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A CONTINUOUS FAMILY OF MARKED POSET POLYTOPES

XIN FANG, GHISLAIN FOURIER, JAN-PHILIPP LITZA, CHRISTOPH PEGEL

Abstract. For any marked poset we define a continuous family of polytopes,

parametrized by a hypercube, generalizing the notions of marked order and marked

chain polytopes. By providing transfer maps, we show that the vertices of the hy-

percube parametrize an Ehrhart equivalent family of lattice polytopes. The combi-

natorial type of the polytopes is constant when the parameters vary in the relative

interior of each face of the hypercube. Moreover, with the help of a subdivision

arising from a tropical hyperplane arrangement associated to the marked poset, we

give an explicit description of the vertices of the polytope for generic parameters.

Introduction

Motivation. To any finite poset (P,≤), two polytopes are associated by Stanley

[16], the order polytope and the chain polytope, both defined in the positive orthant
of RP . The defining relations of the order polytope are the following: for p, q ∈ P ,
p ≤ q, the coordinates xp and xq satisfy xp ≤ xq. The cover relations of the poset

give the facets of a cone and by restricting the cone to the |P |-dimensional unit
cube [0, 1]P one obtains the order polytope. The defining inequalities of the chain
polytope are given by the maximal chains in P , i.e., a maximal chain p1 < . . . < ps

in P gives rise to the inequality xp1
+ . . .+ xps

≤ 1.
Stanley showed that the number of lattice points of both polytopes is the same,

one is parametrized by filters in P and the other is parametrized by anti-chains in P .

Further, he introduced a transfer map from the order polytope to the chain polytope,
which is a lattice-preserving, piecewise-linear bijection. The existence of the transfer

map implies Ehrhart equivalence of the two polytopes, i.e., they both have the same
Ehrhart polynomial.

More than 60 years ago, Gelfand and Tsetlin [10] introduced monomial bases for

finite-dimensional irreducible representations of the algebraic group GLn(C). For
each such basis, there is a polytope whose lattice points parametrize the basis vectors,
nowadays known as the Gelfand–Tsetlin polytope. In 2005, Ernest Vinberg proposed

different polytopes whose lattice points conjecturally parameterize another basis of
each irreducible representation of GLn(C). This conjecture was proved by Feigin,

Littelmann and the second author in 2010 [6]. As observed by Ardila, Bliem and
Salazar [1] shortly after, these two families of polytopes are related in a similar way
as Stanley’s order and chain polytopes. They introduced marked order and marked

chain polytopes, i.e., one fixes a subset of poset elements consisting of at least all
extremal elements, provides an integeral marking for them and obtains defining
inequalities from covering relations between any elements and chains between marked

elements for marked order and marked chain polytopes, respectively. They extended
1

http://arxiv.org/abs/1712.01037v1


2 X. FANG, G. FOURIER, J.-P. LITZA, C. PEGEL

Stanley’s transfer map to this setting, again implying Ehrhart equivalence of the
marked order and marked chain polytopes.

Motivated by the recent work on linear degenerate flag varieties [3], the first two
authors introduced marked chain-order polytopes [4], which are mixtures of the two,
i.e., for each order ideal of the poset, one imposes chain conditions on the coordinates

in the order ideal, and order conditions on the coordinates in its complement. They
proved that these marked chain-order polytopes form an Ehrhart equivalent family

of lattice polytopes, containing the marked order and marked chain polytopes as
extremal cases.

Stanley [16] showed that chain and order polytopes have the same number of

vertices; Hibi, Li, Sahara and Shikama [13] showed that this is also true for the
edges of the polytopes. Hibi and Li [12] conjectured that for a fixed poset, the f -
vector of the order polytope is componentwise dominated by the f -vector of the chain

polytope, and proved this conjecture for the facets. The second author extended the
conjecture to marked order and marked chain polytopes. Note that in that case, the

number of vertices may differ (depending on the poset). This conjecture is further
formulated in [4] in the setting of marked chain-order polytopes.

The Hibi-Li conjecture has the following geometric application. There exists a flat

degeneration of the full flag variety to the toric variety associated to the Gelfand-
Tsetlin polytope [11], and also a flat degeneration to the toric variety associated to
its marked chain counterpart [5]. The Hibi-Li conjecture would allow a quantitative

comparison of the two toric degenerations, for example a comparison of the number
of torus fixed points.

Main results. In the following we will explain a new approach towards the Hibi-Li
conjecture and the construction of a large Ehrhart equivalent family of marked poset
polytopes. Indeed, we define a continuous family of polyhedra parametrized by a

hypercube. We start with a marked poset (P, λ), where P is a poset, λ is an order-
preserving integral marking of an induced subposet P ∗ of P , and let P̃ = P \ P ∗.

We define a marked poset polyhedron Ot(P, λ) for each t ∈ [0, 1]P̃ , such that for
t = 0 we obtain the marked order polyhedron and for t = 1 we obtain the marked

chain polyhedron. If t is the characteristic function of an order ideal of P̃ , then
the corresponding polyhedron is the marked chain-order polyhedron. In this sense,

this construction unifies all marked poset polytopes mentioned above. We note here,
that if t is in the interior of the hypercube, then the associated polyhedron is not
necessarily a rational polyhedron.

The first main result of this paper is concerned with parameters t ∈ {0, 1}P̃ .

Theorem. If t is a vertex of the hypercube, then Ot(P, λ) is a lattice polyhedron.
Moreover if P ∗ consists of at least all extremal elements of P , then Ot(P, λ) is
integrally closed and Ehrhart equivalent to the marked order polytope associated to

(P, λ).

This construction gives an Ehrhart equivalent family of lattice polytopes which
is parametrized by vertices of the hypercube. Moving the parameter away from
vertices of the parametrizing hypercube, the combinatorial type of the polytope

varies. However, we have the following result:
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Theorem. The combinatorial type of Ot(P, λ) is constant along relative interiors of
faces of the parametrizing hypercube.

When the parameter varies from the interior of a face in the hypercube to its

boundary, we introduce the notion of continuous degenerations from one polyhedron
Q0 to another polyhedron Q1 (Definition 3.1), in order to compare the face lattices
of the corresponding polyhedra. As a corollary, we deduce that the f -vector of Q1

is componentwise dominated by the f -vector of Q0. We then apply the construction
to marked poset polyhedra: the polyhedra parametrized by the relative interior of
a face of the hypercube degenerate to the polyhedra parametrized by the boundary

of the given face.
We turn back to the Hibi-Li conjecture. The face structure and especially the

vertices of the marked order polytopes are described in [14, 15]. On the other side,
for marked chain polytopes, neither the face structure nor the vertices are known
so far. Even in the case of the Gelfand–Tsetlin poset, the number of vertices is not

known ([7]). It turns out that, by changing the parameter t to a generic one, the
vertices can be located by using a subdivision arising from a tropical hyperplane
arrangement associated to the marked poset.

Theorem. The vertices of a generic marked poset polyhedron Ot(P, λ) with t ∈

(0, 1)P̃ are exactly the vertices in its tropical subdivision.

We close with a first approach to the Hibi-Li conjecture for ranked posets. In
this case, we can actually prove the conjecture for the facets of marked chain-order

polytopes. Posets arising from representation theory are usually ranked, so we can
cover all these cases.

The paper is organized as follows: In Section 1 we define the universal family
of marked poset polyhedra, recovering all the previously mentioned marked poset
polytopes. In Section 2 we show that the polytopes in the family are images of

the marked order polyhedron under a parametrized transfer map, using the transfer
map we discuss some properties of this family. We introduce and study continuous
degenerations of polyhedra and apply them to our setup in Section 3. We recall

tropical hyperplane arrangements in Section 4, which is applied in Section 5 to study
the vertices of the generic marked poset polyhedron. We consider the contraction to
regular marked posets in Section 6 and study the facets in the situation of ranked

posets in Section 7.

1. Marked poset polyhedra

1.1. Notations. For a polyhedron Q we denote by F(Q) the face lattice of Q [17].
A partially ordered set (P,≤) is a set P together with a reflexive, transitive and

anti-symmetric relation ≤. We use the usual short term poset and omit the relation
≤ in notation when the considered partial order is clear from the context. A finite
poset is determined by its covering relations: we say p is covered by q and write

p ≺ q, if p < q and whenever p ≤ r ≤ q it follows that r = p or r = q.

1.2. Definitions. We start with recalling the notion of a marked poset.
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Definition 1.1. Let P be a finite poset and λ : P ∗ → R be a real valued order-
preserving map on an induced subposet P ∗ ⊆ P . We say (P, λ) is a marked poset

with marking λ, marked elements P ∗ and denote by P̃ = P \ P ∗ the set of all
unmarked elements.

We introduce the main object to be studied in this paper.

Definition 1.2. Let (P, λ) be a marked poset such that P ∗ contains at least all
minimal elements of P . For t ∈ [0, 1]P̃ we define the marked poset polyhedron Ot(P, λ)
as the set of all x ∈ RP satisfying the following conditions:

(1) for each a ∈ P ∗ an equation xa = λ(a),
(2) for each saturated chain p0 ≺ p1 ≺ p2 ≺ · · · ≺ pr ≺ p with p0 ∈ P ∗, pi ∈ P̃

for i ≥ 1, p ∈ P and r ≥ 0 an inequality

(1.1) (1 − tp)
(

tp1
· · · tpr

xp0
+ tp2

· · · tpr
xp1

+ · · · + tpr
xpr−1

+ xpr

)

≤ xp,

where tp = 0 if p ∈ P ∗. Note that the inequalities for p ∈ P ∗ and r = 0 may
be omitted, since they are consequences of λ being order-preserving.

Since the coordinates in P ∗ are fixed, we sometimes consider the projection of
Ot(P, λ) in RP̃ instead and we keep the same notation for the projection.

For the rest of the paper we assume (P, λ) to have at least all minimal elements
marked, so that Definition 1.2 always applies.

When not just the minimal but in fact all extremal elements of P are marked,
the polyhedra Ot(P, λ) will all be bounded and hence referred to as marked poset
polytopes. In this paper, whenever a terminology using the word “polyhedron” is

introduced, the same term with “polyhedron” replaced by “polytope” is always im-
plicitly defined for the case of all extremal elements of (P, λ) being marked.

We will refer to the family of all Ot(P, λ) for t ∈ [0, 1]P̃ as the universal family of

marked poset polyhedra associated to the marked poset (P, λ). When at least one
parameter tp is in (0, 1), we call Ot(P, λ) an intermediate marked poset polyhedron
and when all tp are in (0, 1) a generic marked poset polyhedron.

1.3. Examples: Marked Chain-Order Polyhedra. Marked poset polyhedra
generalize the notion of order polytopes and chain polytopes [16], marked order

polytopes and marked chain polytopes [1], as well as the marked chain-order poly-
topes in the sense of [4]. We explain in this subsection how to recover these polytopes

by specializing the parameter t.
Consider the marked poset polyhedra Ot(P, λ) for t being a vertex of the hypercube

[0, 1]P̃ , i.e., t ∈ {0, 1}P̃ . Each such t uniquely corresponds to a partition P̃ = C ⊔O
such that t is the characteristic function χC , i.e.,

tp = χC(p) =







1 for p ∈ C,

0 for p ∈ O.

In this case, we denote the marked poset polyhedron Ot(P, λ) by OC,O(P, λ) and refer
to it as a marked chain-order polyhedron. The elements of C will be called chain

elements and the elements of O order elements. We obtain the following description:



MARKED POSET POLYTOPES 5

Proposition 1.3. Given any partition P̃ = C ⊔ O, the marked chain-order polyhe-
dron OC,O(P, λ) is given by the following linear equations and inequalities:

(1) for each a ∈ P ∗ an equation xa = λ(a),
(2) for each chain element p ∈ C an inequality 0 ≤ xp,
(3) for each saturated chain a ≺ p1 ≺ p2 · · · ≺ pr ≺ b between elements a, b ∈

P ∗ ⊔O with all pi ∈ C and r ≥ 0 an inequality

xp1
+ · · · + xpr

≤ xb − xa.

As before, the case a, b ∈ P ∗ and r = 0 can be omitted.

Proof. Let t = χC ∈ {0, 1}P̃ and consider a chain p0 ≺ p1 ≺ · · · ≺ pr ≺ p with
p0 ∈ P ∗, pi ∈ P̃ for i ≥ 1, p ∈ P and r ≥ 0. This chain yields an inequality

(1.2) (1 − tp) (tp1
· · · tpr

xp0
+ tp2

· · · tpr
xp1

+ · · · + xpr
) ≤ xp,

where tp = 0 if p ∈ P ∗.
When p ∈ C we have tp = 1 and (1.2) becomes 0 ≤ xp. Since all minimal elements

are marked, there is such a chain ending in p for each p ∈ C and hence we get 0 ≤ xp

for all p ∈ C this way.
When p ∈ P ∗ ⊔O, we have tp = 0 and (1.2) reads

tp1
· · · tpr

xp0
+ tp2

· · · tpr
xp1

+ · · · + xpr
≤ xp.

Since tpi
= χC(pi), letting k ≥ 0 be maximal such that pk ∈ P ∗ ⊔ O, we obtain

xpk
+ xpk+1

+ · · · + xpr
≤ xp,

which is equivalent to

xpk+1
+ · · · + xpr

≤ xp − xpk
.

Conversely, consider any chain a ≺ p1 ≺ p2 · · · ≺ pr ≺ b between elements a, b ∈
P ∗⊔O with all pi ∈ C. If a ∈ P ∗, the chain is of the type to give a defining inequality
as in Definition 1.2 and we immediately get

xp1
+ · · · + xpr

≤ xb − xa.

If a ∈ O, extend the chain downward to a marked element to obtain a chain

q0 ≺ q1 ≺ · · · ≺ ql ≺ a ≺ p1 ≺ · · · ≺ pr ≺ n.

Since a is the last element in the chain contained in P ∗ ⊔O, the above simplification
for the inequality given by this chain yields

xp1
+ · · · + xpr

≤ xb − xa. �

Remark 1.4. The term “marked chain-order polytope” is used differently in [4],
where the definition only allows partitions P̃ = C ⊔ O such that there is no pair

p ∈ O, q ∈ C with p < q, i.e., C is an order ideal in P̃ . We call such a partition
an admissible partition and refer to OC,O(P, λ) as an admissible marked chain-order
polyhedron (polytope). In this paper, we allow arbitrary partitions for marked chain-

order polyhedra instead of referring to this more general construction as “layered
marked chain-order polyhedra” as suggested in [4].

When all tp = 0 (resp. all tp = 1) for p ∈ P̃ and P ∗ contains all extremal elements of

P , the marked poset polyhedron Ot(P, λ) coincides with the marked order polytope
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O(P, λ) (resp. the marked chain polytope C(P, λ)) introduced in [1]. The order
polytopes (resp. chain polytopes) defined in [16] are special marked order polytopes

(resp. marked chain polytopes), see [1].

2. Properties of marked poset polyhedra

2.1. Transfer Maps. We will continue by proving that the polyhedra defined in Def-

inition 1.2 are in fact images of the marked order polyhedron under a parametrized
transfer map.

Theorem 2.1. For t ∈ [0, 1]P̃ , the maps ϕt, ψt : RP → RP defined by

ϕt(x)p =







xp if p ∈ P ∗,

xp − tp maxq≺p xq otherwise,

ψt(y)p =







yp if p ∈ P ∗,

yp + tp maxq≺p ψt(y)q otherwise,

are mutually inverse. Furthermore, ϕt restricts to a piecewise-linear bijection from
O(P, λ) to Ot(P, λ).

Note that ψt is well-defined, since all minimal elements in P are marked. Given
t, t′ ∈ [0, 1]P̃ the maps ψt and ϕt′ compose to a piecewise-linear bijection

θt,t′ = ϕt′ ◦ ψt : Ot(P, λ) −→ Ot′(P, λ),

such that ϕt = θ0,t and ψt = θt,0. We call the maps θt,t′ transfer maps.

Proof of Theorem 2.1. We start by showing that the maps are mutually inverse. For
p ∈ P ∗ – so in particular for p minimal in P – we immediately obtain ψt(ϕt(x))p =
xp and ϕt(ψt(y))p = yp. Hence, let p be non-minimal, unmarked and assume by

induction that ψt(ϕt(x))q = xq and ϕt(ψt(y))q = yq hold for all q < p. We have

ψt(ϕt(x))p = ϕt(x)p + tp max
q≺p

ψt(ϕt(x))q = ϕt(x)p + tp max
q≺p

xq = xp

and

ϕt(ψt(y))p = ψt(y)p − tp max
q≺p

ψt(y)q = yp.

Hence, the maps are mutually inverse.
We now show that ϕt maps O(P, λ) into Ot(P, λ). Let x ∈ O(P, λ) and y = ϕt(x).

Given any saturated chain p0 ≺ p1 ≺ p2 ≺ · · · ≺ pr ≺ p with p0 ∈ P ∗, pi ∈ P̃ for
i ≥ 1 and p ∈ P , we have ypi

≤ xpi
− tpi

xpi−1
for i ≥ 1 by definition of ϕt. Hence,

(2.1)

(1 − tp)
(

tp1
· · · tpr

yp0
+ tp2

· · · tpr
yp1

+ · · · + ypr

)

≤ (1 − tp)
(

tp1
· · · tpr

xp0
+ tp2

· · · tpr
(xp1

− tp1
xp0

) + · · · + (xpr
− tpr

xpr−1
)
)

= (1 − tp)xpr
≤ (1 − tp) maxq≺p xq ≤ xp − tp maxq≺p xq = yp.

Thus, we have shown that y ∈ Ot(P, λ) as it satisfies (1.1) for all chains.
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Finally, we show that ψt maps Ot(P, λ) into O(P, λ). Let y ∈ Ot(P, λ) and
x = ψt(y). Now consider any covering relation q ≺ p. If q is marked, the inequality

(1.1) given by the chain q ≺ p yields

yp ≥ (1 − tp)xq.

If q is not marked, set pr := q and inductively pick pi−1 such that xpi−1
= maxq′≺pi

xq′

until ending up at a marked element p0. Inequality (1.1) given by the chain

p0 ≺ p1 ≺ · · · ≺ pr = q ≺ p.

still yields

yp ≥ (1 − tp) (tp1
· · · tpr

yp0
+ tp2

· · · tpr
yp1

+ · · · + ypr
)

= (1 − tp)
(

tp1
· · · tpr

xp0
+ tp2

· · · tpr
(xp1

− tp1
xp0

) + · · · + tpr
(xpr−1

− tpr−1
xpr−2

) + yq

)

= (1 − tp)
(

tpr
xpr−1

+ yq

)

= (1 − tp)
(

tq max
q′≺q

xq′ + yq

)

= (1 − tp)xq.

Hence, if p is not marked, we have

xp = yp + tp max
q′≺p

xq′ ≥ yp + tpxq ≥ xq.

If p is marked, tp = 0 so xp = yp ≥ xq. Thus, all defining conditions of O(P, λ) are
satisfied. �

Remark 2.2. In contrast to the transfer maps defined in [16, Theorem 3.2] and [1,
Theorem 3.4], the inverse transfer map ψt in Theorem 2.1 is given using a recursion.
Unfolding the recursion, we might as well express the inverse transfer map for p ∈ P̃

in the closed form

ψt(y)p = max
c

(tp1
· · · tpr

yp0
+ tp2

· · · tpr
yp1

+ · · · + ypr
) ,

where the maximum ranges over all saturated chains c : p0 ≺ p1 ≺ · · · ≺ pr with
p0 ∈ P ∗, pi ∈ P̃ for i ≥ 1 and r ≥ 0 ending in pr = p.

In examples it is often convenient to consider the projected polyhedron Ot(P, λ)
in RP̃ . Accordingly we define projected transfer maps.

Definition 2.3. Denote by πP̃ the projection RP → RP̃ and by ιλ : RP̃ → RP the
inclusion given by ι(x)a = λ(a) for all a ∈ P ∗. Define the projected transfer maps
ϕt, ψt : RP̃ → RP̃ by πP̃ ◦ ϕt ◦ ιλ and πP̃ ◦ ψt ◦ ιλ, respectively.

2.2. Subdivision into products of simplices and simplicial cones. In [14,
Section 2.3] the authors introduced a polyhedral subdivision of the marked order

polytope into products of simplices. We briefly recall the analogous construction of
this subdivision for possibly unbounded polyhedra to later transfer it to all marked

poset polyhedra.
Assume that (P, λ) is a marked poset with at least all minimal elements marked.

Let I : ∅ = I0 ( I1 ( · · · ( Ir = P be a chain of order ideals in P . For each p ∈ P

we denote by i(I, p) the smallest index k for which p ∈ Ik. This chain is said to be
compatible with the marking λ, if for any a, b ∈ P ∗,

i(I, a) < i(I, b) if and only if λ(a) < λ(b).
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Every such chain of order ideals gives a partition πI of P into blocks by letting
Bk = Ik\Ik−1 for k = 1, . . . , r. A block Bk is called restricted, if P ∗ ∩ Bk 6= ∅.

Since I is compatible with λ, we obtain a quotient marked poset (P/πI , λ/πI) as
in [15, Proposition 3.9], where P/πI is the induced poset of blocks in π, (P/πI)∗ is
the set of restricted blocks in πI and λ/πI : (P/πI)∗ → R is the marking defined by

(λ/πI)(Bk) = λ(a) for a restricted block Bk containing a marked element a.
The poset P/πI admits a linear extension PI by demanding Bk ≤ Bℓ if and only

if k ≤ ℓ. The compatibility of λ with I implies that the marking λ/πI yields a strict
marking λI on PI. This gives surjections of marked posets

(P, λ) → (P/πI , λ/πI) → (PI, λI),

where the first map is the quotient map given in [15, Proposition 3.9], and the second

map is a linear extension. By [15, Proposition 3.11], we obtain an inclusion of marked
order polyhedra

O(PI, λI) →֒ O(P, λ).

We let FI denote the image of O(PI , λI) in O(P, λ), it consists of all points
x ∈ O(P, λ) which are constant on each block Bk and weakly increasing along the

linear order B1, . . . , Br of the blocks. By an argument analogous to [14, Lemma 2.5],
FI is a product of simplices and simplicial cones, which provides a subdivision of
O(P, λ) into products of simplices and simplicial cones.

2.3. Integrality, Integral Closure and Unimodular Equivalence. When (P, λ)

comes with an integral marking, so λ(a) ∈ Z for all a ∈ P ∗, the authors of [1] already
showed that O(P, λ) and C(P, λ) are Ehrhart equivalent lattice polytopes when all

the extremal elements in P are marked. In [9] a necessary and sufficient condition
for O(P, λ) and C(P, λ) to be unimodular equivalent is given, which is generalized to
admissible marked chain-order polytopes in [4]. In loc.cit, it is also shown that all

the admissible marked chain-order polytopes are integrally closed lattice polytopes.
In this section we assume integral markings containing all extremal elements

throughout and generalize the results above to not necessarily admissible partitions.

Let us start by showing that under these assumptions all the marked chain-order
polytopes are lattice polytopes.

Proposition 2.4. For t ∈ {0, 1}P̃ the marked chain-order polytope Ot(P, λ) is a

lattice polytope.

Proof. When t ∈ {0, 1}P̃ , the transfer map ϕt : O(P, λ) → Ot(P, λ) is piecewise-
unimodular. In particular, it maps lattice points to lattice points. When im(λ) ⊆ Z,
we know that the marked poset polytope O(P, λ) is a lattice polytope. We consider

the subdivision into products of simplices from Section 2.2. As the image of the
lattice polytope O(PI, λI) under the lattice-preserving map O(PI , λI) → O(P, λ),

each cell FI is a lattice polytope. Hence, all vertices in the subdivision of O(P, λ) are
lattice points. Applying ϕt we obtain a subdivision of Ot(P, λ) with still all vertices
being lattice points. Since the vertices of Ot(P, λ) have to appear as vertices in the

subdivision, we conclude that Ot(P, λ) is a lattice polytope. �

Corollary 2.5. The polytopes Ot(P, λ) for t ∈ {0, 1}P̃ are all Ehrhart equivalent.
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Proof. This is an immediate consequence of the transfer map being a piecewise-
unimodular bijection when t ∈ {0, 1}P̃ . �

Proposition 2.6. The polytopes Ot(P, λ) for t ∈ {0, 1}P̃ are all integrally closed.

Proof. We will reduce Ot(P, λ) being integrally closed to the fact that unimodular
simplices are integrally closed. Since we have a polyhedral subdivision of Ot(P, λ)
into cells ϕt(FI), it suffices to show that each cell is integrally closed. On the cell FI ,

the transfer map ϕt is the restriction of a unimodular map RP → RP . Hence, it is
enough to show that each cell FI in the subdivision of O(P, λ) is integrally closed. In
fact, since FI is the image of O(PI, λI) under a map that identifies the affine lattices

spanned by the polytopes, it suffices to show that marked order polytopes associated
to linear posets with integral markings are integrally closed. Since these are products
of marked order polytopes associated to linear posets with integral markings only at

the minimum and maximum, it is enough to show that these are integrally closed.
However, these are just integral dilations of unimodular simplices. �

Having identified a family of Ehrhart equivalent integrally closed lattice polytopes,

we now move on to the question of unimodular equivalences within this family.
Given a marked poset (P, λ), we call an element p ∈ P̃ a star element if p is

covered by at least two elements and there are at least two different saturated chains

from a marked element to p. This notion has been used in [4] to study unimodular
equivalence of admissible marked chain-order polytopes.

A finer notion we will use in our discussion is that of a chain-order star element
with respect to a partition C ⊔O of P̃ .

Definition 2.7. Given a partition P̃ = C ⊔ O, an element q ∈ O is called a chain-
order star element if there are at least two different saturated chains s ≺ q1 ≺ · · · ≺
qk ≺ q with s ∈ P ∗ ⊔O and all qi ∈ C and there are at least two different saturated

chains q ≺ q1 ≺ · · · ≺ qk ≺ s with s ∈ P ∗ ⊔ O and all qi ∈ C.

Note that if C ⊔ O and (C ⊔ {q}) ⊔ (O \ {q}) are admissible partitions for some

q ∈ O, i.e., C is an order ideal in P̃ and q is minimal in O, then q is an (O,C)-star
element if and only it is a star element in the sense of [4].

Proposition 2.81. Let C ⊔O be a partition of P̃ and q ∈ O not a chain-order star

element. Let O′ = O \ {q} and C ′ = C ⊔ {q}, then OC,O(P, λ) and OC′,O′(P, λ) are
unimodular equivalent.

Proof. We have to consider the following two cases.

(1) There is exactly one saturated chain s ≺ q1 ≺ · · · ≺ qk ≺ q with s ∈ P ∗ ⊔ O

and all qi ∈ C. Define the unimodular map Ψ: RP → RP by letting

Ψ(x)p =







xq − xs − · · · − xqk
if p = q,

xp otherwise.

We claim that Ψ(OC,O(P, λ)) = OC′,O′(P, λ). The defining inequalities of

OC,O(P, λ) involving xq are the following:

1In the proof of Proposition 2.8 we do not use integrality of the marking or P ∗ containing all

extremal elements. Hence, the statement still holds when P ∗ only contains all minimal elements

and the marking is not integral.
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(a) for each saturated chain q ≺ p1 ≺ p2 · · · ≺ pr ≺ b with b ∈ P ∗ ⊔ O,
pi ∈ C and r ≥ 0 an inequality

xp1
+ · · · + xpr

≤ xb − xq,

(b) the inequality

xq1
+ · · · + xqk

≤ xq − xs.

Applying Ψ, these translate to
(a) for each saturated chain q ≺ p1 ≺ p2 · · · ≺ pr ≺ b with b ∈ P ∗ ⊔ O,

pi ∈ C and r ≥ 0 an inequality

(2.2) xq1
+ · · · + xqk

+ xq + xp1
+ · · · + xpr

≤ xb − xs,

(b) the inequality

(2.3) 0 ≤ xq.

These are exactly the defining properties of OC′,O′(P, λ) involving xq: the

saturated chains a ≺ p1 ≺ p2 · · · ≺ pr ≺ b with a, b ∈ P ∗ ⊔O′ and all pi ∈ C ′

involving q at index k, must have a = s and pi = qi for i ≤ k, so they yield

the inequalities in (2.2). The inequality in (2.3) is what we get from q ∈ C ′.
(2) There is exactly one saturated chain q ≺ q1 ≺ · · · ≺ qk ≺ s with s ∈ P ∗ ⊔ O

and all qi ∈ C. An analogous argument as above shows that in this case the

map Ψ: RP → RP defined by

Ψ(x)p =







xs − xq − · · · − xqk
if p = q,

xp otherwise

yields an unimodular equivalence of OC,O(P, λ) and OC′,O′(P, λ). In this
case every chain involving q that is relevant for OC′,O′(P, λ) must end in

· · · ≺ q ≺ q1 ≺ · · · ≺ qk ≺ s. �

2.4. Combinatorial Types. Having studied the marked chain-order polyhedra ob-

tained for t ∈ {0, 1}P̃ , we will now consider intermediate and generic parameters. In
this section we show that the combinatorial type of Ot(P, λ) stays constant when t
varies inside the relative interior of a face of the parametrizing hypercube [0, 1]P̃ .

The idea is to translate whether a defining inequality of Ot(P, λ) is satisfied for
some ϕt(x) with equality into a condition on x depending only on the face the
parameter t is contained in. The key ingredient will be a relation on P depending

on x ∈ O(P, λ).

Definition 2.9. Given x ∈ O(P, λ) let ⊣x be the relation on P given by

q ⊣x p ⇐⇒ q ≺ p and xq = max
q′≺p

xq′ .

Proposition 2.10. Let x ∈ O(P, λ). Given a saturated chain p0 ≺ p1 ≺ · · · ≺ pr ≺
p with p0 ∈ P ∗, pi ∈ P̃ for i ≥ 1 and p ∈ P , the corresponding defining inequality

(1.1) is satisfied with equality by ϕt(x) if and only if one of the following is true:

(1) tp = 1 and xp = maxq≺p xq,
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a1 a2

· · ·
ak

p1

p2

pr

p

Figure 1. The condition on p ∈ P in Proposition 2.12.

(2) tp < 1 and xp = xpr
as well as

pk−1 ⊣x pk ⊣x · · · ⊣x pr,

where k ≥ 1 is the smallest index such that tpi
> 0 for all i ≥ k.

Proof. Let y = ϕt(x) ∈ Ot(P, λ). When tp = 1, the inequality (1.1) for y reads
0 ≤ yp which is equivalent to

max
q≺p

xq ≤ xp.

When tp < 1 we may simplify (1.1) to

(2.4) (1 − tp)
(

tpk
· · · tpr

ypk−1
+ · · · + ypr

)

≤ yp,

where k ≥ 1 is the smallest index such that tpi
> 0 for all i ≥ k. The coefficients on

the left hand side of (2.4) are all strictly positive and inspecting the estimation in

(2.1) yields equality if and only if

xpi−1
= max

q≺pi

xq for i ≥ k and

xpr
= xp. �

Since the conditions of Proposition 2.10 only depend on each tp being 0, 1 or in
between, we obtain the following corollary.

Corollary 2.11. The combinatorial type of Ot(P, λ) is constant along relative inte-
riors of faces of the parametrizing hypercube [0, 1]P̃ .

Furthermore, some of the tp do not affect the combinatorial type at all:

Proposition 2.12. The combinatorial type of Ot(P, λ) does not depend on tp for
p ∈ P̃ such that there is a (unique) chain p1 ≺ p2 ≺ · · · ≺ pr ≺ pr+1 = p, where all
pi ∈ P̃ , p1 covers only marked elements and pi is the only element covered by pi+1

for i = 1, . . . , r.

The condition on p in Proposition 2.12 is equivalent the subposet of all elements

below p being of the form depicted in Figure 1.
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Proof. Let t, t′ ∈ [0, 1]P̃ such that tq = t′q for q 6= p and consider the transfer map
θt,t′ . For y ∈ Ot(P, λ) and q 6= p we have

θt,t′(y)q = ϕt′(ψt(y))q = ψt(y)q − t′q max
q′≺q

ψt(y)q′ = ψt(y)q − tq max
q′≺q

ψt(y)q′ = yq.

For the p-coordinate note that the given condition means walking down from p in
the Hasse diagram of (P, λ) we are forced to walk along p ≻ pr · · · ≻ p1 and p1 covers

only marked elements. Hence, we have

θt,t′(y)p = ψt(y)p − t′p max
q≺p

ψt(y)q = ψt(y)p − t′pψt(y)pr

= yp + tpypr
+ tptpr

ypr−1
+ tptpr−1

tpr
ypr−2

· · · + tptp1
tp2

· · · tpr
max
a≺p1

λ(a)

− t′p

(

ypr
+ tpr

ypr−1
+ tpr−1

tpr
ypr−2

· · · + tp1
tp2

· · · tpr
max
a≺p1

λ(a)
)

= yp + (tp − t′p)
(

ypr
+ tpr

ypr−1
+ tpr−1

tpr
ypr−2

· · · + tp1
tp2

· · · tpr
max
a≺p1

λ(a)
)

.

We conclude that θt,t′ restricts to an affine isomorphism Ot(P, λ) ∼−→ Ot′(P, λ). �

Corollary 2.13. Let k be the number of elements in P̃ not satisfying the condition

in Proposition 2.12, there are at most 3k different combinatorial types of marked
poset polyhedra associated to a marked poset (P, λ). �

3. Continuous Degenerations

By Corollary 2.11, the combinatorial type of Ot(P, λ) is constant along the relative
interiors of the faces of the hypercube [0, 1]P̃ . Assume we are looking at some Ot(P, λ)
with tp ∈ (0, 1) for a fixed p. Continuously changing tp to 0 or 1, the combinatorial

type of the polyhedron stays constant until it possibly jumps, when reaching 0 or 1,
respectively. This motivates to think of the two polyhedra for tp = 0 and tp = 1 as

continuous degenerations of the polyhedron for any tp ∈ (0, 1).
In this section we formally introduce a concept of continuous degenerations of

polyhedra to then apply it to marked poset polyhedra.

3.1. Continuous Degenerations of Polyhedra. We start by defining continuous
deformations of polyhedra, mimicking the situation in the universal family.

Definition 3.1. Given two polyhedra Q0 and Q1 in Rn, a continuous deformation
from Q0 to Q1 consists of the following data:

(1) A continuous map ρ : Q0 × [0, 1] → Rn, such that each ρt = ρ(−, t) is an

embedding, ρ0 is the identical embedding of Q0 and the image of ρ1 is Q1.
(2) Finitely many continuous functions f 1, f 2, . . . , fk : Rn × [0, 1] → R such that

for all i and t the maps f i
t = f i(−, t) : Rn → R are affine linear forms and

satisfy

ρt(Q0) =
{

x ∈ Rn
∣

∣

∣ f i
t (x) ≥ 0 for all i

}

.

Hence, the images ρt(Q0) are all polyhedra and we write Qt for ρt(Q0) and say
(Qt)t∈[0,1] is a continuous deformation when the accompanying maps ρ and f i are

clear from the context.
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x1

x2

1 2

1

2

(a) Q0

x1

x2

1 2

1

2

(b) Q 1

2

x1

x2

1 2

1

2

(c) Q1

Figure 2. The polytopes in the continuous degeneration from Exam-
ple 3.4 for t = 0, t = 1

2
and t = 1.

Note that a continuous deformation of polyhedra as defined here consists of both a
map moving the points around and a continuous description in terms of inequalities
for all t ∈ [0, 1].

Definition 3.2. A continuous deformation (Qt)t∈[0,1] as in Definition 3.1 is called a
continuous degeneration if for all x ∈ Q0, t < 1 and i = 1, . . . , k we have f i

t (ρt(x)) = 0
if and only if f i

0(x) = 0.

From this definition we immediately obtain the following.

Proposition 3.3. If (Qt)t∈[0,1] is a continuous degeneration, the polyhedra Qt for
t < 1 are all combinatorially equivalent and ρt preserves faces and their incidence

structure.

Proof. Let the data of the continuous degeneration be given as in Definition 3.1. For
y ∈ Qt denote by It(y) the set of all i ∈ [k] such that f i

t (y) = 0. The set of all It(y)

for y ∈ Qt ordered by reverse inclusion is isomorphic to F(Qt) \ {∅} since relative
interiors of faces of Qt correspond to regions of constant It.

Since for all x ∈ Q0, t < 1 and i = 1, . . . , k we have f i
t (ρt(x)) = 0 if and only

if f i
0(x) = 0, the sets It(ρt(x)) are fixed for t < 1 and hence ρt preserves the face

structure. �

We continue by illustrating the definition of continuous degenerations in an exam-
ple before proceeding with the general theory.

Example 3.4. For t ∈ [0, 1] let Qt ⊆ R2 be the polytope defined by the inequalities

0 ≤ x1 ≤ 2, 0 ≤ x2 as well as

x2 ≤ (1 − t)x1 + 1, and

x2 ≤ (1 − t)(2 − x1) + 1.

For t = 0, t = 1
2

and t = 1 we have illustrated the polytope in Figure 2. Together
with the map ρt : Q0 → R2 given by ρt(x)1 = x1 for all t and

ρt(x)2 =







x2
(1−t)x1+1

x1+1
for x1 ≤ 1,

x2
(1−t)(2−x1)+1

(2−x1)+1
for x1 ≥ 1
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we obtain a continuous degeneration. Starting from the pentagon in Figure 2a at
t = 0 we see increasingly compressed pentagons with the two top edges becoming

more flat-angled until ending up with the rectangle in Figure 2c at t = 1. The
map ρt just scales the x2 coordinates accordingly, preserving the face structure for
t < 1. ♦

The key result on continuous degenerations that will allow conclusions on the face

structure of degenerations is that during a continuous degeneration, relative interiors
of faces always map into relative interiors of faces. In other words, continuous
degenerations can not “fold” faces of Q0 so they split into different faces of Q1, but

only “straighten” some adjacent faces of Q0 to become one face of Q1.

Proposition 3.5. Let (Qt)t∈[0,1] be a continuous degeneration of polyhedra. When-

ever F is a face of Q0, there is a unique face G of Q1 such that

ρ1(relintF ) ⊆ relintG.

Proof. As in the previous proof, let It(y) denote the set of indices i ∈ [k] such that
f i

t (y) = 0. Using these incidence sets we may rephrase the proposition as follows:
whenever x, x′ ∈ Q0 satisfy I0(x) = I0(x′), they also satisfy I1(ρ1(x)) = I1(ρ1(x′)).

Let F be the face of Q0 having both x and x′ in its relative interior and assume
there exists a j ∈ I1(ρ1(x)) \ I1(ρ1(x′)) for sake of contradiction. Hence, we have

f j
1 (ρ1(x)) = 0 while f j

1 (ρ1(x
′)) > 0. Let d denote the dimension of F then relintF is

a (topological) manifold of dimension d. Since ρ1 is an embedding, ρ1(relintF ) is a
manifold of dimension d as well. Since the affine hull of ρt(relintF ) is of dimension

d for all t < 1, we conclude that the affine hull of ρ1(relintF ) is of dimension at
most d. To see this, take any d + 1 points y0, . . . , yd in ρ1(relintF ). Their images
ρt(ρ

−1
1 (y0)), . . . , ρt(ρ

−1
1 (yd)) in ρt(relintF ) are affinely dependent for t < 1, so they

have to be affinely dependent for t = 1 as well by the continuity of ρ in t.
But as ρ1(relintF ) is a manifold of dimension d, we conclude that its affine hull

has dimension exactly d and ρ1(relintF ) is an open subset of its affine hull. Given
that both ρ1(x) and ρ2(x′) are points in ρ1(relintF ), we conclude that there exists
an ε > 0 such that the point

z = ρ1(x) + ε(ρ1(x) − ρ1(x′))

is still contained in ρ1(relintF ). In particular, z ∈ Q1. However, since f j
1 is an affine

linear form, we have

f j
1 (z) = (1 + ε)f j

1 (ρ1(x)) − εf j
1 (ρ1(x′)) < 0.

This contradicts z ∈ Q1, which finishes the proof. �

The consequence of Proposition 3.5 is that continuous degenerations induce maps
between face lattices.

Corollary 3.6. When (Qt)t∈[0,1] is a continuous degeneration of polyhedra, we have

a surjective order-preserving map of face lattices

dg : F(Q0) −→ F(Q1)
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determined by the property

ρ1(relintF ) ⊆ relint dg(F ).

for non-empty F and dg(∅) = ∅. Furthermore, the map satisfies dim(dg(F )) ≥
dimF for all F ∈ F(Q0). �

We will refer to the map in Corollary 3.6 as the degeneration map. Before coming

back to marked poset polyhedra, we finish with a result on the f -vectors of continuous
degenerations.

Proposition 3.7. Let (Qt)t∈[0,1] be a continuous degeneration of polyhedra. We have
fi(Q1) ≤ fi(Q0) for all i.

Proof. Let G be an i-dimensional face of Q1. We claim that there is at least one
i-dimensional face F of Q0 such that dg(F ) = G. Since every polyhedron is the
disjoint union of the relative interiors of its faces and ρ1 is a bijection, we have

relintG =
⊔

F ∈dg−1(G)

ρ1(relintF ).

Since relintG is a manifold of dimension dimG and each ρ1(relintF ) is a manifold

of dimension dimF ≤ dimG, there has to be at least one F ∈ dg−1(G) of the same
dimension as G. �

3.2. Continuous Degenerations in the Universal Family. We are now ready
to apply the concept of continuous degenerations to the universal family of marked
poset polyhedra. Let us first identify for which pairs of parameters u, u′ ∈ [0, 1]P̃

we expect to have a continuous degeneration from Ou(P, λ) to Ou′(P, λ) and then
specify the deformation precisely.

Definition 3.8. Let u ∈ [0, 1]P̃ and let I ⊆ P̃ be the set of indices p, such that
up ∈ {0, 1}. Any u′ ∈ [0, 1]P̃ such that u′

p = up for p ∈ I is called a degeneration of

u.

Proposition 3.9. Let u′ be a degeneration of u. The map

ρ : Ou(P, λ) × [0, 1] −→ RP ,

(x, ξ) 7−→ θu,ξu′+(1−ξ)u(x)

is a continuous degeneration with the accompanying affine linear forms given by the

equations and inequalities in Definition 1.2 for t = ξu′ + (1 − ξ)u.

Proof. The map ρ together with the affine linear forms given by Definition 1.2 is a
continuous deformation by Theorem 2.1. The fact that ρ is a continuous degeneration
follows from Proposition 2.10. �

Now the machinery of continuous degenerations immediately yields degeneration
maps and results on the f -vectors of marked poset polyhedra.

Corollary 3.10. Let u, u′ ∈ [0, 1]P̃ such that u′ is a degeneration of u. The contin-
uous degeneration in Proposition 3.9 yields a degeneration map dgu,u′ : Ou(P, λ) →
Ou′(P, λ) in the sense of Corollary 3.6. In particular, the f -vectors satisfy

fi(Ou′(P, λ)) ≤ fi(Ou(P, λ)) for all i.
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Furthermore, given a degeneration u′′ of u′, the degeneration maps satisfy

dgu,u′′ = dgu′,u′′ ◦ dgu,u′ .

Proof. After applying Proposition 3.5, Corollary 3.6 and Proposition 3.7 to the situ-
ation at hand, all that remains to be proven is the statement about compositions of

degeneration maps. This is an immediate consequence of θu,u′′ = θu′,u′′ ◦ θu,u′ . �

4. Tropical Arrangements and Subdivisions

As discussed in Section 2.2, the marked order polyhedron O(P, λ) comes with a
subdivision S into products of simplices and simplicial cones. Since the parametrized

transfer map ϕt is linear on each cell of S, we have a transferred subdivision St of
Ot(P, λ) for all t ∈ [0, 1]P̃ .

In this section we introduce a coarsening of S into linearity regions of ϕ, obtained

by intersecting O(P, λ) with the cells in a tropical hyperplane arrangement deter-
mined by (P, λ). Our main reason to consider this subdivision is a result in Section 5,
where we will show that the vertices of generic marked poset polyhedra are given

by the vertices in this subdivision and hence can be obtained by first subdividing
the marked order polyhedron to then transfer the vertices in the subdivision. The

notation we use here is close to [8], where the combinatorics of tropical hyperplane
arrangements are discussed in detail.

4.1. Tropical Hyperplane Arrangements. In tropical geometry, the usual ring
structure (R,+, ·) we use for Euclidean geometry is replaced by the tropical semiring

(R ∪ {−∞},⊕,⊙), where a ⊕ b = max(a, b), a ⊙ b = a + b and −∞ is the identity
with respect to ⊕. Hence, a tropical polynomial is a convex piecewise-linear function

in ordinary terms:

⊕

a∈Nn

ca ⊙ x⊙a1

1 ⊙ · · · ⊙ x⊙an

n = max
{

a1x1 + · · · + anxn + ca : a ∈ Nn
}

.

Given a tropical linear form

α =
n

⊕

i=1

ci ⊙ xi = max
{

xi + ci : i = 1, . . . , n
}

,

where some—but not all—coefficients are allowed to be −∞, one defines a tropical
hyperplane Hα consisting of all x ∈ Rn such that α is non-differentiable at x or
equivalently, the maximum in α(x) is attained at least twice.

We may pick some of the coefficients ci to be −∞ to obtain tropical linear forms
only involving some of the coordinates. For example when n = 3 we could have

α = (1 ⊙ x1) ⊕ (3 ⊙ x2) = max{1 + x1, 3 + x2} = (1 ⊙ x1) ⊕ (3 ⊙ x2) ⊕ (−∞ ⊙ x3)

and the tropical hyperplane Hα would just be the usual hyperplane 1 + x1 = 3 + x2.
Given a tropical hyperplane, one obtains a polyhedral subdivision of Rn with facets
the linearity regions of α and the skeleton of codimension 1 being Hα as follows: for

a tropical hyperplane H = Hα in Rn define the support supp(H) as the set of all
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i ∈ [n] such that the coefficient ci is different from −∞ in α. For any non-empty
subset L ⊆ supp(H) we have a cell

FL(H) =

{

x ∈ Rn : cl + xl = max
i∈supp(H)

(xi + ci) for all l ∈ L

}

.

The facets F{l} for l ∈ supp(H) are the linearity regions of α and the cells FL for

|L| ≥ 2 form a subdivision of Hα. Given any x ∈ Rn, we define its signature sigH(x)
as the unique L ⊆ supp(H) such that x is in the relative interior of FL. Equivalently,
the signature of x is the set of indices achieving the maximum in α(x),

sigH(x) = argmax
i∈supp(H)

(xi + ci).

Using this terminology, we may also describe FL(H) as the set of all points x ∈ Rn

with L ⊆ sigH(x)

Now let H = {H1, H2, . . . , Hm} be a tropical hyperplane arrangement, that is, each
Hi is a tropical hyperplane Hαi

⊆ Rn for a tropical linear form αi. The common

refinement T (H) of the polyhedral subdivision of H1, H2, . . . , Hm gives a polyhedral
subdivision of Rn whose facets are the largest regions on which all αi are linear
and whose (n − 1)-skeleton is a subdivision of

⋃

Hi. To each x ∈ Rn we associate

the tropical covector tc(x) : [m] → 2[n] recording the signatures with respect to all
hyperplanes, that is

tc(x) =
(

sigH1
(x), sigH2

(x), . . . , sigHm
(x)

)

.

Hence, the cells of T (H) are enumerated by the appearing tropical covectors when
x varies over all points in Rn. The set of all these tropical covectors is called the
combinatorial type of H and denoted TC(H). For each τ ∈ TC(H) the corresponding

cell is given by

Fτ =
m
⋂

i=1

Fτi
(Hi)

and its relative interior consists of all x ∈ Rn such that tc(x) = τ .
To digest all these definitions, let us look at a small example before using the

introduced terminology to define a subdivision of marked poset polyhedra.

Example 4.1. Let n = 3 and consider the following tropical linear forms:

α1 = ((−2) ⊙ x1) ⊕ ((−1) ⊙ x2) ⊕ (0 ⊙ x3) = max{x1 − 2, x2 − 1, x3},

α2 = ((−2) ⊙ x1) ⊕ (0 ⊙ x2) ⊕ ((−∞) ⊙ x3) = max{x1 − 2, x2},

α3 = ((−1) ⊙ x1) ⊕ ((−∞) ⊙ x2) ⊕ (0 ⊙ x3) = max{x1 − 1, x3}.

Let H = {H1, H2, H3} be the tropical hyperplane arrangement with Hi given by
αi for i = 1, 2, 3. The supports of the three hyperplanes are supp(H1) = {1, 2, 3},
supp(H2) = {1, 2} and supp(H3) = {1, 3}. Since tropical hyperplanes are invariant

under translations along the all-one vector (1, 1, . . . , 1) ∈ Rn, we obtain a faithful
picture of the subdivision T (H) by just looking at the slice xn = 0. This is done
in Figure 3 for the example at hand with some of the appearing tropical covectors

listed. ♦
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x1

x2 H3 H2H1

(13, 12, 1)

(123, 2, 1)(23, 2, 13)
(1

,

2,
1)

(1, 1, 1)

(2, 2, 3)

(3, 2, 3)

(3, 2, 13)

Figure 3. The tropical hyperplane arrangement from Example 4.1
sliced at x3 = 0 with some of the appearing tropical covectors listed.

4.2. The Tropical Subdivision. We are now ready to introduce the tropical sub-

division of marked poset polyhedra. As before, let (P, λ) be a marked poset with at
least all minimal elements marked. The transfer maps ϕt of Theorem 2.1 give rise

to the tropical linear forms

αp = max
q≺p

xq =
⊕

q≺p

xq for p ∈ P̃ .

When p is not covering at least two elements, the tropical linear form αp has just

one term and defines an empty tropical hyperplane since the maximum can never
be achieved twice. Hence, let R denote the set of all p ∈ P̃ covering at least two

elements and define a tropical hyperplane arrangement H(P, λ) in RP with tropical
hyperplanes Hp = Hαp

for all p ∈ R. By construction, the facets of T (H(P, λ)) are
the linearity regions of ϕt for t ∈ (0, 1]P̃ .

The reason this subdivision will help study the combinatorics of marked poset
polytopes is the following: by Proposition 2.10 the combinatorics of Ot(P, λ) can be
determined by pulling points back to O(P, λ) and looking at the relation ⊣x. But

for r ∈ R and p ∈ P we have p ⊣x r if and only if p ∈ tc(x)r, so the information
encoded in ⊣x is equivalent to knowing the minimal cell of T (H(P, λ)) containing x.

Using this tropical hyperplane arrangement, we can define a polyhedral subdivision

of O(P, λ).

Definition 4.2. Let T (H(P, λ)) be the polyhedral subdivision of RP associated to
the marked poset (P, λ). The tropical subdivision T (P, λ) of O(P, λ) is given by the
intersection of faces of O(P, λ) with the faces of T (H(P, λ)):

T (P, λ) = {F ∩G |F ∈ F(O(P, λ)), G ∈ T (H(P, λ)) } .

For t ∈ [0, 1]P̃ define the tropical subdivision of Ot(P, λ) as

Tt(P, λ) = {ϕt(Q) |Q ∈ T (P, λ)} .

Note that Tt(P, λ) is polyhedral subdivision of Ot(P, λ) since ϕt is linear on each
G ∈ T (P, λ) by construction. In particular, Tt(P, λ) is a coarsening of the subdivision

St into products of simplices and simplicial cones.
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Figure 4. The marked poset from Example 5.2

5. Vertices in the Generic Case

Using the tropical subdivision from Section 4 and the concept of continuous de-
generations from Section 3, we are ready to prove a theorem describing the vertices

of generic marked poset polyhedra.

Theorem 5.1. The vertices of a generic marked poset polyhedron Ot(P, λ) with

t ∈ (0, 1)P̃ are exactly the vertices in its tropical subdivision Tt(P, λ).

As a consequence, the vertices of the generic marked poset polyhedron can be

obtained by subdividing the marked order polyhedron using the associated tropical
subdivision and transferring the obtained vertices via the transfer map ϕt to Ot(P, λ).

Furthermore, even for arbitrary t ∈ [0, 1]P̃ , the set of points obtained this way will
always contain the vertices of Ot(P, λ).

Before proceeding with the proof of Theorem 5.1 let us illustrate the situation
with an example.

Example 5.2. Let (P, λ) be the marked poset given in Figure 4. The hyperplane
arrangement H(P, λ) consists of just one tropical hyperplane given by the tropical

linear form

αr = max{x2, xp, xq} = x2 ⊕ xp ⊕ xq.

It divides the space RP into three regions where either x2, xp or xq is maximal among
the three coordinates. Intersecting this subdivision with O(P, λ) we obtain the the
tropical subdivision shown in Figure 5a, where the hyperplane itself is shaded in red.

We see the 11 vertices of the polytope depicted in green and 3 additional vertices
of the tropical subdivision that are not vertices of O(P, λ) in red. Since tp and tq
are irrelevant for the affine type of Ot(P, λ) by Proposition 2.12—and in fact only

get multiplied by 0 in the projected transfer map ϕt—we only need to consider the
parameter tr. In Figure 5b we see the tropical subdivision of Ot(P, λ) for tr = 1

2
.

Now all vertices that appear in the subdivision are green, i.e., they are vertices of the

polytope, as stated in Theorem 5.1. When tr = 1, we obtain the tropic subdivision
of the marked chain polytope C(P, λ) as shown in Figure 5c. Again, some of the

vertices in the subdivision are not vertices of the polytope. ♦

To prove Theorem 5.1, we first need a lemma simplifying the description of vertices

in T (P, λ). Recall that the tropical hyperplane arrangement introduced in Section 4
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xp

xq

xr

(a) O(P, λ)

xp

xq

xr

(b) O 1

2

(P, λ)

xp

xq

xr

(c) C(P, λ)

Figure 5. Tropical subdivision of the marked poset polytope from
Example 5.2 for tr = 0, 1

2
and 1. For generic t the vertices of the

subdivision coincide with the vertices of the polytope.

has tropical hyperplanes enumerated by R, the set of all unmarked elements in P
covering at least two other elements.

Lemma 5.3. Let v be a vertex in the tropical subdivision T (P, λ) of a marked or-
der polyhedron O(P, λ) and denote by F and G the minimal faces of O(P, λ) and

T (H(P, λ)) containing v, respectively, so that {v} = F ∩ G. Denote by RG the set
of all r ∈ R such that | tc(v)r| ≥ 2 and let

G′ =
{

x ∈ RP
∣

∣

∣ xq = xq′ for all r ∈ RG, q, q′ ∈ tc(v)r

}

.

Then

{v} = F ∩G = F ∩G′.

Proof. By definition of the tropical subdivision T (H(P, λ)) of RP , we have

G =
{

x ∈ RP
∣

∣

∣ tc(v)r ⊆ tc(x)r for all r ∈ R
}

,

where tc(v)r ⊆ tc(x)r is equivalent to xq = xq′ for q, q′ ∈ tc(v)r and xq′′ ≤ xq for

q′′ ≺ r with q′′ /∈ tc(v)r and q ∈ tc(v)r. Hence, we may write

G = G′ ∩H ∩ L,

where

G′ =
{

x ∈ RP
∣

∣

∣xq = xq′ for all r ∈ RG, q, q′ ∈ tc(v)r

}

,

H =
{

x ∈ RP
∣

∣

∣xq′′ ≤ xq for all r ∈ RG, q′′ ≺ r with q′′ /∈ tc(v)r, q ∈ tc(v)r

}

,

L =
{

x ∈ RP
∣

∣

∣ tc(v)r ⊆ tc(x)r for all r ∈ R \RG

}

.

Since vq′′ < vq for q′′, q ≺ r with q′′ /∈ tc(v)r and q ∈ tc(v)r, we know that v is an
interior point of H . Since for r /∈ RG the set tc(v)r has exactly one element, there

are no conditions xq = xq′ for q, q′ ∈ tc(v)r and by the previous argument v is also
an interior point of L. Hence, we have

{v} = (F ∩G′) ∩ (H ∩ L),
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where v is an interior point of H ∩L. Since RP is Hausdorff and F ∩G′ is connected,
this implies {v} = F ∩G′. �

We are now ready to prove Theorem 5.1. As a reference on face partitions of

marked posets as used in the following proof we refer to [15, Section 3].

Proof of Theorem 5.1. Let v be a vertex in the tropical subdivision T (P, λ) of O(P, λ),
so that {v} = F ∩ G, where F is the minimal face of O(P, λ) containing v and G
is the minimal cell in T (H(P, λ)) containing v. Let tc(G) be the tropical covector

corresponding to G and denote by RG the set of all r ∈ R such that | tc(G)r| ≥ 2. In
other words, RG consists of all p ∈ P̃ such that at least two different q ≺ p maximize

vq. Fix u ∈ [0, 1]P̃ with up ∈ (0, 1) for p ∈ RG and up = 0 otherwise.
We claim that ϕu(v) is a vertex of Ou(P, λ). Since u is a degeneration of any

t ∈ (0, 1)P̃ , we can conclude by Proposition 3.5 that ϕt(v) is then also a vertex of

Ot(P, λ) whenever t ∈ (0, 1)P̃ .
By Lemma 5.3 we have {v} = F ∩ G′, where G′ is defined by the conditions

xq = xq′ for r ∈ RG, q, q′ ∈ tc(v)r. Let Q be the minimal face of Ou(P, λ) containing

ϕu(v). If we can show ψu(Q) ⊆ F and ψu(Q) ⊆ G′, we can conclude that Q is a
single point and hence ϕu(v) a vertex. Since 0 ∈ [0, 1]P̃ is a degeneration of u, we

have ψu(relintQ) ⊆ relintF by Proposition 3.5 and conclude ψu(Q) ⊆ F by taking
closures.

To show that ψu(Q) ⊆ G′, let r ∈ RG and q ∈ tc(G)r = tc(v)r. For y ∈ Q

with image z = ψu(y) in O(P, λ), we will show q ⊣z r, so q ∈ tc(z)r. Hence, we
obtain tc(v)r ⊆ tc(z)r for r ∈ RG which implies z ∈ G′. Our strategy is as follows:
construct a chain c corresponding to a defining inequality of Ou(P, λ) satisfied by

ϕu(v) with equality, such that q ⊣v r is one of the corresponding conditions on v in
Proposition 2.10. Since the inequality is satisfied by ϕu(v) with equality, the same
holds for y ∈ Q. Again, by Proposition 2.10, this implies that q ⊣z r.

What remains to be done is constructing the chain c. In the following, we need
a relation slightly stronger than ⊣x. Let a =|x b denote the relation on P defined

by b ∈ RG and a ⊣x b. That is, a =|x b holds if and only if b ∈ RG, a ≺ b and
xa = maxq≺b xq.

First construct a chain from q downward to a marked element that is of the kind

a ≺ · · · ≺ p′ ≺ p′
1 =|v · · · =|v p

′
l = q,

where l ≥ 1 and p′
1 /∈ RG. That is, walk downwards in RG along relations =|v as long

as possible, then arbitrarily extend the chain to some marked element a ∈ P ∗. Let

c : a ≺ · · · ≺ p′ ≺ p′
1 ≺ · · · ≺ p′

l−1.

When q was marked, c is just the empty chain. When q /∈ RG, we have l = 1, p′
1 = q

and c ends in p′.

Now construct a maximal chain

q =|v r =|v p1 =|v · · · =|v pk,

where k ≥ 0. Let p−1 = q, p0 = r, and let B ∈ πF be the block of the face partition
of F containing pk. We claim that B can not be a singleton: since F ∩G′ is a point,

the conditions imposed by the face partition πF together with the conditions given
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by G′ determine all the coordinates, in particular xpk
. However, pk is neither marked,

since it is an element of RG ⊆ P̃ , nor does it appear in one of the equations for G′,

since the chain was chosen maximal. Hence, the coordinate xpk
must be determined

by pk sitting in a non-trivial block with some other coordinate already determined
by the conditions imposed by λ, πF and G′.

If there exists p ∈ B with pk ≺ p, let

d : p1 ≺ · · · ≺ pk ≺ p.

The chain c ≺ q ≺ r ≺ d yields a defining inequality for Ou(P, λ). Since up′

1
= 0,

while up′

2
, . . . , up′

l
, ur, up1

, . . . , upk
> 0 and up 6= 1 in case of p ∈ P̃ , the describing

inequality of Ou(P, λ) given by c ≺ q ≺ r ≺ d is satisfied with equality for some
ϕu(x) if and only if

p′
1 ⊣x · · · ⊣x p

′
l = q ⊣x r ⊣x p1 ⊣x · · · ⊣x pk and xpk

= xp.

For x = v, all these conditions are satisfied. Hence, they are also satisfied by z. In
particular q ⊣z r as desired.

If there exists no p ∈ B with pk ≺ p, there must be some p ∈ B with p ≺ pk, since
B is not a singleton. In this case vp = vpk

so in particular p ⊣v pk. Since pk−1 ⊣v pk

as well, we conclude vpk−1
= vp = vpk

. Now let

d : p1 ≺ · · · ≺ pk.

The inequality for Ou(P, λ) given by c ≺ q ≺ r ≺ d is satisfied with equality for

ϕu(x) if and only if

p′
1 ⊣x · · · ⊣x p

′
l = q ⊣x r ⊣x p1 ⊣x · · · ⊣x pk−1 and xpk−1

= xpk
.

Again, all these conditions hold for x = v, hence also for z and we can conclude

q ⊣z r as before. �

We finish this section by the following conjecture.

Conjecture 5.4. For any vertex v in the generic marked poset polytope, there exists

a vertex tv of the hypercube [0, 1]P̃ such that the image of v under the degeneration
map is a vertex in Otv

(P, λ).

6. Poset Transformations

Since having a strict or even regular marking already played an essential role in
the theory of marked order polyhedra, it is a natural question to ask whether we

can apply the poset transformation used in [15] and still obtain the same marked
poset polyhedra up to affine equivalence for arbitrary t ∈ [0, 1]P̃ . In this section we

show that the answer is positive: modifying a marked poset to be strictly marked
and modifying a strictly marked poset to be regular does not change the affine
isomorphism type.

Recall from [15] that a constant interval in a marked poset (P, λ) is an interval [a, b]
such that a, b ∈ P ∗ are marked with λ(a) = λ(b). The consequence is that for any
point x in the associated marked order polyhedron O(P, λ) we have xp = λ(a) = λ(b)

whenever p ∈ [a, b].
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Proposition 6.1. Contracting constant intervals in (P, λ) yields a strictly marked
poset (P/π, λ/π) such that Ot′(P/π, λ/π) is affinely isomorphic to Ot(P, λ) for all

t ∈ [0, 1]P̃ , where t′ is the restriction of t to elements not contained in any non-trivial
constant intervals.

Proof. Let (P ′, λ′) be the strictly marked poset obtained from (P, λ) by contracting
constant intervals. Hence, P ′ is obtained from P by taking the quotient under the

equivalence relation generated by a ∼ p and p ∼ b whenever a ≤ b are marked
elements such that λ(a) = λ(b) and a ≤ p ≤ b. The elements of P ′ are either

singletons {p} for p not contained in any non-trivial constant interval or non-trivial
blocks B that are unions of non-trivial constant intervals. All non-trivial blocks B
are marked and among the singletons {p} only those with p ∈ P̃ are unmarked.

By [15, Proposition 3.18], we have an q∗ : O(P ′, λ′) → O(P, λ) induced by the quo-
tient map q : (P, λ) → (P ′, λ′). Now consider the two transfer maps ϕt : O(P, λ) →
Ot(P, λ) and ϕ′

t′ : O(P ′, λ′) → Ot′(P ′, λ′). When B is a non-trivial block in P ′—in

other words an equivalence class with at least two elements—we have

ϕt(x)p = (1 − tp)λ′(B)

for all unmarked p ∈ B and x ∈ O(P, λ). When p is an unmarked element out-
side of constant intervals, we have ϕt(q

∗(x))p = ϕ′
t′(x){p} for all x ∈ O(P ′, λ′) by

construction. Hence, the affine map γ : RP̃ ′

→ RP̃ defined by

γ(x)p =







(1 − tp)λ
′(B) if p ∈ P̃ ∩B for a non-trivial block B,

x{p} otherwise

restricts to an affine map Ot′(P ′, λ′) → Ot(P, λ), such that the diagram

O(P ′, λ′) O(P, λ)

Ot′(P ′, λ′) Ot(P, λ)

q∗

ϕ′

t′
ϕt

γ

commutes. Thus, it is an affine isomorphism. Note that we used the projected
polyhedra and transfer maps in the above diagram. �

Recall from [15] that a covering relation p ≺ q in (P, λ) is called non-redundant
if for all marked elements a, b ∈ P ∗ with with a ≤ q and p ≤ b, we have a = b

or λ(a) < λ(b). A marked poset is called regular if all its covering relations are
non-redundant.

Proposition 6.2. If (P, λ) is strictly marked, removing a redundant covering rela-
tion yields a marked poset (P ′, λ) such that Ot(P, λ) = Ot(P

′, λ) for all t ∈ [0, 1]P̃ .

Proof. Let p ≺ q be a redundant covering relation in P . That is, there are marked

elements a 6= b satisfying a ≤ q, p ≤ b and λ(a) ≥ λ(b). Let P ′ be obtained from P
be removing the covering relation p ≺ q.

Comparing the transfer maps ϕt and ϕ′
t associated to (P, λ) and (P ′, λ) defined

on the same marked order polyhedron O(P, λ) = O(P ′, λ) by [15, Proposition 3.24],
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we see that they can only differ in the q-coordinate, which can only happen when q
is unmarked. To be precise,

ϕt(x)q = xq − tq max
q′≺q

xq′ and ϕ′
t(x)q = xq − tq max

q′≺q
q′ 6=p

xq′.

Since λ is strict, we can not have a ≤ p. Otherwise we had a < b in contradiction

to λ(a) ≥ λ(b). Hence, when q is unmarked, there is a p′ 6= p such that a ≤ p′ ≺ q.
For all x ∈ O(P ′, λ) = O(P, λ) we have

xp′ ≥ λ(a) ≥ λ(b) ≥ xp

and excluding p from the maximum does not change the transfer map at all. We
conclude that

Ot(P
′, λ) = ϕ′

t(O(P ′, λ)) = ϕt(O(P, λ)) = Ot(P, λ). �

Using the above transformations, we can always replace a marked poset (P, λ) by

a regular marked poset (P ′, λ′) yielding affinely equivalent marked poset polyhedra.

Remark 6.3. If (P, λ) is integrally marked and t ∈ {0, 1}P̃ , the above constructions
actually yield unimodular isomorphisms.

7. Facets and the Hibi–Li Conjecture

In [15] it is proved that regular marked posets yield a one-to-one correspondence
of covering relations in (P, λ) and facets of O(P, λ). We strongly believe the same
regularity condition implies that both the inequalities in Definition 1.2 for t ∈ (0, 1)P̃

and the inequalities in Proposition 1.3 for all partitions P̃ = C ⊔ O—i.e., all t ∈
{0, 1}P̃ —correspond to the facets of the described polyhedra. In fact, we can show
that the latter implies the former and the conjecture is true for certain ranked marked

posets.

Definition 7.1. A marked poset (P, λ) is called tame if the inequalities given in

Proposition 1.3 correspond to the facets of OC,O(P, λ) for all partitions P̃ = C ⊔ O.

Conjecture 7.22. A marked poset (P, λ) is tame if and only if it is regular.

We know that regularity is a necessary condition for being tame, since otherwise
(P, λ) either contains non-trivial constant intervals and the covering relations in

those do not correspond to facets of O(P, λ) or the marking is strict but there are
redundant covering relations that do not correspond to facets of O(P, λ).

We start by considering marked chain polyhedra. We can show that any chain in
(P, λ) that does not contain redundant covering relations defines a facet of C(P, λ).

Lemma 7.3. Let (P, λ) be a marked poset and c : a ≺ p1 ≺ p2 ≺ · · · ≺ pr ≺ b be a
saturated chain between elements a, b ∈ P ∗ with all pi ∈ P̃ and r ≥ 1. If none of the
covering relations in c are redundant, the inequality

(7.1) xp1
+ · · · + xpr

≤ xb − xa

is not redundant in the description of C(P, λ) = OP̃ ,∅(P, λ) given in Proposition 1.3.

2In [4, Proposition 4.5], the statement of Conjecture 7.2 is given without proof for the case of

admissible partitions and bounded polyhedra.
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In particular we obtain the following result.

Corollary 7.43. Let (P, λ) be regular. The description of the marked chain polyhe-

dron C(P, λ) = OP̃ ,∅(P, λ) given in Proposition 1.3 is non-redundant.

Proof of Lemma 7.3. Our strategy is as follows. First show that (7.1) can be strictly
satisfied by some point in C(P, λ), so the polyhedron is not contained in the corre-
sponding hyperplane. Then construct a point x ∈ C(P, λ) such that (7.1) is satisfied

with equality but all other inequalities that can be strictly satisfied by points in
C(P, λ) are strictly satisfied by x. This shows that (7.1) is the only inequality de-

scribing a facet with x in its relative interior.
To see that (7.1) can be strictly satisfied, just take x ∈ RP with xa = λ(a) for

a ∈ P ∗ and xp = 0 for p ∈ P̃ . Note that λ(a) < λ(b) since otherwise all covering

relations in c would be redundant.
For the second step, first linearly order the set of all markings in [λ(a), λ(b)], so

that

λ(P ∗) ∩ [λ(a), λ(b)] = {λ1, . . . , λk}

with λ(a) = λ1 < · · · < λk = λ(b) and k > 1. For i = 1, . . . , k − 1 we define the
following sets:

Z↑
i = { p ∈ c : p ≥ d for some d ∈ P ∗ with λ(d) ≥ λi+1 } ,

Z↓
i = { p ∈ c : p ≤ e for some e ∈ P ∗ with λ(e) ≤ λi } ,

Zi = c \
(

Z↑
i ⊔ Z↓

i

)

.

Note that Z↑
i and Z↓

i are disjoint, since any p in their intersection would give d ≤
p ≤ e with λ(d) ≥ λi+1 > λi ≥ λ(e) contradicting λ being order-preserving.

For p ∈ Z↑
i all elements of c greater than p are also contained in Z↑

i and for p ∈ Z↓
i

all elements of c less than p are also contained in Z↓
i . Furthermore, we have a ∈ Z↓

i

and b ∈ Z↑
i for all i. Thus, the chain c decomposes into three connected subchains

Z↓
i , Zi, Z

↑
i .

We claim that the middle part Zi is always non-empty as well. Otherwise, the
chain c contains a covering relation p ≺ q with p ∈ Z↓

i and q ∈ Z↑
i and hence we

had d, e ∈ P ∗ with e ≥ p ≺ q ≥ d and λ(e) ≤ λi < λi+1 ≤ λ(d) so that p ≺ q is
redundant.

We also claim that each pj ∈ c is contained in at least one of the Zi. Since

a ≤ pj , we can choose i0 ∈ [k] maximal such that pj ≥ d for some d with λ(d) ≥ λi0
.

In the same fashion, choose i1 ∈ [k] minimal such that pj ≤ e for some e with
λ(e) ≤ λi1

. We have i0 < i1, since otherwise there are d ≤ pj ≤ e with λ(d) ≥ λ(e),

either rendering λ non order-preserving or any covering relation above or below pj

redundant. We conclude that pj ∈ Zi for i = i0, . . . , i1 − 1.

3The result of Corollary 7.4 was previously stated without proof in [9, Lemma 1] for bounded

polyhedra.
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Define a point x ∈ RP by letting xa = λ(a) for all a ∈ P ∗ and for p ∈ P̃ :

xp =



















∑

i=1,...,k−1,
p∈Zi

λi+1 − λi

|Zi|
for p ∈ c and

ε for p ∈ P̃ \ c,

where ε > 0 is small enough to satisfy the finitely many constraints in the rest of

this proof. Note that all |Zi| > 0 since the Zi are non-empty and all xp > 0 for
p ∈ P̃ since each pj ∈ c is contained in at least one of the Zi.

The inequality given by c is satisfied with equality, since
r

∑

j=1

xpj
=

r
∑

j=1

∑

i=1,...,k−1,
pj∈Zi

λi+1 − λi

|Zi|

=
k−1
∑

i=1

∑

j=1,...,r
pj∈Zi

λi+1 − λi

|Zi|
=

k−1
∑

i=1

(λi+1 − λi) = λk − λ1 = xb − xa.

Now consider any chain d : a′ ≺ q1 ≺ · · · ≺ qs ≺ b′ different from c. We have to
show that the inequality

(7.2) xq1
+ · · · + xqs

≤ xb′ − xa′

either can not be strictly satisfied by any point in C(P, λ) or is strictly satisfied by

x.
If λ(a′) = λ(b′) the inequality can never be satisfied strictly by points in C(P, λ).

If λ(a′) < λ(b′) we have

(7.3)
s

∑

j=1

xqj
=

∑

q∈d̃

xq = ε
∣

∣

∣ d̃ \ c̃

∣

∣

∣ +
∑

q∈d̃∩c̃

∑

i=1,...,k−1,
q∈Zi

λi+1 − λi

|Zi|
,

where c̃ and d̃ denote the unmarked parts of c and d, respectively.
Let S denote the double sum in (7.3) and consider the following cases:

(1) We have λ(a) < λ(a′) < λ(b′) < λ(b). Let 1 < i0 < i1 < k be the indices

such that λi0
= λ(a′), λi1

= λ(b′). Note that all elements of d̃ are above a′

with λ(a′) = λi0
so d̃ ∩ c̃ ⊆ Z↑

i0−1 and we have d̃ ∩ Zi = ∅ for i < i0. By the

same reasoning d̃ ∩ Zi = ∅ for i ≥ i1. Hence, we have

S =
∑

q∈d̃∩c̃

∑

i=i0,...,i1−1,
q∈Zi

λi+1 − λi

|Zi|
≤ λ(b′) − λ(a′),

with equality achieved if and only if Zi ⊆ d̃ for i = i0, . . . , i1 − 1.

Let p ∈ c̃ be maximal such that p ∈ Zi1−1. Then there is a covering

relation p ≺ q in c with q ∈ Z↑
i1−1. We have p /∈ d, since otherwise p < b′ and

q > d for some d with λ(d) ≥ λi1
= λ(b), rendering p ≺ q redundant. Hence,

p ∈ Zi1−1 \ d̃ and S < λ(b′) − λ(a′).
We conclude that (7.2) is strictly satisfied for small enough ε.

(2) We have λ(a′) < λ(b′) ≤ λ(a) or λ(b) ≤ λ(a′) < λ(b′). In this case we have

d ⊆ Z↓
i for all i or d ⊆ Z↑

i for all i, respectively, so that S = 0. Choosing ε

small enough yields strict inequality in (7.2).
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(3) We have λ(a) < λ(a′) < λ(b) ≤ λ(b′) or λ(a′) ≤ λ(a) < λ(b′) < λ(b). By
reasoning similar to item 1 we have S < λ(b) − λ(a′) or S < λ(b′) − λ(a),

respectively. In both cases S < λ(b′) − λ(a′) and choosing ε small enough
yields strict inequality in (7.2).

(4) We have λ(a′) ≤ λ(a) < λ(b) ≤ λ(b′). In case d̃ ∩ c̃ = c̃ we have λ(a′) < λ(a)

and λ(b) < λ(b′) since otherwise the covering relation a ≺ p1 or pk ≺ b would
be redundant. Hence

∑

q∈d̃

xq = ε
∣

∣

∣ d̃ \ c̃

∣

∣

∣ + (λ(b) − λ(a)) < λ(b′) − λ(a′)

for ε small enough.

In case d̃∩c̃ 6= c̃, at least one summand is missing in S to achieve λ(b)−λ(a)
since each p ∈ c̃ is in at least one of the Zi. Thus, S < λ(b) − λ(a) and we
may choose ε small enough to obtain

∑

q∈d̃

xq < λ(b) − λ(a) ≤ λ(b′) − λ(a′).

In all cases (7.2) is satisfied by x with strict inequality and we conclude that (7.1)
is not redundant in the description of C(P, λ) given in Proposition 1.3. �

For ranked marked posets, we can use Lemma 7.3 to show that Conjecture 7.2
holds.

Definition 7.5. A marked poset (P, λ) is called ranked if there exists a rank function
rk : P → Z satisfying

(1) rk p+ 1 = rk q for all p, q ∈ P with p ≺ q,
(2) λ(a) < λ(b) for all a, b ∈ P ∗ with rk a < rk b.

Note that the rank function of a ranked marked poset is uniquely determined up

to a constant on each connected component.

Proposition 7.6. Let (P, λ) be regular and ranked, then (P, λ) is tame.

Proof. Let rk : P → Z be a rank function such that min{rk p : p ∈ P} = 0 and let

r = max{rk p : p ∈ P}. Since λ(a) < λ(b) for marked elements with rk a < rk b, we
can choose real numbers ξ0 < ξ1 < · · · < ξr+1 such that λ(a) ∈ (ξi, ξi+1) for a ∈ P ∗

with rk a = i.
Let P̃ = C ⊔ O be any partition. All inequalities 0 ≤ xp for p ∈ C are non-

redundant in the description of OC,O(P, λ) given in Proposition 1.3. To see this,

take any x ∈ OC,O(P, λ) and let x′ ∈ RP be given by x′
q = xq for q 6= p and xp = −1.

Now consider any chain c : a ≺ p1 ≺ · · · ≺ pr ≺ b with a, b ∈ P ∗ ⊔O and all pi ∈ P̃ .

If r = 0, we have to show that xa ≤ xb is a non-redundant inequality provided at
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least one of a and b is not marked. For this, define x ∈ OC,O(P, λ) by

xp =



































































λ(p) for p ∈ P ∗,

ξrk p for p ∈ O \ {a, b} with rk p ≤ rk a,

ξrk p+1 for p ∈ O \ {a, b} with rk p ≥ rk b,

ξrk b for p ∈ {a, b} if a, b ∈ O,

λ(a) for p ∈ {a, b} if a /∈ O,

λ(b) for p ∈ {a, b} if b /∈ O,

mini{ξi+1 − ξi} for p ∈ C.

Using the fact that (P, λ) is ranked it is routine to check that x satisfies all inequalities
of Proposition 1.3 strictly except for xa ≤ xb.

Now consider the case where r ≥ 1. The idea is to extend the marking λ to a

marking λ′ defined on P ∗ ⊔O such that (P, λ′) has no redundant covering relations
in c. We then have OC,O(P, λ) ∩ U = C(P, λ′) with U given by xp = λ′(p) for p ∈ O.
Note that the description of C(P, λ′) in Proposition 1.3 is exactly the description

given for OC,O(P, λ) in Proposition 1.3 with the additional equations xp = λ′(p) for
p ∈ O. In the description of C(P, λ′) the inequality given by c is not redundant by

Lemma 7.3 and hence the same inequality is not redundant in the description of
OC,O(P, λ) ∩U . Thus, it can not be redundant in the description of OC,O(P, λ) itself
either.

It remains to construct the extended marking λ′. Let λ′(p) = λ(p) for p ∈ P ∗ and
for p ∈ O with rk p = i choose

λ′(p) ∈











































(ξi, ξi+1) for i /∈ {rk a, rk b},

(max {ξi,max{λ(d) : rk d = i}} , ξi+1) for p = a if a ∈ O,

(ξi,min {ξi+1,min{λ(d) : rk d = i}}) for p = b if b ∈ O,

(ξi, λ
′(a)) for i = rk a, p 6= a,

(λ′(b), ξi+1) for i = rk b, p 6= b.

The appearing open intervals are all non-empty so these choices are possible. Given

any such λ′, we still have λ′(d) ∈ (ξi, ξi+1) when rk d = i, so (P, λ′) is still a ranked
marked poset. Let us verify that c contains no redundant covering relation with
respect to (P, λ′).

(1) The covering relation a ≺ p1 is non-redundant since λ′(d) < λ′(a) for all
marked elements d ≤ p1, d 6= a.

(2) The covering relation pr ≺ b is non-redundant since λ′(d) > λ′(b) for all

marked elements d ≥ pr, d 6= b.
(3) All covering relations pj ≺ pj+1 are non-redundant since (P, λ) is ranked.

Hence, we can apply Lemma 7.3 to C(P, λ′) and obtain the desired result. �

Remark 7.7. In light of the proof of Proposition 7.6, a possible strategy to prove
Conjecture 7.2 in general would be to extend markings such that along a given chain
the covering relations stay non-redundant. However, we did not succeed in doing

this for arbitrary (non-ranked) marked posets.
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Remark 7.8. The marked posets relevant in representation theory appearing in [1,
2] are all ranked and regular after applying the transformations of Section 6 if nec-

essary. Hence, they are tame and Proposition 1.3 gives non-redundant descriptions
for all associated marked chain-order polyhedra.

We show that (P, λ) being tame also implies the description given for generic
marked poset polyhedra Ot(P, λ) in Definition 1.2 is non-redundant.

Proposition 7.9. Let (P, λ) be a tame marked poset. The description of any generic
marked poset polyhedron Ot(P, λ) for t ∈ (0, 1)P̃ given in Definition 1.2 is non-
redundant.

Proof. The way we will prove non-redundance of the description in Definition 1.2 is to
reconsider the proof of Proposition 1.3. We have seen that picking a parameter u =

χC ∈ {0, 1}P̃ for a partition P̃ = C ⊔O we obtain the description in Proposition 1.3
but there might be multiple chains as in Definition 1.2 such that (1.1) degenerates
to the same inequality listed in Proposition 1.3. Since we know the description in

Proposition 1.3 is non-redundant for tame marked posets, we can do the following:
take a chain c giving an inequality for Ot(P, λ) as in Definition 1.2 and construct
a partition P̃ = C ⊔ O such that no other chain yields the same inequality as c

for the marked chain-order polyhedron OC,O(P, λ). Knowing that the description of
OC,O(P, λ) is non-redundant we conclude that c can not be omitted in the description

of Ot(P, λ) either whenever u = χC is a degeneration of t, in particular when t ∈
(0, 1)P̃ .

Consider any chain c : p0 ≺ p1 ≺ p2 ≺ · · · ≺ pr ≺ p with p0 ∈ P ∗, pi ∈ P̃ for i ≥ 1,

p ∈ P and r ≥ 0. Let C = {p1, . . . , pr}, O = P̃ \ (P ∗ ⊔C) and note that p ∈ P ∗ ⊔O.
Since p0 ∈ P ∗ and p /∈ C, no other chain gives the same inequality in the proof of
Proposition 1.3. �

We finish this section with a discussion of the extended and refined Hibi–Li con-
jecture. For order and chain polytopes, marked order and chain polytopes as well as
admissible marked chain-order polytopes, analogous conjectures were stated in [12,

9, 4]. Let us state the conjecture in full generality here—for possibly unbounded
marked chain-order polyhedra with arbitrary partitions P̃ = C ⊔O—and report on
what can be said about the conjecture from the above discussion.

Conjecture 7.10. Let (P, λ) be a marked poset with all minimal elements marked.
Given partitions P̃ = C ⊔ O and P̃ = C ′ ⊔ O′ such that C ⊆ C ′, we have

fi (OC,O(P, λ)) ≤ fi (OC′,O′(P, λ)) for all i ∈ N.

This refined version of the conjecture was stated in case of admissible partitions
and bounded polyhedra in [4]. It is clear, that it is enough to consider only the

case C ′ = C ⊔ {q} for some q ∈ O and by the results of Section 6 we can assume
(P, λ) is regular. When q is not a chain-order star element, we know that OC,O(P, λ)
and OC′,O′(P, λ) are unimodular equivalent by Proposition 2.8 and hence their f -

vectors are identical. In fact, the statement of Proposition 2.8 is a necessary and
sufficient condition for unimodular equivalence for tame marked posets and we can
count facets to show Conjecture 7.10 holds for tame marked posets in codimension

1:
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Proposition 7.11. Let (P, λ) be a tame marked poset and P̃ = C ⊔O any partition.
Given q ∈ O let C ′ = C⊔{q} and O′ = O\{q}, then OC,O(P, λ) and OC′,O′(P, λ) are

unimodular equivalent if and only if q is not a chain-order star element. Otherwise,
the number of facets increases by

(k − 1)(l − 1),

where k is the number of saturated chains s ≺ q1 ≺ · · · ≺ qk ≺ q with s ∈ P ∗ ⊔ O
and all qi ∈ C and l is the number of saturated chains q ≺ q1 ≺ · · · ≺ qk ≺ s with

s ∈ P ∗ ⊔O and all qi ∈ C.

Proof. If q is not a chain-order star element, the polyhedra are unimodular equivalent
by Proposition 2.8. For a tame marked poset, the number of facets of OC,O(P, λ) is

the number of inequalities in Proposition 1.3, and hence equal to

|C| + |{ a ≺ p1 ≺ · · · ≺ pr ≺ b | r ≥ 0, a, b ∈ P ∗ ⊔ O, pi ∈ C }| .

Changing an order element q to be a chain element, the first summand increases by
1, while in the second summand the k+ l chains ending or starting in q are replaced
by the kl chains now going through q. Hence, the number of facets increases by

1 − (k + l) + kl = (k − 1)(l − 1). �

If Conjecture 7.2 holds, we can conclude that the Hibi–Li conjecture as formulated

in Conjecture 7.10 holds in codimension 1. For smaller dimensions, we have a com-
mon bound on all f -vectors of marked chain-order polyhedra associated to a marked

poset (P, λ) by the f -vector of the generic marked poset polyhedron obtained from
Corollary 3.10. Unfortunately, this does not help for obtaining a comparison as in
the Hibi–Li conjecture.
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