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Abstract. Isogeometric analysis (IGA) has become one of the most popular methods for the
discretization of partial differential equations motivated by the use of NURBS for geometric represen-
tations in industry and science. A crucial challenge lies in the solution of the discretized equations,
which we discuss in this talk with a particular focus on PDE-constrained optimization discretized
using IGA. The discretization results in a system of large mass and stiffness matrices, which are typ-
ically very costly to assemble. To reduce the computation time and storage requirements, low-rank
tensor methods have become a promising tool. We present a framework for the assembly of these
matrices in low-rank form as the sum of a small number of Kronecker products. For assembly of the
smaller matrices only univariate integration is required. The resulting low rank Kronecker product
structure of the mass and stiffness matrices can be used to solve a PDE-constrained optimization
problem without assembling the actual system matrices. We present a framework which preserves
and exploits the low-rank Kronecker product format for both the matrices and the solution. We use
the block AMEn method to efficiently solve the corresponding KKT system of the optimization prob-
lem. We show several numerical experiments with 3D geometries to demonstrate that the low-rank
assembly and solution drastically reduces the memory demands and computing times, depending on
the approximation ranks of the domain.
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1. Motivation. Isogeometric Analysis (IgA) is a relatively new discretization
technique to give an approximate solution to a problem posed by a partial differential
equation (PDE) on a given domain Ω. It was introduced by Hughes, Cottrell and
Bazilevs in 2005 [13].

In Isogeometric Analysis the physical domain Ω and the solution space for solving
a PDE via the Galerkin method [29] are parameterized by the same spline functions,
typically B-splines or NURBS (Non uniform rational B-splines). These basis functions
are globally defined and have large overlapping supports depending on their degrees.
This leads to a global representation of the physical domain and the discretization of
the PDEs has a high computational complexity increasing exponentially with respect
to the problem’s dimension [18].

Recently, a lot of effort has been made to find strategies to overcome this draw-
back and efficiently assemble the arising system matrices. Here, a big focus lies on
exploiting the tensor product structure of the basis functions and lowering the overall
computational cost of the basis function quadrature, e.g via finding new quadrature
rules [11, 14] or sum factorization [1].

To reduce the complexity of the integration and ultimately reduce the overall
computation time and storage requirements, Mantzaflaris et al. [17, 16] developed
a low rank tensor method, which exploits the tensor structure of the basis functions
and separates the variables of the integrals. The arising system matrices can then be
represented in a compact manner as a sum of Kronecker products of smaller matrices
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which are assembled via univariate integration, lifting the curse of dimensionality
from the integration. This is accomplished via an interpolation step and a low rank
representation of the resulting coefficient tensor.

For two-dimensional settings the low rank approximation can be easily realized
by a singular value decomposition of the coefficient matrix. However, in higher di-
mensions we need to decompose a higher-order tensor which is more challenging, both
computationally and conceptually, as there exist many different decompositions and
definitions of ranks in the dimensions greater than two.

In this paper we combine the low rank method of Mantzaflaris et al. with low
rank Tensor Train (TT) calculations [19, 21]. Exploiting the tensor product nature of
the arising interpolation we can calculate a low rank TT approximation without prior
assembly of the full coefficient tensor by means of the alternating minimal energy
(AMEn) method [8]. We further utilize this method to ultimately solve a large scale
optimal control problem in a compact low rank block format, exploiting the Kronecker
product structure of the system.

We consider an optimal control problem with a parabolic PDE constraint of the
form

min
u

1
2

∫ T

0

∫
Ω

(y − ŷ)2 dxdt+ β

2

∫ T

0

∫
Ω
u2 dx(1.1)

s.t. yt −∆y = u in [0, T ]× Ω,(1.2)
y = 0 on [0, T ]× ∂Ω,(1.3)

with a desired state ŷ and control u on a given domain Ω parameterized by B-Splines
or NURBS, as described later on. The discretization of (1.1) - (1.3) in this paper will
be performed by isogeometric analysis and the workhorse is the representation of two
bilinear forms, the mass term am and the stiffness term as in a discretized low rank
format.

We will briefly review the basic ingredients for isogeometric analysis to clarify the
terminology and notations used throughout the paper in Section 2. In Section 3 we
review the previously mentioned low rank approach of Mantzaflaris et al. and present
a way to exploit the tensor product structure to quickly find a low rank approximation
using the TT format. We then show how an optimal control problem of the format
(1.1) - (1.3) is discretized using IgA and state the resulting discrete saddle point
problem in Section 4. The discretization results in a very large linear system and
in Section 5 we exploit the derived low rank representation to solve this system in a
compact format making use of the iterative Block AMEn method [2, 6].

The performance of the low rank scheme is illustrated by various examples in
Section 6. First, we show the performance for approximating both mass and stiffness
matrices in the low rank form for domains with different ranks. We then use these
approximations to solve computationally challenging PDE-constrained optimization
problems in a low rank tensor train format.

2. Basics for IgA. In isogeometric analysis, a geometry is represented exactly
using a set of B-splines or NURBS functions. The same basis functions are then used
to build the solution space to solve a PDE on the geometric domain [13]. The term B-
spline is short for basis spline and denotes a special type of recursively defined spline.
Every spline function with a chosen degree, smoothness, and domain partition can
be uniquely represented as a linear combination of B-splines with the same degree,
smoothness, and domain partition [5].
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A set of B-splines is uniquely defined by its degree and knot vector. Choosing
a degree p, we define a vector ξ, called the open knot vector as ξ = {x̂1, . . . x̂n+p+1}
with

(2.1) 0 = x̂1 = . . . = x̂p+1 < x̂p+2 ≤ . . . ≤ x̂n < x̂n+1 = . . . = x̂n+p+1 = 1,

where the end knots appear p + 1 times and for all other knots duplicate knots are
allowed up to multiplicity p. The parameter n determines the number of resulting
B-splines βi,p with i = 1, . . . , n.

For each knot vector ξ as in (2.1), the according B-splines βi,p of degree p, with
i = 1, . . . , n, are uniquely defined by the recursion

βi,0(x̂) =
{

1 if x̂i ≤ x̂ < x̂i+1,

0 otherwise,
(2.2)

βi,j(x̂) = x̂− x̂i
x̂i+j − x̂i

βi,j−1(x̂) + x̂i+j+1 − x̂
x̂i+j+1 − x̂i+1

βi+1,j−1(x̂),(2.3)

where j = 1, 2, . . . , p and i = 1, . . . , n. Each resulting B-spline βi,p has the local
support [x̂i, x̂i+p+1].

We use Spξ to denote the spline space spanned by the B-splines with degree p and
knot vector ξ. To construct a B-spline curve in a D-dimensional space, the B-splines
of Spξ are combined with given values, called the control points, C1, . . . , Cn ∈ RD .

Given a B-spline space Spξ and n control points Ci ∈ RD, the curve F : R→ RD
defined by

(2.4) F (x̂) =
n∑
i=1

Ciβi,p(x̂)

is called a B-spline curve of degree p.
By using a B-spline curve as defined in Equation (2.4), conic geometries can

not be represented exactly [24]. Conic shapes can only be represented by rational
functions. Therefore, a generalization of the B-splines was developed, the so called
NURBS (Non-uniform rational B-splines) [25]. The term non-uniform refers to the
fact that NURBS usually are defined by a knot vector with non-uniformly sized knot
spans.

NURBS are used in a wide spectrum of computational application, especially in
CAD or CGI environments, where it became the standard tool to model any kind of
required shape [10]. By adding weights to the B-spline functions and rationalizing the
curve, a NURBS curve is defined as

(2.5) N(x̂) =
n∑
i=1

Ci
βi(x̂)wi∑n
j=1 βj(x̂)wj

.

To represent arbitrary D-dimensional geometries with B-splines or NURBS as
necessary in isogeometric analysis, univariate spline spaces are combined to multi-
variate spaces via tensor product.

Consider D different univariate spline spaces Spd

ξd
, each having one-dimensional

variables x̂(d) ∈ R, with d = 1, . . . , D. The knot vector and the spline degree of the
according univariate space are denoted by ξd and pd.
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We obtain a D-variate tensor product spline space SD = Sp1
ξ1
⊗ . . . ⊗ SpD

ξD
with

variables x̂ = (x̂(1), . . . , x̂(D))T as a space of piecewise polynomial functions with
degree p = (p1, . . . , pD). Its elements are denoted by

(2.6) βi(x̂) =
D∏
d=1

β
(d)
id

(x̂(d)).

Given such a basis SD, we define a B-spline (or NURBS) geometry mapping
G : Ω̂→ Ω from the D-dimensional unit cube Ω̂ := [0, 1]D onto an arbitrary geometric
shape Ω ⊂ RD as

(2.7) G(x̂) =
∑
i∈I

Ciβi(x̂) = C : B(x̂),

with control points Ci ∈ RD and multi-index i ∈ I = {(i1, . . . , iD) | id = 1, . . . , nd, d =
1, . . . , D}. Here C : B(x̂) denotes the Frobenius product of a tensor C ∈ RD×n1×...×nD ,
holding all the control points, and a tensor B(x̂) ∈ Rn1×...×nD holding all the basis
functions of SD evaluated in x̂ in a suitable order.

Now that we have a spline representation of the geometry Ω, we can use the same
spline functions to parameterize the solution space of a PDE on the geometry. For
the discretization of the optimal control problem (1.1) - (1.3) we need to look at the
bilinear forms of two stationary problems.

The first important bilinear form, given by

(2.8) am(u, v) = 〈u, v〉2 =
∫

Ω
uv dx,

is called the mass term and results as the weak formulation of the boundary value
problem u(x) = f(x) in Ω.

The second bilinear form we will consider is called the stiffness term,

as(u, v) = −
∫

Ω
(∆u)v dx,(2.9)

=
∫

Ω
∇u · ∇v dx, ,(2.10)

and results from the Poisson equation, −∆u(x) = f(x) in Ω.
We want to produce approximations to the solutions u ∈ H1(Ω) with discrete

functions uh ∈ Vh ⊂ H1(Ω) constructed with B-splines. In isogeometric analysis we
use the same splines from the geometry mapping (2.7) to parameterize the solution
space Vh,

(2.11) Vh = span{βi ◦G−1 : i ∈ I},

with an index set I such that βi are the elements of SD. The functions in Vh are
linear combinations of the basis functions with coefficients ui,

(2.12) uh =
∑
i∈I

ui(βi ◦G−1).

The space Vh is now used for the Galerkin discretization of the mass and stiffness
terms, resulting in the discrete mass term,

(2.13) am,h(uh, vh) =
∫

Ω
uh(x)vh(x) dx =

∫
Ω̂

∑
i∈I

uiβi(x̂)
∑
j∈I

vjβj(x̂)ω(x̂) dx̂,
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with ω(x̂) = |det∇G(x̂)| and the discrete stiffness term
(2.14)
as,h(uh, vh) =

∫
Ω

(∇uh(x)) · ∇vh(x) dx =
∫

Ω̂
(Q(x̂)

∑
i∈I

ui∇βi(x̂)) ·
∑
j∈I

vj∇βj(x̂) dx̂,

with Q(x̂) =
(
∇G(x̂)T∇G(x̂)

)−1|det∇G(x̂)| [17].
This has to hold for all vh from the test space Vh, hence for all combinations of

viβi. However, as the basis functions βi are linearly independent, it is sufficient if the
equation holds for each βj separately. Thus, we can rewrite the discrete bilinear forms
as matrix-vector products Au with the vectorization u of the coefficient set ui, i ∈ I,
where A is realized as a mass matrix M with elements

(2.15) Mi,j =
∫

Ω̂
βiβjω dx̂

or a stiffness matrix K with elements

(2.16) Ki,j =
∫

Ω̂
(Q∇βi) · ∇βj dx̂ =

D∑
k,l=1

∫
Ω̂
qk,l

∂

∂x̂l
βi

∂

∂x̂k
βj dx̂.

During the derivation of the mass and stiffness matrices, we did not pay attention
to the tensor product structure of SD. We can either arrange M and K as matrices
or as tensors of size (n,n) = (n1, . . . , nD, n1, . . . , nD). With this tensor notation
the mass and stiffness matrices in a multi-dimensional setting are represented in a
compact way.

Let Bbe the tensor of order D and size n = (n1, . . . , nD) holding every βi ∈ SD
of equation (2.7). All combinations of elements βiβj which make up the integrands of
M are included in the tensor product B ⊗B.

With this consideration we write the mass term as a tensor M

(2.17) M =
∫

Ω̂
ωB ⊗B dx̂ ∈ Rn×n,

with elements coming from equation (2.15). The stiffness term can be treated simi-
larly. With the tensor gradient we can write it as a tensor K

K =
∫

Ω̂
[Q · (∇⊗B)] · (∇⊗B) dx̂ ∈ Rn×n.(2.18)

=
D∑

k,l=1

∫
Ω̂
qk,l

∂

∂x̂l
B ⊗ ∂

∂x̂k
B dx̂(2.19)

whose elements are of the form (2.16). The associated mass and stiffness matrices are
obtained by reordering the indices since the elements of the mass and stiffness tensors
match the elements of the matrices. So far this tensor structure was not exploited
but we will need it to reduce the complexity of the assembly procedure.

3. Low-rank IGA. Looking at the mass and stiffness matrices (2.15) and (2.16),
we see that their entries are the product of univariate B-splines and a D-variate weight
function, ω(x̂) or Q(x̂). The scalar ω(x̂) = |det ∇G(x̂)| and the matrix Q(x̂) =
(∇G(x̂)−1)(∇G(x̂))−Tω(t) ∈ RD×D are determined by the geometry mapping. As
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Mantzaflaris et al. suggest in [17],we can approximate these weight functions by some
combination of univariate functions via interpolation,

(3.1) ω(x̂) ≈ ω1(x̂(1)) · · ·ωD(x̂(D)).

For the low rank approximation of the mass and stiffness matrix, we then approxi-
mate the arising multidimensional integrals as products of univariate integrals. The
integrands are separable after interpolating the weight functions. To further reduce
the computation time and storage requirements of the mass and stiffness matrix cal-
culation, the resulting interpolating function is approximated with low rank methods
giving low rank approximations of the system matrices [16, 17].

To do so, we interpolate the weight functions by a combination of univariate B-
splines of higher order, denoted by the spline space S̃D with suitable knot vectors ξ̃d
and degrees p̃d with d = 1, . . . , D. The weight function ω(x̂) of the mass matrix is
interpolated as

(3.2) ω(x̂) ≈
∑
j∈J

Wjβ̃j(x̂) = W : B̃(x̂),

where β̃j(x̂) are the elements of the spline space S̃D and B̃(x̂) is the tensor holding all
βj ordered according to the index set J . The weight tensorW has the same dimension
as the spline space S̃D, being (ñ1, . . . , ñD), and we get its entries by interpolating the
weight function in a sufficient number of points, namely ñ = ñ1 · · · ñD.

As the derivatives of a B-spline or NURBS are again B-splines or NURBS, the
weight function ω(x̂) = |det∇G(x̂)| is again a B-Spline (NURBS) of degree Dp + 1
[17]. Thus we can get an exact interpolation if we choose basis functions of degree
Dp+ 1.

Now we can construct canonical low rank representations of the weight tensor,

(3.3) W ≈
R∑
r=1

D⊗
d=1

w(d)
r =: WR,

with w(d)
r ∈ Rnd . With this we get a low rank representation of the weight function,

(3.4) ω(x̂) ≈WR : B̃(x̂) =
R∑
r=1

D∏
d=1

w(d)
r · β̃(d)(x̂(d)).

Here β̃(d)(x̂(d)) ∈ Rnd denotes the vector holding all univariate basis functions eval-
uated in x̂(d), and “·” is the scalar product. The entries of the mass matrix can be
approximated using this low rank representation and we can calculate each entry as
the sum of products of univariate integrals,

Mi,j =
∫

Ω̂

D∏
d=1

β
(d)
id
β

(d)
jd

R∑
r=1

D∏
d=1

w(d)
r · β̃(d) dx̂(3.5)

=
R∑
r=1

D∏
d=1

∫ 1

0
β

(d)
id
β

(d)
jd
w(d)
r · β̃(d) dx̂(d).(3.6)

With these univariate integrals we define a univariate mass matrix, which depends on
some weight function ω, as

(3.7) M (d)(ω) =
∫ 1

0
B(d) ⊗B(d)ω dx̂(d),
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where B(d) ∈ Rnd is the vector holding all nd univariate B-splines of Spd

ξd
. According to

the tensor representation in equation (2.17), we can finally write the mass matrix as a
sum of Kronecker products of small univariate mass matrices (3.7) with ω = w

(d)
r ·β̃(d),

(3.8) M =
R∑
r=1

D⊗
d=1

M (d)(w(d)
r · β̃(d)).

The same procedure can be applied to the weight function of the stiffness matrix
Q(x̂). Note that Q(x̂) ∈ RD×D, thus we have to apply the interpolation to each
entry of Q. Similarly to (3.4), for each entry of Q we get the canonical low rank
representation

(3.9) qk,l(x̂) ≈ Vk,l,R : B̃(x̂) =
R∑
r=1

D∏
d=1

v
(d)
k,l,r · β̃

(d)(x̂(d)), for all k, l = 1, . . . , D,

with v(d)
k,l,r ∈ Rnd .

Using this low rank method, we approximate the entries of the stiffness matrix as

Ki,j =
D∑

k,l=1

∫
Ω̂

( D∏
d=1

δ(l, d)β(d)
id
δ(k, d)β(d)

jd

) R∑
r=1

D∏
d=1

v
(d)
k,l,r · β̃

(d) dx̂,(3.10)

=
D∑

k,l=1

R∑
r=1

D∏
d=1

∫ 1

0
δ(l, d)β(d)

id
δ(k, d)β(d)

jd
vk,l,r ·(d) β̃(d) dx̂(d),(3.11)

where j = (j1, . . . , jD), and δ(k, d) denotes the operator acting on f as

(3.12) δ(k, d)f =
{

∂f
∂x̂d

if k = d,

f otherwise.

To get a representation for the stiffness matrix corresponding to the mass matrix
representation in (3.8), we define the D2 univariate stiffness matrices dependent on
some weight function q(d)(x̂(d)) as

(3.13) K
(d)
k,l (q(d)) =

∫ 1

0
(δ(l, d)B)⊗ (δ(k, d)B) q(d) dx̂(d), for k, l = 1, . . . , D.

With this and q(d) = v
(d)
k,l,r ·β̃(d) the final low rank tensor representation of the stiffness

matrix is

(3.14) K =
D∑

k,l=1

R∑
r=1

D⊗
d=1

K
(d)
k,l (v(d)

k,l,r · β̃
(d)).

Both (3.8) and (3.14) rely on an efficient low rank representation of W and Vk,l
and we need suitable strategies to perform this task. For a two dimensional settingW
and Vk,l are matrices and a singular value decomposition (SVD) can be applied easily
to find a low rank representation [16]. We approximate the matrix W ∈ Rn1×n2 as

(3.15) W = UΣV T ≈
R∑
r=1

urσrv
T
r =

R∑
r=1

(ur
√
σr)⊗ (vr

√
σr).
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with U ∈ Rn1×n1 , V ∈ Rn2×n2 and Σ ∈ Rn1×n2 is the rectangular matrix holding
the sorted singular values σi, i = 1, . . . ,min(n1, n2) on its diagonal. The low rank
approximation is derived by truncating the n − R smallest singular values and the
corresponding rows of U and V .

In higher dimensional settings, the decomposition becomes more challenging and
different types of low rank tensor approximations can be applied as well as considering
only a partial decomposition, e. g. into a univariate and a bivariate integration in 3D
settings [27].

For the low rank tensor approximation of a D dimensional tensor as in Equation
(3.3) there exists a multitude of possible approximations, e.g. the higher order sin-
gular value decomposition (HOSVD), or a CPD decomposition. But for our purpose
the tensor train (TT) decomposition is suited best with respect to simplicity and
robustness and we will proceed with TT in the rest of the paper.

A tensor W is said to be in TT format, if it can be written as

W (i1, . . . , iD) = W1(i1) · · ·WD(iD),(3.16)

where Wd(id) is an Rd−1×Rd matrix for each fixed id, 1 ≤ id ≤ nd and R0 = RD = 1
[19].

By rearranging the matrices Wd(id) for id = 1, . . . , nd into D tensors of sizes
Rd−1×nd×Rd we can rewrite the TT-format into a canonical low rank representation
as desired in (3.3),

(3.17) W =
R1∑
r1=1
· · ·

RD∑
rD=1

D⊗
d=1

vec(Wd(rd−1, :, rd)).

To interpolate the weight function, we inherently need to solve a large system of
equations ω(X̂) = W : B̃(X̂), where X̂ denotes the set of n = n1 · · ·nD interpolation
points. This equation can be rewritten into

(3.18) vec(ω(X̂)) =
(
B(1)(X̂(1))⊗ . . .⊗B(D)(X̂(D))

)
︸ ︷︷ ︸

A

vec(W ).

The matrix A in (3.18) can be very large for a direct solution. However, we can first
approximate ω(X̂) in a tensor decomposition, and then use the Kronecker structure
of A for an efficient computation of a tensor decomposition of W . Indeed, assuming
that we have a TT format

ω(X̂) =
R1∑
r1=1
· · ·

RD∑
rD=1

D⊗
d=1

vec(ωd(rd−1, :, rd)),

we can write the TT format (3.17) for W in the form

(3.19) W =
R1∑
r1=1
· · ·

RD∑
rD=1

D⊗
d=1

[
B(d)(X̂(d))

]−1
vec(ωd(rd−1, :, rd)),

which requires solving d linear systems of sizes n1, . . . , nD, respectively. The TT
approximation for ω(X̂) could be precomputed by the TT-SVD [19] or the TT-Cross
[22] methods. We refrain from doing so as the computational time is rather small for
the full ω(X̂). This strategy and the efficient representation of M and K allow us
to tackle PDE-constrained optimal control problems next.
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4. A PDE-constrained optimization model problem. We recall the opti-
mal control problem,

min
y,u

1
2

∫ T

0

∫
Ω

(y − ŷ)2 dxdt+ β

2

∫ T

0

∫
Ω
u2 dxdt(4.1)

s.t. yt −∆y = u in [0, T ]× Ω,(4.2)
y = 0 on [0, T ]× ∂Ω,(4.3)

y(t = 0, ·) = 0 on Ω(4.4)

to a desired state ŷ with control u on a given geometry Ω and time frame [0, T ].
We want to solve this by discretizing in both time and space resulting in a large

saddle point problem [3, 9]. Using an implicit Euler scheme for the time discretization
of the PDE and the rectangle rule lead to the time-discrete problem

min
y,u

Nt∑
k=1

τ

2

(∫
Ω

(yk − ŷk)2 dx+ β

∫
Ω
u2
k dx

)
(4.5)

s.t. yk+1 − yk
τ

−∆yk+1 = uk+1 in Ω, for k = 1, . . . , Nt,(4.6)

yk = 0 on ∂Ω, for k = 1, . . . , Nt,(4.7)

with the number of time steps Nt corresponding to the time step size τ = T/Nt and
continuous solution yk in each time step k.

Using the Galerkin-based spatial discretization as described in Section 2 leads to
the discrete quadratic problem

min
y,u

Nt∑
k=1

τ

2
(
(yk − ŷk)TM(yk − ŷk) + βuTkMuk

)
(4.8)

s.t. Myk −Myk−1

τ
+Kyk = Muk for k = 1 : Nt,(4.9)

where M and K are the mass and stiffness matrix of the chosen discretization. Here
the zero boundary conditions (4.3) are integrated inM and K by omitting the bound-
ary nodes. Omitting the notation from the time-continuous problem (4.5), the states
are collected in the vector y = [y1, . . . , yNt

]T with each state yk being the vector of
the corresponding coefficients (2.12) and accordingly for the control parameters uk.
Note that yk and uk are vectors of appropriate dimensionality.

A local minimum of the discretized problem satisfies the Karush-Kuhn-Tucker
(KKT) conditions [4]. The KKT conditions state that if (y∗, u∗) is a local minimum
which satisfies a certain constraint qualification, then there exists a multiplier vector
λ∗ such that the Lagrangian of the problem, here

(4.10) L(y, u) =
Nt∑
k=1

(
τ

2
(
(yk − ŷk)TM(yk − ŷk) + βuTkMuk

)
+ λk

(
Myk −Myk−1 + τKyk − τMuk

))
,

has a saddle point in the local minimum (y∗, u∗, λ∗),

(4.11) ∇L(y∗, u∗, λ∗) = 0.
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For our discrete optimization problem this results in the conditions

0 = ∇yk
L(y, u, λ) = τM(yk − ŷk)− λk+1M + λk(M + τK),(4.12)

0 = ∇uk
L(y, u, λ) = τβMuk − λkτM,(4.13)

0 = ∇λk
L(y, u, λ) = M(yk − yk−1) + τKyk − τMuk,(4.14)

for k = 1, . . . , Nt.
We can rewrite these equations into an equation system

(4.15)

τM 0 KT
0 τβM −τM
K −τM 0

yu
λ

 =

τMŷ
0
0

 ,
whereM = INt ⊗M and K = INt ⊗ τK + C ⊗M , where I is the Nt ×Nt identity
matrix and C is

(4.16) C =


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . . . . .
0 . . . 0 −1 1

 .

The resulting equation system is a saddle point problem as described in [3, 28, 23].

5. Low-rank solvers for the PDE-constrained optimization problem.
The saddle point problem (4.15) typically becomes very large, depending on the num-
ber of time steps and refinement in the spatial discretization. By exploiting the tensor
product structure for both the solution and the coefficients from Section 3, we can
reduce the problem to smaller linear systems on the elements of individual TT blocks.

As we can represent the low rank mass and stiffness matrices as sums of Kronecker
products, we can rewrite

M = INt
⊗

(
R∑
r=1

D⊗
d=1

M (d)
r

)
,(5.1)

K = INt
⊗

 D∑
k,l=1

R∑
r=1

D⊗
d=1

K
(d)
k,l,r

+ C ⊗

(
R∑
r=1

D⊗
d=1

M (d)
r

)
.(5.2)

With this, each block of (4.15) becomes a sum of Kronecker products of small matrices.
This structure can be preserved and exploited in appropriate linear solvers, such
as Alternating Linear Scheme (ALS) [12], Density Matrix Renormalization Group
[26, 15] and Alternating Minimal Energy (AMEn) [8]. However, indefinite matrix
of saddle point structure in (4.15) might yield instabilities in the vanilla versions
of these algorithms. We use an extended Block AMEn method (implemented in
amen_block_solve.m in the TT-Toolbox [20]), which preserves the block structure in
(4.15), and hence the numerical stability.

This algorithm aims to approximate all solution components y, u, λ in the same
representation, called Block TT decomposition [7]. Let us collect y, u, λ into a matrix

(5.3) f =
[
f1 f2 f3

]
=
[
y u λ

]
,
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where the components are referred to as f`, ` = 1, 2, 3. The Block TT decomposition
incorporates the `-index into one of the factors: instead of (3.16), we write

(5.4) f`(i1, . . . , iD) = F1(i1) · · ·Fd−1(id−1) · F̂d(id, `) · Fd+1(id+1) · · ·FD(iD)

for some 1 ≤ d ≤ D. We can put the component enumerator ` into an arbitrary TT
factor using the singular value decomposition. Suppose we want to move ` from the
factor d to d + 1. Consider F̂d as an Rd−1nd × 3Rd matrix, F̂d(rd−1, id; `, rd) and
compute the truncated SVD

F̂d ≈ UΣV >.

Now we call U the d-th TT factor instead of F̂d, and multiply ΣV > with the (d+1)-th
factor,

Fd(rd−1, id, r
′
d) = U(rd−1, id; r′d),(5.5)

F̂d+1(r′d, id+1, `, rd+1) =
Rd∑
rd=1

ΣV >(r′d; `, rd)Fd+1(rd, id+1, rd+1).(5.6)

We have obtained the same representation as (5.4) with ` sitting in the (d + 1)-th
factor. This process can be continued further or reversed in order to place ` in an
arbitrary factor.

A state of the art technique for computing directly the factors of a TT decom-
position is the Alternating Linear Scheme [12, 21]. We can observe that the TT
representation is linear with respect to the elements of each factor. Indeed, introduce
the following nD ×Rd−1ndRd frame matrix:

F6=d(i1, . . . , iD; rd−1, jd, rd) = F1(i1) · · ·Fd−1(id−1, rd−1)
· δid,jd

· Fd+1(rd, id+1) · · ·FD(iD),
(5.7)

where δid,jd
is the identity matrix with respect to the indices id, jd. In case of the

Block TT decomposition (5.4), we assume that we choose the same d for both the
position of ` in (5.4) and the position of the identity matrix in (5.7). We can then
observe that

(5.8) f` = F6=d · vec(F̂d(`)).

This linearity allows us to project the original problem into a subspace spanned by
the columns of F 6=d. Iterating over all d = 1, . . . , D, we obtain the ALS algorithm.
This method starts from some initial guess in the low-rank TT representation, and
hence it never encounters the original (prohibitively large) tensors.

The Block AMEn method [2, 6] projects each of the submatrices of (4.15) onto the
frame matrix individually. For each selected d = 1, . . . , D, we compute the elements
of F̂d from the following reduced KKT system:

(5.9)

τFT6=dMF6=d 0 FT6=dKTF 6=d
0 τβFT6=dMF 6=d −τFT6=dMF 6=d

FT6=dKF 6=d −τFT6=dMF6=d 0

vec F̂d(1)
vec F̂d(2)
vec F̂d(3)

 =

τFT6=dMŷ

0
0

 .
This system is small (each submatrix is now of size Rd−1ndRd), and can be solved
efficiently by e.g. MINRES. Moreover, since F 6=d inherits the TT decomposition of
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f , and the system matricesM and K have the tensor product structure (5.1), (5.2),
the reduced matrices FT6=dMF 6=d and FT6=dKF 6=d can be assembled efficiently using the
multiplication of tensor trains factor by factor [19, 12]. Having solved (5.9), we plug
the new factor F̂d back into the block TT decomposition (5.4), which provides an
updated approximation to y, u and λ through (5.3). In order to prepare the next ALS
step we move the enumerator ` to the next factor using SVD (e.g. (5.5)–(5.6) in the
forward sweep d→ d+ 1), and recompute the corresponding frame matrix using the
new Fd factor. The singular value decomposition makes the appropriate matricization
of Fd orthogonal, such that the whole frame matrix F 6=d is orthogonal in each step.
This ensures invertibility of the projected matrix in (5.9).

6. Numerical experiments. The performance of the low rank tensor train
method highly depends on the geometry as the interpolation becomes more challenging
and the ranks grow with increasing complexity of the geometry. We conduct some
numerical experiments of different complexity to show the advantages of our method
compared to the full assembly of the stiffness matrix before combining the assembly
with an optimal control problem to show the the performance for large scale saddle
point problems.

For our numerical experiments we used Matlab R2018b with the TT-Toolbox
[20] on a desktop computer with an Intel Core i7-4770 Quad-Core processor running
at 4× 3400 MHz with 32 GB of RAM.

6.1. Assembly with TT method. First, we will assemble stiffness matrices
for different geometries in the low rank format and compare the assembly with a
full standard assembly performed by the isogeometric analysis toolbox GeoPDEs 3.0
[30] in Matlab. The assembly is compared for different levels of refinement and
for each refinement we insert 4 additional knots per knot section in each spatial
dimension. We use the same Gauss-Legendre quadrature rule with five quadrature
nodes in each spatial direction for both assemblies. For the mass matrix we can get
an exact interpolation using a spline space of degree 2p + 1 with p being the degree
of the original splines [16]. We use the same degree for the stiffness matrix assembly
in our experiments. However, note that we can always increase the degree of the
interpolating splines to get a higher accuracy if desired.

Solving (3.19) results in a low rank solution for the given domain and the required
truncation tolerance. Hence, the scheme exhibits low-ranks for simpler domains, such
as the domain considered next. The first domain is a three dimensional quarter
annulus as shown in Figure 1a. The weight function Q of this geometry is very simple
and can be approximated by only one combination of basis functions, thus giving
us a rank of 1 for each entry of Q. The TT-SVD detects this low rank without
prior knowledge of the low rank nature of the geometry, so we can assemble the
stiffness matrix from only one combination of univariate stiffness matrices (3.14). We
compare the assembly with the full assembly as performed by the geoPDEs toolbox
[30] and additionally compare the method with an assembly using the CPD method
implemented in [31]. Note that we have to specify the desired rank of the system
beforehand to use CPD. Here we chose rank 1, due to the prior knowledge of the low
rank nature of the geometry. We use the same quadrature rule for all three assemblies.

Figure 1b shows that the TT method is a lot faster than the full assembly and the
CPD method, especially for a high number of h-refinements which corresponds to a
high number of basis elements. Here the advantage of the TT method over the CPD
method lies in the solution of equation (3.18), which can be efficiently done avoiding
full assembly by exploiting the Kronecker product structure yielding a result already



LOW-RANK METHOD FOR PDE-CONSTRAINED OPTIMIZATION WITH IGA 13

(a) Rank 1 domain
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Fig. 1: Comparison between full assembly and low rank assembly of the stiffness
matrix for the quarter annulus domain

in the low rank Tensor Train format. For the CPD method on the other hand we solve
(3.18) to get a full tensor and compute a CPD of this fully assembled tensor using
the ALS method. A cross approximation method for CPD could reduce the timings
in Figure 1b, but it is significantly less developed and understood than the TT cross
scheme, and we are not testing it here.

Figure 1 further shows that both the CPD and the Tensor Train method approx-
imate the fully assembled stiffness matrix very well. The graph in Figure 1c depicts
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tolerance TT-ranks q1,1 q1,2 q1,3 q2,2 q2,3 q3,3 ω
10−10 R1 2 2 1 2 1 11 2

R2 2 1 1 1 1 3 1
10−7 R1 3 3 1 2 1 7 2

R2 1 1 1 1 1 3 1
10−4 R1 2 2 1 2 1 5 2

R2 1 1 1 1 1 2 1

Table 1: Ranks for the weight function tensor approximation of figure 2a

tolerance TT-ranks q1,1 q1,2 q1,3 q2,2 q2,3 q3,3 ω
10−7 R1 16 23 24 21 29 21 17

R2 9 13 12 11 14 9 9
10−4 R1 8 10 12 6 15 8 8

R2 5 7 8 8 9 5 5

Table 2: Ranks for the weight function tensor approximation of figure 3a

the mean difference of the matrices in the Frobenius norm,

(6.1) diff = ‖S − S̃‖F
‖S‖F

.

Note that the CPD method and the TT method find the same decompositions here.
Figure 1d shows the advantages in regard of storage requirements. For the low rank
method we only need to store a small number of small sparse matrices instead of
storing the large stiffness matrix reducing the required memory drastically and if a
high refinement is desired this effect is amplified.

Another example for a low rank domain is the deformed cuboid in Figure 2a.
This geometry still possesses a low rank structure and the ranks for different desired
accuracies are displayed in Table 1. These ranks stay constant throughout various
levels of refinements. We see the comparison of the full assembly and the TT method
with different accuracies being 10−10, 10−7 and 10−4 in Figure 2. We reach the desired
accuracies quickly after some refinement steps as depicted in Figure 2c. Again, the
TT method is faster than the full assembly and has an advantage with respect to the
storage requirements especially for high refinements, as seen in Figures 2b and 2d.
Note that for the next refinement the fully assembled stiffness matrix would not fit
into the memory of our desktop PC anymore.

The performance of the method is remarkable not only for low rank structures
as the geometries in Figure 1a or Figure 2a but also for more complex geometries
like the high rank domain in Figure 3a. This geometry does not possess a low rank
structure but we can still apply the TT method with a high rank or truncate with a
desired accuracy to get a low rank approximation.

In Figure 3 we see the comparison of the full assembly and the TT method with
different desired accuracies being 10−7 and 10−4. The corresponding ranks for the
entries of Q are displayed in Table 2. The ranks stay stable and only occasionally
vary by ±1 from the values in table 2 due to numerical inaccuracies throughout the
different refinement steps.
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(a) deformed cuboid domain

2 4 6 8 1010−1

100

101

102

Number of h-refinements

T
im

e
in

se
co
nd

s

Accuracy 10−10

Accuracy 10−7

Accuracy 10−4

Full assembly

(b) Time comparision for stiffness matrix as-
sembly

2 4 6 8 10

10−11

10−9

10−7

10−5

10−3

Number of h-refinements

M
ea
n
di
ffe

re
nc
e
in

Fr
ob

en
iu
s
no

rm Accuracy 10−10

Accuracy 10−7

Accuracy 10−4

(c) Difference to full assembly stiffness matrix

2 4 6 8 10103

104

105

106

107

108

109

Number of h-refinements

N
ec
es
sa
ry

m
em

or
y
in

by
te
s

Accuracy 10−10

Accuracy 10−7

Accuracy 10−4

Full assembly

(d) Storage requirements

Fig. 2: Comparision between full assembly and low rank assembly of the stiffness
matrix assembly for the domain 2a

Recall that the given ranks correspond to the tensor ranks in the TT format
(3.17), thus the number of smaller stiffness matrices in each dimension corresponds
to the product R = R1R2. Even though this results in a large number of small
matrices, the TT low rank method is still much faster than the full assembly for high
refinements.
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(a) High rank domain
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Fig. 3: Comparison between full assembly and low rank assembly of the stiffness
matrix for a high-rank twisted beam domain

6.2. Optimal control examples. We now illustrate the performance of the
Block AMEn method from Sec. 5 on two optimal control examples. We first regard the
rank 1 domain from Figure 1a before showing experimental results on the geometric
model depicted in Figure 7.

For the rank 1 geometry we used equidistant spatial knot insertion to refine the
geometric representation and thus the solution space. We used discretizations with
up to a maximum of 66 degrees of freedom per spatial direction and divided the
time frame into 10 time steps. This discretization translates into a total of roughly 8
million degrees of freedom. Note that we will not pay any regard to the variation of
the time discretization in this work. However, our experiments showed that increasing
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Fig. 4: Performance for different refinements and control parameters on quarter an-
nulus geometry from Figure 1a

the number of time steps does not affect the number of iterative steps for most setups.
The desired accuracy for both the weight interpolation and the optimization was set
to 10−5.

In Figure 4 we see the performance throughout different refinements for different
control parameters β. Even for a high number of degrees of freedom the method
converges after a small number of iterative steps as seen in Figure 4a.

Using the Block AMEn method to solve the optimal control problem in a low
rank format returns the solution in a low rank tensor train format too. Figure 4c
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Fig. 6: Comparison of given state and solution for different control parameters at one
time step on domain from Figure 1a
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Fig. 7: Freeform CAD model domain

tolerance TT-ranks q1,1 q1,2 q1,3 q2,2 q2,3 q3,3 ω
10−5 R1 11 12 5 11 3 4 4

R2 2 3 1 2 1 2 1

Table 3: Ranks for the weight function tensor approximation of the CAD model in
Figure 8

illustrates the maximum TT-rank of the solution and even though they are quite large,
the memory consumption of the solution is reduced drastically. Figure 4d displays
the storage requirements of the solution in relation to the full solution vector.

Figure 6 shows an exemplary result for the arbitrary desired state we used for our
experiments. The desired state in Figure 6a was set as constant in time and Figures
6b - 6f show snapshots of the same time step for different control parameters varying
from β = 10−4 to β = 1. As expected we see that the controlled state matches
the desired state well for small control parameters and its magnitude decreases with
higher control parameter.

The numerical values for the example from Figure 6 are displayed in Figure 5.
The method is robust with respect to the control parameter β. The objective function
and the control behave as expected when the control parameter β is changed and the
method delivers a result within the desired accuracy after a small number of iterative
steps.

Additionally we tested the low rank optimization scheme on a large scale geometry
inspired by the shape of a wind turbine rotor blade as depicted in Figure 7. The 3D
solid NURBS model was designed by freeform surface modeling in the commercial
CAD software Rhino 6.0. The low rank assembly step detected a rank profile as
displayed in Table 3 for a truncation tolerance of 10−5.

Again, we set a fixed number of 10 time steps and an arbitrary desired state
constant in time. The desired state used for the experiments is illustrated in Figure
8a. Figures 8b - 8f show a time snapshot of the experiment for different control
parameters β.

Even though this geometric model has a high rank profile, our scheme performes
very well as seen in Figure 9. For larger control parameters β the rank of the solution
and the number of iterative steps are robust and stay almost constant for different
levels of discretization as illustrated in Figures 9a and 9c. The number of iterations
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(a) Constant in time desired
state ŷ

(b) β = 10−4 (c) β = 10−3

(d) β = 10−2 (e) β = 10−1 (f) β = 1

Fig. 8: Comparison of given state and solution for different control parameters at one
time step on domain in Figure 7

and the ranks increase only for very small control parameters. But even for the
smallest control parameter with a high solution rank we reach a significant reduction
in memory consumption comparing the low rank solution with the full solution vector
as displayed in Figure 9d.

7. Conclusion. In this paper, we combined the low rank method presented by
Mantzaflaris et al. with Tensor Train calculations to obtain a powerful method for
solving large equation systems arising from IGA-discretized PDEs and successfully ap-
plied the developed scheme to efficiently solve large PDE-constrained optimal control
problems.

We can reduce the storage requirements and calculation time for the mass and
stiffness matrix assembly drastically by finding low rank approximations and splitting
the matrices into a Kronecker product of smaller matrices. Our scheme finds low
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Fig. 9: Performance for different refinements and control parameters on freeform CAD
rotor blade domain in Figure 7

rank approximations for given desired accuracies without any prior knowlede about
the geometry. We can exploit the resulting low rank structures, keeping the mem-
ory consumption low throughout further computations. The iterative Block AMEn
method allows us to solve large systems like a PDE-constrained optimal control prob-
lem without assembling the whole equation system. In combination with this iterative
method the low rank format gives a great advantage and we can solve very large sys-
tems within a reasonably short time.

Various numerical experiments showed the high potential of the method. How-
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ever, there might be even further efficiency gains if we find a suitable preconditioner
for the reduced linear systems (5.9) in the block AMEn method.
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