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Abstract

We consider the statistical inverse problem of recovering an unknown function f from a linear

measurement corrupted by additive Gaussian white noise. We employ a nonparametric Bayesian ap-

proach with standard Gaussian priors, for which the posterior-based reconstruction of f corresponds

to a Tikhonov regulariser f̄ with a reproducing kernel Hilbert space norm penalty. We prove a semi-

parametric Bernstein–von Mises theorem for a large collection of linear functionals of f , implying that

semiparametric posterior estimation and uncertainty quantification are valid and optimal from a fre-

quentist point of view. The result is applied to study three concrete examples that cover both the mildly

and severely ill-posed cases: specifically, an elliptic inverse problem, an elliptic boundary value prob-

lem and the heat equation. For the elliptic boundary value problem, we also obtain a nonparametric

version of the theorem that entails the convergence of the posterior distribution to a prior-independent

infinite-dimensional Gaussian probability measure with minimal covariance. As a consequence, it fol-

lows that the Tikhonov regulariser f̄ is an efficient estimator of f , and we derive frequentist guarantees

for certain credible balls centred at f̄ .
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1 Introduction
Inverse problems arise in a variety of scientific disciplines, where the relationship between the quantity

of interest and the data collected in an experiment is determined by the physics of the underlying system

and can be mathematically modelled. Real world measurements are always discrete and carry statistical

noise, which is often most naturally modelled by independent Gaussian random variables. The observation

scheme then gives rise to an inverse regression model of the form

Mi = (A f )i +wi, i = 1, . . . ,n, wi
iid∼ N (0,1),

where A describes the forward process and (A f )i is a discrete observation of the transformed signal.

The formulation and analysis of the inverse problem is often best done by working with an analogous

continuous model. This guarantees, among other things, discretisation invariance that allows to switch

consistently between different discretisations [13, 32, 33, 53]. In this paper we consider the case where

the forward operator A : W1 → W2 is linear between separable Hilbert spaces W1 and W2, and assume the

continuous equivalent model (in the sense of [5, 47])

Mε = A f + εW, ε > 0, (1.1)

where W is a Gaussian white noise process indexed by W2. Note that while W can be defined by its actions

on W2, it almost surely does not take values on it, making the noise in (1.1) ’rougher’ than the forward

signal A f .

We adopt the Bayesian approach to inverse problems [13, 53] and study the performance of nonpara-

metric procedures based on centred Gaussian priors Π for f . We are interested in what kind of objective

guarantees can be achieved for Bayesian inference based on standard Gaussian priors used in practice. The

specification of these priors does not require additional - and often unavailable - information on the forward

map A, such as its singular value decomposition (SVD). The solution to the statistical inverse problem is

the conditional distribution of f given Mε , whose mean or mode can be used as point estimators. The

main appeal of the method is, however, that it automatically delivers quantification of uncertainty in the

reconstruction, obtained through credible sets, i.e. regions of the parameter space with specified high pos-

terior probability. In many applications this method can be efficiently implemented using modern (possibly

infinite-dimensional) MCMC algorithms that allow fast sampling from the posterior distribution [3, 25].

Our goal is to investigate whether the methodology delivers correct, prior-inde-pendent and possibly

optimal inference on the unknown parameter in the small noise limit. These questions can be addressed

under the frequentist assumption that Mε is in reality generated through model (1.1) from a fixed true signal

f † (instead of f being randomly drawn from Π). We then study the asymptotic concentration of the posterior

distribution around f † as ε → 0. The frequentist analysis of nonparametric Bayesian procedures for inverse

problems has received increasing interest in the last decade, and several contributions in the linear setting

have established consistency results and derived posterior contraction rates; see [1, 2, 27–31, 45, 59] among

others. We also mention [41, 43, 44] for results for non-linear inverse problems.

However, determining whether the resulting uncertainty quantification is objectively valid requires finer

analysis of the posterior distribution. The central question is: do credible sets have the correct frequentist

coverage in the small noise limit? That is, do we have, for some set C =C(Mε),

Π
(

f ∈C

∣∣∣Mε

)
≈ 1−α ⇔ P

(
f † ∈C

)
≈ 1−α , (1.2)

with small α ∈ (0,1) as ε → 0? The importance of the above questions is not restricted just to the Bayesian

paradigm. In linear Bayesian inverse problems with Gaussian priors the conditional mean estimator can

be shown to coincide with a Tikhonov regulariser f̄ arising from a reproducing kernel Hilbert space norm

penalty, see [12,23]. Thus, if (1.2) holds for a credible set C centred at the posterior mean, we can use C as

an (asymptotic) frequentist confidence region based on the Tikhonov regulariser f̄ .
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Obtaining optimal contraction rates is not enough to answer the above question even in the parametric

case. For classical finite-dimensional models the Bernstein–von Mises (BvM) theorem states that, under

mild conditions, the posterior distribution is approximated in total variation distance by a normal distri-

bution, centred at the maximum likelihood estimator and with minimal asymptotic variance. This implies

that credible sets are asymptotically valid and optimal confidence regions; see, e.g., [57, Chapter 10]. Un-

derstanding the frequentist properties of nonparametric credible sets presents a more delicate matter. It

was observed by [10], and later in [18], that the theorem may fail to hold even in a simple nonparametric

regression model, for which credible balls in L2 can be shown to have null asymptotic coverage.

One way of tackling the problem is to start by examining the limit behaviour of the one-dimensional

marginals 〈 f ,ψ〉W1
|Mε instead of the full posterior. This semiparametric approach was introduced for a

direct problem where A = I in [7, 8], where it is shown that (approximately) in the small noise limit

〈 f ,ψ〉W1
|Mε ∼ N (〈 f̄ ,ψ〉W1

,ε2I−1(ψ)), (1.3)

for a large collection of test functions ψ . Above I−1(ψ) is the asymptotic minimal variance. Note that non-

parametric BvM theorems cannot hold in total variation distance like the classical BvM theorem. Instead

one has to employ some metric for weak convergence of probability measures. Utilising a Wasserstein-

type metric [7, 8] achieve weak convergence of the posterior distribution to a prior-independent infinite-

dimensional Gaussian distribution on a large enough function space. More recently similar techniques

were used in the inverse setting [39], for the linear X-ray transform problem, obtaining a semiparametric

BvM theorem relative to smooth functionals of the unknown, while [41] proved a nonparametric result for

a non-linear problem arising in partial differential equations. See also [42, 43] for further related results.

Positive results have also been obtained in [30, 34, 54], for priors defined on the SVD basis of the forward

operator.

The first contribution of the present paper is to extend the semiparametric BvM theorem in [39] for lin-

ear inverse problems of the form (1.1), formulating a general framework that translates the C∞ smoothness

assumption on the test functions ψ into a general ’source-type condition’ that depends on the properties of

the forward map and of the chosen prior (cf. Theorem 2). As a consequence, we then deduce that the plug-

in Tikhonov regularisers 〈 f̄ ,ψ〉W1
are consistent and efficient estimators for 〈 f †,ψ〉W1

, and that credible

intervals centred at such estimators have asymptotically correct coverage and optimal width.

We subsequently employ the general theory to study three concrete examples of interest, where prop-

erties of the forward map can be exploited to check the condition for the semiparametric BvM theorem

to hold. Specifically, we consider elliptic inverse problems on closed manifolds (Example 6), an inverse

problem arising from an elliptic boundary value problem (Example 8), and the severely ill-posed problem

of finding the initial source of the heat equation (Example 10). Similar examples have been considered, e.g,

respectively in [1, 27], in [22] and in [2, 31, 45].

Our second contribution is a refinement of the result obtained for the elliptic boundary value problem,

for which we further relax the assumption on the test functions to a minimal smoothness requirement that

only depends on the degree of ill-posedness (cf.Theorem 11). Adapting the program laid out in [43] to the

problem at hand, we show that the asymptotic approximation of the marginal distributions holds uniformly

across a suitable collection of test functions, leading to the formulation of a nonparametric BvM theorem.

This entails the convergence of the posterior distribution to a limiting Gaussian probability measure with

minimal covariance in suitable function spaces (cf. Theorem 13), and implies frequentist guarantees for the

reconstruction and uncertainty quantification relative to the entire function f .

The article is organised as follows: we introduce the general setting in Section 2, and state the semi-

parametric BvM theorem for linear functionals of the unknown in Section 2.1. In Section 2.2 we derive the

asymptotic normality of 〈 f̄ ,ψ〉W1
and the coverage properties of credible intervals. Section 3 is dedicated

to the examples. In Section 4 we refine the general theorem to achieve optimal semiparametric result for

the elliptic boundary value problem, and obtain the nonparametric BvM theorem. The proofs are postponed
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to Section 5 and partly to the Supplement [21] to this article (included below). Finally, Appendix A and B

provide some of the background facts used throughout the paper.

Regarding the notation, we will write . and & for inequalities holding (possibly asymptotically) up to

a universal constant. Also, for two real sequences (an) and (bn), we say that an ≃ bn if both an . bn and

bn . an for all n (large enough). Below, we will denote by →d the usual convergence in distribution of a

sequence of random variables. The notation µε →L µ will be used for the weak convergence of random

laws in probability, meaning that for any metric d for weak convergence of probability measures the real

random variables d(µε ,µ) converge to zero in probability (see [14] for definitions).

2 General posterior results
2.1 A semiparametric Bernstein–von Mises theorem. We start by considering general linear in-

verse problems with minimal assumptions on the forward operator. We are interested in the nonparametric

statistical inverse problem of recovering an unknown function f from a noisy measurement of the form

Mε = A f + εW, ε > 0. (2.1)

The forward operator A : W1 →W2 is assumed to be linear, bounded and injective between separable Hilbert

spaces W1 and W2 of real valued functions (that can be defined on different sets). The operator A has a well

defined adjoint A∗ : W2 → W1 for which 〈A f ,g〉W2
= 〈 f ,A∗g〉W1

, for all f ∈ W1 and g ∈ W2. In order to

deal with possibly non-smooth unknowns, we define a third space W as a separable Hilbert space for which

A : W →W2 is continuous and W1 ⊂W is dense in the norm of W . In particular, there exists c > 0 such that

‖A f‖W2
≤ c‖ f‖W ∀ f ∈W . (2.2)

The above can be thought of as a smoothing property of A, in that the more smoothing the forward

operator is, the larger the space W can be chosen. For example, if we assume that A : L2(Rd)→ L2(Rd) is

an elliptic (pseudo-)differential operator smoothing of order t, we may choose W = H−t(Rd), see Section

3.1. Since our general semiparametric result only requires that f ∈ W , this allows dealing with possibly

non-smooth unknowns f 6∈ L2(Rd) as long as t > 0 (cf. Example 6 and the following discussion). Note that

we can always make the trivial choice W =W1.

The measurement noise W is taken to be a centred Gaussian white noise process (W(ϕ) : ϕ ∈ W2)
defined on some probability space (Ω,Σ,P), with covariance E(W(ϕ)W(ψ)) = 〈ϕ ,ψ〉W2

. Below we often

write 〈W,ϕ〉W2
for the random variable W(ϕ). The noise amplitude is modelled by ε > 0. Observing data

Mε then means that we observe a realisation of the Gaussian process (Mε(ϕ) = 〈Mε ,ϕ〉W2
: ϕ ∈ W2) with

marginal distributions 〈Mε ,ϕ〉W2
∼ N (〈A f ,ϕ〉W2

,ε2‖ϕ‖2
W2
).

For a fixed f ∈W , let PM
f = L (Mε) be the (cylindrically defined) law of Mε . Arguing as in Section 7.4

in [41] (see also [11, Theorem 2.23]), we can use the law PM
0 of εW as a common dominating measure, and

apply the Cameron–Martin theorem [4, Corollary 2.4.3.] to define the log-likelihood function as

f 7→ ℓ( f ,Mε) = log p f (Mε) := log
dPM

f

dPM
0

(Mε) =
1

ε
〈Mε ,A f 〉W2

− 1

2ε2
‖A f‖2

W2
. (2.3)

We consider a Bayesian approach to the problem, assigning f a centred Gaussian prior Π on W . The

reproducing kernel Hilbert space (RKHS) or Cameron-Martin space of Π is denoted by VΠ. Noticing that

ℓ( f ,Mε) can be taken to be jointly measurable, we can then use Bayes’ theorem to deduce that the posterior

distribution of f |Mε arising from observation (2.1) can be written as

Π(B |Mε) =

∫
B p f (Mε)dΠ( f )∫
W p f (Mε)dΠ( f )

B ∈ BW a Borel set in W . (2.4)

In the following we will study the asymptotic behaviour of Π(· |Mε) in the small noise limit ε → 0,

under the assumption that the measurement is generated from a fixed true unknown f † ∈W . In order to do

so, we assume that the prior satisfy a standard concentration function condition.
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Condition 1. Let Π be a centred Gaussian Borel probability measure on the separable Hilbert space W

for which (2.2) holds, and let VΠ be the RKHS of Π. Define the concentration function of Π with a fixed

f † ∈W as

φΠ, f †(δ ) = inf
g∈VΠ, ‖g− f †‖W≤δ

‖g‖2
VΠ

2
− logΠ( f : ‖ f‖W ≤ δ ), δ > 0. (2.5)

Given Π and f † ∈W assume that there exists a sequence δε → 0, with δε/ε → ∞ as ε → 0, such that

φΠ, f †

(
δε

2c

)
≤
(

δε

ε

)2

. (2.6)

The above condition characterises the asymptotics of the small ball probabilities, and guarantees that

the prior puts sufficient mass around the truth: in particular Π( f : ‖ f − f †‖W ≤ δε)> e−
1
2
(δε/ε)2

as δε → 0

(cf. the proof of Lemma C). Analogous conditions underpin many results in Bayesian asymptotics, and

play a fundamental role in the theory of posterior contraction rates, see e.g. [19, 20, 58]. The concentration

functions of Gaussian priors are generally well understood, and explicit forms for the sequences δε can

readily be computed for many standard choices of practical interest, such as the commonly used Matérn

process priors (see Section 3).

Next we formulate a semiparametric Bernstein–von Mises theorem in the above general linear inverse

problems setting.

Theorem 2. Let PM
f † be the law of Mε generated by (2.1) with f = f † ∈W , where W is a separable Hilbert

space for which (2.2) holds. We assume a centred Gaussian prior Π that satisfies Condition 1 for a fixed

f † ∈W and denote its RKHS by VΠ. Consider a test function ψ ∈W1 such that |〈ψ ,ϕ〉W1
|. ‖ϕ‖W , for all

ϕ ∈W1, and suppose that ψ =−A∗Aψ̃ for some ψ̃ ∈VΠ. Then,

L

(
ε−1(〈 f ,ψ〉W1

− Ψ̂) |Mε

)
→L

N (0,‖Aψ̃‖2
W2
) (2.7)

in PM
f † -probability as ε → 0, where

Ψ̂ = 〈 f †,ψ〉W1
− ε〈Aψ̃,W〉W2

. (2.8)

The next corollary states that we can replace the centring Ψ̂ by a linear functional of the conditional

mean. This implies that the posterior distribution of the functionals are asymptotically approximated by a

normal distribution centred at the conditional mean and with asymptotic minimal variance (see Remark 4

below). The proof of Corollary 3 can be adapted from the proof of Theorem 2.7 in [39] and is therefore

omitted (see also Step V in the Supplement).

Corollary 3. Let f̄ = EΠ[ f |Mε ] be the mean of the posterior Π(·|Mε). Then, for every ψ ∈ W1 satisfying

the conditions in Theorem 2, we have

1

ε
(〈 f̄ ,ψ〉W1

− Ψ̂)→ 0, (2.9)

in PM
f †−probability as ε → 0. As a consequence, we can replace Ψ̂ with 〈 f̄ ,ψ〉W1

in Theorem 2.

Note that, since W1 ⊂W is dense and Lψ(·) = 〈ψ , ·〉W1
is assumed to be a bounded linear operator (and

hence uniformly continuous), we can extend Lψ continuously to W . The condition on the test functions

requires that ψ is in the range of the ’Fisher information operator’ A∗A acting upon the RKHS of Π.

This can normally be translated into suitable smoothness assumptions on ψ , see Section 3 for examples.

The requirement resembles certain source conditions often used in inverse problems [16, 37, 51]. The main

conceptual difference is that instead of requiring extra smoothness for the unknown f † to attain convergence

in a predefined space, we allow f † to be non-smooth and impose constraints on the test functions in order

to achieve convergence.
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2.2 Efficiency and uncertainty quantification for Tikhonov regularisers. Since the forward

operator A is assumed to be linear, the posterior distribution Π(·|Mε) is Gaussian. It follows that the

conditional mean f̄ = f̄ (Mε) := EΠ[ f |Mε ] coincides with the maximum a posterior (MAP) estimator, and

using Corollary 3.10 in [12] (under appropriate conditions on A) the latter can be seen to be a Tikhonov-type

regulariser found by minimising the following Onsager-Machlup functional

Q( f ) =− 1

ε2
〈Mε ,A f 〉W2

+
1

2ε2
‖A f‖2

W2
+

1

2
‖ f‖2

VΠ
.

Using Theorem 2 and Corollary 3 we can derive the asymptotic distribution of the plug-in estimators

〈 f̄ ,ψ〉W1
.

Remark 4 (Minimax optimality of the plug-in Tikhonov regulariser). Corollary 3 implies that

1

ε
〈 f̄ − f †,ψ〉W1

→d Z ∼ N (0,‖Aψ̃‖2
W2
) (2.10)

in PM
f †−probability as ε → 0. The above random variable Z identifies the asymptotic minimal variance (in

the minimax sense) in estimating 〈 f †,ψ〉W1
from model (2.1), in that

liminf
ε→0

inf
T

sup
f∈Bε

ε−2EM
f †(〈 f †,ψ〉W1

−T)2 ≥ ‖Aψ̃‖2
W2
, (2.11)

the infimum being over all estimators T = T (Mε ,ψ) of 〈 f †,ψ〉W1
based on observing Mε in (2.1) with

f = f †, and the supremum is taken over balls Bε in W centred at f † and with radius ε > 0; see Appendix

A.

We notice that (2.10) implies the convergence of all moments (see Step V in the Supplement). Conse-

quently, for all ψ ∈ W1 fulfilling the conditions of Theorem 2, the plug-in Tikhonov regulariser 〈 f̄ ,ψ〉W1

attains the lower bound in (2.11), and hence is an asymptotic minimax estimator of 〈 f †,ψ〉W1
.

Besides the question of efficiency, the most relevant consequence of Theorem 2 is that credible intervals

built around the estimators 〈 f̄ ,ψ〉W1
are asymptotically valid frequentist confidence intervals with optimal

diameter. Specifically, for ψ as above, consider a credible interval for 〈 f̄ ,ψ〉W1
of the form

Cε = {x ∈ R : |〈 f̄ ,ψ〉W1
− x| ≤ Rε}, (2.12)

with Rε = Rε(α ,Mε) chosen so that

Π(〈 f ,ψ〉W1
∈Cε |Mε) = 1−α , α ∈ (0,1).

Then it follows that Cε has the correct asymptotic coverage and that its diameter shrinks at the optimal rate

ε . The proof of the following corollary can be found in the Supplement.

Corollary 5. Let ψ ∈W1 satisfy the conditions in Theorem 2, and let Cε be as in (2.12). Then, as ε → 0,

PM
f †(〈 f †,ψ〉W1

∈Cε)→ 1−α and

ε−1Rε →
PM

f † Φ−1(1−α).

Here Φ(t) = Pr(|Z| ≤ t) and Z ∼ N (0,‖Aψ̃‖2
W2
).

Note that although an explicit formulation of Cε would require the computation of the quantiles of the

posterior distribution of 〈 f ,ψ〉W1
|Mε , these type of credible intervals can often in practice be implemented

by numerically approximating the radius Rε with a posterior sampling method. See, e.g., [25], or Section

2.2 in [39].

For the inferential problem for elliptic partial differential equations studied in Section 3.2, Remark 14

below will extend the conclusions of Corollary 5 to entire credible balls in suitable function spaces centred

at f̄ .
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3 Examples
In this section we consider examples of linear inverse problems fitting in the framework of Section 2,

studying the conditions under which the semiparametric Bernstein–von Mises phenomenon occurs in such

instances. We first need to introduce some notation on Sobolev spaces (see [36, 38] for background).

The Sobolev space on Rd of order s ∈ R is defined as

Hs(Rd) = {u ∈ S
′(Rd) : (1+ | · |2)s/2

Fu ∈ L2(Rd)}, (3.1)

where S ′(Rd) is the space of tempered distributions on Rd and F is the Fourier transform. For O ⊂ Rd a

non-empty, open and bounded set with smooth boundary ∂O (a smooth domain), Sobolev spaces on O can

be defined via the restriction operator |O as

Hs(O) = {u =U |O , U ∈ Hs(Rd)}, ‖u‖Hs(O) = inf
U∈Hs(Rd), U |O=u

‖U‖Hs(Rd). (3.2)

To correctly address issues relative to the behaviour of functions near ∂O , we will need to consider

certain subspaces of Hs(O). We denote the set of functions in Hs(O) that are compactly supported in O by

Hs
c(O), and for any fixed compact subset K ⊂ O , we write Hs

K(O) := {u ∈ Hs(O), supp(u)⊆ K}. Finally,

for all s > 1/2, let Hs
0(O) be the usual subspace of Hs(O) of functions with null trace on ∂O . Below we

will often suppress the dependence on the underlying domain denoting Hs = Hs(O).

3.1 Elliptic inverse problems. We start with a basic example to demonstrate how Theorem 2 can be

applied when A is assumed to be a smoothing elliptic pseudo-differential operator and O a closed manifold

(see [24,52] for general theory on pseudo-differential operators). The previous definitions of Sobolev spaces

can straightforwardly be adapted to this setting, see e.g. [52, Chapter I.7]. The absence of a boundary and

the properties of the forward map allow for a clean exposition of the results. In the Section 3.2 we will

instead assume that O is a smooth domain in Rd, and take A to be the solution operator associated with an

elliptic boundary value problem. We then have to refine the results to take into account some subtleties of

the behaviour of functions near the boundary.

Example 6. Let O be a closed d-dimensional manifold and A : L2(O) → L2(O) an injective and elliptic

pseudo-differential operator smoothing of order t, that is, A : Hs(O)→ Hs+t(O) with all s ∈R [52, Section

I.5.]. We can then choose W = H−t(O).
Let PM

f † be the law of Mε generated by (2.1) with f = f † ∈ Hα(O), α > −t. We assume a centred

Gaussian prior Π with RKHS VΠ = Hr(O), where r ≥ max{0,d0 − t} and d0 > d/2. This guarantees that

f ∈ Hr−d0(O) ⊂ H−t(O) = W almost surely. For example, we can take Π = N (0,C f ), where C f is a

self-adjoint, injective and elliptic covariance operator smoothing of order 2r [1, 27]. Another example is to

assume Π to be the law of the Matérn process of smoothness r−d/2 (see Example 11.8 in [19] for details),

namely the centred Gaussian process (M(x) : x ∈ O) with covariance kernel

K(x,y) =
∫

Rd
e−i〈x−y,ξ 〉

Rd µ(dξ ), µ(dξ ) = (1+ |ξ |2)−rdξ .

Since A is elliptic and O is a closed manifold, A∗A has a well defined inverse (A∗A)−1 : Hs(O) →
Hs−2t(O), s ∈ R, see e.g. [26]. We can then take ψ ∈ Hr+2t(O), which guarantees ψ̃ = −(A∗A)−1ψ ∈
Hr(O) =VΠ and |〈ψ ,ϕ〉L2 | ≤C‖ϕ‖H−t , for all ϕ ∈ L2(O).

Denote by f̄ = EΠ[ f |Mε ] the mean of the posterior distribution Π(·|Mε) arising from observing (2.1).

Then, for all test functions ψ ∈ Hr+2t(O), the following convergence occurs in PM
f † -probability as ε → 0

L
(
ε−1〈 f − f̄ ,ψ〉L2 |Mε

)
→L

N
(
0,‖A(A∗A)−1ψ‖2

L2

)
.
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Note that if t > d
2
−1 we can allow unknowns of bounded variation f † ∈BV (O), since BV (O)⊂Hα(O)

when α ≤ 1− d
2
. Functions of bounded variation are widely used e.g. in image analysis due to their ability

to deal with discontinuities. One standard example is total variation denoising [6, 50].

Remark 7. Let Π and f † be as above. Then, as δ → 0

φΠ, f †(δ ). δ− 2max{0,r−α}
t+α +δ

− d
r+t−d/2 , (3.3)

so that the concentration condition φΠ, f †(δε). (δε/ε)2 is satisfied by taking

δε ≃ max
{

ε
t+α
t+r ,ε

t+r−d/2
t+r

}
.

The proof of Remark 7 is omitted since it is a simplified version of the proof of Remark 9 where, O

being a closed manifold, one does not need to address the technicalities arising at the boundary.

3.2 An elliptic boundary value problem. Let O ⊂ Rd be a non-empty, open and bounded set with

smooth boundary ∂O . We consider the problem of recovering the unknown source f ∈ L2 = L2(O) in the

elliptic boundary value problem (BVP)

{
Lu = f on O

u = 0 on ∂O
(3.4)

from noisy observations of the solution u corrupted by additive Gaussian white noise in L2. We take L to

be the following partial differential operator in divergence form:

Lu =−
d

∑
i, j=1

∂

∂x j

(
ai j

∂u

∂xi

)
, (3.5)

for known ai j ∈ C∞(O), with ai j = a ji. The problem represents an ’elliptic counterpart’ of the transport

PDE arising in [39].

Assuming that L is uniformly elliptic (see Appendix B), it follows that for each f ∈ Hs, s ≥ 0, there

exists a unique weak solution L−1 f ∈ Hs+2
0 to (3.4). In particular, L−1 : Hs → Hs+2

0 defines a bounded

isomorphism, self-adjoint with respect to 〈·, ·〉L2 , and for all s ≥ 0 we also have the dual estimates

‖L−1 f‖(Hs)∗ = sup
u∈Hs, ‖u‖Hs≤1

|〈L−1 f ,u〉L2 | ≤ cs‖ f‖(Hs+2
0 )∗ for some cs > 0. (3.6)

Rephrasing in the notation of Section 2, we consider the observation

Mε = L−1 f + εW, ε > 0, (3.7)

where W is Gaussian white noise in L2. For W1 =W2 = L2, the dual estimate (3.6) implies that we can take

W = (H2
0 )

∗.

We assume that f ∼ Π, where Π is a centred Gaussian Borel probability measure on L2 with RKHS

VΠ = Hr, for some r > d/2. For example, we can take Π to be the law of the Matérn process of smoothness

r−d/2 introduced in the previous example.

For f † ∈ Hα
c , with some α ≥ 0, we show that the semiparametric BvM phenomenon occurs under

appropriate smoothness conditions on the test functions ψ . In particular, assuming that ψ ∈ Hr+4
c auto-

matically verifies the requirements of Theorem 2, since taking ψ̃ = −L(Lψ) implies ψ̃ ∈ VΠ = Hr and

ψ = −L−1L−1ψ̃ , as supp(Lψ) ⊆ supp(ψ) ( O . The proof of the following proposition can be found in

Section 5.2.
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Proposition 8. Let Π be a Gaussian Borel probability measure on L2(O) with RKHS VΠ =Hr(O), r > d/2.

Assume that f † ∈ Hα
c (O), α ≥ 0, and let PM

f † be the law of Mε generated by (3.7) with f = f †. Let

f̄ = EΠ[ f |Mε ] be the mean of the posterior distribution Π(·|Mε) arising from observing (3.7). Then, for all

ψ ∈ Hr+4
c (O), we have

L (ε−1〈 f − f̄ ,ψ〉L2 |Mε)→L
N (0,‖Lψ‖2

L2) (3.8)

in PM
f † -probability as ε → 0.

Remark 9. Let Π and f † be as above. In the proof of Proposition 8 we show that as δ → 0

φΠ, f †(δ ). δ− 2max{0,r−α}
2+α +δ

− d
r+2−d/2 , (3.9)

so that the concentration condition φΠ, f †(δε). (δε/ε)2 is satisfied by taking

δε ≃ max{ε
2+α
2+r ,ε

2+r−d/2
2+r }. (3.10)

3.3 Boundary value problem for the heat equation. We will conclude this section by applying

the general framework studied in Section 2 to the severely ill-posed problem of finding the initial source of

the heat equation. Contraction rates for similar inverse problems have been studied in [2, 31, 45].

Example 10. Let O ⊂Rd be an open bounded set with C∞ boundary ∂O . We consider the boundary value

problem for the heat equation 



ut −∆u = 0 on O ×R+

u = 0 on ∂O ×R+

u(·,0) = f on O .

The inverse problem is to recover the initial heat source f ∈ L2 from a noisy observation of the solution u

at time T , corrupted by additive Gaussian white noise on L2. The solution to the boundary value problem

is given by

u(x,T ) = A f (x) =
∞

∑
j=1

〈 f ,ϕ j〉L2e−λ jT ϕ j(x), x ∈ O,

where −∆ϕ j = λ jϕ j, and {ϕ j}∞
j=1 forms an orthonormal basis of L2. If we order the eigenvalues to be

increasing, that is, λ1 ≤ λ2 ≤ . . . , then Weyl’s law yields that λ j ≃ j2/d (e.g., [48, Theorem 8.16]). Thus, the

singular values of the compact forward operator A decay exponentially to zero, meaning that the recovery

of the initial condition of the heat equation is a severely ill-posed inverse problem.

Assume that f ∼ Π, where Π is a centred Gaussian Borel probability measure on L2 with RKHS VΠ =
Hr, r > d/2. Let ψ ∈ L2 be of the form

ψ =−A∗Aψ̃ =−
∞

∑
j=1

〈ψ̃ ,ϕ j〉L2e−2λ jT ϕ j, (3.11)

for some ψ̃ ∈ Hr. Then

|〈ψ ,φ〉L2 |= |〈ψ ,
∞

∑
j=1

〈φ ,ϕ j〉L2 ϕ j〉L2 |

≤
∞

∑
j=1

|〈φ ,ϕ j〉L2 |
∣∣∣∣∣

〈
∞

∑
i=1

〈ψ̃ ,ϕi〉L2 e−2λiT ϕi,ϕ j

〉

L2

∣∣∣∣∣

≤
∞

∑
j=1

|〈φ ,ϕ j〉L2 ||〈ψ̃ ,ϕ j〉L2 |e−2λ jT

≤C‖φ‖H−t ,
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for all t ≥ 0, verifying the condition of Theorem 2. Hence, for f † ∈ L2 and ψ as above, we get the following

convergence in PM
f † -probability as ε → 0

L
(
ε−1〈 f − f̄ ,ψ〉L2 |Mε

)
→L

N
(
0,‖Aψ̃‖2

L2

)
.

Note that the contraction rate ε entailed by the semiparametric BvM theorem is a very strong require-

ment for severely ill-posed inverse problems, usually characterised by logarithmic rates even for smooth

functionals [31]. To achieve the rate ε , we then need to assume the analytic-type condition (3.11) on the

test function ψ , which reflects the natural condition of ψ being in the range of A∗ which is necessary for

efficient semiparametric estimation [57, Theorem 25.32].

4 A nonparametric Bernstein–von Mises theorem for elliptic boundary value

problems
In this section we continue the investigation of the BvM phenomenon in the setting of the elliptic BVP

studied in Section 3.2. We develop Proposition 8 along two related directions: first, we extend the class of

test functions ψ for which the convergence (3.8) occurs, identifying a natural lower limit for the smooth-

ness of ψ that only depends on the level of ill-posedness of the inverse problem. Secondly, combining

the result with the program laid out in [43], we derive a nonparametric BvM theorem that entails the weak

convergence, in a suitable function space, of the centred and scaled posterior to a prior-independent infinite-

dimensional Gaussian probability measure whose covariance function attains the information lower bound.

From the latter result we then obtain frequentist guarantees for uncertainty quantification in the reconstruc-

tion of the entire function f .

We briefly recall that, for unknown f ∈ L2 = L2(O), we consider observations Mε = L−1 f +εW, ε > 0,
where L−1 is the solution map associated with the BVP (3.4) (see Section 3.2 for details) and W is a

Gaussian white noise in L2. We assign f a centred Gaussian prior in L2 with RKHS Hr, r > d/2, and

assume that the observation Mε is generated from a fixed f † ∈ Hα
c with some α > 0. For the results in this

section we assume an undersmoothing prior. That is, we consider the case r−d/2 ≤ α . The proofs can be

found in Section 5.

Theorem 11. Let Π be a Gaussian Borel probability measure on L2(O) with RKHS VΠ = Hr(O), r > d/2.

Assume that f † ∈ Hα
c (O), α ≥ r− d/2, and let PM

f † be the law of Mε generated by (3.7) with f = f †. Let

f̄ = EΠ[ f |Mε ] be the mean of the posterior distribution Π(·|Mε) arising from observing (3.7). Then, for all

β > 2+d/2, and any ψ ∈ H
β
c (O), we have

L (ε−1〈 f − f̄ ,ψ〉L2 |Mε)→L
N (0,‖Lψ‖2

L2) (4.1)

in PM
f † -probability as ε → 0.

Assuming that β > 2+d, we will strengthen the above result to a nonparametric Bernstein–von Mises

theorem in the dual spaces (H
β
K )

∗, for any compact set K ⊂ O . In particular, we notice that the Gaussian

laws in the right hand side of (4.1) identify the one-dimensional marginal distributions of a nonparametric

Gaussian probability measure µ , induced via Kolmogorov’s extension (see, e.g., [14, Section 12.1]) on the

cylindrical σ -field of RH
β
K by the centred Gaussian process

X = (X(ψ) : ψ ∈ H
β
K ), E[X(ψ)X(ψ ′)] = 〈Lψ ,Lψ ′〉L2 . (4.2)

In fact, in the view of the efficiency considerations in Appendix A, µ represents the ’canonical’ asymp-

totic distribution for the problem of inferring f in model (3.7), as its covariance function is minimal in the

information theoretic sense of Remark 4. In the following lemma we derive the values of β for which µ is a

tight Borel probability measure on (H
β
K )

∗, a necessary condition for any sequence of laws on such spaces to

weakly converge to µ . The proof adapts the argument in the proof of Proposition 6 in [43], and is included

in the Supplement.

10



Lemma 12. Fix any compact set K ⊂ O . Let X be as in (4.2), and let µ be the law of X on the cylindrical

σ -field of RH
β
K . Then,

1. for all β > 2+d/2, µ is a tight Gaussian Borel probability measure on (H
β
K )

∗;

2. for β < 2+d/2, we have

µ
(
x : ‖x‖

(H
β
K )∗

< ∞
)
= 0;

3. for β = 2+d/2, µ is not tight on (H
β
K )

∗.

Similarly, the stochastic process obtained by collecting the random variables in the left hand side of

(4.1),

Xε =
(

ε−1〈 f − f̄ ,ψ〉L2 |Mε : ψ ∈ H
β
K

)
, ε > 0, (4.3)

can also be shown to induce a tight Borel probability measure on (H
β
K )

∗ when β > 2+d/2 (see Step IV in

Section 5.3). We will interpret the law of Xε as the nonparametric centred and scaled posterior distribution

arising from observing (3.7), denoted by

L (ε−1( f − f̄ )|Mε) = L (Xε). (4.4)

Theorem 11 implies the convergence of the finite-dimensional distributions of the stochastic process Xε

to those of X (cf. Lemma 21), and by showing that (4.1) holds uniformly across the set of test functions,

we then deduce the weak convergence of the respective induced laws on (H
β
K )

∗. As mentioned in the

introduction, nonparametric BvM theorems cannot hold in total variation distance like the classical BvM

theorem. Instead we use a Wasserstein-type metric for weak convergence of probability measures. Recall

that on a given complete separable metric space (S,ρ), the notion of weak convergence of sequences of

Borel probability measures can be metrised by the bounded Lipschitz (BL) metric

dS(ν1,ν2) = sup
F:S→R, ‖F‖Lip≤1

∣∣∣∣
∫

S
Fd(ν1 −ν2)

∣∣∣∣ , (4.5)

where

‖F‖Lip = sup
x∈S

|F(x)|+ sup
x,y∈S, x6=y

|F(x)−F(y)|
ρ(x,y)

;

see, e.g., [15, Theorem 3.28].

Theorem 13. Let Π be a Gaussian Borel probability measure on L2(O) with RKHS VΠ = Hr(O), r > d/2.

Assume that f † ∈ Hα
c (O), α ≥ r− d/2, and let PM

f † be the law of Mε generated by (3.7) with f = f †. Let

f̄ = EΠ[ f |Mε ] be the mean of the posterior distribution Π(·|Mε) arising from observing (3.7). Then, for all

β > 2+d and any compact K ⊂ O , denoting d
(H

β
K )

∗ the BL-metric for weak convergence on (H
β
K (O))∗,

d
(H

β
K )∗

(
L (ε−1( f − f̄ )|Mε),µ

)
→ 0 (4.6)

in PM
f † -probability as ε → 0. Above L (ε−1( f − f̄ )|Mε) is the centred and scaled posterior (4.4), and µ is

the Gaussian distribution induced by X in (4.2).

Similar results as Theorem 11 and Theorem 13 could be formulated for Example 6, exploiting the fact

that the ’Fisher information operator’ A∗A has a well defined inverse (A∗A)−1 : Hs(O)→ Hs−2t(O), for all

s ∈ R. In particular, since O was assumed to be a closed manifold, the weak convergence will be achieved

in H−β(O) for all β > t +d.
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Remark 14 (Applications to uncertainty quantification). With similar reasoning as in Section 2.2, Theorem

11 implies that for all ψ ∈ H
β
c , β > 2+ d/2, the credible intervals Cε in (2.12) centred at the plug-in

Tikhonov regulariser 〈 f̄ ,ψ〉L2 have asymptotically correct frequentist coverage and optimal diameter.

On the other hand, the full strength of Theorem 13 can be employed to show that the posterior dis-

tribution delivers valid uncertainty quantification also for the entire unknown f , by considering credible

sets in the weak topology where the limit is attained. The weak convergence in the dual space (H
β
K )

∗ is

indeed enough to deduce frequentist guarantees for a sufficiently rich class of credible sets (see the related

discussion in Section 7.3.4 in [20]). In particular, choosing posterior quantiles R̃ε = R̃(α ,Mε) so that

C̃ε = { f ∈ L2 : ‖ f − f̄‖
(H

β
K )

∗ ≤ R̃ε}, Π(C̃ε |Mε) = 1−α , α ∈ (0,1),

we have for all β > 2+d

PM
f †( f † ∈ C̃ε)→ 1−α

as ε → 0, with asymptotically vanishing diameter R̃ε = OPM

f †
(ε).

Finally, while the optimal rate ε is obtained for the relatively weak norm of (H
β
K )

∗, arguing as in Section

2 in [7] (see also Section 5.1 in [41]), we can intersect C̃ε with additional prior smoothness information

(cf. Step I in Section 5.3) to show that the diameter of C̃ε decays at polynomial rate εγ , for any γ <
α/(α +2+d), also with respect to the stronger norm of interest ‖ · ‖L2(K′), for any compact K′ ( K.

Remark 15 (Smoothness requirement). Regarding the weak convergence to µ on (H
β
K )

∗, the requirement

that β > 2+ d under which (4.6) is obtained is stronger than the necessary tightness condition β > 2+
d/2 of Lemma 12. While the proof of Theorem 13 does imply the convergence of the finite-dimensional

distributions of L (ε−1( f − f̄ )|Mε) to those of µ in the full range β > 2+d/2 (see Lemma 21), the stronger

condition β > 2+ d is crucial in order to control the arising semiparametric bias term uniformly in the

collection {ψ ∈ H
β
K , ‖ψ‖Hβ ≤ 1}. This in turn implies that the L2-diameter of C̃ε does not attain the

minimax rate εα/(α+2+d/2), which hence can potentially deliver polynomially sub-optimal result.

To the best of our knowledge, examples of Gaussian priors that attain a nonparametric BvM theorem in

the optimal function space are known in literature only in the SVD-based framework considered in [7,8,46],

or in the ’nearly-diagonal’ problem studied very recently by [42]. Applying our proof to a Gaussian prior

defined via SVD would here recover the result of [46]. However, the main interest of this paper is in the

performance of standard Gaussian priors that are not defined on the SVD basis of the forward operator -

such as the Matérn priors considered in the examples - since this information is rarely available in inverse

problems encountered in practice. Our results show that for the inverse problem (3.7) standard Gaussian

priors indeed yield optimal semiparametric inference for the maximal class of functionals, and provide a

validation of the associated nonparametric credible sets.

5 Proofs
5.1 Proof of Theorem 2. The proof of Theorem 2 follows ideas developed in [39] for the special case

of A being the X-ray transform and ψ ∈ C∞. We will here outline the proof and comment on the main

steps. We start by noting that the posterior concentrates on events that have high enough prior probability.

As a result, one can confine the analysis to an approximate posterior arising from restricting the prior over

such sets. This observation allows to conveniently incorporate concentration properties of the prior into the

analysis.

Lemma 16. Let Π(· |Mε) be the posterior distribution arising from observation Mε in (2.1) and prior Π

satisfying Condition 1 for a fixed f † ∈W and some sequence δε → 0, such that δε/ε → ∞. Then, for any

Borel set Dε ⊂W for which

Π(Dc
ε). e−D(δε/ε)2

, for some D > 3, (5.1)
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and all ε > 0 small enough, we have

Π(Dc
ε |Mε)→ 0 and ‖Π(· |Mε)−ΠDε (· |Mε)‖TV → 0 (5.2)

in PM
f † -probability as ε → 0. Above ΠDε (· |Mε) is the posterior arising from the prior Π(· ∩Dε)/Π(Dε)

restricted to Dε and renormalised.

The proof of Lemma 16 (and Lemma 17 below) can be adapted from the corresponding results in [39].

They are included for completeness in the Supplement.

Next we need to find a suitable set Dε . If f ∼ Π, we have 〈 f , ψ̃〉VΠ ∼ N (0,‖ψ̃‖2
VΠ
) for all ψ̃ ∈VΠ, and

the standard Gaussian tail bound guarantees for all t ≥ 0 that

Π

(
f :

|〈 f , ψ̃〉VΠ |
‖ψ̃‖VΠ

>
tδε

ε

)
≤ e−

t2

2
(δε/ε)2

.

Hence we can choose

Dε =

{
f :

|〈 f , ψ̃〉VΠ|
‖ψ̃‖VΠ

≤ T δε

ε

}
, T >

√
6. (5.3)

We assume that the test function ψ ∈W1 fulfils |〈ψ ,ϕ〉W1
| ≤ ‖ϕ‖W , for all ϕ ∈W1, in order to extend

Lψ(·) = 〈ψ , ·〉W1
continuously to W . If we assume furthermore that ψ = −A∗Aψ̃, with some ψ̃ ∈ VΠ, we

can proceed to study the moment generating function of ε−1(〈 f ,ψ〉W1
− Ψ̂) under the posterior ΠDε (· |Mε),

and conclude that it converges to the moment generating function of the limiting Gaussian law.

Lemma 17. Under the conditions of Lemma 16, consider a test function ψ ∈ W1 such that |〈ψ ,ϕ〉W1
| .

‖ϕ‖W , for all ϕ ∈W1, and suppose that ψ =−A∗Aψ̃ , for some ψ̃ ∈VΠ. Define the random variable

Ψ̂ = 〈 f †,ψ〉W1
− ε〈Aψ̃,W〉W2

.

Then, for all τ ∈ R we have as ε → 0

EΠDε
(

e
τ
ε (〈 f ,ψ〉W1

−Ψ̂)
∣∣∣Mε

)
= e

τ2

2 ‖Aψ̃‖2
W2

(
1+oPM

f †
(1)

)
. (5.4)

To conclude, we note that the exponential in the right hand side of (5.4) coincides with the moment

generating function of N (0,‖Aψ̃‖2
W2
). Since the convergence of the Laplace transforms implies weak con-

vergence (see, e.g., Proposition 1 in the supplement of [9]), we obtain from Lemma 17 that the conclusion

of Theorem 2 holds for the approximate posterior ΠDε (·|Mε). Furthermore, convergence in total varia-

tion distance implies convergence in any metric for weak convergence and hence Theorem 2 follows from

Lemma 16.

5.2 Proof of Proposition 8. We now apply Theorem 2 to show the semiparametric result in the elliptic

boundary value problem setting of Section 3.2. As already noted before Proposition 8, any test function

ψ ∈ Hr+4
c = Hr+4

c (O) verifies the requirements of Theorem 2. Hence, we only need to derive Condition

1 for the chosen prior. In particular, for Π a Gaussian prior on L2 with RKHS Hr, r > d/2, and the true

unknown f † ∈ Hα
c , α ≥ 0, we find suitable sequences δε that satisfy the estimate (3.3) for the concentration

function

φΠ, f †(δ ) = inf
g∈Hr , ‖g− f †‖

(H2
0
)∗≤δ

‖g‖2
Hr

2
− logΠ( f : ‖ f‖(H2

0 )
∗ ≤ δ ), δ > 0. (5.5)

We proceed by calculating suitable upper bounds for the two terms. For the first term, we need to find

approximations for the unknown f † ∈ Hα
c in the RKHS Hr of Π, for which we can both control the approx-

imation error and the norm in the latter space. We employ the approximations used in Section 4.3.3 of [40].
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In particular, we fix a compact set F such that supp( f †)( F ( O , and a cut-off function ζ ∈C∞
c (R

d) such

that ζ = 1 on supp( f †), 0 ≤ ζ ≤ 1 and supp(ζ ) ⊆ F. Noting that we can (isometrically) extend f † to zero

outside F to form an element in Hα(Rd), we then define

f †
ε = (ζF

−1
1|·|≤Nε

F f †)|O , (5.6)

for any sequence Nε → ∞ as ε → 0.

Lemma 18. Let f † ∈ Hα
c (O) for some α > 0, and fix a compact set F such that supp( f †)( F ( O . Then

we have, for f
†
ε as in (5.6) and for any sequence Nε → ∞ as ε → 0,

1. f
†
ε ∈ Ht

F(O) for all t ≥ 0 and

‖ f †
ε ‖2

Ht ≤ (1+N2
ε )

max{0,t−α}‖ f‖2
Hα ; (5.7)

2. for all 0 ≤ s < α

‖ f †
ε − f †‖2

Hs ≤ (1+N2
ε )

s−α‖ f †‖2
Hα ; (5.8)

and for all s ≥ 0,

‖ f †
ε − f †‖2

(Hs)∗ ≤ (1+N2
ε )

−s−α‖ f †‖2
Hα . (5.9)

Proof. Let t ≥ 0 be fixed. Clearly supp( f
†
ε )⊆ supp(ζ )⊆ F , and we can compute directly

‖ f †
ε ‖2

Ht (O) ≤ ‖ζF
−1
1|·|≤Nε

F f †‖2
Ht (Rd)

.

∫

Rd
(1+ |ξ |2)t(1|ξ |≤Nε

F f †(ξ ))2dξ

=

∫

|ξ |≤Nε

(1+ |ξ |2)t−α(1+ |ξ |2)α(F f †(ξ ))2dξ

≤ (1+N2
ε )

max{0,t−α}‖ f †‖2
Hα (O).

For 0 ≤ s < α we proceed similarly, observing that f † = ζ f † since ζ = 1 on supp( f †). Then

‖ f †
ε − f †‖2

Hs(O) ≤ ‖ζF
−1
1|·|≤Nε

F f † −ζ f †‖2
Hs(Rd)

.

∫

Rd
(1+ |ξ |2)s(1{|ξ |≤Nε }F f †(ξ )−F f †(ξ ))2dξ

≤ (1+N2
ε )

s−α‖ f †‖2
Hα (O).

Finally, recalling that both f † and f
†
ε are supported in F ( O , we get for all s ≥ 0

‖ f †
ε − f †‖2

(Hs(O))∗ = sup
u∈Hs(O),‖u‖Hs(O)≤1

∣∣∣
∫

F
( f †

ε − f †)udx

∣∣∣

≤ sup
U∈Hs(Rd),‖U‖

Hs(Rd )
≤1

∣∣∣
∫

F
( f †

ε − f †)U |Odx

∣∣∣

= sup
U∈Hs(Rd),‖U‖

Hs(Rd )
≤1

∣∣∣
∫

F
(ζF

−1
1|·|≤Nε

F f † −ζ f †)Udx

∣∣∣

. ‖F−1
1|·|≤Nε

F f † − f †‖H−s(Rd)

≤ (1+N2
ε )

−s−α‖ f‖2
Hα (O),

where the last line follows arguing just as above for the case 0 ≤ s < α .
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We next derive an upper bound for the second term in (5.5). The proof adapts to the inverse problem

(3.7) standard computations in the theory of small balls probabilities of Gaussian priors (e.g., [20, Section

7.3]).

Lemma 19. Let Π be a Gaussian Borel probability measure on L2(O) with RKHS VΠ = Hr(O), r > d/2.

Then, as δ → 0,

− logΠ( f : ‖ f‖(H2
0 (O))∗ ≤ δ ). δ

− d
r+2−d/2 .

Proof. Since for any f ∈ L2 we have f = L(L−1 f ), we can write

Π( f : ‖ f‖(H2
0 )

∗ ≤ δ ) = Π( f : ‖L(L−1 f )‖(H2
0 )

∗ ≤ δ ).

Recalling that L is self-adjoint when acting on H2
0 , we have for some c > 0 that

‖L(L−1 f )‖(H2
0 )

∗ = sup
v∈H2

0 , ‖v‖
H2≤1

|〈L(L−1 f ),v〉L2 | ≤ c‖L−1 f‖L2 ,

having used the boundedness of L. Thus,

− logΠ( f : ‖ f‖(H2
0 )

∗ ≤ δ )≤− logΠ
(

f : ‖L−1 f‖L2 ≤ δ/c
)

=− log Π̃(h : ‖h‖L2 ≤ δ/c)

where h = L−1 f ∼ Π̃ for f ∼ Π. From Exercise 2.6.5 in [20] and the linearity of L−1, we see that Π̃ is a

Gaussian probability measure with RKHS V
Π̃
= L−1(Hr) = Hr+2

0 , with unit ball BV
Π̃

included in the unit

ball Br+2 of Hr+2. We thus get the following upper bound for the minimal number N(BV
Π̃
,‖ · ‖L2 ,δ ) of

L2-balls or radius δ to cover BV
Π̃
:

N(BV
Π̃
,‖ · ‖L2 ,δ )≤ N(Br+2,‖ · ‖L2 ,δ ).

Theorem 4.3.36 in [20] now implies that

logN(Br+2,‖ · ‖L2 ,δ ). δ− d
r+2 ,

and by applying the small ball estimates in Theorem 1.2 of [35], we obtain that as δ → 0

− log Π̃(h : ‖h‖L2 ≤ δ/c) . δ
− d

r+2−d/2 ,

concluding the proof.

Thus, applying Lemma 18, the first term in the estimate (3.9) follows by choosing, for any fixed δ ≥ 0,

Nε in (5.6) in such a way that

(1+N2
ε )

−2−α ≤ δ 2,

so that, in view of (5.8) and (5.7) respectively, ‖ f
†
ε − f †‖(H2

0 )
∗ . δ and ‖ f

†
ε ‖2

Hr . δ− 2max{0,r−α}
2+α . It can then

be readily checked from (3.9) that the sequence δε in (3.10) satisfies the required inequality φΠ, f †(δε) .
(δε/ε)2, concluding the proof of Proposition 8.

15



5.3 Proofs of Theorem 11 and Theorem 13. The key steps of the proof consist in a refinement of

the strategy developed to prove Theorem 2 and Proposition 8. Following [7,8,43], we first aim at obtaining

the Laplace transform convergence (5.4) uniformly with respect to the test functions ψ ∈ H
β
c , β > 2+d/2

(cf. Steps I-II). We subsequently exploit the result to show Theorem 11, and to derive the convergence of

the finite dimensional distributions of the centred and scaled posterior L (ε−1( f − f̄ )|Mε) to those of the

limiting Gaussian measure µ (Step III). Finally, combining this observation with a suitable bound on the

covariance of the process Xε in (4.3), we show for each β > 2+ d that the distance between L (ε−1( f −
f̄ )|Mε) and µ , measured in the BL metric on (H

β
K )

∗, vanishes with PM
f † -probability converging to one (Step

IV-V).

Step I: Construction of the approximating sets. Let Π be a centred Gaussian prior on L2 = L2(O) with

RKHS Hr, r > d/2, and let f † ∈ Hα
c be fixed. Recall that we assume the prior to undersmooth f †, namely

that α ≥ r−d/2. Then Remark 9 implies that Condition 1 is satisfied by taking

δε ≃ ε
2+r−d/2

2+r . (5.10)

In the first step we need to construct appropriate approximating sets Dε , by adapting the events intro-

duced in (5.3) for the proof of Theorem 2. First, to extend the semiparametric result in Proposition 8 to

the range 2+ d/2 < β < r+ 4, we replace the element ψ̃ = −LLψ (here not in the RKHS VΠ = Hr) with

a suitable approximation. To deal with the possibly diverging norm of such approximations, we will then

impose additional constraints to control the size of f ∈Dε . Finally, to achieve the required uniformity in the

Laplace transform convergence (5.4), we will further intersect the resulting events across all test functions,

in such a way as to maintain the exponential decay (5.1) for Π(Dc
ε).

To proceed, let β > 2+d/2, let K ⊂O be compact and fix a compact set F such that K ( F (O . Then,

for each ψ in a ball

B
β
K(z) := {v ∈ H

β
K ,‖v‖Hβ ≤ z} (5.11)

of fixed radius z > 0, consider the approximation of Lψ given by Lemma 18, of the form

ψ̃ε = (ζF
−1
1|·|≤Nε

F [Lψ ])|O , with Nε ≃ ε− 1
2+r . (5.12)

By point 1. in Lemma 18, we can uniformly control the Sobolev norms of the resulting collection of

approximations. Indeed, by the continuity of L, for all ψ ∈ B
β
K(z) we have ‖Lψ‖Hβ−2 ≤ z′ for some constant

z′ > 0, so that in view (5.7), for all t ≥ 0,

{ψ̃ε , ψ ∈ B
β
K(z)} ⊆ Bt

F(b
t
ε), bt

ε := sup

ψ∈B
β
K(z)

‖ψ̃ε‖Ht ≤ z′(1+N2
ε )

max{0,t−β+2}/2.
(5.13)

Then, for all ψ ∈ B
β
K(z), it follows in particular ψ̃ε ∈ Br+2

F (br+2
ε ), from which we deduce that Lψ̃ε ∈VΠ =

Hr. Thus, if f ∼ Π, then 〈 f ,Lψ̃ε 〉VΠ ∼ N (0,‖Lψ̃ε‖2
VΠ
), with variance uniformly bounded, in view of the

isomorphism property of L, by

σ 2
ε := sup

ψ∈B
β
K(z)

EΠ|〈 f ,Lψ̃ε 〉VΠ |2 ≃ (br+2
ε )2.

(5.14)

Define, for each ε > 0, and D > 0 to be chosen below, the approximating set

Gε =



 f : sup

ψ∈B
β
K(z)

|〈 f ,Lψ̃ε 〉VΠ| ≤ Dσεδε/ε



 . (5.15)

Here Gε serves as the counterpart of the events (5.3), with the constraint holding simultaneously for all ψ .
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We derive the exponential decay (5.1) for Π(Gc
ε). First, denoting EΠ the expectation under the prior,

we have by the Borell-Sudakov-Tirelson inequality [20, Theorem 2.5.8] that for all D̃ > 0

Π


 f : sup

ψ∈B
β
K(z)

|〈 f ,Lψ̃ε 〉VΠ|> EΠ sup

ψ∈B
β
K(z)

|〈 f ,Lψ̃ε 〉VΠ |+ D̃σε δε/ε


≤ e−

D̃2

2 (δε/ε)2

. (5.16)

Thus, the condition (5.1) will follow if we show that EΠ sup
ψ∈B

β
K(z)

|〈 f ,Lψ̃ε 〉VΠ |. σε δε/ε . Indeed, in view

of (5.13), denoting Bs(z) a ball in Hs of radius z, for general s ≥ 0 and z > 0,

EΠ sup

ψ∈B
β
K(z)

|〈 f ,Lψ̃ε 〉VΠ | ≤ EΠ sup
v∈Bt+2(z′bt+2

ε )

|〈 f ,Lv〉VΠ |. EΠ sup
w∈Bt(z′′bt+2

ε )

|〈 f ,w〉VΠ |

and Dudley’s bound for the expectation of suprema of Gaussian processes [20, Theorem 2.3.8] yields, for

σε the constant in (5.14),

EΠ sup
w∈Bt(z′′bt+2

ε )

|〈 f ,w〉VΠ |.
∫ σε

0

√
logN(η ,Bt(z′′bt+2

ε ),‖ · ‖VΠ)dη

=
∫ σε

0

√
logN

(
η

z′′bt+2
ε

,Bt(1),‖ · ‖VΠ

)
dη .

Fixing t > max{r + d/2,β − 4}, recalling VΠ = Hr and using the known metric entropy estimates for

Sobolev balls (see, e.g., [56]), we then obtain

EΠ sup
w∈Bt(z′′bt+2

ε )

|〈 f ,w〉VΠ |.
∫ σε

0

(
bt+2

ε /η
) d

2(t−r) dη . (bt+2
ε )

d
2(t−r) σ

2t−2r−d
2(t−r)

ε .

Using (5.14), it follows that

1

σε
EΠ sup

w∈Bt(z′′bt+2
ε )

|〈 f ,w〉VΠ |. (bt+2
ε )

d
2(t−r) (br

ε)
− d

2(t−r)

= (1+N2
ε )

d(t−β+4)
4(t−r) (1+N2

ε )
− d max{0,r−β+4}

4(t−r)

≤ (1+N2
ε )

d/4.

Recalling that δε ≃ ε
2+r−d/2

2+r the choice Nε ≃ ε− 1
2+r , finally yields

1

σε
EΠ sup

ψ∈B
β
K(z)

|〈 f ,Lψ̃ε 〉VΠ |. ε
− d

2(2+r) ≃ δε/ε .

Taking D̃ >
√

6 in (5.16), and sufficiently large D > D̃ in the definition (5.15) of Gε , yields the exponential

decay (5.1) for Π(Gc
ε).

Next, we proceed by suitably controlling the size of the elements in the approximating sets. To do so,

let, for Φ is the standard normal cumulative distribution function,

Qε =−2Φ−1

(
e−

D̃2

2
(δε/ε)2

)
≃ δε/ε .

For ρ > 0 to be chose below and arbitrary κ > 0, Consider the event

Fε = { f = f1 + f2 : ‖ f1‖L2 ≤ ρε
r−d/2

2+r , ‖ f2‖VΠ ≤ Qε +κ} (5.17)
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in which we constraint the prior draws f ∼ Π to belong to (a slight enlargement of) a ball of the RKHS

VΠ of growing radius. By the isoperimetric inequality for Gaussian processes [20, Theorem 2.6.12] we can

lower bound the prior probability of Fε by

Π(Fε)≥ Φ(Φ−1[Π( f : ‖ f‖L2 ≤ ρε
r−d/2

2+r )]+Qε), (5.18)

Applying again the small ball estimate for Π in Theorem 1.2 in [35] as in the proof of Lemma 19, we see

that for some b > 0

− logΠ( f : ‖ f‖L2 ≤ ρε
r−d/2

2+r )≤ bρ
− d

r−d/2 ε− d
2+r

and recalling that δε/ε ≃ ε− d/2
2+r , we can choose ρ > 0 so that

− logΠ( f : ‖ f‖L2 ≤ ρε
r−d/2

2+r )≤ (δε/ε)2.

Combining the above with (5.18) yields

Π(Fε)≥ Φ(Φ−1(e−(δε/ε)2

)+Qε)≥ Φ(Φ−1(e−
D̃2

2
(δε/ε)2

)+Qε) = Φ(Qε/2),

and finally Π(Fc
ε )≤ e−

D̃2

2
(δε/ε)2

.
We conclude by taking

Dε = Gε ∩Fε , (5.19)

for which the bounds on Π(Gc
ε) and Π(Fc

ε ) imply Π(Dc
ε)≤ 2e−

D̃2

2
(δε/ε)2

, D̃2/2 > 3.

Step II: Laplace transform expansion. We proceed deriving an asymptotic expression, analogous to the

one obtained in Lemma 17, for the Laplace transform of the linear functionals 〈 f ,ψ〉L2 . In view of the

simultaneous constraint imposed in (5.15), the result holds uniformly with respect to test functions ψ .

Lemma 20. Let Π be a Gaussian Borel probability measure on L2(O) with RKHS VΠ = Hr(O), r > d/2,

and assume that f † ∈ Hα
c (O), α ≥ r−d/2. For all β > 2+d/2, and any ψ ∈ B

β
K(z), z > 0, (defined as in

(5.11)) let ψ̃ε be the approximation in (5.12), and define

Ψ̂(ψ) = 〈 f †,ψ〉L2 + ε〈ψ̃ε ,W〉L2 . (5.20)

Then, for all fixed τ ∈ R

EΠDε

[
e

τ2

ε [〈 f ,ψ〉
L2−Ψ̂(ψ)]

∣∣∣Mε

]
= eRε e

τ2

2
‖Lψ‖2

L2
Π(Dε ,τ |Mε)

Π(Dε |Mε)
, (5.21)

where Dε ,τ = { f − τεLψ̃ε , f ∈ Dε} and Rε → 0 uniformly in B
β
K(z) for any z > 0 as ε → 0.

Proof. We have

EΠDε

[
e

τ2

ε [〈 f ,ψ〉
L2−Ψ̂(ψ)]

∣∣∣Mε

]
= e−τ〈ψ̃ε ,W〉

L2EΠDε
[
e

τ
ε 〈 f− f †,ψ〉

L2

∣∣∣Mε

]
,

and letting fτ = f − τεLψ̃ε , the expectation in the right hand side becomes (cf. (2.4))

EΠDε
[
e

τ
ε 〈 f− f †,ψ〉

L2

∣∣∣Mε

]
=

∫
Dε

e
τ
ε 〈 f− f †,ψ〉

L2 eℓ( f )−ℓ( fτ)eℓ( fτ )dΠ( f )
∫

Dε
eℓ( f )dΠ( f )

.
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From the expression of the log-likelihood (2.3) we readily obtain

ℓ( f )− ℓ( fτ) =
τ2

2
‖ψ̃ε‖2

L2 +
τ

ε
〈L−1( f − f †), ψ̃ε 〉L2 + τ〈ψ̃ε ,W〉L2 ,

which substituted into the previous expression yields, using the self-adjointness of L−1,

EΠDε

[
e

τ2

ε [〈 f ,ψ〉
L2−Ψ̂(ψ)]

∣∣∣Mε

]

= e
τ2

2
‖ψ̃ε‖2

L2 e−
τ
ε 〈L−1 f †,Lψ−ψ̃ε〉L2

∫
Dε

e
τ
ε 〈L−1 f ,Lψ−ψ̃ε 〉L2 eℓ( fτ )dΠ( f )
∫

Dε
eℓ( f )dΠ( f )

.

(5.22)

In view of (5.8), we have that ‖ψ̃ε −Lψ‖L2 → 0 as ε → 0 uniformly in B
β
K(z) for all z > 0, and hence

e
τ2

2
‖ψ̃ε‖2

L2 = (1+o(1))e
τ2

2
‖Lψ‖2

L2 . (5.23)

Next we prove that

e−
τ
ε 〈L−1 f †,Lψ−ψ̃ε〉L2 = 1+o(1) uniformly in B

β
K(z). (5.24)

To do so, notice

sup

ψ∈B
β
K(z)

∣∣∣∣−
1

ε
〈L−1 f †,Lψ − ψ̃ε〉L2

∣∣∣∣

=
1

ε
‖L−1 f †‖Hα+2 sup

ψ∈B
β
K(z)

∣∣∣∣
〈

L−1 f †

‖L−1 f †‖Hα+2

,Lψ − ψ̃ε

〉

L2

∣∣∣∣

.
1

ε
sup

ψ∈B
β
K(z)

‖Lψ − ψ̃ε‖(Hα+2
0 )∗

. ε−1(1+N2
ε )

−α−β
2

where the last line follows by (5.9). Recalling that Nε ≃ ε− 1
2+r , α ≥ r−d/2 and β > 2+d/2,

sup

ψ∈B
β
K(z)

∣∣∣∣−
τ

ε
〈L−1 f †,Lψ − ψ̃ε〉L2

∣∣∣∣.
1

ε
(1+N2

ε )
−α−β

2 ≃ ε
α+β−2−r

2+r → 0.

The following step consists in showing that uniformly in B
β
K(z)

∫

Dε

e
τ
ε 〈L−1 f ,Lψ−ψ̃ε 〉L2 eℓ( fτ )dΠ( f ) = (1+o(1))

∫

Dε

eℓ( fτ )dΠ( f ). (5.25)

The result will follow from the dominated convergence theorem upon showing that

sup
f∈Dε

sup

ψ∈B
β
K(z)

∣∣∣τ
ε
〈L−1 f ,Lψ − ψ̃ε〉L2

∣∣∣→ 0.

Recalling the definition (5.19) of Dε , we bound the left hand side by

sup
f∈Fε

sup

ψ∈B
β
K(z)

∣∣∣τ
ε
〈L−1 f ,Lψ − ψ̃ε〉L2

∣∣∣

.
1

ε
sup

‖ f1‖L2≤ρε
r−d/2

2+r

sup

ψ∈B
β
K(z)

∣∣〈L−1 f1,Lψ − ψ̃ε〉L2

∣∣

+
1

ε
sup

‖ f2‖VΠ
≤Qε+κ

sup

ψ∈B
β
K(z)

∣∣〈L−1 f2,Lψ − ψ̃ε〉L2

∣∣ .
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Accordingly, it is enough to show the joint convergence of the two terms above, which can be done similarly

as in the derivation of (5.24). In particular

1

ε
sup

‖ f1‖L2≤ρε
r−d/2

2+r

sup

ψ∈B
β
K(z)

∣∣〈L−1 f ,Lψ − ψ̃ε〉L2

∣∣. ε
r−d/2

2+r
−1(1+N2

ε )
− β

2 → 0.

On the other hand, recalling that VΠ = Hr,

1

ε
sup

‖ f2‖VΠ
≤Qε+κ

sup

ψ∈B
β
K(z)

∣∣〈L−1 f2,Lψ − ψ̃ε〉L2

∣∣. ε−1(Qε +κ)(1+N2
ε )

− r+β
2 → 0,

since δε ≃ ε
2+r−d/2

2+r and Qε =−2Φ−1
(

c′e−
D̃2

2
(δε/ε)2

)
≃ δε/ε . Replacing (5.23), (5.24) and (5.25) into (5.22)

we obtain, uniformly in B
β
K(z),

EΠDε
[
e

τ
ε [〈 f ,ψ〉

L2−Ψ̂(ψ)]
∣∣Mε

]
= (1+o(1))e

τ2

2
‖Lψ‖2

L2

∫
Dε

eℓ( fτ )dΠ( f )
∫

Dε
eℓ( f )dΠ( f )

. (5.26)

We conclude by further simplifying the ratio in the right hand side of (5.26) in the same way as in

the conclusion of the proof of Proposition 3.2 in [39]. Let Πτ be the law of the shifted parameter fτ =
f − τεLψ̃ε , and Dε ,τ = { f − τεLψ̃ε , f ∈ Dε}. Then, the Cameron-Martin theorem (e.g., Theorem 2.6.13

in [20]) yields

∫
Dε

eℓ( fτ )dΠ( f )
∫

Dε
eℓ( f )dΠ( f )

= e
− (τε)2

2
‖Lψ̃ε‖2

VΠ

∫
Dε,τ

eℓ(g)e−τε〈Lψ̃ε ,g〉VΠ dΠ(g)
∫

Dε
eℓ(g)dΠ(g)

.

First notice that by (5.7),

sup

ψ∈B
β
K(z)

ε2‖Lψ̃ε‖2
VΠ

. sup

ψ∈B
β
K(z)

ε2‖ψ̃ε‖2
Hr+2 . ε2− 2max{0,r−β+4}

2+r → 0. (5.27)

Next, recalling the definitions (5.15) and (5.19) of Gε and Dε respectively, we have

sup
g∈Dε,τ

sup

ψ∈B
β
K(z)

|ε〈Lψ̃ε ,g〉VΠ |= ε sup
f∈Dε

sup

ψ∈B
β
K(z)

|(Lψ̃ε , f − τεLψ̃ε〉VΠ|

≤ ε


 sup

f∈Gε

sup

ψ∈B
β
K(z)

|〈Lψ̃ε , f 〉VΠ |+ |τ |ε sup

ψ∈B
β
K(z)

‖Lψ̃ε‖2
VΠ




. σε δε +o(1)

and, since β > 2+d/2 and r > d/2, then σε δε . ε
min{r+2−d/2,β−2−d/2}

2+r → 0. Thus, we conclude that uniformly

in B
β
K(z) as ε → 0,

∫
Dε

eℓ( fτ )dΠ( f )
∫

Dε
eℓ( f )dΠ( f )

= (1+o(1))

∫
Dε,τ

eℓ(g)dΠ(g)
∫

Dε
eℓ(g)dΠ(g)

= (1+o(1))
Π(Dε ,τ |Mε)

Π(Dε |Mε)
.
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Step III: Convergence of the finite dimensional distributions. We now exploit the previous lemma to

show the convergence of the finite dimensional distributions of the centred and scaled posterior to those

of the Gaussian measure µ induced by the process X in (4.2). The result is obtained by showing that the

ratio in the right hand side of (5.21) converges to one, yielding, as in Lemma 17, the desired asymptotic

expression for the Laplace transform. This will in turn conclude the proof of Theorem 11.

To proceed, consider the centring Gaussian process obtained by collecting the random variables intro-

duced in (5.20),

Ψ̂ε = (Ψ̂ε(ψ) : ψ ∈ Hβ
c ), Ψ̂ε(ψ) = 〈 f †,ψ〉L2 + ε〈ψ̃ε ,W〉L2 , ε > 0. (5.28)

In view of Lemma 12, and by the continuity of the linear map ψ ∈ H
β
c 7→ ψ̃ε ∈ Ht, t ≥ 0, Ψ̂ε defines a

Borel measurable map on (H
β
c )∗, for β > 2+d/2. Then, denote by

L (ε−1( f − Ψ̂ε)|Mε) = L (X̂ε), f ∼ Π (5.29)

the tight condition law on (H
β
c )∗ of

X̂ε = (X̂ε(ψ) : ψ ∈ Hβ
c ), X̂ε(ψ) = ε−1[〈 f ,ψ〉L2 − Ψ̂ε(ψ)]|Mε . (5.30)

Lemma 21. For any fixed ψ1, . . . ,ψn ∈ H
β
c , consider the following Borel probability measures on Rn:

L (ε−1( f − Ψ̂ε)|Mε)n := L (ε−1[〈 f ,ψ1〉L2 − Ψ̂ε(ψ1), . . . ,〈 f ,ψn〉L2 − Ψ̂ε(ψn)]|Mε),

where f ∼ Π, and

µn := L (X(ψ1), . . . ,X(ψn)),

where X is as in (4.2). Then, denoting dRn the BL-metric for weak convergence on Rn, we have in PM
f † -

probability as ε → 0.

dRn(L (ε−1( f − Ψ̂ε)|Mε)n,µn)→ 0. (5.31)

Proof. By Lemma 16, it is enough to show (5.31) for f ∼ ΠDε , with Dε as in (5.19). Let ψ ∈ H
β
c be fixed.

Then, by taking K = supp(ψ), Lemma 20 implies

EΠDε
[
e

τ
ε [〈 f ,ψ〉

L2−Ψ̂ε (ψ)]
∣∣Mε

]
= (1+o(1))e

τ2

2 ‖Lψ‖2

L2
Π(Dε ,τ |Mε)

Π(Dε |Mε)
,

and the proof is concluded by showing that the ratio on the right hand side converges to 1 in PM
f † -probability

as ε → 0. Indeed, if this is the case, the convergence of the Laplace transform will imply that for any fixed

ψ ∈ H
β
c ,

dR(L (ε−1[〈 f ,ψ〉L2 − Ψ̂ε(ψ)]|Mε),L (X(ψ)))→ 0, (5.32)

in PM
f † -probability as ε → 0; and, by the Cramer-Wold device, also (5.31) will follow by replacing ψ with

any finite linear combination ∑n
i=1 aiψi ∈ H

β
c .

To proceed, first recall that Lemma 16 implies that Π(Dε |Mε) → 1 in PM
f † -probability as ε → 0. To

apply the same result to the numerator, we show that the prior probability of Dc
ε ,τ decays exponentially as

required by (5.1). Notice

Dε ,τ = { f − τεLψ̃ε , f ∈ Gε ∩Fε}= Gε ,τ ∩Fε ,τ ,
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where Gε ,τ , Fε ,τ are defined analogously to the set Dε ,τ introduced in the previous lemma. It is hence

enough to deduce (5.1) for Gε ,τ and Fε ,τ separately.

First, from the definition of Gε in (5.15), we see that

Gε ,τ ⊇



g : sup

φ∈B
β
K(z)

|(g,Lφ̃ε 〉VΠ| ≤ Dσεδε/ε −|τε |‖Lψ̃ε‖VΠ sup

φ∈B
β
K(z)

‖Lφ̃ε‖VΠ



 .

Now, using (5.14) and recalling δε ≃ ε
2+r−d/2

2+r ,

ε‖Lψ̃ε‖VΠ sup

φ∈B
β
K(z)

‖Lφ̃ε‖VΠ . ε1−max{0,r−β+4}
2+r σε = o(σεδε/ε) .

Then, for all ε > 0 small enough

Gε ,τ ⊇



g : sup

φ∈B
β
K(z)

|(g,Lφ̃ε 〉VΠ | ≤ Dσε δε/ε



 ,

and by our particular choices of D > D̃ >
√

6 we obtain (via the Borel-Sudakov-Tirelson inequality) that

Π(Gc
ε ,τ)≤ e−

D̃2

2
(δε/ε)2

. On the other hand, for Fε defined in (5.17),

Fε ,τ ⊇ { f1 + f ′2 : ‖ f1‖L2 ≤ ρε
r−d/2

2+r , ‖ f ′2‖VΠ ≤ Qε +κ −|τ |ε‖Lψ̃ε‖VΠ}

and since, by (5.27), ε‖Lψ̃ε‖VΠ → 0 as ε → 0, we have Qε +κ−|τ |ε‖Lψ̃ε‖VΠ >Qε for ε > 0 small enough.

Then, for all such ε > 0,

Fε ,τ ⊇ { f1 + f ′2 : ‖ f1‖L2 ≤ ρε
r−d/2

2+r , ‖ f ′2‖VΠ ≤ Qε},

and by the isoperimetric inequality for Gaussian processes we can conclude that Π(Fc
ε ,τ). e−

D̃2

2
(δε/ε)2

, D̃ >√
6, as required.

Using the same argument as in the conclusion of the proof of Theorem 2, we deduce from the above

lemma that the semiparametric BvM phenomenon displayed in (4.1) does occur for all β > 2+ d/2, con-

cluding the proof of Theorem 11.

Step IV: Weak convergence in (H
β
K )

∗. Assume now that β > 2+d. Combining the convergence of the

finite dimensional distribution established in the previous step with a uniform bound on the covariance of

the process X̂ε in (5.30) implied by Lemma 20, we show that L (ε−1( f − Ψ̂ε)|Mε) converges weakly to µ .

That Ψ̂ε can be replaced by the posterior mean f̄ can then be shown analogously as in the proof of Theorem

2.7 in [39]; see Step V in the Supplement.

It is again enough to consider the restricted prior ΠDε . Thus, for any fixed compact set K ⊂ O , let

Π̃Dε (·|Mε) be the tight Gaussian law on (H
β
K )

∗ induced by X̂ε ,K := (X̂ε(ψ) : ψ ∈ H
β
K ), where X̂ε(ψ) is as in

(5.30) with f ∼ ΠDε . To exploit the convergence of the finite dimensional distributions, we further consider

’projections’ of Π̃Dε (·|Mε) onto suitable subspaces. In particular, let {ΦO
ℓr, ℓ≥−1, r = 1, . . .Nℓ}, Nℓ . 2ℓd ,

be an orthonormal basis of L2(O) of sufficiently regular boundary corrected Daubechies wavelets. We will

exploit the fact that such basis conveniently characterises the Sobolev regularity of the test functions in

terms of the decay of the wavelets coefficients (see [55] or also Chapter 4 of [20] for details).

For any λ ∈N and all ψ ∈ H
β
K , let Pλ ψ denote the projection of ψ onto the finite dimensional subspace

spanned by {ΦO
ℓr, ℓ≤ λ , r ≤ Nℓ}. Next, define the projected posterior Π̃Dε

λ (·|Mε) as the law of the process
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Pλ X̂ε ,K := (X̂ε(Pλ ψ) : ψ ∈ H
β
K ); define analogously the projected limiting law µλ . For d = d

(H
β
K )

∗ the

BL-metric for weak convergence of probability measures defined on (H
β
K )

∗, the triangular inequality then

yields

d(Π̃Dε (·|Mε),µ)≤ d(Π̃Dε (·|Mε),Π̃
Dε

λ (·|Mε))+d(Π̃Dε

λ (·|Mε),µλ )+d(µλ ,µ). (5.33)

We show that the three term in the right hand side vanish. For the first, recalling the definition of the

BL-metric (4.5), we have

d(Π̃Dε (·|Mε),Π̃
Dε

λ (·|Mε)) = sup

F:(H
β
K )

∗→R, ‖F‖Lip≤1

∣∣∣EΠDε
[F(X̂ε ,K)−F(Pλ X̂ε ,K)]

∣∣∣

≤ EΠDε
∥∥∥X̂ε ,K −Pλ X̂ε ,K

∥∥∥
(H

β
K )

∗

which, by definition of the norm in (H
β
K )

∗, equals

EΠDε
sup

ψ∈B
β
K(1)

|X̂ε(ψ −Pλ ψ)| ≤ EΠDε
sup

ψ∈B
β
K(1)

∑
ℓ>λ

Nℓ

∑
r=1

|〈ψ ,ΦO
ℓr〉L2 ||X̂ε(Φ

O
ℓr)|,

with B
β
K(1) defined as in (5.11). Notice that, as supp(ψ) ⊂ K, for λ large enough (only depending on K)

the above sum involves only wavelets Φℓr = ΦO
ℓr that are compactly supported within O . We now apply

Hölder’s inequality and the wavelet characterisation of Sobolev norms to upper bound the right hand side

by

EΠDε
sup

ψ∈B
β
K(1)

∑
ℓ>λ

√
Nℓ

∑
r=1

〈ψ ,Φℓr〉2
L2

√
Nℓ

∑
r=1

|X̂ε(Φℓr)|2 . ∑
ℓ>λ

2−ℓβEΠDε

√
Nℓ

∑
r=1

|X̂ε(Φℓr)|2.

Jensen’s inequality implies the further upper bound

∑
ℓ>λ

2−(β−β ′)ℓ

√
Nℓ

∑
r=1

EΠDε |X̂ε(2−β ′ℓΦℓr)|2

having scaled the wavelets by a factor 2−β ′ℓ for some 2+d/ < β ′ < β −d/2 (possible since we here assume

β > 2+ d). In particular, since ‖Φℓr‖2
Hβ ′ ≃ 22β ′ℓ, we have that 2−β ′ℓΦℓr ∈ B

β ′
c (1). Using Lemma 20 and

the fact that ‖LΦℓr‖2
L2 . ‖Φℓr‖H2 ≃ 24l , we obtain

EΠDε
[
eX̂ε (2

−β ′ℓΦℓr)
∣∣Mε

]
= eRε e

1
2
‖2−β ′ℓLΦℓr‖2

L2
Π(Dε ,τ |Mε)

Π(Dε |Mε)

≤ eRε

Π(Dε |Mε)
e

2−2β ′ℓ−1‖LΦℓr‖2

L2

. rε

= OPM

f †
(1)

having lower bounded the probability on the denominator by Lemma 16. Then, since x2 ≤ ex + e−x for all

x ∈ R,

EΠDε |X̂ε(2
−β ′ℓΦℓr)|2 ≤ EΠDε

eX̂ε (2
−β ′ℓΦℓr)+EΠDε

e−X̂ε (2
−β ′ℓΦℓr) . rε .
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We thus obtain, recalling Nℓ ≃ 2ℓd ,

d(Π̃Dε (·|Mε),Π̃
Dε

λ (·|Mε)). ∑
ℓ>λ

2−(β−β ′)ℓ

√
Nℓ

∑
r=1

rε . r′ε ∑
ℓ>λ

2−(β−β ′−d/2)ℓ.

Since we have chosen β ′ < β −d/2, the latter series is convergent, implying that the right hand side vanishes

if λ → ∞.

For the second term in (5.33), we can deduce directly from Lemma 21 that for any fixed λ we have

d(Π̃Dε

λ (·|Mε),µλ ) → 0 in PM
f † -probability as ε → 0. For the third term we proceed similarly to the first,

obtaining

d(µ ,µλ ) = E sup

ψ∈B
β
K(1)

|X(ψ −Pλ ψ)|. ∑
ℓ>λ

2−βℓ

√
Nℓ

∑
r=1

E|X(Φℓr)|2.

Recall X(Φℓr)∼ N (0,‖LΦℓr‖2
L2). Hence

d(µ ,µλ ). ∑
ℓ>λ

2−βℓ22l
√

Nℓ ≤ ∑
ℓ>λ

2−(β−2−d/2)ℓ

which again converges since β > 2+d. To conclude, we can fix arbitrarily ε ′ > 0, and then find λ = λ (ε ′)
sufficiently large so that the first and third term in (5.33) are smaller than ε ′. For such value of λ , the

second term can be made smaller that ε ′ by choosing ε small enough with PM
f † -probability approaching one,

implying that d(Π̃Dε (·|Mε),µ)→ 0 in PM
f † -probability as ε → 0.

A Information lower bound for linear inverse problems
Let Mε be given by (2.1) with f = f †, and let ℓ( f ) = log p f (Mε), f ∈W , be the log-likelihood in (2.3). For

any h ∈W , ε > 0, we have

log
p f †+εh(Mε)

p f †(Mε)
= ℓ( f † + εh)− ℓ( f †) = 〈Ah,W〉W2

− 1

2
‖Ah‖2

W2
.

Recalling 〈Ah,W〉W2
∼N (0,‖Ah‖2

W2
), the model is seen to be locally (asymptotically) normal (LAN), with

LAN-inner product and norm respectively given by

〈·, ·〉LAN = 〈A·,A·〉W2
, ‖ · ‖LAN = ‖A · ‖W2

.

Let ψ ∈W1 satisfy the assumptions of Theorem 2, and consider the continuous linear map

Lψ : W → R, Lψ(h) = 〈h,ψ〉W1
,

defined by extension using the fact that W1 ⊆W is dense. As by assumption ψ =−A∗Aψ̃ for some ψ̃ ∈VΠ,

then for all h ∈W

Lψ(h) = 〈ψ ,h〉W1
= 〈−A∗Aψ̃,h〉W 2 = 〈−ψ̃,h〉LAN ,

so that the Riesz representer with respect to the LAN-inner product of the linear functional Lψ is −ψ̃ . We

then deduce from the semiparametric theory of efficiency (see Chapter 25 in [57], or Section 7.5 in [43])

that the information lower bound for estimating Lψ( f †) = 〈 f †,ψ〉W1
from model (2.1) is identified by the

random variable

Z ∼ N (0,‖ψ̃‖LAN) = N 0,‖Aψ̃‖W1
),

and we have the lower bound (2.11) for the asymptotic minimal variance . Note that when A∗A has a well

defined inverse we can write ‖Aψ̃‖2
W2

= ‖(A∗A)−1ψ‖2
LAN . In analogy with the finite-dimensional case, we

then sometimes call A∗A the Fisher information operator.
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B Properties of elliptic boundary value problems
We list here some key facts relative to the BVP (3.4) following from the general elliptic theory (see, e.g.,

the monographs [36, 49]). We start noting that the operator L defines a bounded linear operator from

Hs = Hs(O) into Hs−2 for all s ≥ 2, and, in view of the symmetry of the coefficients ai j , it is also self-

adjoint with respect to 〈·, ·〉L2 when acting upon H2
0 .

If, in addition, we assume the uniform ellipticity condition:

d

∑
i, j=1

ai j(x)ξiξ j ≥ θ |ξ |2, ∀x ∈ O, ξ = (ξ1, . . . ,ξd) ∈ Rd,

for some constant θ > 0, then for all s ≥ 0 and any f ∈ Hs, there exists a unique weak solution u f ∈ Hs+2
0

of (3.4) satisfying the variational formulation of the problem:

∫

O

d

∑
i, j=1

ai j

∂u f

∂xi

∂v

∂x j

=

∫

O

f v, ∀v ∈ H1
0 . (B.1)

Furthermore, we have the elliptic estimates

‖u f ‖Hs+2 ≤ cs‖ f‖Hs ,

for constants ss > 0 depending only on s. These results follow directly from Theorem 5.4 in [36, Chapter 2]

(see also remark 7.2 in the same reference) by noting that u f = 0 is the unique smooth solution of (3.4) with

f = 0 (e.g., in view of Theorem 3 and Theorem 4 in [17, Section 6.3]). Finally, as pointed out in Remark

(ii), page 310 in [17], it follows that Lu f = f almost everywhere on O .

With a slight abuse of notation, let L−1 denote the solution map, so that L−1 f = u f is the unique element

in Hs+2
0 that satisfies (B.1). Also, in view of the uniqueness of weak solutions, L−1Lu = u for all u ∈ H2

0 .

From the above results we have that L−1 : Hs → Hs+2
0 , s ≥ 0 defines a linear and bounded isomorphism

which is self-adjoint on L2 (following from the self-adjointness of L).
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In this supplement, we provide the remaining proofs for the main paper and prove the auxiliary results used

to show the general semiparametric Bernstein-von Mises theorem.

27



1 Remaining proofs
1.1 Proof of Corollary 5. The proof follows the argument in Section 2 of [7]. We start by noting

that the function Φ : [0,∞)→ [0,1] is uniformly continuous and strictly increasing, with continuous inverse

Φ−1 : [0,1]→ [0,∞). Thus, for every γ > 0 we can find ε > 0 such that |Φ(t + ε)−Φ(t)| ≤ γ , ∀t ≥ 0. For

such ε and for all t ≥ 0, denoting B(0, t) = {x ∈R, |x| ≤ t}, we have

Pr(t − ε < |Z| ≤ t + ε) = Φ(t + ε)−Φ(t− ε)≤ 2γ .

Thus, applying Corollary 7.3.22 in [20] to L (ε−1〈 f − f̄ ,ψ〉W1
|Mε) converging weakly to L (Z) in PM

f † -

probability as ε → 0, we deduce that

sup
0≤t<∞

|Π(ε−1〈 f − f̄ ,ψ〉W1
∈ B(0, t) |Mε)−Pr(Z ∈ B(0, t))|= oPM

f †
(1)

as ε → 0. Thus, recalling the definition of Rε after (2.12)

Φ(ε−1Rε) = Pr(|Z| ≤ ε−1Rε)−Π(ε−1|〈 f − f̄ ,ψ〉W1
| ≤ ε−1Rε |Mε)+1−α

= 1−α +oPM

f †
(1)

as ε → 0 by the above with t = ε−1Rε . Since Φ−1 is continuous, the continuous mapping theorem yields

ε−1Rε = Φ−1[Φ(ε−1Rε)]→
PM

f † Φ−1(1−α).

Then the first claim follows using Theorem 3, as

PM
f †(〈 f †,ψ〉W1

∈Cε) = PM
f †(ε

−1|〈 f † − f̄ ,ψ〉W1
| ≤ ε−1Rε)

= PM
f †

(
ε−1|〈 f † − f̄ ,ψ〉W1

| ≤ Φ−1(1−α)
)
+o(1)

= Pr
(
|Z| ≤ Φ−1(1−α)

)
+o(1)

= 1−α +o(1).

1.2 Proof of Lemma 12. 1. First assume that β > 2+d/2, and denote B
β
c (1) := {h ∈ H

β
c , ‖h‖Hβ ≤ 1}.

According to (4.2), X|Bβ
c (1)

:= (X(ψ) : ψ ∈ B
β
c (1)) is a Gaussian process with intrinsic distance

d2
X(ψ ,ψ ′) := E[X(ψ)−X(ψ ′)]2 . ‖ψ −ψ ′‖2

H2 .

Next, from Edmund and Triebel’s upper bound for the entropy numbers in general Besov spaces (see [56])

we deduce that, for positive reals s1 < s2, denoting Bs(r) := {h ∈ Hs, ‖h‖Hs ≤ r}, r > 0,

logN(η ,Bs2(1),‖ · ‖Hs1 ). η
− d

s2−s1 , η > 0. (C.1)

Then it follows from Dudley’s metric entropy inequality [20, Theorem 2.3.7] that for all z > 0

E sup

ψ∈B
β
c (1), ‖ψ‖

H2≤z

|X(ψ)|.
∫ z

0

√
2logN(η ,Bβ (1),‖ · ‖H2)dη .

∫ z

0
η
− d

2(β−2) dη , (C.2)

which is indeed convergent for all β > 2+ d/2. Thus, letting z → 0 in (C.2) implies that X|Bβ
c (1)

has a

version taking values in the separable Banach space

(B,‖ · ‖B), B=UC(Bβ
c (1),dX ), ‖x‖B = sup

ψ∈B
β
c (1)

|x(ψ)|,
(C.3)
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of bounded and uniformly continuous (with respect to the metric dX on B
β
c (1)) pre-linear functionals on

B
β
c (1), the separability following from Corollary 11.2.5 in [14] since, in view of (C.1), B

β
c (1) is totally

bounded for the metric dX if β > 2. Finally, as according to (C.3) B is an isometrically imbedded closed

subspace of (H
β
c )

∗, we deduce from Oxtoby-Ulam theorem (Proposition 2.1.4 in [20]) that X|Bβ
c (1)

induces

a tight Borel Gaussian probability measure on B, which has a unique extension to (H
β
c )∗.

2. For β < 2+ d/2, as H
β
c ⊂ H

β ′
c with continuous embedding if β ′ < β , it is enough to show that

Pr
(

sup
ψ∈B

β
c (1)

|X(ψ)|< ∞
)
= 0 for 2 < β < 2 + d/2. We proceed by contradiction, assuming on the

contrary that

Pr


 sup

ψ∈B
β
c (1)

|X(ψ)|< ∞


> 0. (C.4)

In view of (C.1), B
β
c (1) is separable with respect to the intrinsic metric dX for any β > 2. Hence Proposition

2.1.12 in [20] and (C.4) jointly imply, by Proposition 2.1.20 in [20], that E sup
ψ∈B

β
c (1)

|X(ψ)|< ∞, which

we will show to yield a contradiction. To do so, notice that (X(L−1ψ) : ψ ∈ H
β
c ) has the same law on RH

β
c

as the standard gaussian white noise W. Thus,

E sup

ψ∈B
β
c (1)

|X(ψ)|= E sup

ψ∈B
β
c (1)

|〈Lψ ,W〉L2 |,

and the proof is completed by finding a suitable lower bound to show that the right hand side diverges.

Considering the orthonormal Daubechies wavelet basis of L2 introduced in Step IV in Section 5.3, select

for each j ≥ 1, n j = c′2 jd , c′ > 0, wavelets {ΦO
jr, r = 1, . . . ,n j} with disjoint compact support within O .

Next, for each m = 1, . . . ,2n j and bm· = (bmr, r = 1, . . . ,n j) ∈ {−1,1}n j , define

h jm(x) = k j

n j

∑
r=1

bmr2
− jβ ΦO

jr(x), x ∈ O, (C.5)

where k j > 0 is to be fixed. Recall that it is enough to consider 2 < β < 2+d/2. We have h jm ∈ H
β
c , and

by the usual wavelet characterisation of the Sobolev norms

‖h jm‖2
Hβ ≃ ∑

ℓ≥−1

n j

∑
s=1

22lβ 〈h jm,Φ
O
ls 〉2

L2 = k2
j n j.

Hence, choosing k j < n
−1/2
j guarantees that {h jm, m = 1, . . . ,2n j} ⊂ B

β
c (1), yielding the lower bound

E sup

ψ∈B
β
c (1)

|〈Lψ ,W〉L2 | ≥ E max
m=1,...,2n j

|〈Lhm j,W〉L2 |, j ≥ 1,

which we can further develop by restricting the maximum to a suitable smaller subset. In particular, the

Gaussian vector (W(Lh jm), m = 1, . . . ,2n j ) has intrinsic metric

d2
j (h jm,h jm′) = ‖L(h jm −h jm′)‖2

L2 = k2
j 2

−2 jβ

∥∥∥∥∥
n j

∑
r=1

(bmr −bm′r)LΦO
jr

∥∥∥∥∥

2

L2

;

and arguing as in the proof of Proposition 6 in [43] we can select, for sufficiently large j, a subset

{h j1, . . . ,h jm j
} ⊆ {h jm, m = 1, . . . , 2n j} of cardinality m j ≥ 3n j/4, such that

d2
j (h jh,h jk)& 22 j(2−β), h 6= k.
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Thus, by applying Sudakov’s lower bound [20, Theorem 2.4.12], we deduce that for all such j

E max
m=1,...,2n j

|〈Lh jm,W〉L2 | ≥ E max
h=1,...,m j

{|〈Lh jh,W〉L2 |}

≥ c2 j(2−β)
√

logN(2 j(2−β),{h j1, . . . ,h jm j
},d j)

≥ c′2 j(2−β)
√

log m j

≥ c′′2 j(2+d/2−β).

The last line diverges as j → ∞ for all β < 2+d/2, yielding the contradiction.

3. Assuming tightness on (H
β
c )∗ for β = 2+ d/2 would imply (exactly as above) that X were sample

bounded and, in view of Proposition 2.1.7 in [20], also sample continuous with respect to dX . Then,

Proposition 2.4.14 in [20] would yield

lim
η→0

η

√
log N(η ,B

β
c (1),d) = 0

which, taking the sequence η j = 2 j(2−β) = 2− jd/2, is in contrast with the fact that

2 j(2−β)

√
logN(2 j(2−β),B

β
c (1),d) ≥ 2 j(2−β)

√
logN(2 j(2−β),{h j1, . . . ,h jm j

},d j),

and that the right hand side is bounded below by a positive constant for β = 2+d/2, as seen above.

2 Proof of supporting lemmas for Theorem 2
2.1 Proof of Lemma 16. We start by noting that Π(B) = Π(B∩Dε)+Π(B∩Dc

ε) and

Π(B∩Dε)−ΠDε (B) =
Π(B∩Dε)

Π(W )
− Π(B∩Dε)

Π(Dε)
=−Π(Dc

ε)Π
Dε (B)

which implies ‖Π(· |Mε)−ΠDε (· |Mε)‖TV ≤ 2Π(Dc
ε |Mε). Hence it suffices to prove the first limit in (5.2).

This will be done using Markov’s inequality and showing that EM
f †(Π(Cc

ε |Mε))→ 0. In particular, we split

the expectation as

EM
f †(Π(Dc

ε |Mε)) = EM
f †(Π(Dc

ε |Mε)1Fε )+EM
f †(Π(Dc

ε |Mε)1Fc
ε
) (C.6)

where Fε is a suitable event to be specified for which PM
f †(Fε) → 0, yielding the cancellation of the first

term, at a sufficiently slow rate so that also the second vanishes due to the assumption on Π(Dc
ε).

We proceed constructing Fε . For ℓ( f ) the log-likelihood defined in (2.3), we can rewrite the posterior

(2.4) as

Π(B|Mε) =

∫
B eℓ( f )−ℓ( f †)dΠ( f )
∫

W eℓ( f )−ℓ( f †)dΠ( f )
B ∈ BW . (C.7)

It follows from (2.3) that under PM
f † we have

ℓ( f )− ℓ( f †) =
1

ε
〈A( f − f †),W〉W2

− 1

2ε2
‖A( f − f †)‖2

W2
.

Let ν be any probability measure on the set B = { f : ‖A( f − f †)‖ ≤ δε}. Applying Jensen’s inequality

to the exponential function we get for any C̃ >−1/2

PM
f †

(∫

B
eℓ( f )−ℓ( f †)dν( f )≤ e−(1+C̃)(δε/ε)2

)

≤ P

(
Eν

(
1

ε
〈A( f − f †),W〉W2

− 1

2ε2
‖A( f − f †)‖2

W2

)
≤−(1+C̃)(δε/ε)2

)
.
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Denote Z = 1
ε

∫
B〈A( f − f †),W〉W2

dν( f )∼ N (0,CZ) where, using again Jensen’s inequality,

CZ =
1

ε2
E
(
Eν〈A( f − f †),W〉W2

)2

≤ 1

ε2
Eν
(
E〈A( f − f †),W〉2

W2

)

=
1

ε2

∫

B
‖A( f − f †)‖2

W2
dν( f )

≤ (δε/ε)2 .

We can then conclude

PM
f †

(∫

B
eℓ( f )−ℓ( f †)dν( f )≤ e−(1+C̃)(δε/ε)2

)
= P

(
|Z −EZ| ≥

(1

2
+C̃

)
(δε/ε)2

)

≤ e−
(1/2+C̃)2

2
(δε/ε)2

the last inequality following from the standard Gaussian tail bound P(|Z −EZ| ≥ c) ≤ e−c2/(2Var(Z)). We

can now choose ν = Π(·∩B)/Π(B) and let

Fε =

{
f :

∫

B
eℓ( f )−ℓ( f †)dν( f )≤ e−

3
2 (δε/ε)2

}
.

Using the above with C̃ = 1/2 we see that PM
f †(Fε) ≤ e−

1
2 (δε/ε)2 → 0, which implies that the first term in

(C.6) tends to zero since Π(·|Mε)≤ 1.

For the second term study the small ball probabilities Π(B) = Π( f : ‖A( f − f †)‖W2
≤ δε) using the

condition (2.6) on the concentration function. We see from (C.7)

EM
f †(Π(Dc

ε |Mε)1Fc
ε
)≤ EM

f †

( ∫
Dc

ε
eℓ( f )−ℓ( f †)dΠ( f )

∫
B eℓ( f )−ℓ( f †)Π(B)dν( f )

1Fc
ε

)

≤ e2(δε/ε)2

Π( f : ‖A( f − f †)‖2
W2

≤ δ 2
ε )

∫

Dc
ε

EM
f †

(
eℓ( f )−ℓ( f †)

)
dΠ( f ).

For f ∼ Π, denote the concentration function of the (image) Gaussian measure Π̃ = L (A f ) as

φ̃Π, f †(δ ) = inf
Ag∈V

Π̃
, ‖A(g− f †)‖W2

≤δ

‖Ag‖2
V

Π̃

2
− logΠ( f : ‖A f‖W2

≤ δ ).

Following Proposition 2.6.19 in [20] we next show that

Π( f : ‖A( f − f †)‖2
W2

≤ δ 2)≥ e
−φ̃

Π, f † (δ/2).

Let g ∈ VΠ be such that ‖A(g− f †)‖W2
≤ δ/2. Then ‖A( f − f †)‖W2

≤ ‖A( f − g)‖W2
+ δ/2. We denote

Πg(B) = Π(B− g) = Π( f : f + g ∈ B). Using the Cameron-Martin theorem [4, Corollary 2.4.3.] and the
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fact that f is a centred Gaussian random variable we can write

Π( f : ‖A( f − f †)‖W2
≤ δ )≥ Π( f : ‖A( f −g)‖W2

≤ δ/2)

=
1

2

(
Π−Ag

(
f : ‖A f‖W2

≤ δ

2

)
+ΠAg

(
f : ‖A f‖W2

≤ δ

2

))

=
1

2

(∫

{‖ f̃ ‖W2
≤ δ

2
}

dΠ̃−g̃( f̃ )

dΠ̃( f̃ )
dΠ̃( f̃ )+

∫

{‖ f̃ ‖W2
≤ δ

2
}

dΠ̃g̃( f̃ )

dΠ̃( f̃ )
dΠ̃( f̃ )

)

=
1

2

(∫

{‖ f̃ ‖W2
≤ δ

2 }

(
e
−〈g̃, f̃ 〉V

Π̃ + e
〈g̃, f̃ 〉V

Π̃

)
e−

‖g̃‖2
V

Π̃
2 dΠ̃( f̃ )

)

≥ e−
‖Ag‖2

V
Π̃

2 Π

(
f : ‖A f‖W2

≤ δ

2

)

where Ag = g̃ and A f = f̃ . The last inequality follows from the fact e−x+ex ≥ 2 for all x ∈R. We can then

conclude

EM
f †(Π(Dc

ε |Mε)1Fc
ε
)≤ e2(δε/ε)2

e
φ̃

Π, f † (δε/2)
Π(Dc

ε)

since EM
f †

(
eℓ( f )−ℓ( f †)

)
= 1.

Note that A is assumed to be linear and injective and hence the RKHS V
Π̃
= A(VΠ) of A f is isometric

to VΠ (see Exercise 2.6.5 in [20]). By assumption, ‖A f‖W2
≤ c‖ f‖W for all f ∈W , which implies

− logΠ( f : ‖A f‖W2
≤ δ )≤− logΠ( f : ‖ f‖W ≤ δ/c) .

We also have ‖A(g− f †)‖W2
≤ c‖g− f †‖W and hence φ̃Π, f †(δ ) ≤ φΠ, f †(δ/c) for all δ . Thus by (2.6) and

assumption (5.1) we can conclude

EM
f †(Π(Dc

ε |Mε)1Fc
ε
)≤ e2(δε/ε)2

e
φ

Π, f † (δε/2c)
Π(Dc

ε)≤ e(3−D)(δε/ε)2 → 0.

2.2 Proof of Lemma 17. Denote fτ = f + τεψ̃. Then the left hand side of (5.4) can be written as

EΠDε
(

e
τ
ε 〈 f− f †,ψ〉W1

+τ〈Aψ̃,W〉W2 |Mε

)

=

∫
W e

τ
ε 〈 f− f †,ψ〉W1

+τ〈Aψ̃,W〉W2
+ℓ( fτ)−ℓ( fτ)+ℓ( f )dΠDε ( f )

∫
W eℓ( f )dΠDε ( f )

.

Using (2.3) we see that under PM
f †

ℓ( f )− ℓ( fτ) =
τ

ε
〈A( f − f †),Aψ̃〉W2

+
τ2

2
‖Aψ̃‖2

W2
− τ〈Aψ̃,W〉W2

and hence

EΠDε
(

e
τ
ε (〈 f ,ψ〉W1

−Ψ̂) |Mε

)
= e

τ2

2
‖Aψ̃‖2

W2

∫
Dε

eℓ( fτ )dΠ( f )
∫

Dε
eℓ( f )dΠ( f )

. (C.8)

Let Πτ be the shifted law of fτ , f ∼ Π. Then by the Cameron-Martin theorem [4, Corollary 2.4.3.] we

get, denoting Dε ,τ = {g = fτ : f ∈ Dε},

∫
Dε,τ

eℓ(g)
dΠτ (g)
dΠ(g) dΠ(g)

∫
Dε

eℓ(g)dΠ(g)
=

∫
Dε,τ

eℓ(g)e
τε〈ψ̃,g〉VΠ

− (τε)2

2
‖ψ̃‖2

VΠ dΠ(g)
∫

Dε
eℓ(g)dΠ(g)

. (C.9)
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Since ψ̃ is a fixed element in VΠ, we see that ε2‖ψ̃‖2
VΠ

→ 0 as ε → 0. Using the definition of Dε in (5.3) we

see, as ε → 0,

ε sup
g∈Dε,τ

|〈ψ̃ ,g〉VΠ |= ε sup
f∈Dε

|〈ψ̃ , f + τεψ̃〉VΠ | ≤ T δε‖ψ̃‖VΠ + |τ |ε2‖ψ̃‖2
VΠ

→ 0.

We have thus shown that a small shift of f along VΠ in (C.8) correspond asymptotically to a shift in Dε :

∫
Dε

eℓ( fτ )dΠ( f )
∫

Dε
eℓ( f )dΠ( f )

=

∫
Dε,τ

eℓ(g)dΠ(g)
∫

Dε
eℓ(g)dΠ(g)

(1+o(1)) =
Π(Dε ,τ |Mε)

Π(Dε |Mε)
(1+o(1)).

Using Lemma 16 we see that Π(Dε |Mε)→ 1 in PM
f † -probability. We also note that

Π(Dc
ε ,τ) = Π

(
g :

|〈ψ̃ ,g− τεψ̃〉VΠ |
‖ψ̃‖VΠ

>
T δε

ε

)

≤ Π

(
g :

|〈ψ̃ ,g〉VΠ |
‖ψ̃‖VΠ

>
T δε

ε
−|τ |ε‖ψ̃‖2

VΠ

)

≤ e−
t2

2
(δε/ε)2

,

for any
√

6 < t < T . Using Lemma 16 again we then conclude that Π(Dε ,τ |Mε)→ 1 in PM
f † -probability.

3 Step V in the proof of Theorem 13: convergence of the moments

The last step consists in replacing, in the result derived in the previous step, the centring Ψ̂ε (defined in

(5.28)) with the posterior mean f̄ = EΠ[ f |Mε ]. The proof only requires minor adjustments from the proof

of Theorem 2.7 in [39]. In particular, we show that

‖ε−1( f̄ − Ψ̂ε)‖(Hβ
K )∗

= ‖EΠ[ε−1( f − Ψ̂ε)|Mε ]‖(Hβ
K )∗

= oPM

f †
(1), (C.10)

as ε → 0.

W argue by contradiction: let (Ω,Σ,P) be the probability space on which Mε = L−1 f † +εW is defined,

and assume that for some Ω′ ∈ Σ, Pr(Ω′) > 0, and ξ > 0, we have along a certain vanishing sequence

(εn)n≥1

‖EΠ[ε−1
n ( f − Ψ̂εn

)|Mεn
(ω)]‖

(H
β
K )∗

≥ ξ , ∀ω ∈ Ω′. (C.11)

In view of the convergence established in Step IV and since convergence in probability implies almost sure

convergence for a subsequence, we can find Ω0 ∈ Σ, Pr(Ω0) = 1, such that along a further subsequence

(denoted again as (εn)n≥1 for convenience)

β
(H

β
K )

∗(L (ε−1
n ( f − Ψ̂εn

)|Mεn
(ω)),µ)→ 0 as n → ∞ ∀ω ∈ Ω0.

Thus, for each ω ∈ Ω0, recalling the definition (5.30) of the process X̂ε with law L (ε−1( f − Ψ̂ε)|Mε) on

(H
β
K )

∗, the sequence {X̂εn
(ω), n ≥ 1} of Borel random elements in (H

β
K )

∗ will convergence in distribution

to the process X in (4.2). By Skorohod’s embedding theorem [14, Theorem 11.7.2] we can find a proba-

bility space and random elements with values in (H
β
K )

∗, X̃εn
(ω)

d
= X̂εn

(ω), X̃
d
= X , defined on it such that

X̃εn
(ω)→a.s. X̃ , or, equivalently,

‖X̃εn
(ω)− X̃‖

(H
β
K )

∗ →a.s. 0. (C.12)

From the standard conjugacy property of Gaussian priors with respect to linear inverse problems with

Gaussian noise, X̂εn
(ω) is a Gaussian random element in (H

β
K )

∗ for each ω ∈ Ω0, n ≥ 1. Then, also
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X̂εn
(ω)− X̃ is Gaussian, and by the Paley-Zygmund argument in Exercise 2.1.4 in [20], (C.12) in fact

implies the convergence of all norm-moments; in particular:

EΠ‖X̃εn
(ω)− X̃‖

(H
β
K )

∗ → 0.

Thus, since X is a centred process, we obtain that for each ω ∈ Ω0

‖EΠ[ε−1
n ( f − Ψ̂εn

)|M(ω)]‖
(H

β
K )∗

= ‖EX̃εn
(ω)−EX̃‖

(H
β
K )∗

→ 0,

contradicting (C.11) since Pr(Ω0) = 1.
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