figure 9 for an illustration. Since |Q′| ≥ 2 and each cycle of Q′ intersects C, there exist
another cycle U ′ ∈ Q′ \ {U} and a subpath T = t1t2 · · · tx of C such that

• t1 ∈ V (U) and tx ∈ V (U ′),
• t2, . . . , tx−1 /∈

⋃

F∈Q′ V (F ).

For i ∈ {1, 2, 3, 4, 5}, we assign tUi := ti.
We claim that G[V (U) ∪ {tUi : 2 ≤ i ≤ 5}] contains an induced subdivision of the

2-pan. Let abcd be the subpath of U such that b = tU1 and bc ∈ E(C) ∩ E(U). By
Lemma 8.8 and since we work in G−D, every vertex of U has at most one neighbor in
C. In particular, btU2 is the only edge between {a, b, c, d} and {tUi : 2 ≤ i ≤ 5}. Therefore,
one can find an induced subdivision of the 2-pan in G[V (U) ∪ {tUi : 2 ≤ i ≤ 5}] using
Lemma 8.9.

From the choice of P ′, the sets in {{tUi : 2 ≤ i ≤ 5} : U ∈ Q′} are pairwise disjoint.
Hence by applying Lemma 8.9 as above for every U ∈ Q′ we obtain in polynomial time
a collection of k vertex-disjoint induced subdivisions of the 2-pan.

This concludes the proof. �

The last thing to show is that in fact, an induced subdivision of the 2-pan never
contains a vertex dominating C.

Lemma 8.11. Let k be a positive integer, let G be a graph, (v1, v2, C) be an induced
subdivision of the 2-pan in G with minimum number of vertices and |C| ≥ 11, and
D be the set of all vertices dominating C. Every induced subdivision of the 2-pan in
G− {v1, v2} has no C-dominating vertices.

Proof. Suppose that there exists an induced subdivision H of the 2-pan in G− {v1, v2}
containing a C-dominating vertex v. We prove two claims.

Claim 8.12. There is no induced path p1p2p3 in H − v such that p1 ∈ V (C) and
p2, p3 ∈ V (G) \ (V (C) ∪D).

Proof. Let q1, q2 be the neighbors of p1 in C. As v is C-dominating, for each i ∈ {1, 2},
vp1qiv is a triangle. By minimality of (v1, v2, C) and the fact that |C| ≥ 11, we deduce
that qi does not belong to H . For the same reason, v has no neighbor in {p2, p3}.

Let i ∈ {1, 2}. Consider the subgraph induced by {v, qi, p1, p2, p3}. As above the
graph G[{v, qi, p1, p2, p3}] is not a 2-pan. So qi is adjacent to either p2 or p3. Since
p2 /∈ D, p2 has exactly one neighbor in C by Lemma 8.8 (which is p1) and thus it is
not adjacent to qi. Therefore, both q1 and q2 are adjacent to p3. By Lemma 8.8, p3
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is C-dominating, and thus p3 is adjacent to p1. This contradicts the assumption that
p1p2p3 is an induced path. We conclude that there is no such an induced path. ⋄

A similar observation can be made for a path continuing from a C-dominating vertex.

Claim 8.13. There is no induced path wvp1p2 in H such that w ∈ V (C) and p1, p2 ∈
V (G) \ (V (C) ∪D).

Proof. Let q1, q2 be the neighbors of w in C. As above we can deduce that none of q1
and q2 belongs to H . Also, for every i ∈ {1, 2}, G[{v, w, qi, p1, p2}] is not a 2-pan, so
qi is adjacent to either p1 or p2. If both q1 and q2 are adjacent to p1 (or p2), then by
Lemma 8.8, p1 (or p2) is C-dominating, a contradiction. Therefore, we may assume,
without loss of generality, that q1 is adjacent to p1, but not to p2, and q2 is adjacent
to p2 but not to p1. Then the cycle p1p2q2wq1 with two more vertices in C induces a
2-pan, which is smaller than (v1, v2, C), a contradiction. We conclude that there is no
such an induced path. ⋄

Observe that |V (H)∩V (C)| ≤ 3, otherwise the C-dominating vertex in H has degree
4 in H . Also, since H contains a vertex of C, we have |V (H) ∩D| ≤ 3. Furthermore,
|V (H)∩ V (C)| ≥ 2 and |V (H)∩D| ≥ 2, then H contains an induced subgraph isomor-
phic to C4, a contradiction. Thus, we may assume that |V (H)∩V (C)|+|V (H)∩D| ≤ 4.

So H − (V (C)∪D) has at least 11− 4 = 7 vertices divided into at most 5 connected
components. Thus, one of connected components of H − (V (C) ∪D) contains an edge
x1x2 whose one end vertex, say x1, has a neighbor in V (H) ∩ (V (C) ∪D). We call x a
neighbor of x1 in V (H) ∩ (V (C) ∪D).

If x ∈ V (C), then x is not adjacent to x2; otherwise, H contains an induced sub-
graph isomorphic to C3. Then xx1x2 is an induced path, and this is a contradiction by
Claim 8.12. So, we may assume that x ∈ D. Note that similarly x is not adjacent to
x2, and since H does not contain v1, v2, H contains a vertex of C, say y. Then y has
no neighbors in {x1, x2}; otherwise, G[{v, y, x1, x2}] contains C3 or C4, a contradiction.
But then yvx1x2 is an induced path, and this is a contradiction by Claim 8.13.

We conclude that there is no such an induced subdivision of the 2-pan. �

We can now prove Theorem 8.7.

Proof of Theorem 8.7. As in the proof for 1-pans, we construct a maximal sequence of
graphs G1, . . . , Gℓ+1 and F1, . . . , Fℓ such that

• G1 = G;
• for each i ∈ {1, . . . , ℓ}, Fi is an induced subdivision of the 2-pan in Gi with

minimum number of vertices; and
• for each i ∈ {1, . . . , ℓ}, Gi+1 = Gi − V (Fi).

Such a sequence can be constructed in polynomial time by repeatedly applying Lemma 8.1.
If ℓ ≥ k, then we have found a packing of k induced subdivisions of the 2-pan. Hence,
we assume in the sequel that ℓ ≤ k − 1. Let µk := 792k log k + 25k − 23.

Claim 8.14. Let j ∈ {1, . . . , ℓ+ 1}. One can find in polynomial time either k vertex-
disjoint induced subdivisions of the 2-pan, or a vertex set Xj of Gj of size at most
(ℓ+ 1− j)µk such that Gj −Xj has no induced subdivision of the 2-pan.

Proof. We prove claim by induction for j = ℓ + 1 down to j = 1. The claim trivially
holds for j = ℓ + 1 with Xℓ+1 = ∅ because Gℓ+1 has no induced subdivision of the
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2-pan. Let us assume that for some j ≤ ℓ, we obtained a required vertex set Xj+1 of
Gj+1 of size at most (ℓ− j)µk. Then in Gj −Xj+1, Fj is an induced subdivision of the
2-pan with minimum number of vertices. If Fj has less than 13 vertices, then we set
Xj := Xj+1 ∪ V (Fj). Clearly, |Xj| ≤ (ℓ − j + 1)µk. We may assume Fj has at least
13 vertices. Let Fj := (u1, u2, C), and let D be the set of vertices in Gj − Xj+1 that
dominate C. Note that C has length at least 11.

According to Lemma 8.11, there are no induced subdivisions of the 2-pan intersecting
D. Therefore, we can ignore the vertex set D.

We apply Gallai’s A-path Theorem (Theorem 2.2) with A = V (C) for finding at least
396k log k pairwise vertex-disjoint V (C)-paths in Gj − (D ∪ Xj+1 ∪ {u1, u2}) − E(C).
Assume that it outputs such V (C)-paths. Then, by applying Lemma 8.10 to Gj −Xj+1

and V (C), one can find in polynomial time k vertex-disjoint induced subdivisions of the
2-pan. Thus, we may assume that Theorem 2.2 outputs a vertex set S of size at most
792k log k hitting all V (C)-paths in Gj − (D ∪Xj+1 ∪ {u1, u2})−E(C).

Now, we consider the graph G′
j := Gj − (Xj+1 ∪ D ∪ S ∪ {u1, u2}). Suppose G′

j

contains an induced subdivision Q = (w1, w2,W ) of the 2-pan. Then G′
j [V (C)∩V (Q)] is

connected; otherwise, G′
j contains a V (C)-path in (Gj−D−Xj+1)−E(C), contradicting

the fact that S hits all such V (C)-paths. Furthermore, G′
j [V (C) ∩ V (Q)] contains no

edge of W ; otherwise, we also have a V (C)-path in (Gj −D−Xj+1)−E(C). Thus, we
have that |V (C) ∩ V (Q)| ≤ 3.

We recursively construct sets U ⊆ V (C) and J as follows. We start with U := ∅ and
J := ∅. For every set of five consecutive vertices v1, v2, v3, v4, v5 of C with v2, v3, v4 /∈ U ,
we test whether G′

j [(V (G′
j) \ V (C))∪ {v2, v3, v4}] contains an induced subdivision H of

the 2-pan, and if so, add vertices v1, v2, v3, v4, v5 to U , and add H to J and increase
the counter by 1. If the counter reaches k, then we stop. Note that graphs in J are
pairwise vertex-disjoint; otherwise, we can find a V (C)-path, a contradiction. Thus, if
the counter reaches k, we can output k pairwise vertex-disjoint induced subdivisions of
the 2-pan.

Assume the counter does not reach k. Then we have |U | ≤ 5(k − 1). We take the
2-neighborhood U ′ of U in C, and observe that |U ′| ≤ 25(k−1). We claim that G′

j −U ′

has no induced subdivision of the 2-pan. Suppose for contradiction that there is an
induced subdivision F of the 2-pan in G′

j − Uj . The intersection of F on C is a set of
at most three consecutive vertices, say T .

Since distC(T, U) ≥ 2 by the construction of U ′, there exists three consecutive vertices
z1, z2, z3 of C not containing U , such that G′

j[(V (G′
j) \ V (C))∪ {z1, z2, z3}] contains an

induced subdivision of the 2-pan. It implies that we can increase the counter by adding
this induced subdivision to J , a contradiction. Therefore, G′

j − U ′ has no induced
subdivision of the 2-pan.

Observe that

|Xj| ≤ |Xj+1∪S ∪{u1, u2}∪U ′| ≤ (ℓ− j)µk +792k log k+2+25(k−1) ≤ (ℓ− j+1)µk.

So, Xj := Xj+1 ∪ S ∪ {u1, u2} ∪ U ′ satisfies the claim. ⋄

The result follows from the claim with j = 1. �
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9. Subdivisions of the diamond have the induced Erdős-Pósa property

In this section, we prove that the subdivisions of the diamond have the induced
Erdős-Pósa property.

Theorem 9.1. There exists a polynomial function g : N → N satisfying the following.
Given a graph G and a positive integer k, one can in time O(kN(3, 3k)3k + k2|G|7)
output either k vertex-disjoint induced subdivisions of the diamond, or a vertex set of
size at most g(k) hitting every induced subdivision of the diamond.

Remark that while the bounding function g that we obtained is polynomial, our
upper-bound on its order is large; g(k) = O(N(4, 3k)), where N is the function of
Lemma 2.3.

We follow a similar line of proofs as in the previous section. We first deal with
the case where the considered graph G has an induced subdivision H of the diamond
and G− V (H) is H-induced-subdivision-free (here we do not need the minimality of a
model). Observe that a subdivision of the diamond consists of three internally disjoint
paths between two distinct vertices. This simple observation allows us to focus on
the following sightly easier setting: given a graph G and an induced path Q, we aim
at finding either many vertex-disjoint induced subdivisions of the diamond or a small
vertex set hitting all the induced subdivisions of the diamond that meet Q.

For a vertex subset S of a graph G and v ∈ V (G) \ S, a path is called a (v, S)-path,
if it starts with v and ends at a vertex in S and contains no other vertices in S.

We will use the Erdős-Pósa property of A-ℓ-combs, recently developed by Bruhn,
Heinlein, and Joos [BHJ18], to first exclude induced diamond subdivisions of a special
type. Since we only use it with ℓ = 2, we name it A-claw for simplicity. Given a graph
G and a vertex subset A, we say that a subgraph H of G is an A-claw if

• H contains a vertex v ∈ V (G) \ A,
• H consists of three (v, A)-paths P1, P2, P3 such that V (Pi) ∩ V (Pj) = {v}, for

every distinct i, j ∈ {1, 2, 3}.
For convenience, if H is a subgraph of G, then we refer to V (H)-claws as H-claws. The
leaves of an A-claw are its vertices in A.

9.1. Base polynomial-time algorithms. In this section we present algorithms to find
(collections of) induced subdivisions of the diamond and claws. We first show that one
can detect an induced subdivision of the diamond in polynomial time. The following
lemma is useful.

Lemma 9.2. Given a graph G, an induced path Q, and a Q-claw F , one can find in
time O(|G|3) an induced subdivision of the diamond in G[V (F ) ∪ V (Q)].

Proof. We prove by induction on |V (F )∪V (Q)| that one can find an induced subdivision
of the diamond in G[V (F ) ∪ V (Q)] in |V (F ) ∪ V (Q)| · O(|E(G)|) steps.

Let v be the vertex of F − V (Q) that is connected via the paths P1, P2, P3 to Q,
forming the Q-claw F . Without loss of generality, we assume that the end vertices of
P1, P2, P3 appear in Q in this order and that P1 and P3 meet Q on its endpoints. For
each i ∈ {1, 2}, let Qi be the subpath of Q from the end vertex of Pi to the end vertex
of Pi+1. Let H := G[V (F ) ∪ V (Q)].

If H contains no edges other than those in P1 ∪ P2 ∪ P3 ∪ Q, then clearly, it is an
induced subdivision of the diamond. Besides, we may assume that each of P1, P2, P3
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Q

P1 P2 P3

v

w

z

Figure 10. An edge wz where w is an internal vertex of P1 and z is an
internal vertex of Q2 ∪ P3 in Lemma 9.2.

is an induced path; otherwise we could shorten it and apply the induction hypothesis.
Therefore, we may assume that H contains an edge wz, which does not have both
endpoints in one of P1, P2, P3, or Q.

Suppose w is an internal vertex of P1 and z is an internal vertex of P2∪Q1. Then from
z, there are three paths to P1, where the end vertices of two paths are the end vertices
of P1. As P1 is an induced path, by induction hypothesis, one can find an induced
subdivision of the diamond in G[V (P1 ∪P2 ∪Q1)] in time |V (P1 ∪P2 ∪Q1)| · O(E(G)).

We thus may assume that there is no such an edge. We can apply the same argument
for all pairs (P2, P1 ∪Q1), (P2, P3 ∪Q2), (P3, P2 ∪Q2).

Since Q is an induced path, one of w and z is contained in F − V (Q). If w ∈
V (P2) \ V (Q), then z is contained in P1 ∪ P3 ∪ Q − V (P2), which is not possible by
the previous argument. Therefore, we may assume that w is an internal vertex of P1

without loss of generality, and z is an internal vertex of P3 ∪ Q2. See Figure 10 for an
illustration.

Let r be the neighbor of v in P2, and let P ′
1 be the subpath of P1 from v to w. Note

that G[V (P ′
1)∪{r}] is an induced path, and there are three paths from z to P ′

1, namely,
two paths along P2 ∪ P3 ∪Q2 and wz. Since the union of those paths does not contain
the end vertex of P1 in Q, we obtained a smaller induced subgraph graph satisfying
the premisses of the lemma. By the induction hypothesis, one can find an induced
subdivision of the diamond in time |V (P ′

1 ∪ P2 ∪ P3 ∪Q2)| · O(E(G)).
This completes the proof. �

Proposition 9.3. Given a graph G, one can test in time O(|G|7) whether G contains
an induced subdivision of the diamond, and output one if exists.

Proof. Let us consider 4 vertices a, b, c, and d such that abc is an induced path and d is
adjacent to neither a nor c.

Using Menger’s theorem, we can check in O(|G|3)-time whether there are three in-
ternally vertex-disjoint paths from d to a, b, c. If such paths do not exist, then there is
no induced subdivision H such that

• b, d are vertices of degree 3 in H , and
• a, c are neighbors of b in H .

On the other hand, if the 3 paths exist, then by Lemma 9.2, we can detect such an
induced subdivision of the diamond in O(|G|3) steps. By iterating over all possible
choices of vertices a, b, c, and d, we get a total running time is O(|G|7). �
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Now we prove that every large enough collection of Q-claws contains many disjoint
induced subdivisions of the diamond.

Lemma 9.4. Let G be a graph and let Q be an induced path of G. Given a set of
N(3, 3k) vertex-disjoint Q-claws, one can find k vertex-disjoint induced subdivisions of
the diamond in time O(N(3, 3k)3k + |G|3).

Proof. Let Q = v1v2 · · · vm, and I = {1, . . . , m}. Let T1, T2, . . . , TN(3,3k) be a given set
of pairwise vertex-disjoint Q-claws. For each i ∈ {1, . . . , N(3, 3k)}, let Ai := {j ∈ N :
vj ∈ V (Ti)}. By definition, |Ai| = 3.

We apply the regular partition lemma (Lemma 2.3) to Ai’s with n = 3. Then there
exist a subsequence (Ac1 , . . . , Ac3k) of (A1, . . . , AN(3,3k)) and a regular partition of I with
respect to (Ac1 , . . . , Ac3k) that has order at most 3. Since given Q-claws are pairwise
vertex-disjoint, in each part, restrictions of Ac1, . . . , Ac3k are not the same (i.e. item
(1) of the definition of a regular partition does not hold). Algorithmically, the regular
partition can be found in O(N(3, 3k)3k)-time by simply iterating over possible 3k-tuples
until one forming a regular partition is found.

Suppose first that the order of the partition is 1. Then one of the following holds:
• For all j, j′ ∈ {1, . . . , 3k} with j < j′, max(Acj) < min(Acj′

).
• For all j, j′ ∈ {1, . . . , 3k} with j < j′, max(Acj′

) < min(Acj).

For each i ∈ {1, . . . , 3k}, let Qi be the minimal subpath of Q containing the vertices in
{vj : j ∈ Aci}. Observe that the Qi’s are disjoint and that Tci is a Qi-claw, for every
i ∈ {1, . . . , 3k}. Using Lemma 9.2, one can find in time O(|G|3) an induced subdivision
of the diamond in each G[V (Tci) ∪ V (Qi)], so we are done.

Suppose the order of the partition is 2 or 3. Let I1 and I2 be the first two parts in
the partition, and we may assume that Aci has an element in each of the two parts. For
each i ∈ {1, . . . , 3k − 2}, let Si be the minimal subpath of Q containing the vertices in

{vj : j ∈ (Aci ∪ Aci+1
∪ Aci+2

) ∩ I1},

and let Ri be the minimal subpath of Q containing the vertices in

{vj : j ∈ (Aci ∪ Aci+1
∪ Aci+2

) ∩ I2}.

Then subgraphs in

{S3ℓ−2 ∪ R3ℓ−2 ∪ Tc3ℓ−2
∪ Tc3ℓ−1

∪ Tc3ℓ : 1 ≤ ℓ ≤ k}

are pairwise vertex-disjoint.
Furthermore, since S3ℓ−2 is an induced path, and there are three internally vertex-

disjoint paths from the intersection of R3ℓ−2 and Tc3ℓ−1
to S3ℓ−2 in Tc3ℓ−2

∪Tc3ℓ−1
∪TC3ℓ

∪
S3ℓ−2∪R3ℓ−2, one can output in time O(|G|3) an induced subdivision of the diamond in
the subgraph, using Lemma 9.2. Therefore, we obtain k pairwise vertex-disjoint induced
subdivisions of the diamond, as required. �

In [BHJ18], Bruhn, Heinlein, and Joos show that A-claws have the (non-induced)
Erdős-Pósa property. Their proof is unfortunately not written algorithmically, however
it can easily be turned into a polynomial-time algorithm. For completeness, we give an
algorithmic version hereafter.

Lemma 9.5. Let T be a tree with no vertices of degree 2. If L is the set of all leaves of
T , then |L| ≥ |V (T ) \ L| − 2.
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Proof. We note that
• |L|+ |V (T ) \ L| = |T | = |E(T )| − 1, and
• |L|+ 3|V (T ) \ L| ≤

∑

t∈V (T ) degT (t) = 2|E(T )|.

Combining the two equations, we have that |A| ≥ |V (T ) \ L| − 2, as required. �

Lemma 9.6. Let F be a forest of maximum degree 3 and where each component has a
degree-3 vertex. Let L be the set of its leaves, and k be a positive integer.

(1) If F has at least 6k leaves, then in time O(k|F |) one can find k pairwise vertex-
disjoint L-claws in F .

(2) If F contains less than 6k leaves and less than k connected components, then F
contains less than 14k vertices of degree 1 or 3.

Proof. Proof of (1). In this proof we call good forest every forest of maximum degree
3 and where each component has a degree-3 vertex. We prove by induction on k. If
k = 1, then there is at least one component containing an L-claw and (1) holds. So,
we may assume that k ≥ 2 and suppose that the statement holds for smaller values
of k. Observe if F has a vertex of degree 2, one can delete it and add an edge between
its neighbors without changing the number of leaves neither the existence of L-claws.
Therefore we may assume that F has no degree-2 vertex.

Let us fix a root node in F and call T the component containing it. We take a furthest
node v from the root that is not a leaf. By our assumption above, it has exactly two
children. Such a node can be found in linear time using Breadth First Search. If v is the
root of T , then T is an L-claw, and since T has maximum degree 3, the remaining part
of F contains at least 6k − 3 leaves. Clearly F − V (T ) is a good forest. Thus, by the
induction hypothesis, we can obtain k− 1 pairwise vertex-disjoint L-claws in F − V (T )
in time O((k − 1)|F |). Together with T , they form a collection of k vertex-disjoint
L-claws in F , that we found in time O(k|F |). Thus in the sequel we may assume that
v is not the root.

Let w be the parent v and let Tw be the subtree of T that is induced by the set of all
descendants of w (including w). Observe that Tw has at least 3 leaves, hence it contains
an L-claw. This claw can be found in linear time using Breadth First Search.

We distinguish two cases:
Case 1: w is the root. Then T = Tw has at most 6 leaves. Clearly F − T is a good

forest with at least 6k − 6 leaves.
Case 2: w is not the root. Then Tw has at most 4 leaves. Let x be the vertex of

T − V (Tw) at minimum distance from v. Let P be the path of T from x to w
and let T− = T − (V (Tw)∪V (P ) \ {x}). Then T− is a good forest with at least
6k − 6 leaves.

In each case F − Tw contains a good subforest with at least 6(k − 1) leaves (each
belonging to L) and which can be found in linear time. Considering the aforementioned
claw present in Tw and applying the induction hypothesis to F − Tw, we finally obtain
as above k pairwise vertex-disjoint L-claws in time O(k|T |), as required.

Proof of (2). Let n be the number of components of F . By the assumption, we
have n < k. Let T1, T2, . . . , Tn be the connected components of F , and for each i ∈
{1, 2, . . . , n}, let mi be the number of vertices of degree 3 in Ti and let ℓi be the number of
vertices of degree 1 in Ti. By Lemma 9.5, we know that ℓi ≥ mi−2. Since

∑n

i=1 ℓi < 6k,
we have

∑n

i=1mi ≤
∑n

i=1 ℓi+2n < 6k+2k = 8k. Thus, we have
∑n

i=1(ℓi+mi) < 14k. �
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Proposition 9.7. Given a graph G, a subset A ⊆ V (G), and a positive integer k, one
can in time O(|G|4) output either k pairwise vertex-disjoint A-claws, or a vertex set S
of size 14k hitting all A-claws.

Proof. Let S0 := ∅, and F0 be the empty graph. Let us apply the following algorithm.
We start with i = 1 and, while G− Si−1 contains an A-claw, we do the following:

(1) let X be an A-claw of G− Si−1;
(2) if X intersects Fi−1 − Si−1, define Fi as the union of Fi−1 and a path from

Fi−1 − Si−1 to A (that is contained in X);
(3) otherwise, define Fi as the disjoint union of X and Fi−1;
(4) let Si be the set of all vertices of degree 1 or 3 in Fi;
(5) increment i.

Let n be the maximum value for which Fi and Si are defined. Note that one can
find an A-claw by guessing the vertex of degree 3 and then testing whether there are
three paths from it to A using Menger’s theorem. Thus, checking the condition of the
while loop and step (1) can be performed in time O(|G|3), and we may construct the
sequences F1, . . . , Fn and S1, . . . , Sn in time O(|G|4). Let F := Fn and S := Sn. By
construction, we know that G−S has no A-claws and F is a forest with all its leaves in
A, maximum degree 3, and where every component has a degree-3 vertex. If |S| ≤ 14k,
then we are done. We may assume that |S| > 14k. In particular |F | > 14k.

If F contains k connected components, then we can simply find one A-claw from each
connected component, and output k vertex-disjoint A-claws. We may assume that F
contains less than k connected components. Then by (2) of Lemma 9.6, F contains at
least 6k leaves, and by (1) of the same lemma, one can find k vertex-disjoint A-claws in
time O(k|G|) = O(|G|2). �

9.2. Structural lemmas. For a set A ⊆ V (G), a Tutte bridge of A in G is a subgraph
of G consisting of one component C of G − A and all edges joining C and A and all
vertices of A incident with those edges. We discuss in this section under which conditions
a Tutte bridge can be used to construct an induced subdivision of the diamond.

Lemma 9.8. Let Q be an induced path in a graph G and H be a Tutte bridge of V (Q)
in G such that |V (H) ∩ V (Q)| ≥ 3. Then H contains a Q-claw.

Proof. Let a, b, c be three distinct vertices in V (H) ∩ V (Q), and let a′, b′, c′ be their
(not necessarily distinct) neighbors in H − V (Q), respectively. It is easy to check that
a subgraph-minimal tree of H − V (Q) spanning a′, b′, and c′ form (together with a, b,
and c) a Q-claw. Such a subgraph exists since H − V (Q) is connected. �

Recall that our intermediate goal is to prove an induced Erdős-Pósa type result for
subdivisions of the diamond intersecting a given path Q of a graph G. We saw in
the previous section that Q-claws can be used to construct induced subdivisions of the
diamond (Lemma 9.2), and how to deal with those (Proposition 9.7). So we may now
focus on the case where there is no A-claw. In particular, Lemma 9.8 allows us to assume
that there is no Tutte bridge H of V (Q) such that |V (H) ∩ V (Q)| ≥ 3. The following
lemma shows that if a Tutte bridge containing a cycle C connected to Q via two disjoint
paths (with some additional properties), then one can also find an induced subdivision
of the diamond. Note that first two conditions do not always imply the existence of an
induced subdivision of the diamond: if ab is an edge that is a component of G− V (Q)
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and N(a) ∩ V (Q) = N(b) ∩ V (Q) = {p, q} for some two consecutive vertices p, q in Q,
then this Tutte bridge induces a K4, that does not contain an induced subdivision of
the diamond. To avoid this, we require that the two vertices in V (H) ∩ V (Q) are not
consecutive.

Lemma 9.9. Let Q be an induced path in a graph G and H be a Tutte bridge of V (Q)
in G such that:

(1) V (H) ∩ V (Q) = {v1, v2} for some non-adjacent vertices v1, v2 in Q; and
(2) some cycle of H is connected to {v1, v2} via two vertex-disjoint (possibly empty)

paths,

then G[V (H) ∪ V (Q′)] contains an induced subdivision of the diamond, where Q′ is the
subpath of Q from v1 to v2.

Proof. Towards a contradiction, we assume that the statement does not hold and we
consider, among all graphs G, all induced paths Q of G and all Tutte bridges H of
V (Q), a triple (G,Q,H) such that H has minimum number of vertices.

Let C be a cycle of H as in the statement and let P1 and P2 be the two paths from
V (H)∩V (Q) to C such that v1 ∈ V (P1) and v2 ∈ V (P2). Recall that v1 is not adjacent
to v2. By minimality, we may assume that V (H) = V (C)∪ V (P1)∪ V (P2) and that P1

and P2 are induced, otherwise we could remove vertices or take shorter paths. Let w1

and w2 be the end vertices of P1 and P2 on C, respectively, and let Q1 and Q2 be the
two subpaths from w1 to w2 in C.

If the subgraph C ∪ P1 ∪ P2 is induced in G, then G[V (H) ∪ V (Q′)] is an induced
subdivision of the diamond and we are done. So we now consider all possible ways this
subgraph can be non-induced.

We first show that C is an induced cycle. If w1 is adjacent to w2, then C is induced;
because otherwise we could take an induced cycle in G[V (C)] containing the edge w1w2,
which would be shorter than C, a contradiction. In the case where w1w2 /∈ E(G), we
may assume that each of Q1 and Q2 is induced, otherwise, we could find a shorter cycle.
Now, observe than if C has a chord e from an internal vertex z1 of Q1 to an internal
vertex z2 of Q2, then Q1 together with e forms a Q2-claw and thus contain an induced
subdivision of the diamond, according to Lemma 9.2. Therefore C is indeed induced.

Observe that there are no edges between H − V (Q) and Q − {v1, v2}, because of
the condition that |V (H) ∩ V (Q)| = 2. Also, Pi has no neighbors in P3−i − w3−i for
each i ∈ {1, 2}, otherwise we could find a smaller cycle such as C. Therefore, we may
assume that there is an edge between some vertex y ∈ V (Pi − wi) and some internal
vertex of Qj, for some i, j ∈ {1, 2}. Then H contains a Pi-claw constructed as follows.
The degree-3 vertex of the claw is y; it is connected to Pi using the aforementioned
edge (first path), the subpath of Qj connecting y to w1 (second path) and the rest of
Qj together with P3−i and Q′ (third path). By to Lemma 9.2 G[V (H) ∪ V (Q′)] then
contains an induced subdivision of the diamond, as required. �

Te following lemma handles a remaining case that is not covered by Lemma 9.9.

Lemma 9.10. Let Q be an induced path in a graph G and H1, H2 be two Tutte bridges
of V (Q) in G such that:

• |V (Hi) ∩ V (Q)| = 2 for each i,
• Q1 and Q2 share at least one edge, where Qi is the minimal subpath of Q con-

taining V (Hi) ∩ V (Q), for every i ∈ {1, 2}.
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Then G[V (H1)∪V (H2)∪V (Q1)∪V (Q2)] contains an induced subdivision of the diamond.

Proof. Let Q = v1v2 · · · vm, and let vai , vbi be the end vertices of Qi such that ai < bi,
for every i ∈ {1, 2}. Without loss of generality, we may assume that a1 ≤ a2. As Q1

and Q2 share an edge, b1 ≥ a2 + 1.
Let x1 and y1 be (possibly identical) neighbors of va1 and vb1 in H1 − V (Q), respec-

tively, and let R1 be a path from x1 to y1 in H1 − V (Q). Similarly, let x2 and y2 be
neighbors of va2 and vb2 in H2 − V (Q), respectively, and let R2 be a shortest path from
x2 to y2 in H2 − V (Q). Let R be the subpath of Q from va1 to va2 .

Observe that G[V (R) ∪ {x1, x2}] is an induced path from x1 to x2, because V (Hi) ∩
V (Q) is exactly {ai, bi} for every i ∈ {1, 2}. Let j = min{b1, b2}. It is easy to see
that there are three paths from vj to the induced path G[V (R) ∪ {x1, x2}], namely, a
subpath of Q from va2 to vj , and two paths along R1 and R2. Thus, by Lemma 9.2,
G[V (R1)∪V (R2)∪V (Q1)∪V (Q2)] contains an induced subdivision of the diamond. �

9.3. The main proof. We can now describe the main proof of this section. The
following proposition asserts that the subdivisions of the diamond intersecting a given
induced path have the induced Erdős-Pósa property.

Lemma 9.11. Let G be a connected graph and v, w ∈ V (G) be non-adjacent vertices
such that G− {v, w} is connected. One can in time O(|G|2) whether there is a cycle C
with two vertex-disjoint paths from {v, w} to C.

Proof. We take a block-cut decomposition of G. Let Bv and Bw be the blocks of G
containing v and w, respectively. Let Bv = B1 − B2 − · · · − Bm = Bw be the sequence
of blocks of G in the block-cut decomposition of G.

Suppose there is i ∈ {1, . . . , m} such that Bi contains a cycle C. Note that for any
two vertices a, b in Bi, there are two vertex-disjoint paths from C to {a, b}, as Bi is
2-connected. If Bv = Bw, then there are two vertex-disjoint paths from C to {v, w}
directly. Otherwise, along the cut vertices connecting blocks of B1, . . . , Bm, we may find
two vertex-disjoint paths from C to {v, w} in G.

Thus, we may assume that there is no i ∈ {1, . . . , m} such that Bi contains a cycle.
In this case, for every cycle C, there is a cut vertex separating C and {v, w}. So, we can
deduce that there is no cycle C with two vertex-disjoint paths from {v, w} to C. �

Proposition 9.12. There exists a polynomial function g2 : N → N satisfying the fol-
lowing. Given a graph G, an induced path P of G, and a positive integer k, one can in
time O(N(3, 3k)3k + k|G|7) output either k vertex-disjoint induced subdivisions of the
diamond, or a vertex set of size at most g2(k) hitting all the induced subdivisions of the
diamond that intersect P .

Proof. Let P = v1v2 · · · vm, and I = {1, . . . , m}.
We first apply the A-claw lemma to P . By Proposition 9.7, one can in time O(|G|4)

output either N(3, 3k) pairwise vertex-disjoint P -claws, or a vertex set of size at most
14N(3, 3k) hitting all P -claws. In the former case, we use Lemma 9.4 to obtain k
pairwise vertex-disjoint induced subdivisions of the diamond in time O(N(3, 3k)3k+|G|3)
and we are done.

So we may assume that G contains a vertex subset X1 of size at most 14N(3, 3k)
such that G−X1 has no P -claws. Let G1 := G−X1 and P1 = P −X1. By Lemma 9.8,
G1 contains no Tutte bridge of V (P1) such that |V (H) ∩ V (P1)| ≥ 3.
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Now, we greedily construct a maximal set U of pairwise vertex-disjoint Tutte bridges
H of V (P1) in G1 such that:

• |V (H) ∩ V (P1)| = 2,
• V (H) ∩ V (P1) are not consecutive vertices of P , and
• H contains a cycle C and two vertex-disjoint paths from C to V (H)∩ V (P1) in
H .

Since there are at most |G| connected components of G1−V (P1), one can find such a set
by considering each connected component of G1 − V (P1) and then testing whether the
corresponding Tutte bridge satisfies the conditions. The last condition can be checked
in time O(|H|2) using Lemma 9.11.

Suppose |U| ≥ N(2, 3k). In this case, we apply the regular partition lemma (Lemma 2.3)
with n = 2 and obtain k vertex-disjoint induced subdivisions of the diamond, with the
whole path P . Following the same line of proof as in Lemma 9.4, if the order of the
resulting partition is 2, then we can output k pairwise vertex-disjoint induced subdivi-
sions of the diamond in time O(|G|3). When the order of the partition is 1, Lemma 9.9
implies that there is an induced subdivision of the diamond in H together with the
minimal subpath of P containing V (H)∩ V (P ), for every Tutte bridge H of the subset
of U given by the regular partition lemma. So in this case, using Proposition 9.3, one
can construct k vertex-disjoint induced subdivisions of the diamond in time O(k|G|7).

Otherwise, let X2 :=
⋃

H∈U(V (H) ∩ V (P )). Then we have that |X2| ≤ 2N(2, 3k)
and X2 hits all Tutte bridges of V (P1) in G1 satisfying the three conditions above. Let
G2 := G1 −X2 and P2 := P1 −X2.

In the next step, we greedily build a maximal set W of pairwise vertex-disjoint pairs
of Tutte bridges (H1, H2) of V (P2) in G2 such that:

• |V (Hi) ∩ V (P2)| = 2,
• Q1 and Q2 share an edge, where Qi is a minimal subpath of P containing V (Hi)∩
V (P ).

We can construct W by considering all pairs of connected components of G2 − V (P2).
Suppose |W| ≥ 4N(4, 3k). Let vai , vbi be the vertices of V (Hi) ∩ V (P ) such that

ai < bi. Note that H1 might intersect H2, and therefore, there are four types of a pair
(H1, H2), depending on whether va1 = va2 and vb1 = vb2 . As |W| ≥ 4N(4, 3k), there is
a subset W1 of W of size at least N(4, 3k) which consists of pairs of the same type.

We apply the regular partition lemma with n equal to the size of (V (H1)∪ V (H2))∩
V (P ) for pairs in W1. Similar to the previous case, when the order of the partition is
larger than 1, then by the same line of proofs as in Lemma 9.4, one can find in polynomial
time k pairwise vertex-disjoint induced subdivisions of the diamond. When the order of
the partition is 1, Lemma 9.10 implies that H1, H2, together with the minimal subpath
of P containing (V (H1)∪V (H2))∩V (P ) contains an induced subdivision of the diamond.
Thus, using Proposition 9.3, one can construct k vertex-disjoint induced subdivisions
of the diamond in time O(k|G|7).

Otherwise, let X3 :=
⋃

(H1,H2)∈W
((V (H1) ∪ V (H2)) ∩ V (P )). Then we have that

|X3| ≤ 16N(4, 3k) and X3 hits all pairs of Tutte-bridges satisfying the above conditions.
Let G3 := G2 −X3 and P3 := P2 −X3.

Now, we claim that the remaining induced subdivisions of the diamond have restricted
positions.
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Claim 9.13. Let X be an induced subdivision of the diamond in G3 that intersects P3.
Then we have

• X − V (P3) has one component and |V (X) ∩ V (P3)| ≤ 2, and
• if |V (X) ∩ V (P3)| = 2, then the two vertices in V (X) ∩ V (P3) are adjacent.

Proof. Suppose that |V (X) ∩ V (P3)| > 1. Observe that if X − V (P3) intersects some
Tutte bridge F of V (P3), then |V (F ) ∩ V (P3)| = 2. The upper-bound holds because
otherwise H would have been considered when constructing X1, while the lower-bound
holds as we assume |V (X) ∩ V (P3)| > 1, and X is connected.

Also, if X −V (P3) intersects exactly one Tutte bridge F of V (P3), then F contains a
cycle where there are two vertex-disjoint paths from the cycle to V (F ) ∩ V (P3). So, in
that case, the two vertices of V (F ) ∩ V (P3) are consecutive (otherwise we would have
considered F when constructing X2) and we are done.

Thus, we may assume that there are at least two Tutte bridges of V (P3) intersecting X
outside P3. We obtain a contradiction as follows. Let F1, F2, . . . , Fn be the set of Tutte
bridges of V (P3) such that Fi − V (P3) contains a vertex of X. For each i ∈ {1, . . . , n},
let Qi be the minimal subpath of P3 containing the two vertices of V (Fi) ∩ V (P3).
Observe that no two such paths share an edge, because the corresponding bridges have
been handled when constructing X3. On the other hand if no two paths in Q1, . . . , Qn

share an edge, then it is easy to see that X has a cut vertex, a contradiction. ⋄

By Claim 9.13 if G3 contains an induced subdivision X of the diamond, then V (X)∩
V (P ) consists of at most two consecutive vertices of P . Therefore, we can find in
polynomial time either k pairwise vertex-disjoint induced subdivisions of the diamond,
or a vertex set X4 of size at most 2k hitting all remaining induced subdivisions of the
diamond. In the latter case, we obtain a hitting set of size at most

|X1 ∪X2 ∪X3 ∪X4| ≤ 14N(3, 3k) +N(2, 3k) + 16N(4, 3k) + 2k.

So, the function g2(k) = 14N(3, 3k)+N(2, 3k)+16N(4, 3k)+2k satisfies the statement.
�

Now, we prove the second intermediate proposition.

Proposition 9.14. There exists a polynomial function g1 : N → N satisfying the fol-
lowing. Given a graph G, an induced subdivision H of the diamond in G, and a positive
integer k such that

• G− V (H) has no induced subdivision of the diamond,

then one can in time O(N(3, 3k)3k + k|G|7) output either k vertex-disjoint induced sub-
divisions of the diamond, or a vertex set of size at most g1(k) hitting every induced
subdivision of the diamond.

Proof. We set g1(k) := 3g2(k). Let P1, P2, P3 be the three paths forming H . Since
every induced subdivision of the diamond in G intersects H , it intersects at least one
of P1, P2, P3. So, by applying Proposition 9.12 to each of P1, P2, P3, we can output in
time O(N(3, 3k)3k+k|G|7) either k vertex-disjoint induced subdivisions of the diamond,
or a vertex set of size at most g1(k) = 3g2(k) hitting every induced subdivision of the
diamond. �

Proof of Theorem 9.1. We assign g(k) := kg1(k). We can prove Theorem 9.1 using
Proposition 9.14, with exactly the same argument in the proof for 1-pan (Theorem 8.2).

�
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10. Concluding remarks and open problems

In this paper, we investigated the induced Erdős-Pósa property of subdivisions be-
yond known results about cycles and obtained both positive and negative results. We
note that our positive results for pans come with polynomial-time algorithms that out-
put either a large packing of induced subdivisions of the considered graph H , or a small
hitting set. These can be directly used to design approximation algorithms for com-
puting the maximum size of a packing of induced subdivisions of H and the minimum
size of a hitting set (as in [CRST17] for instance). For 1-pans and 2-pans, this gives
a polynomial-time O(OPT logOPT)-approximation. On the other hand, our negative
results cover a vast class of graphs.

The most general open problem on the topic discussed in this paper is to characterize
the graphs H whose subdivisions have the induced Erdős-Pósa property. According to
Theorem 1.5, every graph H for which the question is open satisfies the following:

• H is planar and has a cycle C;
• every induced cycle of H is a C3 or a C4;
• let N̄(C) denote the vertices of H that are not adjacent to C (equivalently,

vertices at distance at least 2 from C), then |N̄(C)| ≤ 2 and in the case of
equality, the two vertices of N̄ are independent.

The study of subdivisions of specific graphs is an intermediate step towards this goal. A
direction of research towards the aforementioned characterisation would be to investi-
gate whether the Erdős-Pósa property is inherited by induced subdivisions. Formally, is
it true that if the induced Erdős-Pósa property holds for subdivisions of some graph H ,
then it also holds for the subdivisions of every graph H ′ contained as an induced sub-
division in H?

Observe that the constructions we used in our counterexamples contain arbitrarily
large complete subgraphs. Therefore the landscape of the induced Erdős-Pósa prop-
erty of subdivisions might be much different if one restricts their attention to graphs
excluding a dense subgraph. In this direction, Weißauer recently proved that for every
s, ℓ ∈ N, subdivisions of Cℓ have the induced Erdős-Pósa property in Ks,s-subgraph-free
graphs [Wei18]. This contrasts with the general case where subdivisions of Cℓ stop
having the induced Erdős-Pósa property from ℓ = 5 (see the note below Theorem 1.3).

Another line of research in the study of the Erdős-Pósa property of graph classes
is to optimize the bounding function. We note that all our positive results hold with
a polynomial bounding function. On the other hand, we obtained in Theorem 7.1 a
lower bound of Ω(k log k) for non-acyclic subcubic graphs. We do not expect our upper-
bounds to be tight and it is an open question to find the correct order of magnitude of
the bounding functions for the graphs we considered. In this direction it is also open to
determine the correct order of magnitude of the bounding function in Theorem 1.3.
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