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Abstract

In this paper, we are concerned with the simulation of blood flow in
microvascular networks and the surrounding tissue. To reduce the com-
putational complexity of this issue, the network structures are modeled
by a one-dimensional graph, whose location in space is determined by
the centerlines of the three-dimensional vessels. The surrounding tissue is
considered as a homogeneous porous medium. Darcy’s equation is used
to simulate flow in the extra-vascular space, where the mass exchange
with the blood vessels is accounted for by means of line source terms.
However, this model reduction approach still causes high computational
costs, in particular, when larger parts of an organ have to be simulated.
This observation motivates the consideration of a further model reduction
step. Thereby, we homogenize the fine scale structures of the microvascu-
lar networks resulting in a new hybrid approach modeling the fine scale
structures as a heterogeneous porous medium and the flow in the larger
vessels by one-dimensional flow equations. Both modeling approaches are
compared with respect to mass fluxes and averaged pressures. The sim-
ulations have been performed on a microvascular network that has been
extracted from the cortex of a rat brain.

1 Introduction

Modeling of blood flow and transport at the level of microcirculation is an in-
teresting subfield in biomedical engineering. A reliable computational model for
the microcirculation of the human body would enable physicians and pharma-
cists to obtain better insight into the oxygen supply of cells, the waste removal
from the interstitial space [25] and further important biological processes with-
out the need to perform expensive and risky experiments [6, 9, 41]. Besides, such
models open up the possibility to study the impact of diseases like Alzheimer’s
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[27] and to improve medicines and therapies for cancer treatment [8, 26, 34, 36].
Well known therapies for cancer treatment are, e.g., hyperthermia [39, 54] or the
injection of therapeutic agents preventing the vascularization of cancer tissue
[50]. In order to increase the efficiency of the mentioned cancer therapies, it is
crucial to focus the therapeutic agents or the heat on the cancerous part of an
affected organ while maintaining the rest of the tissue. In order to be able to
simulate the distribution of heat and the concentration of therapeutic agents
with an adequate accuracy, the hierarchical structure of the vascular system
supplying the considered organ has to be taken into account.

However, even for vascular systems contained in small volumes covering just
a few cubic millimetres, it is a challenging task to simulate flow in the microvas-
cular networks and the interstitial space, since the flow in a complex network
structure consisting of thousands of vessels [19] (Chap. 1) is coupled with the
flow in the surrounding tissue matrix [13, 43].

As a consequence, several model reduction techniques have been developed
for simulating flow through an entire organ or parts of an organ. A widespread
technique in this field are homogenization techniques. Thereby brain tissue and
the vascular system are considered as two different continua modeled as porous
media [15, 38, 47, 48] and the pressure and velocity field are computed by means
of Darcy’s equation [24, 28]. Using this approach, the computational effort and
the data volume are significantly reduced. On the other hand, both the pressure
and the velocity field can only be described in an averaged sense, neglecting the
exact structure of the vascular system. As a result, the distribution of thera-
peutic agents or heat might not be computed with sufficient accuracy. A further
challenge is to determine suitable permeability tensors for the Darcy equation
reflecting the structure of the vascular trees in an averaged way. Thereby brain
tissue and the vascular system are considered as two different continua modeled
as porous media [15, 38, 47, 48] and the pressure and velocity field are computed
by means of Darcy’s equation [24, 28, 52, 38].
Another way to decrease the computational complexity, is to describe the vas-
cular networks by means of one-dimensional (1D) flow models [11, 53, 36, 20,
44, 22], while the surrounding tissue is considered as a three-dimensional porous
medium. By this, an expensive meshing of a three-dimensional (3D) blood vessel
system is avoided and at the same time the hierarchical structure of the vascular
system is maintained. However, elaborate concepts for coupling one-dimensional
flow equations with a flow equation (Darcy equation) for a three-dimensional
flow problem [10, 31, 30] have to be developed. This is done by constructing
suitable source terms for both the Darcy equation in 3D and the 1D flow prob-
lems. On closer examination, one notes that the source term in 3D consists
of Dirac measures concentrated on the centerline of the vessels or the corre-
sponding vessel walls, inducing a certain roughness into the solution of the 3D
Darcy equation. Due to possible singularities or kinks occurring in the solution
sufficiently fine meshes are required to obtain an accurate numerical solution.

Here, we propose a new hybrid approach which preserves the advantages of
reduced order models, while preserving a sufficiently high accuracy. The idea
is to model the larger vessels by 1D flow models, whereas the capillaries and
tissue are considered as porous continua, as it is done in the homogenization
approach. We apply this hybrid modeling approach to a microvascular system
filling a volume of 1.134 mm × 1.134 mm × 2.268 mm (see Fig. 1). This
microvascular system was taken from the brain of a rat and the corresponding
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data was generated by the group of B. Weber (University of Zurich) [45]. Within
this network, one can find several penetrating arterioles and venules connecting
this vascular subsystem to the macrocirculation of the rat’s brain, see Fig. 1.
Our motivation to choose this approach is that by resolving the largest vessels
in this volume, the main hierarchy of the vessel system is incorporated into
the model. Moreover, using a homogenized double continuum model for the
capillaries and the tissue, we have a less complex model which will certainly yield
some speed-up, if several units of cubes of a few cubic millimetres are aggregated
to simulate larger parts of an organ. Compared to other works [16, 40, 49]
investigating hybrid approaches for microvascular systems, we consider in this
work the capillaries and the tissue as two coupled porous media, i.e., a double
continuum approach [17]. In addition to that we discuss alternative coupling
conditions between the 1D vessels and the 3D continuum for the capillaries.
To validate our hybrid 3D-1D modeling approach, a comparison with a fully-
discrete 3D-1D model [8, 10, 11, 37, 30] is performed.

The rest of this work is structured as follows. In Section 2, we describe the
data set that is used for our numerical tests. In addition to that the basic mod-
eling assumptions are discussed. The model problems and the corresponding
numerical discretization methods are outlined in Section 3. Section 4 contains
some numerical tests and a discussion of the results obtained from both models.
Finally in Section 5, we summarize the key features of our work and give a short
outlook.

2 Problem setting and main simplifications

In order to illustrate the performance of our modeling approaches, we consider
the microvascular network shown in Fig. 1. To obtain the data for this mi-
crovascular network, firstly an anaesthetized rat was perfused with phosphate
buffered saline and barium sulphate. In a second step, the brain was removed
and a sample from the cortex was taken.

Using this sample, an X-ray tomographic microscopy of the sample was
performed. Based on the resulting image, vessel midlines were extracted, and
the 3D coordinates of branches, kinks as well as start and end points were
determined. We denote these points as network nodes. Furthermore, curved
vessel midlines were replaced by straight edges and to each edge, a mean vessel
radius was assigned. Besides the different radii also the connectivity of network
nodes was determined, i.e., it was reported, which network nodes are connected
with each other. At the network nodes that are adjacent to the boundaries of
the extracted sample, physiologically meaningful pressure boundary conditions
are provided [45].

Analyzing the given data, it turns out that the radii range from 1.6 µm to
28.2 µm. Within the network some larger penetrating arterioles and venules
can be identified at the top of the sample. At the bottom of the sample a larger
venule and arteriole are leaving or entering the cuboid domain. The rest of the
microvascular network consists of tiny capillaries. Zooming into the original data
set, we detected some dead ends of the arterioles and venules (network nodes
that are not connected to the capillaries). Since we want to perform a precise
comparison between the fully discrete and the hybrid modeling approach, the
edges associated with dead ends are removed from the data set such that in the
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resulting microvascular network all the network nodes are connected. Further
modeling assumptions that are used in the remaining sections, read as follows:

(A1) The non-Newtonian flow behavior of blood is modeled in a simplified way
using an algebraic relationship.

(A2) The density of blood is constant.

(A3) The influence of gravity is neglected.

(A4) The inertial effects can be neglected.

(A5) The pulsatility can be neglected.

(A6) The walls of the larger vessels are considered impermeable, i.e., no flow
occurs across their walls.

These assumptions are motivated by the following considerations: It is well
known that blood consists beside plasma also of blood cells. Blood plasma
itself is a mixture of water and ions, while the blood cells can be separated into
the following groups: red blood cells, white blood cells and blood platelets [19]
(Chap. 1). In particular the red blood cells determine the flow behavior of
blood significantly [18]. Moving through a microvascular network the red blood
cells have to deform more and more as the vessel diameters become smaller
than the diameter of the red blood cells. This results in a varying viscosity for
the individual blood vessels and therefore this feature is recorded in (A1) [23].
Thereby, we adopt for an edge of diameter D the following formula for the in
vivo viscosity µbl [Pa · s] [42]:

µbl (D) = µp

(
1 + (µ0.45 − 1)

(1−H)
C − 1

(1− 0.45)
C − 1

·
(

D

D − 1.1

)2
)
·
(

D

D − 1.1

)2

.

(1)
Please note that in (1) the diameter D is dimensionless. The physical diameter
d [µm] has to be divided by 1.0 µm to obtain D. The viscosity of the blood
plasma is denoted by µp [Pa · s], and H stands for the discharge hematocrit
which is defined by the ratio between the volume of the red blood cells and the
total blood volume. The apparent viscosity µ0.45 for a discharge hematocrit of
0.45 is calculated by:

µ0.45 = 6.0 exp (−0.085 ·D) + 3.2− 2.44 exp
(
−0.06 ·D0.645

)
and C is a coefficient determining the influence of H on µbl:

C = (0.8 + exp (−0.075 ·D))

(
−1 +

1

1 + 10−11D12

)
+

1

1 + 10−11D12
.
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Complete network

Capillary bed Large vessels

Figure 1: A microvascular network extracted from a rat brain (top), filling a
volume of 1 mm×1 mm×2 mm. A subdivision based on the vessel radius can be
seen at the bottom of the figure. The network at the bottom left, is the capillary
bed of the microvascular network (all vessels whose radii are smaller than a
given threshold, here 7 µm). The motivation for such threshold is postponed to
Section 4.1. At the bottom right, arterioles and venules (whose radii are larger
than the given threshold) constitute the network of larger vessels.

Please note that this function for the in vivo viscosity holds actually for human
blood. However we are not aware of such a function for rat blood, and therefore
we assume that this function can be employed for rat blood as well. For sim-
plicity, we assume in (A2) that blood is incompressible. Considering the total
volume of the system under consideration, the quantity of fluids contained in
this volume is relatively small, such that the effect of gravity can be neglected.
Since the blood velocity is about 0.1 mm/s in the arterioles and venules and
about 0.01 mm/s in the capillary bed in a human system [19, Tab. 1.7], it can
be concluded that the Reynolds numbers in the whole microvascular network
are significantly lower than 1.0. Therefore modeling assumption (A4) is rea-
sonable [21]. The pulsatility of blood flow can be neglected (A5), due to the
fact that the Womersley numbers in the arterioles, venules and the capillaries
are much smaller than 0.1. The Womersley number is a dimensionless number
relating the frequency of a pulse and the viscosity of a fluid to each other [19,
Tab. 1.7]. The last modeling assumption (A6) is motivated by the fact that the
vessel walls of capillaries consist of a thin layer of endothelial cells with gaps
between them such that blood plasma, oxygen and other substances can migrate
into the interstitial space and then to the tissue cells or vice versa. Contrary
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to that, the vessel walls of the larger vessels (arterioles and venules) are thicker
and not as permeable, since they exhibit a continuous endothelial cell layer that
is surrounded by one or two concentric layers of smooth muscle cells [12] [19,
Chap.1].

3 Models and numerical methods

After describing the data set used in this work and discussing the basic modeling
assumptions, we outline in this section the two modeling approaches under
consideration, i.e., the fully-discrete 3D-1D model and the hybrid 3D-1D model.
In particular, we discuss coupling concepts between the different parts of the
microvascular network and the tissue. Finally, the numerical discretization of
the model equations is shortly explained.

We start by introducing some notation. The cuboid containing the microvas-
cular network depicted in Fig. 1 is denoted by Ω and given by:

Ω =
{

x = (x1, x2, x3)
> | 0 mm < x1, x2 < 1.13662 mm

∧ 8.75 · 10−4 mm < x3 < 2.16388 mm
}
.

As it has been described in Section 2, we assume that the vascular system
Λ under consideration has been segmented and approximated by extracting
the midline of each blood vessel and approximating the midlines by straight
segments Λk ⊂ Λ. Each segment is equipped with a constant radius value Rk
for k = 1, ..., N . Therefore, the entire vascular system is assumed to be given
by the union of N cylinders Vk of radius Rk for k = 1, ..., N . We then split the
domain in two parts:

Ωv =

N⋃
i=k

Vk and Ωt = Ω \ Ωv,

where Ωv represents the vascular system and Ωt the tissue. The entire vascu-
lar system can now be described by a graph, whose edges are represented by
the center lines Λk of each cylinder Vk, for k = 1, ..., N . Each segment Λk is
parametrized by the arc length sk, and λk is the tangent unit vector determining
the orientation of the centerline of Vk. Let us denote the two endpoints of the
edge Λk by xk,1,xk,2 ∈ Ω. With this notation at hand, each cylinder Vk can be
defined as:

Vk = {x ∈ Ωv | x = xk,1 + sk · λk + rk } ,

where xk,1 + sk · λk ∈ Λk =Mk(Λ′ ⊂ R1) and

rk ∈ DΛk
(Rk) = {rnΛk

(sk, θ) : r ∈ [0, Rk) , sk ∈ (0, |xk,2 − xk,1|) , θ ∈ [0, 2π)} .

Mk is a mapping from a reference domain Λ′ to the manifold Λk ⊂ Ω, and
nΛk

denotes the set of unit normal vectors with respect to Λk. Γk is the lateral
surface of the branch Vk, and the union Γ corresponds approximately to the
surface of the vascular system, since the cylinders Vk may not perfectly match
to each other: Γ =

⋃N
k=1 Γk. The given blood vessel network is separated into

two parts: Based on a fixed threshold RT, we subdivide the network Λ in two
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subsets ΛL consisting of large vessels, which are considered to be impermeable
and ΛC consisting of capillaries. Associated to this separation, we define two
index sets IL, IC :

IL := {k ∈ {1, . . . , N} | Rk ≥ RT } and IC := {k ∈ {1, . . . , N} | Rk < RT } .

Using these definitions, ΛL and ΛC can be represented as follows:

ΛL :=
⋃
k∈IL

Λk and ΛC :=
⋃
k∈IC

Λk.

The surface of the capillaries is given by: ΓC :=
⋃
k∈IC Γk. Finally, to each

node of the graph a pressure value is assigned. The computation of the pressure
values corresponding to the interior nodes is outlined in Section 3.3, while at
the boundary nodes the pressure values are prescribed from the given data set
(see Section 2).

3.1 Fully-discrete 3D-1D model

With respect to the surrounding tissue, we assume that it can be considered as
a porous medium with an isotropic scalar permeability Kt

[
m2
]

[28]. In order
to model the flow in a porous medium, one can use the Darcy equation to obtain
a pressure field [1, 24].

Within the 1D network Λ, we assume that the flow is described by Hagen-
Poiseuille’s law with a mass balance equation. Differentiation over the branches
is defined using the tangent unit vector as dw/dsk = ∇w ·λk on Λk, i.e. d/dsk
represents the projection of ∇ along λk. The governing flow equations for the
whole network Λ are obtained by summing the governing equation over the
index k and introducing the global variable s. Furthermore, we assume that
the mass transfer from the vessel into the tissue matrix and vice versa occurs
across the membrane ΓC of the capillaries according to Starling’s filtration law
[32, 51]. Following the approach presented in [30], these exchanges processes
are accounted for by a Dirac measure δΓC in the source term of the 3D tissue
problem:

−∇ ·
(
ρint

Kt

µint
∇pt

)
= Lcapρint

(
pv − pt − (πp − πint)

)
δΓC

, in Ω,

− d

ds

(
ρblπR

2Kv

µbl

dpv

ds

)
= 2πRLcapρint

(
pt − pv + (πp − πint)

)
, in Λ,

ρint
Kt

µint
∇pt · n = 0, on ∂Ω,

pv = pv
D, on ∂Λ,

(2)
For each edge Λk and its lateral surface Γk and f ∈ L2(Γk), we indicate with
fδΓk

the linear operator in C(Ω) defined by

〈fδΓk
, φ〉 =

∫
Λk

∫
∂B(sk,Rk)

fφ dS dsk, ∀φ ∈ C∞0 (Ω), k ∈ IC.
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The symbol ∂B(sk, Rk) denotes the circle with center in Λk(sk) and perpen-
dicular to λk. The variable pv denotes the pressure in the network and pt the
pressure in the tissue. The term pt(sk) in (2) represents the average value of pt

with respect to the circle ∂B(sk, Rk):

pt(sk) =
1

2πRk

∫ 2π

0

pt (Λk (sk) +RknΛk
(sk, θ))Rk dθ, k ∈ IC. (3)

πp and πint represent the oncotic pressures of the plasma and the interstitial
fluid, respectively. According to [33], these values are assumed to be constant.
The hydraulic conductivity Lcap [m/(Pa · s)] of the membrane is assumed to be
constant for the segments Λk, k ∈ IC. The radius R [m] and the permeability
Kv

[
m2
]

are defined for each segment Λk as:

R|Λk
= Rk and Kv|Λk

=
R2
k

8
. (4)

The viscosity µbl [Pa · s] of blood is computed according to (1), while µint [Pa · s]
represents the viscosity of interstitial fluid. ρint

[
kg/m3

]
and ρbl

[
kg/m3

]
are

the densities of the interstitial fluid and of blood, respectively. pv
D [Pa] are the

boundary data, obtained from the data set previously described in Section 2.
On the boundary of the tissue continuum ∂Ω ⊆ ∂Ωt \ ΓC, we set homogeneous
Neumann boundary conditions. Due to the fact that we have no boundary data
available homogeneous Neumann boundary conditions have been chosen. How-
ever, if measurements or other data become available, this boundary condition
can easily be replaced.

Alternative 3D-1D PDE-systems simulating flow in microvascular networks,
can be found in [10, 11]. The difference to the presented coupling approach is
that in the source term of the tissue problem, the Dirac measure is concentrated
on the midlines of the vascular system. As a result singularities along the
network midlines are introduced in the 3D pressure field [31, 22]. Moreover,
there are no estimates for the modeling errors arising from this type of coupling
concepts. In [30] we proved for a two-dimensional model problem that the
coupling approach in (2) causes a small modeling error, if the radii of the network
are small compared to the considered tissue matrix. Furthermore, the pressure
field in the 3D tissue matrix does not exhibit any singularities, but only kinks
at vessel surfaces.

3.2 Hybrid 3D-1D model

Considering the microvascular network in Fig. 1, it can be seen that it consists
of venules and arterioles and a large number of small capillary vessels forming a
dense structure. Due to that, we consider the capillaries as a 3D porous medium,
while the venules and arterioles are still considered as 1D vessel systems. This
approach has the clear advantage that it does not require a high-resolution de-
scription of the microvascular network under consideration and that it preserves
the hierarchy of the larger vessels. All in all, there are now two coupled 3D con-
tinua in Ω, one for the capillary bed and another one for the tissue. This means
that the hybrid 3D-1D model is a double-3D continuum model contrary to the
fully-discrete model, which is a single-3D continuum model. As for the tissue,

8



the flow in the homogenized capillaries can be described using Darcy’s law, and
we pose the following problem for the corresponding unknown pcap:−∇ ·

(
ρbl

Kup

µup
bl

∇pcap

)
= qcap, in Ω,

pcap = pcap
D , on ∂Ω.

(5)

Kup is the corresponding permeability tensor, µup
bl is an averaged viscosity, qcap

indicates the source term and pcap
D denotes the Dirichlet boundary condition.

These terms and parameters are described in the following.

Computing the tensor Kup and the averaged viscosity µup
bl

Let us assume that the domain Ω can be decomposed into representative el-
ementary volumes (REVs) [24], that is:

Ω =

NREV⋃
j=1

REVj , (6)

where NREV is the total number of REVs. Furthermore, we assume that each
REVj ⊂ Ω is a rectangular cuboid, as depicted in Fig. 2. With respect to
REVj , the viscosity µup

bl is defined as follows:

µup
bl (x) = µup

bl,j , if x ∈ REVj , where µup
bl,j =

1

|IC,j |
∑
k∈IC,j

µbl (2 ·Rk/µm) .

The viscosity µbl is given by (1), and the set IC,j is defined as follows:

IC,j = {k ∈ IC | Λk ∩ REVj 6= ∅} .

Now, we determine the tensor Kup which represents the permeability of the
homogenized capillary bed. In [15], the authors computed full permeability ten-
sors for periodic cells based on computer-generated capillary networks, whose
properties statistically match measurements in brain tissue. The off-diagonal
entries were found to be on average two orders of magnitude smaller than the
diagonal terms [15, Table 2]. Following this observation, we make the following
simplifying assumptions for Kup:

(i) the permeability tensor Kup is constant on each REVj :

Kup(x) = K(j)
up , if x ∈ REVj .

(ii) the permeability tensor K
(j)
up is diagonal:

K(j)
up =

k
(j)
x 0 0

0 k
(j)
y 0

0 0 k
(j)
z

 ,

with k
(j)
x , k

(j)
y , k

(j)
z > 0.
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Figure 2: Subdivision of the capillaries ΛC into eight REVs.

In order to determine the components of the permeability tensor K
(j)
up , we apply

the upscaling strategy presented in [45] which we briefly describe in the follow-
ing. For simplicity, we restrict ourself to the computation of the permeability

component k
(j)
x . The other permeability components k

(j)
y and k

(j)
z can be com-

puted in an analogous way. As a first step to compute this quantity, we apply a
no-flow boundary condition to all the facets of the REVj whose face normals are
not aligned with the x-axis (see Fig. 3). The remaining facets are denoted by

F
(j)
in,x and F

(j)
out,x. Between these facets a pressure gradient is applied by imposing

a pressure pin,x on F
(j)
in,x and a pressure pout,x on F

(j)
out,x, where pin,x > pout,x.

This results into a volume flux from F
(j)
in,x to F

(j)
out,x. Using the Vascular Graph

Model (VGM) described in Subsection 3.3, we compute the pressure field in

ΛC,j =
⋃

k∈IC,j

Λk.

By means of this pressure field, the volume flux V F
(j)
out,x through F

(i)
out,x is com-

puted as follows:

V F
(j)
out,x =

∑
xk∈ΛC,j∩F (j)

out,x

πR2
kKv (sk)

µbl
· ∂p

v

∂s
(sk) ,

where xk = Λk (sk) for k ∈ IC,j . Based on V F
(j)
out,x, the permeability component

k
(j)
x is approximated as follows:

k(j)
x ≈

V F
(j)
out,x · µ

up
bl,j · L

(j)
x

L
(j)
y · L(j)

z · (pin,x − pout,x)
. (7)
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Figure 3: Homogenization of a capillary network contained in a REVj . On the

facets F
(j)
in,x and F

(j)
out,x whose normals are aligned with the x-axis, we apply pres-

sures pin,x and pout,x, while on the other facets a no-flow condition is imposed.

Computing the flux between F
(j)
in,x and F

(j)
out,x, the permeability component k

(j)
x

can be estimated.

L
(j)
x , L

(j)
y and L

(j)
z are the edge lengths of REVj in the x-, y- and z-direction,

respectively. An open issue in this context is the choice of the REV-size. In
order to clarify this issue, we refer to Subsection 4.2, in which the admissible
size of the REVs is determined numerically.

Computing the boundary conditions pcap
D

For the computation of the boundary data pcap
D , we consider the REVj that

are adjacent to the boundary ∂Ω, i.e., REVj ∩ ∂Ω 6= ∅. The six facets of a
REVj are denoted by F1j , . . . , F6j . For each Fij with Fij ⊂ ∂Ω, we compute

an averaged boundary value p
(ij)
D . This is done, by averaging all the pressure

values pk that are assigned to the boundary nodes xk ∈ ∂ΛC and whose dis-
tance to the face Fij is smaller than a small parameter εd > 0 (see Fig. 4):
dist (Fij ,xk) < εd. For the rest of the paper, we set εd = 10−8 m. Assuming
that Nij nodes are fulfilling these conditions, we compute the averaged pressure
by an arithmetic mean:

p
(ij)
D =

1

Nij

Nij∑
k=1

pk.

In order to obtain a smooth function for the boundary values pcap
D , we assign

the pressure values p
(ij)
D to the centers of the faces Fij and construct a linear

interpolant pcap
D on ∂Ω based on the described setup by means of the function

interpolate from the package PDELab of Dune [5].

Computing the source term qcap

The source term qcap in (5) can be splitted into a component qcap
v account-

ing for the impact of the larger vessels and a component qcap
t incorporating the

influence of the surrounding tissue:

qcap = qcap
v + qcap

t . (8)
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Figure 4: The figure shows a two dimensional layout parallel to the x-y plane
of an REVj that is located at an edge of the domain Ω. At the top of the
figure, the discrete capillary network contained in REVj is shown, while in the

bottom part of the figure, the homogenized system with the tensor K
(j)
up and

the averaged boundary pressures p
(2j)
D and p

(3j)
D can be seen.

Let xk be a node at the boundary of the subset ΛL and in the interior of the
domain Ω, i.e., xk ∈ ∂ΛL ∩ Ω. Furthermore, we assume that xk ∈ Λk ∩ REVj

for an index k ∈ IL and an index j ∈ {1, ..., NREV}. This means, there exists
a sk such that xk = Λk(sk). Then the flux occurring between the edge Λk and
the capillary continuum is given by:

ρbl
πR2

kKv (sk)

µbl
· ∂p

v

∂s
(sk) = αcap

v (Λk,REVj)
(
pcap

(j) − p
v (sk)

)
, (9)

where the factor αcap
v and the averaged pressure pcap

(j) are defined as follows:

αcap
v (Λk,REVj) = ρbl ·

πR2
kK

(j)
v

µup
bl `

(kj)
c

and pcap
(j) =

1

|REVj |

∫
REVj

pcap (x) dx. (10)

The coefficient K
(j)
v represents the permeability of the capillaries connected to

the coupling point xk. The parameter `
(kj)
c [m] indicates the average length of

the blood flow paths that begin at xk and are contained in REVj which is not
known a priori and has to be estimated. Therefore, we set:

K
(j)
v

`
(kj)
c

= α
K

(j)
v

Lj
, (11)

where Lj is the smallest edge length of the REVj , and K
(j)
v denotes the arith-

metic average of the permeabilities (4) of the capillaries contained in the REVj .
A numerical study to determine the optimal value of the parameter α ∈ (0, 1)
(with respect to the fluxes within the system) for the problem under considera-
tion is postponed to Subsection 4.3. Considering the right hand side of (9) one
has to note that the term

pcap
(j) − p

v (sk)

`
(kj)
c
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represents a finite difference approximation of a pressure gradient at an outlet
of the larger vessels. According to the REV-concept in porous media theory
[1, 24], one can assign to each REV an averaged pressure pcap

(j) , which stands for

the pressure field in the REVj . The finite difference above can be considered
as an approximation of the pressure gradient between an outlet of ΛL and the
homogenized capillary bed in REVj . Using (9), the source term qcap

v is computed
for x ∈ REVj by:

qcap
v (x) =

∑
xk∈∂ΛL∩REVj

αcap
v (Λk,REVj)

|REVj |

(
pv (sk)− pcap

(j)

)
, (12)

such that the model is mass conservative.

Computing the source term qcap
t

As in the case of the fully-discrete 3D-1D model, the tissue is considered as
a porous structure. The main difference to the capillaries is that we assume an
isotropic permeability Kt for the tissue. Furthermore the interstitial fluid is as-
sumed to have a constant viscosity µint. By means of Darcy’s law, the pressure
pt can be computed by:

−∇ ·
(
ρint

Kt

µint
∇pt

)
= −qcap

t , in Ω,

ρint
Kt

µint
∇pt · n = 0, on ∂Ω.

(13)

It remains to specify the source term qcap
t modeling the fluid transfer between

the capillary bed and the intracellular space. For this purpose, we use as in
(2) Starling’s filtration law with respect to the vessel surface area Sj that is
contained in an REVj :

Sj =
∑
k∈IC,j

∣∣∣Λ̃k∣∣∣ · 2πRk,
where Λ̃k ⊆ Λk such that Λk ∩REVj = Λ̃k. Using this parameter, qcap

t is given
by:

qcap
t (x) =

ρint · Sj · Lcap

|REVj |
(
pt (x)− pcap (x) + (πp − πint)

)
, x ∈ REVj . (14)

Summary of the equations governing the hybrid model

Summarizing all the previous considerations, the hybrid (double-continuum)
3D-3D-1D model is governed by the following equations:

• Large Vessels (1D discrete network):
− ∂

∂s

(
ρbl · πR2Kv

µbl

∂pv

∂s

)
= 0, in ΛL,

pv = pv
D, on ∂ΛL ∩ ∂Ω,

flux term in (9), on ∂ΛL ∩ Ω.

(15)
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• Capillary bed (3D porous medium):−∇ ·
(
ρbl

Kup

µup
bl

∇pcap

)
= qcap

v + qcap
t , in Ω,

pcap = pcap
D , on ∂Ω.

(16)

• Tissue (3D porous medium):
−∇ ·

(
ρint

Kt

µint
∇pt

)
= −qcap

t , in Ω,

ρint
Kt

µint
∇pt · n = 0, on ∂Ω.

(17)

The coupling term qcap
v is given by (12), and describes the interactions between

the extracted network ΛL and the homogenized capillaries. The other coupling
term qcap

t is defined by (14), and stands for the exchange between tissue and
homogenized capillaries.

3.3 Numerical discretizations

Next, we briefly describe a numerical scheme that is used to solve the model
equations (2) and (15)-(17). The elliptic PDEs governing the flow within the
tissue or the upscaled capillaries are solved numerically by means of a standard
cell-centered finite volume method [24], where the numerical fluxes across the
cell surfaces are approximated by the two-point flux method. The choice of this
method is motivated by its intrinsic local mass conservation, and by the fact
that we can work with uniform hexahedral meshes.

For the numerical solutions of the network equations in both modeling ap-
proaches (2) and (15), we employ the vascular graph model (VGM) [17, 40, 45].
Thereby, we approximate the pressure values at the grid nodes xk discretizing
the network structures. Around each grid node a control volume CVk is placed
such that the grid node is in the center of the control volume (see Fig. 5). In
the next step, the fluxes Fkj and F tk across the surfaces of the control volume
are computed and summed up such that the sum of the fluxes is equal to zero:∑

j∈N (xk)

Fkj − F tk = 0, Fkj =
ρbl · πR4

k

8µbl |xj − xk|
·
(
pv (xj)− pv (xk)

)
, (18)

where Rk is the radius of the edge linking xk and xj . N (xk) denotes the set of
indices that share the edge Λk with the point xk.

Solving the fully discrete model (2), the walls of the smaller vessels (capil-
laries) are permeable, and a flux across the vessel walls has to be considered,
too. This is done by computing an averaged pressure in the tissue with respect
to the part of the vessel wall touching the control volume, see Fig. 5. Then,
this pressure value is compared to the network pressure associated with the grid
node xk to determine the flux across the vessel wall:

F t
k = 2πLcap · ρint

 ∑
j∈E(xk)

Rj

∫
CVk∩Λj

I (pv)− pt − (πp − πint) dS

 .
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E(xk) is the index set for the edges containing the grid node xk. I (pv) is a linear
interpolant for the pressure field pv, whose shape on each edge is determined
by the two pressure values of the edge. By this, we obtain for each grid node
a mass balance equation. Summarizing these equations, we obtain a system of
equations for the pressure values at the grid nodes.

The reason why we consider a different discretization for the network is
the treatment of bifurcations or junctions in the network. Within the VGM
approach, a grid node is placed directly at a bifurcation and the mass balance
equation (18) can easily be established. Applying the cell-centered finite volume
method, one cannot place a degree of freedom directly at a bifurcation, and
therefore the fluxes through the bifurcation point have to be computed. Since
the radii of the branches and the main vessel may be different, the computation
of the fluxes requires a careful computation of the numerical transmissiblity
coefficients in (18). Finally, the continuity of the pressure at a bifurcation is
guaranteed using the VGM.

All in all the numerical treatment of the PDEs together with the boundary
conditions, source terms and coupling conditions, yields for each model a sparse
linear system of equations. Each block of the system matrix is the discrete rep-
resentative of an elliptic differential operator or a coupling term, whereas the
contributions of the oncotic pressures and the boundary conditions are incor-
porated into the right hand side of the system of equations. For the numerical
solution of the linear equation system a block AMG-preconditioner is applied.
The preconditioned system is then solved by a stabilized bi-conjugate gradient
method. This solver was realized using the generic interface of the ISTL-library
of DUNE and its AMG implementation [3, 4].

4 Numerical tests

In this section, we test the numerical models presented in Section 3 using the
data set described in Section 2. Thereby, by means of the fully-discrete 3D-1D
model (2) a reference solution is computed for the hybrid model (15)-(17). The
results obtained by both approaches are compared with respect to mass fluxes
and averaged REV-pressures. The flow is driven by the boundary conditions,
as described in Sections 3.1. and 3.2. In particular, no-flow boundary condi-

xj1
xk xj2

CVk

Fk,j1
Fk,j2

Λi2
Λi1

Figure 5: Representation of the numerical fluxes through the surface of the
control volume CVk with center in xk. The point shares the edges Λi1 and Λi2
with the nodes xj1 and xj2 of the network, respectively.
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tions are posed for the flow in the tissue, while prescribed Dirichlet values are
considered for the network (see Section 2). In Table 1, the model parameters
for the numerical simulations are summarized. The motivation for the choice of
RT = 7 µm is given in Subsection 4.1, while the number NREV in (6) for the
hybrid model is discussed in Subsection 4.2. Subsections 4.3 and 4.4 contain the
numerical results for the mass fluxes and the averaged REV-pressures, respec-
tively. Finally, in Subsection 4.5, the influence of different boundary conditions
are discussed.

Table 1: Values of the parameters used for the numerical experiments.

Discharge hematocrit H 0.45
Tissue permeability Kt 10−18 m2

Interstitial fluid viscosity µint 1.3 · 10−3 Pa · s
Plasma viscosity µp 1.0 · 10−3 Pa · s

Blood density ρbl 1030 kg/m3

Interstitial fluid density ρint 1000 kg/m3

Plasma oncotic pressure πp 3300 Pa
Interstitial oncotic pressure πint 666 Pa

Capillary wall hydraulic conductivity Lcap 10−12 m/(Pa · s)
Threshold large vessels/capillaries RT 7 µm

4.1 Justification of the threshold RT

In this subsection, we motivate the choice of the threshold RT = 7 µm that we
employ to separate the larger vessels from the capillaries. Let us consider the
whole vessel system Λ as depicted in Fig. 1, on the top. For each segment Λk,
we calculate the blood velocity vk, where we set a constant pressure gradient of
δp at the vertices:

vk =
R2
k

8.0µbl,k
· δp
|Λk|

,

where µbl,k is the viscosity of the blood according to (1). The distribution of the
velocities is reported in Fig. 6, on the left, for the case: δp = 1.0 Pa. Choosing
the threshold RT to 7.0 µm, we obtain that the average velocity in the set
ΛC is approximately 60 times smaller than the average velocity in the set ΛL.
Furthermore, the set ΛC consists of 14918 vessels, while only 337 vessels are
contained in the set ΛL. Despite the low number of larger vessel, the chosen
threshold still allows us to capture the main geometry of the vessel system, as
depicted in Fig. 6, on the right. In fact, choosing a larger threshold such as RT =
18.0 µm would reduce drastically the number of larger vessels, yielding a network
that provides only restricted informations about the geometry of the original
system. On the other hand, choosing a smaller threshold would incorporate too
many vessels in the size of capillaries. Considering the morphological values
listed in [16, Table 1], we can observe that the choice of our threshold is close
to the lower bound of the diameter range for the arterioles. Motivated by these
considerations, we fixed the threshold to 7.0 µm.
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Figure 6: On the left, the blood velocity for each vessel in the system Λ is
shown, where each segment is subject to a 1.0 Pa pressure difference. Setting
the threshold to RT = 7.0 µm yields 14918 vessels in the set ΛC with average
velocity of 0.00714 mm/s, and 337 vessels in the set ΛL with an average velocity
of 0.41533 mm/s. On the right, the system ΛL is depicted for the threshold
RT = 7.0 µm. The network ΛL for the threshold RT = 18.0 µm is marked in
green.

4.2 Homogenization of the capillary bed

In order to determine the admissible REV sizes for the approximation of the per-
meability tensor, we perform the following test: A single control volume, initially
of size 12×12×24 µm, is positioned in the center (0.00056831, 0.00056831, 0.00113662)
of the domain Ω and then enlarged in each space direction approximately by
4.0 µm in the x- and y-directions and by 8.0 µm in the z-direction. For each
one of these control volumes, the values of the intrinsic permeability are de-
termined using (7) and suitable adaptations for the y- and z-directions. In
addition to that, we compute the blood volume fraction, which is defined as
the ratio between the volume of the capillary network contained in the control
volume under consideration and the volume of the control volume itself. The
test is performed starting from the center of Ω, because this position allows
for a larger margin of growth of the control volume. The numerical results
confirm the expected oscillating behavior of the intrinsic permeability that typ-
ically occurs when the size of the control volume is too small (Fig. 7, left). The
permeabilities appear to reach stable values, if the edges of the control volume
are greater than approximately 500.0 µm (in the x- and y-direction). Therefore,
we can assert that the control volume with half the dimensions of the domain
(568.31 × 568.31 × 1081.503 µm) and collocated in the center of Ω can be as-
sumed to be an REV. A further argument to support this statement can be
derived considering the blood volume fraction of the capillary continuum. As
depicted in Fig. 7 on the right, the blood volume fraction seems to stabilize
around the value 1.16%, if the length of the control volume is larger than ap-
proximately 400.0 µm. However, collocating a single REV in the center of the
domain with half the sizes of Ω is not enough, since the entire capillary network
has to be homogenized. On the other hand, having a single REV covering the
entire domain would mean that the heterogeneity of the capillary system is not
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Figure 7: On the left, the upscaled permeability is computed in the case where
a single control volume is positioned in the center of the domain Ω. The di-
mensions of the control volume are enlarged by approximately 4 × 4 × 8 µm
in each step until the control volume fills the entire domain Ω. The length of
the control volume in the plot has to be doubled to obtain the actual size of
the control volume in the z-direction. After an oscillating transition zone, each
permeability stabilizes around a fixed value. On the right, the blood volume
fraction of the corresponding control volume is reported.

considered. In fact, observing Fig. 9 (top left), we can notice that in the upper
part of the system, the capillaries are mainly aligned with the z-direction, while
in the bottom part, the main directions are the x- and y-directions. These ori-
entations are consistent with the structure of the larger vessels, as reported in
Fig. 1, on the bottom right. To this end, we subdivide the domain into 2×2×2
control volumes, each having half the sizes of the domain, as the central REV
from the previous test. The centers of these control volumes and their corre-
sponding numeration are reported in Table 3. To assert that these 8 control
volumes are REVs as well, we observe in Fig. 8 that the radii distribution of
the capillaries contained in each control volume is similar to that of the central
REV from the previous test. Furthermore, mean radii and standard deviations
are similar as well. Supported by these observations, we can assume that the
8 control volumes considered are REVs and that the permeabilities reported in
Fig. 9 are representative.

4.3 Comparison of the mass fluxes

A comparison between the two numerical models is provided in terms of the
mass fluxes across different boundaries and interfaces. For the one-dimensional
systems in both the fully discrete network and the reduced network, the mass
flux MF through a boundary node xk = Λk(sk) ∈ ∂Λ ∩ ∂Ω is computed as
in (18). The inflow MFin through the boundary point xk is defined as:

MFin(xk) =

{
MF (xk), if MF (xk) > 0,

0, otherwise.

In a similar way, we can define the mass flux out of the domain:

MFout(xk) =

{
|MF (xk)| , if MF (xk) < 0,

0, otherwise.
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Figure 8: Histrograms of the radii distributions of the capillaries contained in
each control volume. The numeration is given according to Table 3. For each
CV, the mean value avg(R) of the radii and the standard deviation std(R) are
provided. In the last histrogram, the radii distribution of the capillaries con-
tained in the REV with the same center as the domain Ω and same dimensions
as the other control volumes is reported.

Having this notation at hand, we define the total inflow MFLV,in and outflow
MFLV,out through the large vessels as:

MFLV,in =
∑

xk∈∂ΛL∩∂Ω

MFin(xk) and MFLV,out =
∑

xk∈∂ΛL∩∂Ω

MFout(xk).

For the hybrid approach, the mass fluxes through the boundary ∂Ω of the cap-
illary continuum have to be interpreted as single quantities for each boundary
REV. Let us assume that the REVj shares at least one side with the boundary
of the domain, that is ∂REVj ∩ ∂Ω 6= ∅. In this work, we employ the following
definition for the net flux NF with respect to the REVj :

NF (REVj) = ρbl

∫
∂REVj∩∂Ω

K
(j)
up

µup
bl,j

· ∇pcap
(j) · n dS,

where n denotes the outward unit normal vector to the boundary. Numerically,
the gradient ∇pcap

(j) is calculated by the standard two-point flux approximation

for a cell-centered finite volume method. Analogously as for the one-dimensional
fluxes, we define the inflow NFin through the REVj as:

NFin(REVj) =

{
NF (REVj), if NF (REVj) > 0,

0, otherwise,
(19)

and the outflow as:

NFout(REVj) =

{
|NF (REVj)| , if NF (REVj) < 0,

0, otherwise.
(20)
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Figure 9: Permeability tensors Kup in the case of 2× 2× 2 REVs. The hetero-
geneous distribution of the capillaries from Fig. 1 is therefore incorporated, in
the sense that in the lower part of the domain, the flow occurs mainly in the
xy-plane, while on the top in the z-direction.

Therefore, the total net fluxes for the capillary continuum are given by:

MFHY
cap,in =

NREV∑
j=1

NFin(REVj) and MFHY
cap,out =

NREV∑
j=1

NFout(REVj). (21)

For a suitable comparison of the fluxes, the fluxes through the capillaries in the
fully-discrete method have to be averaged in the same sense as for the hybrid
approach. Therefore, we can similarly define the net flux NFcap for the REVj

as the sum of the fluxes through the boundary capillaries, namely:

NFcap(REVj) =
∑

xk∈∂ΛC∩∂REVj∩∂Ω

MF (xk).
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Then, the inflow NFcap,in and outflow NFcap,out through the REVj can be
defined analogously to (19) and (20). The total inflow MFFD

cap,in and outflow

MFFD
cap,out through the capillaries for the fully-discrete model can be defined

similarly to (21). The mass fluxes between capillaries and tissue are denoted
by MFFD

cap,t for the fully-discrete model and by MFHY
cap,t for the hybrid model.

Again, we compute only net fluxes for each REV following a similar procedure
as for the blood fluxes described above. In case of the hybrid model, we compute
the net flux in a REVj by:

NFHY
cap,t (REVj) =

ρintLcapSj
|REVj |

∫
REVj

(
pt (x)− pcap (x)

)
− (πp − πint) dx.

Defining the net inflow flux NFHY,in
cap,t (REVj) and outflow flux NFHY,out

cap,t (REVj)
as in the previous cases, the total inflow is given by:

MFHY,in
cap,t =

NREV∑
j=1

NFHY,in
cap,t (REVj) (22)

and the total outflow is calculated as the sum of the net outflows.
For the fully-discrete model, we compute the net flow in REVj as follows:

NFFD
cap,t (REVj) = ρint · 2πLcap

∑
k∈ΛC,j

Rk

∫
Λk

(
pt − pv

)
− (πp − πint) dS.

As in this case of the hybrid model, the total inflow is given as in (22). Having
these definitions at hand, we first compute the mass fluxes for the FD-model.
Using these values, we determine the values of the parameter α in (11) such
that the following objective functions are minimized:

f1(α) =

√∑
β

∑
γ

1

2

(
MFHY

β,γ −MFFD
β,γ

)2

,

for β ∈ {LV, cap} and γ ∈ {in, out}, and

f2(α) =

√
1

2

(
MFHY

LV,in −MFFD
LV,in

)2

.

The results obtained with the hybrid model strongly depend on the value of α
in (11), as we can deduce from Fig. 10, where both objective functions f1 and f2

are plotted with respect to the parameter α. For the objective function f2, it is
easy to identify the minimum at α = 0.4, while for f1 the minimum is attained
at α = 0.46. The choice between these two values of α is made comparing
the fluxes listed in Table 2, where we report the fluxes obtained on the finest
level for both the fully-discrete (FD) and the hybrid (HY) models (details to
the mesh refinements are postponed to Section 4.4). The results for the latter
one are provided for α ∈ {0.2, 0.4, 0.46, 0.9}. We can observe a good agreement
between the hybrid and the fully-discrete models, in particular with respect to
the inflow due to the larger vessels, if α = 0.4 is chosen. The major differences
in the fluxes consist in the contributions of the homogenized capillaries. In fact,
using the hybrid model, the mass fluxes into the capillary continuum and out of
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Figure 10: Graphs of the objective functions f1 and f2. For f1, the minimum
is reached at α = 0.46, while, for f2 it can be seen at a first glance that the
minimum is attained at α = 0.4.

the capillary continuum are significantly overestimated than those of the fully-
discrete model. On the other hand, choosing α = 0.46 yields an overall better
agreement with the fully-discrete model, because all four fluxes are optimized at
the same time, but not a single quantity is as good approximated as for α = 0.4.
Moreover, due to the fact that in a small neighbourhood of the the minimum, the
function f1 is relatively flat, the difference between |f1(0.4)− f1(0.46)| is about
0.141 µg/s. For completeness, we report the fluxes for α = 0.2 and α = 0.9 as
well to shown by how much these results differ from the solution of the fully-
discrete model. Therefore, for the rest of the paper, we proceed comparing the
fully-discrete model with the hybrid model, where we fixed α = 0.4 in (11).

Lastly, to validate the numerical discretizazion of the hybrid model, we re-
port in Fig. 11 the numerical mass fluxes, where each plot of the flux is calculated
with respect to the mesh refinement. It can be seen that for all the quantities
reported, the curves plotted are approaching asymptotic values, as the mesh is
refined. This behavior demonstrates that the mass fluxes obtained at the finest
level and reported in Table 2 are representative for the hybrid model.

Table 2: Mass fluxes at the boundaries and interfaces of the vascular system.
All the fluxes that are presented in this table are given in µg/s. For the hybrid
method, the fluxes reported are obtained for different α.

Large vessels Capillary bed Tissue

Method MFLV,in MFLV,out MFcap,in MFcap,out MFcap,t

FD 9.80161 10.4964 1.30573 0.61093 2.54991 · 10−3

HYα=0.4 9.79829 7.80573 2.04311 4.03567 1.10565 · 10−3

HYα=0.46 8.89951 7.14353 1.87204 3.62801 1.04549 · 10−3

HYα=0.2 16.9280 13.2730 2.86975 6.52477 1.48711 · 10−3

HYα=0.9 5.87650 4.95714 1.17063 2.08998 0.78677 · 10−3
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Figure 11: Behavior of the mass fluxes for the hybrid approach with respect to
the number of degrees of freedom. At the top, the fluxes at the boundaries of
the capillaries and of the large vessels are reported. At the bottom, the total net
flux from the capillary bed into the tissue for the hybrid approach is presented.

4.4 Comparison of the REV pressures

After comparing the mass fluxes obtained by the two modeling approaches,
we proceed with the comparison of the REV-pressures within the tissue and
the capillary bed. For the hybrid model, the averaged pressure pcap

(j),HY in the

capillaries for the REVj is given by the definition (10), while the average pressure
in the tissue is defined as:

pt
(j),HY =

1

|REVj |

∫
REVj

pt (x) dx. (23)

In case of the fully-discrete model, we use again (23) to determine the REV-
pressure within the tissue and label this value by pt

(j),FD. The REV-pressure
for the capillaries with respect to an REVj is approximated by:

pcap
(j),FD =

1

|ΛC,j |

∫
ΛC,j

pv (x) dx.

Furthermore, for the REVj we define the relative pressure error Ecap
r in the
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capillaries and Et
r in the tissue as:

Eβr (j) =

∣∣∣pβ(j),HY − p
β
(j),FD

∣∣∣
pβ(j),HY

, β ∈ {cap, t}.

The results obtained by means of the hybrid and fully-discrete methods are re-
ported for each REV in Table 3, together with the numeration in the mesh and
the center of each REV. The average difference between the pressures obtained
with the hybrid method and the fully-discrete method is given by approximately
537.08 Pa (corresponding to 4.03 mmHg) for the capillaries, while the average
difference within the tissue is given by approximately 316.27 Pa (corresponding
to 2.37 mmHg). These values yield an average relative error of the pressures be-

tween the hybrid model and the fully-discrete of approximately Ecap
r = 11.37%

in the capillaries and of Et
r = 13.97% in the tissue.

Table 3: Averaged REV-pressures in the capillaries and in the tissue.

REV pcap(j) [Pa] pt(j) [Pa]

j Center [mm] HY FD Ecap
r HY FD Et

r

1 (0.284, 0.284, 0.542) 5107.77 4535.61 11.20% 2400.12 1972.80 17.80%
2 (0.852, 0.284, 0.542) 5217.07 4704.37 9.83% 2465.14 2027.71 17.74%
3 (0.284, 0.852, 0.542) 5002.77 4658.86 6.87% 2325.75 1961.99 15.64%
4 (0.852, 0.852, 0.542) 5041.25 4447.64 11.77% 2392.00 1939.18 18.93%
5 (0.284, 0.284, 1.623) 4843.99 5465.34 12.83% 2156.06 2469.00 14.51%
6 (0.852, 0.284, 1.623) 5041.86 5425.96 7.62% 2295.94 2440.22 6.28%
7 (0.284, 0.852, 1.623) 3789.44 4637.19 22.37% 1847.50 2192.57 18.68%
8 (0.852, 0.852, 1.623) 4960.14 4539.09 8.49% 2178.97 2132.44 2.14%

Finally, in Table 4 we report the average relative errors Ecap
r and Et

r of the
hybrid model with mesh refinement. These errors are calculated with respect
to the REV-pressures obtained by the fully-discrete model on the finest mesh,
i.e., the values reported in Table 3 in the corresponding columns. Table 4

suggests that the errors Eβr converge to a fixed value. The remaining error can
be considered as the modeling error arising from the homogenization.

If we calculate the solution of the hybrid model on the mesh with 16 ×
16 × 16 elements in both the capillaries and tissue for a total of 8538 degrees
of freedom, we obtain that the average relative errors differ by less than 1%
from the average relative errors on the finest mesh. In this situation, we can
assert that the modeling error dominates the discretization error and thus the
obtained pressures can be considered as representative for the hybrid model. On
the other hand, the relative error for the pressure in the fully-discrete model is
already less than 1% on the coarsest mesh, where the elements coincide with the
REVs. However, in this case the linear system has still 12995 degrees of freedom
in the network and 8 in the tissue. Therefore, compared with the fully-discrete
model, a smaller linear system can be solved to obtain representative values for
the fluxes and pressures in the hybrid model. This reduction in the number of
degrees of freedom is expected to become more sensible, if a larger system is
considered.
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Table 4: Averaged relative errors of the REV-pressures in the capillaries and
in the tissue with respect to the degrees of freedom (dofs).

dofs Ecap
r Et

r

362 16.20% 22.30%

474 14.15% 17.70%

1370 12.71% 15.51%

8538 11.95% 14.56%

65882 11.58% 14.17%

524634 11.42% 14.02%

4194650 11.37% 13.97%

4.5 Sensitivity analysis of α for different boundary condi-
tions

In this section, we study the influence of the boundary conditions on the pa-
rameter α defined in (11). Considering the results reported in Table 2, one can
conclude that the arterioles and venules determine significantly the pressure and
velocity fields within the microvascular system. Therefore we vary the pressures
at the boundary of these vessels as follows. Let us denote by pa and pv the
average boundary pressure of the arterioles and of the venules, respectively. For
the experiment setting considered here, the difference

δ = |pv − pa|

amounts to approximately 5000 Pa (corresponding to 37.5 mmHg). For all

i ∈ {−10%, ...,−1%, 0%, 1%, ..., 10%},

we add the pressure 1
2δ · i to each boundary node corresponding to an arteriole,

while at the venous boundary nodes, we subtract the same quantity. This yields
a variation in the average pressure difference by the fraction i of δ. For each new
network, the optimization process described in Section 4.3 is conducted and the
resulting graphs of the objective functions f1 and f2 have the same shape as in
Fig. 10. Following the same strategy described above, only the optimal α for
the objective function f2 is considered and reported in Table 5.

If the average pressure difference is reduced, the optimal α is subject to rel-
atively small variations. On the other hand, if δ becomes larger, the deviations
from α = 0.4 become larger. However, as we can observe in Fig. 10, a small
deviation from the optimal α yields a sensible difference in the flux MFLV,in.
Therefore, a single α cannot be determined in advance and used for other sam-
ples with different data, but the calibration of α has to be repeated for every
new experimental setting.

5 Concluding remarks

In this work, we have presented a hybrid model for simulating blood flow through
networks at the level of microcirculation. The presented model is based on 1D
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Table 5: Optimal α values for the cases, in which the average pressure difference
δ is varied by the percentage i.

i [ % ] α

−10,−9 − 8 − 7,−6,−4,−3,−2 0.41

−5 0.42

−1, 0,+1 0.4

+2 0.38

+3,+4 0.39

+5,+6,+7 0.37

+8,+9,+10 0.36

flow models for the larger vessels and on homogenization techniques for the
capillaries and the tissue. Thereby, the capillaries and the tissue are modeled
as 3D coupled porous media resulting in a double 3D continua approach for
simulating flows within both systems. In order to validate the simulation results
obtained by our hybrid model, we have generated a reference solution by means
of a fully-discrete 3D-1D coupled model. Here, the complete vascular network
is resolved by 1D flow models and only the flow within the tissue is considered
as a porous medium flow.

For the comparison criteria between the two models, we have chosen mass
fluxes at the boundaries of the microvascular system and averaged pressures for
each REV. If the parameter α in (11) is chosen appropriately, our simulation re-
sults showed that the fluxes at the inlet and outlets of the larger vessels obtained
with our hybrid model coincide in a satisfactory manner with the corresponding
fluxes obtained solving the fully-discrete model. On the other hand, the fluxes
through the capillaries are overestimated by the hybrid model. Furthermore
the net mass flux between the tissue and the capillaries is approximately 2.3
times higher for the fully-discrete model than for the hybrid model. Regarding
the averaged pressures for each REV, the simulations showed that the pressures
obtained with the hybrid model differ, in average, by approximately 4 mmHg in
the capillaries and by approximately 2.37 mmHg in the tissue from the solution
of the fully-discrete model. A more thorough comparison with respect to the
reduction of the computational cost will be subject of future work. For this
purpose, a larger tissue sample should be examined. Additionally, we investi-
gated the influence of different boundary conditions on the optimal parameter
α. Despite the fact that α varies only slightly, the results suggest that it may
be necessary to calibrate α for every experimental setting to obtain accurate
approximations of the mass fluxes provided by the fully-discrete model. Simi-
larly, in [49] a parameter has to be optimized as well to model the flux between
the different vessel types. These observations suggest that in context of hybrid
models for microvasculature different unknown parameters occur, whose value
is not known a priori. As a consequence, further investigations are required
to improve the hybrid modeling approach. In particular, it would be of great
interest to determine, if a combination of such parameters exists that can be
applied to different settings and provides accurate results.

Considering other works regarding upscaling of capillary structures, such
as [40], we obtained comparable results. In [40], the authors obtained perme-
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abilities in the order of 10−14 m2, i.e., approximately 5 times larger values than
the ones depicted in Fig. 9. However, having a closer look to the data, one
can observe that in [40] the radius of the capillaries is around 3 µm, while in
our experiment the radius of the capillaries ranges between 1.6 µm and 7 µm,
which explains the difference. Regarding the choice of the parameter RT, the
threshold 7 µm is in good agreement with the morphological values listed in [16,
Table 1].

A limitation of our hybrid model consists in the determination of the pa-
rameter α. In this paper, we employed the solution of the fully-discrete model
to tune the parameter α in order to optimize certain fluxes. A way to make
a more independent definition of α may involve a precise computation of the

quantities K
(j)
v and `

(kj)
c in (10). Furthermore, a better approximation of the

permeabilities of the homogenized system may be necessary, in particular, if
larger systems are considered. We also point out that the hybrid model we
presented allows one to compute only net fluxes.

A clear advantage of the hybrid model is the fact that only meso-scale data
are required to parametrize the model, whereas micro-scale data are necessary
for fully discrete models. This holds for boundary data as well as for model pa-
rameters. Furthermore, we have provided tools to analyze homogenized models
systematically that can be used to verify other upscaling strategies.

Future work in this field might be concentrated on coupling the new hybrid
model for blood flow with transport models for therapeutic agents and other
substances such that cancer therapies like hyperthermia can be simulated. A
further interesting issue that could be studied by means of the hybrid model is
to enhance existing flow models for whole organs or part of organs such that
the diagnosis techniques for clinical
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