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Abstract

We develop a new multipoint stress mixed finite element method for linear elasticity with weakly
enforced stress symmetry on simplicial grids. Motivated by the multipoint flux mixed finite element
method for Darcy flow, the method utilizes the lowest order Brezzi-Douglas-Marini finite element spaces
for the stress and the vertex quadrature rule in order to localize the interaction of degrees of freedom.
This allows for local stress elimination around each vertex. We develop two variants of the method.
The first uses a piecewise constant rotation and results in a cell-centered system for displacement and
rotation. The second uses a piecewise linear rotation and a quadrature rule for the asymmetry bilinear
form. This allows for further elimination of the rotation, resulting in a cell-centered system for the
displacement only. Stability and error analysis is performed for both variants. First-order convergence
is established for all variables in their natural norms. A duality argument is further employed to prove
second order superconvergence of the displacement at the cell centers. Numerical results are presented
in confirmation of the theory.

1 Introduction

Mixed finite element (MFE) methods for elasticity with stress-displacement formulations provide accurate
stress, local momentum conservation, and robust treatment of almost incompressible materials. Numerous
methods with strong stress symmetry [6, 11, 15] and weak stress symmetry [7, 9, 10, 13, 16, 22, 31, 38, 47]
have been developed. A drawback of these methods is that the resulting algebraic systems are of saddle
point type. Two common approaches for reducing MFE formulations to positive definite systems include
hybridization, resulting in skeletal systems, and reduction to cell-centered systems. In the context of stress-
displacement elasticity formulations, hybridization is possible for non-conforming MFE methods [8,12,30]
or hybridizable discontinuous Galerkin (HDG) methods [23,43]. These methods require facet displacement
degrees of freedom corresponding to polynomials of at least first order.

In this paper we develop MFE methods for elasticity on simplicial grids that can be reduced to
symmetric and positive definite cell centered systems based on piecewise constant approximations. These
methods have reduced computational complexity compared to hybrid formulations, both due to the smaller
polynomial degree and the fact that there are fewer elements than facets. Our approach is motivated by
the multipoint flux mixed finite element (MFMFE) method [35, 49, 50] for Darcy flow, which is closely
related to the multipoint flux approximation (MPFA) method [1–3,27,28]. The MPFA method is a finite
volume method obtained by eliminating fluxes around mesh vertices in terms of neighboring pressures. It
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can handle discontinuous full tensor coefficients and general grids, thus improving on previously developed
cell centered finite difference methods resulting from MFE methods [4,5,45], which work for smooth grids
and/or coefficients. The MFMFE method [35,50] utilizes the lowest order Brezzi-Douglas-Marini BDM1

spaces [18] on simplicial and quadrilateral grids, see also a similar approach in [20] on simplices, as well as
an enhanced Brezzi-Douglas-Duran-Fortin BDDF1 space [19] on hexahedra. An alternative formulation
based on a broken Raviart-Thomas velocity space is developed in [37]. A common feature of the above
mentioned methods is that the velocity space has only degrees of freedom that are normal components
of the vector on the element boundary, such that on any facet (edge or face) there is one normal velocity
associated with each of the vertices. An application of the vertex quadrature rule for the velocity bilinear
form results in localizing the interaction of velocity degrees of freedom around mesh vertices. The fluxes
then can be locally eliminated, resulting in a cell centered pressure system. The variational framework of
the MFMFE methods allows for combining MFE techniques with quadrature error analysis to establish
stability and convergence results.

In [41], the multipoint stress approximation (MPSA) method for elasticity was developed, which is a
displacement finite volume method based on local stress elimination around vertices in a manner similar
to the MPFA method. The method does not have a mixed finite element interpretation, but its stress
degrees of freedom correspond to the BDM1 degrees of freedom. The MPSA method was analyzed in [42]
by being related to a non-symmetric discontinuous Galerkin (DG) method. A weak symmetry MPSA
method has been developed in [36].

In this paper we develop two stress-displacement MFE methods for elasticity on simplicial grids that
reduce to cell centered systems. We consider the formulation with weakly imposed stress symmetry, for
which there exist MFE spaces with BDM1 degrees of freedom for the stress and piecewise constant dis-
placement. In this formulation the symmetry of the stress is imposed weakly using a Lagrange multiplier,
which is a skew-symmetric matrix and has a physical meaning of rotation. Our first method is based on
the Arnold-Falk-Winther (AFW) spaces [10] BDM1×P0×P0, i.e., BDM1 stress and piecewise constant
displacement and rotation. Since in Rd there are d normal stress vector degrees of freedom per facet,
one degree of freedom can be associated with each vertex, We employ the vertex quadrature rule for the
stress bilinear form, which localizes the stress degrees of freedom interaction around vertices, resulting in
a block-diagonal stress matrix. This approach resembles the well-known mass-lumping procedure. The
stress is then locally eliminated and the method is reduced to a symmetric and positive definite cell
centered system for the displacement and rotation. This system is smaller and easier to solve than the
original saddle point problem, but no further reduction is possible. Our second method is based on the
modified AFW triple BDM1 × P0 × P1 proposed in [15]. The difference from the first method is that
the rotation is continuous piecewise linear. In this method we employ the vertex quadrature rule both
for the stress and the asymmetry bilinear forms. This allows for further local elimination of the rotation
after the initial stress elimination, resulting in a symmetric and positive definite cell centered system for
the displacement only. This is a very efficient method with computational cost comparable to the MPSA
method. Adopting the MPSA terminology, we call our method a multipoint stress mixed finite element
(MSMFE) method, with the two variants referred to as MSMFE-0 and MSMFE-1, where the number
corresponds to the rotation polynomial degree.

We note that the MSMFE methods inherit the locking-free property of stress-displacement MFE
methods for elasticity. A numerical example illustrating the robustness of the MSMFE methods for
nearly-incompressible materials is presented in the numerical section. We should mention that a number
of locking-free primal-formulation methods have also been developed, including DG [44], a hybrid high
order method [24], finite element methods with the Crouzeix-Raviart space [17, 26, 33], weak Galerkin
methods [48], a virtual element method [14], and a hybrid finite volume method [25]. These methods have
been developed on general polygonal grids, and many of them can have arbitrary order of approximation.
However, they require postprocessing for computing the stress and do not provide local equilibrium with
H(div)-conforming stress.

We perform stability and error analysis for both MSMFE methods. The stability analysis follows the
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framework established in previous works on MFE methods for elasticity with weak stress symmetry [7,10],
and utilizes the classical Babuška-Brezzi conditions [19]. While the stability of the MSMFE-0 method is
relatively straightforward, the analysis of the MSMFE-1 method is not. It requires establishing an inf-sup
condition for the Taylor-Hood Stokes pair with vertex quadrature in the divergence bilinear form. We do
this by employing a macroelement argument, following an approach developed in [46]. We note that our
analysis differs from the one in [46]. In particular, the application of the vertex quadrature rule leads to
additional technical difficulties in the inf-sup analysis, since the control of the pressure degrees of freedom
by the velocity in the divergence bilinear form is weakened. We proceed with establishing first order
convergence for the stress in the H(div)-norm and for the displacement and rotation in the L2-norm for
both methods. The arguments combine techniques from MFE analysis and quadrature error analysis. A
duality argument is further employed to prove second order superconvergence of the displacement at the
cell centers.

The rest of the paper is organized as follows. The model problem and its MFE approximation are
presented in Section 2. The two methods are developed and their stability is analyzed in Sections 3 and
4, respectively. Section 5 is devoted to the error analysis. Numerical results are presented in Section 6.

2 Model problem and its MFE approximation

In this section we recall the weak stress symmetry formulation of the elasticity system. We then present
its MFE approximation and a quadrature rule, which form the basis for the MSMFE methods presented
in the next sections.

Let Ω be a simply connected bounded domain of Rd, d = 2, 3 occupied by a linearly elastic body. We
write M, S and N for the spaces of d× d matrices, symmetric matrices and skew-symmetric matrices, all
over the field of real numbers, respectively. The material properties are described at each point x ∈ Ω
by a compliance tensor A = A(x), which is a symmetric, bounded and uniformly positive definite linear
operator acting from S to S. We also assume that an extension of A to an operator M→M still possesses
the above properties. As an example, in the case of a homogeneous and isotropic body,

Aσ =
1

2µ

(
σ − λ

2µ+ dλ
tr(σ)I

)
,

where I is the d× d identity matrix and µ > 0, λ > −2µ/d are the Lamé coefficients.
Throughout the paper the divergence operator is the usual divergence for vector fields. When applied

to a matrix field, it produces a vector field by taking the divergence of each row. We will also use the curl
operator which is the usual curl when applied to vector fields in three dimensions, and it is defined as

curlφ = (∂2φ,−∂1φ)

for a scalar function φ in two dimensions. Consequently, for a vector field in two dimensions or a matrix
field in three dimensions, the curl operator produces a matrix field, by acting row-wise.

Throughout the paper, C denotes a generic positive constant that is independent of the discretization
parameter h. We will also use the following standard notation. For a domain G ⊂ Rd, the L2(G) inner
product and norm for scalar and vector valued functions are denoted (·, ·)G and ‖ · ‖G, respectively. The
norms and seminorms of the Sobolev spaces W k,p(G), k ∈ R, p > 0 are denoted by ‖ · ‖k,p,G and | · |k,p,G,
respectively. The norms and seminorms of the Hilbert spaces Hk(G) are denoted by ‖ · ‖k,G and | · |k,G,
respectively. We omit G in the subscript if G = Ω. For a section of the domain or element boundary
S ⊂ Rd−1 we write 〈·, ·〉S and ‖·‖S for the L2(S) inner product (or duality pairing) and norm, respectively.
We will also use the spaces

H(div; Ω) = {v ∈ L2(Ω,Rd) : div v ∈ L2(Ω)},
H(div; Ω,M) = {τ ∈ L2(Ω,M) : div τ ∈ L2(Ω,Rd)},
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equipped with the norm

‖τ‖div =
(
‖τ‖2 + ‖ div τ‖2

)1/2
.

Given a vector field f on Ω representing body forces, equations of static elasticity in Hellinger-Reissner
form determine the stress σ and the displacement u satisfying the constitutive and equilibrium equations
respectively:

Aσ = ε(u), div σ = f in Ω, (2.1)

together with the boundary conditions

u = g on ΓD, σ n = 0 on ΓN , (2.2)

where ε(u) = 1
2

(
∇u+ (∇u)T

)
and ∂Ω = ΓD ∪ ΓN . We assume for simplicity that ΓD 6= ∅.

Introducing the Lagrange multiplier γ = Skew(∇u), Skew(τ) = 1
2(τ − τT ), from the space of skew-

symmetric matrices to penalize the asymmetry of the stress tensor, and using that Aσ = ∇u − γ, we
arrive at the weak formulation for (2.1)-(2.2), see for example [9,10]: find (σ, u, γ) ∈ X×V ×W such that

(Aσ, τ) + (u,div τ) + (γ, τ) = 〈g, τ n〉ΓD
, ∀τ ∈ X,

(div σ, v) = (f, v) , ∀v ∈ V,
(σ, ξ) = 0, ∀ξ ∈W,

(2.3)

where the spaces are

X =
{
τ ∈ H(div; Ω,M) : τ n = 0 on ΓN

}
, V = L2(Ω,Rd), W = L2(Ω,N).

Define the asymmetry operator as : M→ Rd(d−1)/2 such that

as (τ) = τ12 − τ21 in 2D and as (τ) = (τ32 − τ23, τ31 − τ13, τ21 − τ12)T in 3D.

Let

H =

{
R2, d = 2,
M, d = 3,

and define the invertible operators S : H→ H and Ξ : Rd(d−1)/2 → N as follows,

d = 2 : S(w) = w for w ∈ R2, Ξ(p) =

(
0 p
−p 0

)
for p ∈ R,

d = 3 : S(w) = tr (w)I − wT for w ∈M, Ξ(p) =

 0 −p3 p2

p3 0 −p1

−p2 p1 0

 for p ∈ R3.

(2.4)

A direct calculation shows that for all w ∈ H,

as (curl(w)) = −divS(w), (2.5)

and for all τ ∈M and ξ ∈ N,

(τ, ξ) =
(
as (τ),Ξ−1(ξ)

)
. (2.6)
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Figure 1: BDM1 × P0 × P0 on triangles (left) and BDM1 × P0 × P1 on tetrahedra (right).

2.1 Mixed finite element method

Here we present the MFE approximation of (2.3), which is the basis for the MSMFE methods. Assume
for simplicity that Ω is a polygonal domain and let Th be a shape-regular and quasi-uniform finite ele-
ment partition of Ω [21] consisting of triangles in two dimensions or tetrahedra in three dimensions with
maximum diameter h. For any element E ∈ Th there exists a bijection mapping FE : Ê → E, where Ê is
a reference element. Denote the Jacobian matrix by DFE and let JE = |det(DFE)|. In the case of tri-
angular meshes, Ê is the reference right triangle with vertices r̂1 = (0, 0T ), r̂2 = (1, 0)T and r̂3 = (0, 1)T .
Let r1, r2 and r3 be the corresponding vertices of E, oriented counterclockwise. In this case FE is a linear
mapping of the form FE(r̂) = r1(1− x̂− ŷ) + r2x̂+ r3ŷ with a constant Jacobian matrix and determinant
given by DFE = [r21, r31]T and JE = 2|E|, where rij = ri − rj . The mapping for tetrahedra is described
similarly.

The finite element spaces Xh×Vh×Wk
h ⊂ X×V ×W are the triple (BDM1)d× (P0)d× (Pk)d×d,skew,

where k = 0, 1. Note that for k = 1 the space W1
h contains continuous piecewise linears. On the reference

triangle these spaces are defined as

X̂(Ê) = P1(Ê)2 × P1(Ê)2 =

(
α1x̂+ β1ŷ + γ1 α2x̂+ β2ŷ + γ2

α3x̂+ β3ŷ + γ3 α4x̂+ β4ŷ + γ4

)
,

V̂ (Ê) = P0(Ê)× P0(Ê), Ŵk(Ê) = Ξ(p), p ∈ Pk(Ê) for k = 0, 1. (2.7)

The definition on tetrahedra is similar, except that Ŵk(Ê) = Ξ(p), p ∈ Pk(Ê)d. These spaces satisfy

div X̂(Ê) = V̂ (Ê) and ∀τ̂ ∈ X̂(Ê), ê ∈ Ê, τ̂ nê ∈ P1(ê)d.

It is known [18, 19] that the degrees of freedom for BDM1 can be chosen as the values of normal fluxes
at any two points on each edge ê if Ê is a reference triangle, or any three points one each face ê if Ê is a
reference tetrahedron. This naturally extends to normal stresses in the case of (BDM1)d. Here we choose
these points to be at the vertices of ê, see Figure 1. This choice is motivated by the use of quadrature
rule described in the next section. The spaces on any element E ∈ Th are defined via the transformations

τ
P↔ τ̂ : τT =

1

JE
DFE τ̂

T ◦ F−1
E , v ↔ v̂ : v = v̂ ◦ F−1

E , ξ ↔ ξ̂ : ξ = ξ̂ ◦ F−1
E ,

where τ ∈ X, v ∈ V , and ξ ∈ W. The stress tensor is transformed by the Piola transformation applied
row-wise. It preserves the normal components of the stress tensor on facets, and it satisfies

(div τ, v)E = (div τ̂ , v̂)Ê and 〈τ ne, v〉e = 〈τ̂ n̂ê, v̂〉ê. (2.8)

The spaces on Th are defined by

Xh = {τ ∈ X : τ |E
P↔ τ̂ , τ̂ ∈ X̂(Ê) ∀E ∈ Th},

Vh = {v ∈ V : v|E ↔ v̂, v̂ ∈ V̂ (Ê) ∀E ∈ Th}, (2.9)

W0
h= {ξ ∈W : ξ|E ↔ ξ̂, ξ̂ ∈ Ŵ0(Ê) ∀E ∈ Th},

W1
h= {ξ ∈ C(Ω,N) ⊂W : ξ|E ↔ ξ̂, ξ̂ ∈ Ŵ1(Ê) ∀E ∈ Th}.
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Note that W1
h ⊂ H1(Ω), since it contains continuous piecewise P1 functions. The mixed finite element

approximation of (2.3) is: find (σh, uh, γh) ∈ Xh × Vh ×Wk
h such that

(Aσh, τ) + (uh, div τ) + (γh, τ) = 〈g, τ n〉ΓD
, τ ∈ Xh, (2.10)

(div σh, v) = (f, v), v ∈ Vh, (2.11)

(σh, ξ) = 0, ξ ∈Wk
h. (2.12)

The method has a unique solution and it is first order accurate for all variables in their corresponding
norms with both choices of rotation elements, see [10] for k = 0 and [22] for k = 1. A drawback is that
the resulting algebraic system is of a saddle point type and couples all three variables. We next present
a quadrature rule that allows for local eliminations of the stress in the case of k = 0, resulting in a
cell-centered displacement-rotation system in the case k = 0. In the case k = 1, a further elimination of
the rotation can be performed, which leads to a displacement-only cell-centered system.

2.2 A quadrature rule

Let ϕ and ψ be continuous functions on Ω. We denote by (ϕ,ψ)Q the application of the element-wise
vertex quadrature rule for computing (ϕ,ψ). In particular, for χ, τ ∈ Xh, we have

(Aχ, τ)Q =
∑
E∈Th

(Aχ, τ)Q,E =
∑
E∈Th

|E|
s

s∑
i=1

Aχ(ri) : τ(ri),

where s = 3 on triangles and s = 4 on tetrahedra. The vertex tensor χ(ri) is uniquely determined by its
normal components (χnij)(ri), j = 1, . . . , d, where nij are the outward unit normal vectors on the two

edges (three faces) that share ri, see Figure 1. More precisely, χ(ri) =
∑d

j=1(χnij)(ri)n
T
ij . Since the basis

functions associated with a vertex are zero at all other vertices, the quadrature rule decouples (χnij)(ri)
from the rest of the degrees of freedom, which allows for local stress elimination.

We also employ the quadrature rule for the stress-rotation bilinear form in the case of linear rotations.
For τ = Xh, ξ ∈W1

h we have

(τ, ξ)Q,E =
|E|
s

s∑
i=1

τ(ri) : ξ(ri).

Again, only degrees of freedom associated with a vertex are coupled, which allows for further elimination
of the rotation.

For χ, τ ∈ Xh and ξ ∈W1
h denote the element quadrature errors by

θE(Aχ, τ) = (Aχ, τ)E − (Aχ, τ)Q,E , δE(τ, ξ) = (τ, ξ)E − (τ, ξ)Q,E . (2.13)

and define the global quadrature errors by θ(Aχ, τ)|E = θE(Aχ, τ), δ(τ, ξ)|E = δE(τ, ξ).

Lemma 2.1. If χ ∈ Xh(E) and ξ ∈W1
h(E), then for all constant tensors τ0 and for all skew-symmetric

constant tensors ζ0,
θE(χ, τ0) = 0, δE(χ, ζ0) = 0, δE(τ0, ξ) = 0.

Proof. It is enough to consider τ0 such that it has only one nonzero component, say, (τ0)1,1 = 1; the

arguments for other cases are similar. Since the quadrature rule (f)Q,E = |E|
s

∑s
i=1 f(ri) is exact for

linear functions, we have

(χ, τ0)Q,E =
|E|
s

s∑
i=1

(χ)1,1(ri) =

∫
E
χ : τ0 dx.

The same reasoning applies for the other statements.
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Lemma 2.2. The bilinear form (Aτ, χ)Q is an inner product on Xh and (Aτ, τ)
1/2
Q is a norm in Xh

equivalent to ‖ · ‖, i.e., there exist constants 0 < α0 ≤ α1 independent of h such that

α0‖τ‖2 ≤ (Aτ, τ)Q ≤ α1‖τ‖2 ∀τ ∈ Xh. (2.14)

Furthermore, (ξ, ξ)
1/2
Q is a norm in W1

h equivalent to ‖ · ‖, and ∀ τ ∈ Xh, ξ ∈W1
h, (τ, ξ)Q ≤ C‖τ‖‖ξ‖.

Proof. The properties of the operator A imply that there exist positive constants a0 and a1 such that for
all τ ∈ M, a0 τ : τ ≤ Aτ : τ ≤ a1 τ : τ . Let τ =

∑s
i=1

∑d
j=1 τijχij on an element E, where χij are basis

functions as shown in Figure 1. We have

(Aτ, τ)Q,E =
|E|
s

s∑
i=1

Aτ(ri) : τ(ri) ≥ a0
|E|
s

s∑
i=1

τ(ri) : τ(ri) ≥ C|E|
s∑
i=1

d∑
j=1

τ2
ij .

On the other hand,

‖τ‖2E =

 s∑
i=1

d∑
j=1

τijχij ,

s∑
k=1

d∑
l=1

τklχkl


E

≤ C|E|
s∑
i=1

d∑
j=1

τ2
ij ,

which implies α0‖τ‖2 ≤ (Aτ, τ)Q. Since (Aτ, χ)Q is symmetric and linear, it is an inner product and

(Aτ, τ)
1/2
Q is a norm on Xh. The upper bound in (2.14) follows from a scaling argument, see [50, Corollary

2.5]. The proofs of the other two statements are similar.

3 The multipoint stress mixed finite element method with constant
rotations (MSMFE-0)

In the first method, referred to as MSMFE-0, we use the piecewise constant space W0
h for rotations and

apply the quadrature rule only to the stress bilinear form. The method is: find σh ∈ Xh, uh ∈ Vh and
γh ∈W0

h such that

(Aσh, τ)Q + (uh,div τ) + (γh, τ) = 〈g, τ n〉ΓD
, τ ∈ Xh, (3.1)

(div σh, v) = (f, v), v ∈ Vh, (3.2)

(σh, ξ) = 0, ξ ∈W0
h. (3.3)

Theorem 3.1. The method (3.1)–(3.3) has a unique solution (σh, uh, γh).

Proof. Using the classical stability theory of mixed finite element methods [19], the solvability of (3.1)–
(3.3) follows from the Babuška-Brezzi conditions:

(S1) There exists c1 > 0 such that for all τ ∈ Xh satisfying (div τ, v) + (τ, ξ) = 0 for all (v, ξ) ∈
Vh ×W0

h,
c1‖τ‖2div ≤ (Aτ, τ)Q ,

(S2) There exists c2 > 0 such that

inf
06=(v,ξ)∈Vh×W0

h

sup
06=τ∈Xh

(div τ, v) + (τ, ξ)

‖τ‖div (‖v‖+ ‖ξ‖)
≥ c2.

Condition (S1) is satisfied due to Lemma 2.2, while condition (S2) is shown in [10,15].
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E2

E3

E4

E

Figure 2: Finite elements sharing a vertex (left) and displacement stencil (right)

3.1 Reduction to a cell-centered displacement-rotation system

The algebraic system that arises from (3.1)–(3.3) is of the form Aσσ ATσu ATσγ
−Aσu 0 0
−Aσγ 0 0

σu
γ

 =

 g
−f
0

 , (3.4)

where (Aσσ)ij = (Aτj , τi)Q, (Aσu)ij = (div τj , vi), and (Aσγ)ij = (τj , ξi). In the standard MFE for-
mulation without quadrature rule, all stress degrees of freedom are coupled in the matrix Aσσ and it is
not possible to eliminate the stress with local computations, thus the entire saddle point problem needs
to be solved. In contrast, the MSMFE-0 method is designed to allow for local and inexpensive stress
elimination, as shown below.

Lemma 3.1. The matrix Aσσ is block-diagonal with symmetric and positive definite blocks associated
with the mesh vertices.

Proof. Let us consider any interior vertex r and suppose that it is shared by k elements E1, . . . , Ek
as shown in Figure 2. Let e1, . . . , ek be the facets that share the vertex r and let τ1, . . . , τdk, be the
stress basis functions on these facets associated with the vertex. Denote the corresponding values of the
normal components of σh by σ1, . . . , σdk. Note that for the sake of clarity the normal stresses are drawn
at a distance from the vertex. As noted above, the quadrature rule (A·, ·)Q localizes the basis functions
interaction, therefore taking τ = τ1, . . . , τdk in (3.1) results in a d k×d k local linear system for σ1, . . . , σdk,
implying that (Aσσ) is block-diagonal with dk×dk blocks associated with the mesh vertices. Furthermore,

(Aσh, τi)Q =
dk∑
j=1

σj(Aτj , τi)Q =
dk∑
j=1

(Aσσ)ijσj , i = 1, ..., dk,

and by Lemma 2.2, each dk × dk block (Aσσ)ij , i, j = 1, ..., dk, is symmetric and positive definite.

As a consequence of the above lemma, σ can be easily eliminated from (3.4), resulting in the displacement-
rotation system (

AσuA
−1
σσA

T
σu AσuA

−1
σσA

T
σγ

AσγA
−1
σσA

T
σu AσγA

−1
σσA

T
σγ

)(
u
γ

)
=

(
f̃

h̃

)
. (3.5)

Lemma 3.2. The cell-centered displacement-rotation system (3.5) is symmetric and positive definite.

Proof. The symmetry of the matrix follows from the symmetry of Aσσ. To show the positive definiteness,
for any

(
vT ξT

)
6= 0,(

vT ξT
)(AσuA−1

σσA
T
σu AσuA

−1
σσA

T
σγ

AσγA
−1
σσA

T
σu AσγA

−1
σσA

T
σγ

)(
v
ξ

)
= (ATσuv +ATσγξ)

TA−1
σσ (ATσuv +ATσγξ) > 0,

due to the inf-sup condition (S2).
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Remark 3.1. The MSMFE-0 method is more efficient than the original MFE method, since it reduces the
initial saddle-point problem to a smaller symmetric and positive definite cell-centered system for displace-
ment and rotation. However, further reduction in the system is not possible, since the diagonal blocks
in (3.5) couple all displacement, respectively rotation, degrees of freedom and are not easily invertible.
In the next section we propose a method with linear rotations and a vertex quadrature rule applied to
the stress-rotation bilinear forms. This allows for further local elimination of the rotation, resulting in a
cell-centered system for displacement only.

4 The multipoint stress mixed finite element method with linear ro-
tations (MSMFE-1)

In the second method, referred to as MSMFE-1, we use the continuous piecewise linear space W1
h for

rotations and apply the quadrature rule to both the stress bilinear form and the stress-rotation bilinear
forms. The method is: find σh ∈ Xh, uh ∈ Vh and γh ∈W1

h such that

(Aσh, τ)Q + (uh,div τ) + (γh, τ)Q = 〈g, τ〉ΓD
, τ ∈ Xh, (4.1)

(div σh, v) = (f, v), v ∈ Vh, (4.2)

(σh, ξ)Q = 0, ξ ∈W1
h. (4.3)

Remark 4.1. We note that the rotation finite element space in the MSMFE-1 method is continuous,
which may result in reduced approximation if the rotation γ ∈ L2(Ω,N) is discontinuous. It is possible to
consider a modified MSMFE-1 method based on the scaled rotation γ̃ = A−1γ, which is motivated by the
relation σ = A−1∇u − A−1γ. This method is better suited for problems with discontinuous compliance
tensor A, since in this case σ is smoother than Aσ, implying that γ̃ is smoother than γ. The resulting
method is: find σh ∈ Xh, uh ∈ Vh and γ̃h ∈W1

h such that

(Aσh, τ)Q + (uh,div τ) + (γ̃h, Aτ)Q = 〈g, τ〉ΓD
, τ ∈ Xh, (4.4)

(div σh, v) = (f, v), v ∈ Vh, (4.5)

(Aσh, ξ)Q = 0, ξ ∈W1
h. (4.6)

In the numerical section we present an example with discontinuous A and γ illustrating the advantage of the
modified method (4.4)–(4.6) for problems with discontinuous coefficients. In order to maintain uniformity
of the presentation in relation to MSMFE-0, as well as conformity with the standard formulation for
weakly symmetric MFE methods for elasticity used in the literature, in the following we present the well-
posedness and error analysis for the method (4.1)–(4.3). We note that the analysis for the modified method
(4.4)–(4.6) is similar.

The stability conditions for the MSMFE-1 method are as follows:

(S3) There exists c3 > 0 such that for all τ ∈ Xh satisfying (div τ, v) + (τ, ξ) = 0 for all (v, ξ) ∈ Vh×W1
h,

c3‖τ‖2div ≤ (Aτ, τ)Q ,

(S4) There exists c4 > 0 such that

inf
06=(v,ξ)∈Vh×W1

h

sup
06=τ∈Xh

(div τ, v) + (τ, ξ)Q
‖τ‖div (‖v‖+ ‖ξ‖)

≥ c4.
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4.1 Well-posedness of the MSMFE-1 method

While the coercivity condition (S3) is again satisfied due to Lemma (2.2), we need to verify the inf-sup
condition (S4). The difficulty is due to the quadrature rule in (τ, ξ)Q. The next theorem, which is a

modification of [7, Theorem 3.2], provides sufficient conditions for a triple Xh × Vh ×W1
h to satisfy (S4).

Theorem 4.1. Let Sh ⊂ H(div; Ω) and Uh ⊂ L2(Ω) be a stable mixed Darcy pair, i.e., there exists c5 > 0
such that

inf
06=r∈Uh

sup
06=z∈Sh

(div z, r)

‖z‖div‖r‖
≥ c5, (4.7)

and let Qh ⊂ H1(Ω,H) and Wh ⊂ L2(Ω,Rd(d−1)/2) be a stable mixed Stokes pair, such that (w,w)
1/2
Q is a

norm in Wh equivalent to ‖w‖ and there exists c6 > 0 such that

inf
06=w∈Wh

sup
06=q∈Qh

(div q, w)Q
‖q‖1‖w‖

≥ c6. (4.8)

Suppose further that

curlQh ⊂ (Sh)d. (4.9)

Then, Xh = (Sh)d ⊂ H(div; Ω,M), Vh = (Uh)d ⊂ L2(Ω,Rd), and W1
h = Ξ(Wh) ⊂ L2(Ω,N) satisfy (S4).

Proof. Let v ∈ Vh, w ∈Wh be given. It follows from (4.7) that there exists η ∈ Xh such that

(div η, v) = ‖v‖2, ‖η‖div ≤ c−1
5 ‖v‖. (4.10)

Next, from (4.8) and [7, Lemma 3.1] there exists q ∈ Qh such that

PQWh
divS(q) = w − PQWh

as η, ‖q‖1 ≤ c−1
6 ‖w − P

Q
Wh

as η‖ ≤ C(‖w‖+ ‖v‖), (4.11)

where PQWh
: L2(Ω)→Wh is the L2-projection with respect to the norm (·, ·)Q, satisfying, for ϕ ∈ L2(Ω),

(PQWh
ϕ− ϕ,w)Q = 0 ∀w ∈Wh. Now let

τ = η − curl q ∈ Xh.

Using (4.10), we have

(div τ, v) = (div η, v) = ‖v‖2, (4.12)

and
‖τ‖div ≤ C(‖η‖div + ‖q‖1) ≤ C(‖w‖+ ‖v‖). (4.13)

Also, (2.5) implies that as τ = as η + divS(q) and

(as τ, w)Q = (as η, w)Q + (divS(q), w)Q = (PQWh
as η, w)Q + (PQWh

divS(q), w)Q

= (PQWh
as η, w)Q + (w − PQWh

as η, w)Q = (w,w)Q ≥ C‖w‖2. (4.14)

Let ξ = Ξ(w) ∈W1
h. Using (2.6), (4.12), (4.14), and (4.13), we obtain

(div τ, v) + (τ, ξ)Q = (div τ, v) + (as τ, w)Q ≥ c‖τ‖div(‖v‖+ ‖ξ‖),

which completes the proof.
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We proceed with the verification of the assumptions of Theorem 4.1 for the spaces Xh × Vh ×W1
h

defined in (2.7) and (2.9). We first establish conditions (4.7) and (4.9). Condition (4.8) is verified in the
next section.

Lemma 4.1. Conditions (4.7) and (4.9) hold for Xh × Vh ×W1
h defined in (2.7) and (2.9).

Proof. The spaces Xh×Vh×W1
h defined in (2.7) and (2.9) satisfy Xh = (Sh)d, Vh = (Uh)d, and W1

h = Ξ(Wh)
with the spaces

Sh = {z ∈ H(div; Ω) : z|E
P↔ ẑ ∈ BDM1(Ê), z · n = 0 on ΓN},

Uh = {r ∈ L2(Ω) : r|E ↔ r̂ ∈ P0(Ê)}, Wh = {w ∈ H1(Ω) : w|E ↔ ŵ ∈ P1(Ê)}.

Note that, as shown Lemma 2.2, Wh satisfies the norm equivalence (w,w)
1/2
Q ∼ ‖w‖. The boundary

condition in Sh is needed to guarantee the essential boundary condition in Xh. Since BDM1 × P0 is a
stable Darcy pair [19], (4.7) holds. Next, we take

Qh = {q ∈ H1(Ω,H) : qi|E ∈ P2, i = 1, . . . d2(d− 1)/2, q = 0 on ΓN}.

Note that curlP2(H) ⊂ (BDM1)d. The boundary condition in Qh guarantees that curlQh ⊂ (Sh)d, i.e.,
(4.9) holds. In particular, (curl q)n = 0 on ΓN ∀q ∈ Qh, which follows from the following lemma.

Lemma 4.2. Let Ω be a bounded domain of Rd, d = 2, 3 and let ϕ ∈ H1(Ω,Rd(d−1)/2) such that ϕ =
0 on Γ, where Γ is a non-empty part of ∂Ω. Then (curlϕ) · n = 0 on Γ.

Proof. In 2D, let t = (t1, t2)T be the unit tangential vector on Γ. The assertion of the lemma follows from

0 = ∇ϕ · t = (∂xϕ)t1 + (∂yϕ)t2 = (∂xϕ)n2 − (∂yϕ)n1 = − curlϕ · n.

In 3D, let ϕ = (ϕ1, ϕ2, ϕ3)T , and n = (n1, n2, n3)T . Since ϕ = 0 on Γ, it holds that ∇ϕi · t = 0 on Γ,
i = 1, 2, 3, for any tangential vector t. We have

0 = ∇ϕ1 · (0,−n3, n2)T = −(∂yϕ1)n3 + (∂zϕ1)n2,

0 = ∇ϕ2 · (n3, 0,−n1)T = (∂xϕ2)n3 − (∂zϕ2)n1,

0 = ∇ϕ3 · (−n2, n1, 0)T = −(∂xϕ3)n2 + (∂yϕ3)n1,

which implies that

(curlϕ) · n = (∂yϕ3 − ∂zϕ2)n1 + (∂zϕ1 − ∂xϕ3)n2 + (∂xϕ2 − ∂yϕ1)n3 = 0.

To show (S4), it remains to show that (4.8) holds. It is well known that P2 − P1 is a stable Taylor-
Hood pair for the Stokes problem [19]. However, this does not imply the inf-sup condition with quadrature
(4.8). We show that it holds in the next sections.

4.1.1 The inf-sup condition for the Stokes problem

In the following, for simplicity, we let b(q, w) = (div q, w) and b(q, w)Q = (div q, w)Q. We will show the
inf-sup condition (4.8) for spaces Qh ⊂ H1(Ω,Rd) and Wh ⊂ L2(Ω), which will imply the statement for
Qh ⊂ H1(Ω,H) and Wh ∈ L2(Ω,Rd(d−1)/2). Adopting the approach by Stenberg [46] we introduce a
macroelement condition that is sufficient for (4.8) to hold. A macroelement is a union of one or more
neighboring simplices, satisfying the usual shape-regularity and connectivity conditions. We say that a
macroelement M is equivalent to a reference macroelement M̂ , if there is a mapping FM : M̂ →M , such
that
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(i) FM is continuous and one-to-one;

(ii) FM (M̂) = M ;

(iii) If M̂ = ∪mj=1T̂j , then M = ∪mj=1Tj where Tj = FM (T̂j), j = 1, . . . ,m;

(iv) FM |T̂j
= FTj ◦ F

−1

T̂j
, j = 1, . . . ,m, where FT̂j and FTj are the affine mappings from the reference

simplex onto T̂j and Tj , respectively.

The family of macroelements equivalent to M̂ is denoted by EM̂ . Let

Q0
M = {q ∈ H1

0 (M,Rd) : qi|T ∈ P2, i = 1, . . . , d, ∀T ⊂M}, WM = {w ∈ H1(M) : w|T ∈ P1, ∀T ⊂M},

W 0
M = WM ∩ L2

0(M), NM = {w ∈WM : b(q, w)Q,M = 0, ∀q ∈ Q0
M}.

We assume that there is a fixed set of classes EM̂i
, i = 1, ..., n such that

(M1) For each M ∈ EM̂i
, the space NM is one-dimensional, consisting of constant functions;

(M2) There exists a partition Mh of Th into macroelements M ∈ EM̂i
, i = 1, ..., n.

Theorem 4.2. If (M1)–(M2) are satisfied, then the Stokes inf-sup condition with quadrature (4.8) holds.

Before we prove this result, we prove three auxiliary lemmas, following the argument in [46].

Lemma 4.3. If (M1) holds, then there exists a constant β > 0 independent of h such that,

∀M ∈ EM̂i
, sup

06=q∈Q0
M

b(q, w)Q,M
|q|1,M

≥ β‖w‖M , ∀w ∈W 0
M .

Proof. The assertion of the lemma follows from (M1) and a scaling argument, see [46, Lemma 3.1].

Next, let Ph denote the L2-projection from Wh onto the space

Mh = {µ ∈ L2(Ω) : µ
∣∣
M

is constant ∀M ∈Mh}.

Lemma 4.4. If (M1)–(M2) hold, then there exists a constant C1 > 0, such that for every w ∈ Wh,
there exists q ∈ Qh satisfying

b(q, w)Q = b(q, (I − Ph)w)Q ≥ C1‖(I − Ph)w‖2, and |q|1 ≤ ‖(I − Ph)w‖.

Proof. For every w ∈ Wh we have (I − Ph)w ∈ W 0
M , ∀M ∈ Mh. Then Lemma 4.3 implies that for every

M there exists qM ∈ Q0
M such that

b(qM , (I − Ph)w)Q,M ≥ C‖(I − Ph)w‖2M and |qM |1,M ≤ ‖(I − Ph)w‖M ,

Define q ∈ Qh by q
∣∣
M

= qM , ∀M ∈Mh. It follows from (M1) that b(q,Phw)Q = 0, ∀w ∈Wh. Then we
have,

b(q, w)Q = b(q, (I − Ph)w)Q =
∑

M∈Mh

b(qM , (I − Ph)w)Q,M ≥ C‖(I − Ph)w‖2,

which completes the proof.

Lemma 4.5. There exists a constant C2 > 0 such that for every w ∈Wh there exists g ∈ Qh such that

b(g,Phw)Q = ‖Phw‖2 and ‖g‖1 ≤ C2‖Phw‖.
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Figure 3: Macroelement with N triangles
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Figure 4: Union of two triangles;
P2 − P1 degrees of freedom.

Proof. Let w ∈Wh be arbitrary. There exists z ∈ H1(Ω), z = 0 on ΓN , such that

div z = Phw and ‖z‖1 ≤ C‖Phw‖.

This follows from [29] by choosing z = ϕ on ΓD, where ϕ is a smooth function with compact support on
ΓD such that

∫
ΓD

ϕ · n =
∫

Ω Phw. We next consider an operator Ih : H1(Ω)→ Qh such that

(div Ihz, µ) = (div z, µ) ∀µ ∈Mh, ‖Ihz‖1 ≤ C‖z‖1. (4.15)

Such an operator is constructed in [46, Lemma 3.5], by setting the velocity degrees of freedom at the
midpoints of facets e on the interfaces between macroelements such that

∫
e Ihz =

∫
e z, which guarantees

(4.15), and local averages for the rest of the degrees of freedom. Finally, since the vertex quadrature rule
is exact for linear functions, we have that (div Ihz, µ)Q = (div Ihz, µ), so we can take g = Ihz.

We are now ready to prove the main result stated in Theorem 4.2:

Proof of Theorem 4.2. Let w ∈ Wh be given, and let q ∈ Qh and g ∈ Qh be the functions constructed in
Lemma 4.4 and Lemma 4.5, respectively. Set z = q + δg, where δ = 2C1(1 + C2

2 )−1. We then have

b(z, w)Q = b(q, w)Q + δb(g, w)Q = b(q, w)Q + δb(g,Phw)Q + δb(g, (I − Ph)w)Q

≥ C1‖(I − Ph)w‖2 + δ‖Phw‖2 − δ|g|1‖(I − Ph)w‖
≥ C1(1 + C2

2 )−1‖w‖2,

and ‖z‖1 ≤ ‖(I − Ph)w‖+ δC2‖Phw‖ ≤ C‖w‖, implying that (4.8) holds.

4.1.2 Verification of macroelement condition (M1)

We consider macroelements of the following type.

Definition 4.1. Each macroelement M is associated with an interior vertex c in Th, consisting of all
simplices that share that vertex.

We note that c is the only interior vertex of M . All other vertices are on ∂M and each vertex is
connected to c by an edge. A 2D example of a macroelement that satisfies Definition 4.1 is shown on
Figure 3. We next show that (M1) holds.

Lemma 4.6. The macroelements M described in Definition 4.1 satisfy (M1).
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Proof. For the sake of space, we present the proof for the 2D case. The extension to 3D is straightforward.
We first consider a union of two triangles, T1 ∪ T2, sharing an edge, as shown on Figure 4, and compute

(div qj , w)Q,T1∪T2 =

2∑
i=1

(tr (∇qj) , w)Q,Ti =

2∑
i=1

(
tr
(
DF−TTi ∇̂q̂j

)
, ŵJTi

)
Q̂,T̂

, j = 1, 2,

where q1 and q2 are the velocity degrees of freedom associated with the midpoint of edge r24. Let us
assume that FT1 : T̂ → T1 maps r̂1 → r1, r̂2 → r2 and r̂3 → r4. Then DFT1 = [r21, r41] and we have

q̂1 =

(
4x̂ŷ
0

)
, q̂2 =

(
0

4x̂ŷ

)
, DF−TT1 =

1

JT1

(
y4 − y1 x1 − x4

y1 − y2 x2 − x1

)
,

which implies

(div q1, w)Q,T1 =
2

3
((y1 − y2)w(r2) + (y4 − y1)w(r4)) ,

(div q2, w)Q,T1 =
2

3
((x2 − x1)w(r2) + (x1 − x4)w(r4)) .

Similarly, let FT2 : T̂ → T2 map r̂1 → r2, r̂2 → r3 and r̂3 → r4. Then we have

q̂1

∣∣
T̂

=

(
4ŷ − 4x̂ŷ − 4ŷ2

0

)
, q̂2

∣∣
T̂

=

(
0

4ŷ − 4x̂ŷ − 4ŷ2

)
, DF−TT2 =

1

JT2

(
y4 − y2 x2 − x4

y2 − y3 x3 − x2

)
,

which implies

(div q1, w)Q,T2 =
2

3
((y2 − y3)w(r2) + (y3 − y4)w(r4)) ,

(div q2, w)Q,T2 =
2

3
((x3 − x2)w(r2) + (x4 − x3)w(r4)) .

Therefore, we obtain

(div q1, w)Q,T1∪T2 =
2

3
(y1 − y3)(w(r2)− w(r4)),

(div q2, w)Q,T1∪T2 =
2

3
(x3 − x1)(w(r2)− w(r4)).

Since x1−x3 and y1−y3 cannot be both zero, it follows from (div q1, w)Q,T1∪T2 = 0 and (div q2, w)Q,T1∪T2 =
0 that w(r2) = w(r4).

Let M be a macroelement described in Definition 4.1 and let w ∈ NM . The above argument can be
applied to every pair of triangles in M that share an edge, which implies that for every interior edge,
the values of w at the interior vertex and the boundary vertex are equal. Since all boundary vertices are
connected to the interior vertex, this implies that w has the same value at all vertices, i.e., w is a constant
on M . On the other hand, if w is a constant on M , since the quadrature rule is exact for linear functions
on each Ti, we have for any q ∈ Q0

M ,

(div q, w)Q,M =

N∑
i=1

(div q, w)Q,Ti =
N∑
i=1

(div q, w)Ti = (div q, w)M = −(q,∇w)M = 0.

Therefore, NM is one-dimensional, consisting of constant functions.

We are now ready to prove the well-posedness of the MSMFE-1 method.

Theorem 4.3. Assuming that (M2) holds with macroelements described in Definition 4.1, then he
MSMFE-1 method (4.1)–(4.3) has a unique solution.

Proof. The existence and uniqueness of a solution to (4.1)–(4.3) follows from (S3) and (S4). Lemma 2.2
implies the coercivity condition (S3). Assuming (M2), the inf-sup condition (S4) follows from a combi-
nation of Theorem 4.1, Lemma 4.1, Theorem 4.2, and Lemma 4.6.
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4.2 Reduction to a cell-centered displacement system of the MSMFE-1 method

We recall the displacement-rotation system (3.5) of the MSMFE-0 method, obtained after a local stress
elimination. In the MSMFE-1 method, the matrix Aσγ is different from the MSMFE-0 method, since it
involves the quadrature rule, i.e., (Aσγ)ij = (τj , ξi)Q. Since the quadrature rule localizes the interaction
of basis functions around each vertex, (Aσγ) is block-diagonal with d(d− 1)/2× dk blocks with elements
(Aσγ)ij = (τj , ξi)Q, i = 1, . . . , d(d− 1)/2, j = 1, . . . , dk.

Lemma 4.7. The matrix AσγA
−1
σσA

T
σγ in the MSMFE-1 method is block-diagonal and invertible.

Proof. Since (Aσγ) is block-diagonal with d(d− 1)/2× dk blocks and Aσσ is block-diagonal with dk× dk
blocks, then AσγA

−1
σσA

T
σγ is block-diagonal with d(d − 1)/2 × d(d − 1)/2 blocks. Note that for d = 2 the

blocks are 1 × 1, i.e., the matrix is diagonal, and for d = 3 the blocks are 3 × 3. The blocks couple
the d(d− 1)/2 rotation degrees of freedom associated with a vertex. Each block is invertible, due to the
inf-sup condition (S4) and the fact that the blocks of A−1

σσ are symmetric and positive definite.

The above result implies that the rotation γ can be easily eliminated from the system (3.5) by solving
local d(d− 1)/2× d(d− 1)/2 problems, resulting in a cell-centered system for the displacement u:

(AσuA
−1
σσA

T
σu −AσuA−1

σσA
T
σγ(AσγA

−1
σσA

T
σγ)−1AσγA

−1
σσA

T
σu)u = f̂ . (4.16)

Lemma 4.8. The matrix in (4.16) is symmetric and positive definite.

Proof. The matrix (4.16) is a Schur complement of the matrix in (3.5), which is symmetric and positive
definite due to the inf-sup condition (S4) and the proof of Lemma 3.2. A well known result from linear
algebra [34, Theorem 7.7.6] implies that the matrix (4.16) is also symmetric and positive definite.

5 Error analysis

In this section we analyze the convergence of the proposed methods. We will use several well known
projection operators. We consider the L2-orthogonal projection Ruh : V → Vh such that

(v −Ruhv, w) = 0, ∀w ∈ Vh, (5.1)

and the L2-orthogonal projection Rγh : W→Wk
h, k = 0, 1 such that

(ξ −Rγhξ, ζ) = 0, ∀ζ ∈Wk
h, k = 0, 1. (5.2)

We also consider the MFE projection operator [18,19] Π : X ∩H1(Ω,M)→ Xh such that

(div(Πτ − τ), v) = 0, ∀v ∈ Vh. (5.3)

These operators have approximation properties [18,19,21]

‖v −Ruhv‖ ≤ Chr‖v‖r, 0 ≤ r ≤ 1, (5.4)

‖ξ −Rγhξ‖ ≤ Ch
r‖ξ‖r, 0 ≤ r ≤ 1, (5.5)

‖τ −Πτ‖ ≤ Chr‖τ‖r, 1 ≤ r ≤ 2, (5.6)

‖div(τ −Πτ)‖ ≤ Chr‖ div τ‖r, 0 ≤ r ≤ 1. (5.7)

For ϕ ∈ L2(E), let ϕ̄ be its mean value on E, which satisfies

‖ϕ− ϕ̄‖E ≤ Ch‖ϕ‖1,E , ‖ϕ− ϕ̄‖∞,E ≤ Ch‖ϕ‖∞,E . (5.8)

We will also use the inverse inequality for a finite element function ϕ [21]

‖ϕ‖j,E ≤ Ch−1‖ϕ‖j−1,E , j ≥ 1. (5.9)

We will make use of the following continuity bounds.
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Lemma 5.1. For all elements E there exist a constant C independent of h such that

‖Πτ‖1,E ≤ C‖τ‖1,E , ∀τ ∈ H1(E,M), (5.10)

‖Rγhξ‖1,E ≤ C‖ξ‖1,E , ∀ξ ∈ H1(E,N). (5.11)

Proof. To prove (5.10) we write

|Πτ |1,E = |Πτ − τ̄ |1,E ≤ Ch−1‖Πτ − τ̄‖E ≤ Ch−1(‖Πτ − τ‖E + ‖τ − τ̄‖E) ≤ C‖τ‖1,E ,

where we have used (5.9), (5.6), and (5.8). The above inequality, combined with ‖Πτ‖E ≤ C‖τ‖1,E , which
follows from (5.6), implies (5.10). The proof of (5.11) is similar.

We next derive bounds for quadrature error. We will use the notation A ∈W j,∞
Th if A ∈W j,∞(E) ∀E ∈

Th and ‖A‖j,∞,E is uniformly bounded independently of h.

Lemma 5.2. If A ∈W 1,∞
Th , there exists a constant C independent of h such that for all τ, χ ∈ Xh, ξ ∈W1

h,

|θ(Aχ, τ)| ≤ C
∑
E∈Th

h‖A‖1,∞,E‖χ‖1,E‖τ‖E , (5.12)

|δ(τ, ξ)| ≤ C
∑
E∈Th

h‖τ‖E‖ξ‖1,E , (5.13)

|δ(τ, ξ)| ≤ C
∑
E∈Th

h‖τ‖1,E‖ξ‖E . (5.14)

Proof. For (5.12) we write on any element E, using Lemma 2.1, Lemma 2.2, and (5.8),

|θE(Aχ, τ)| ≤ |θE
(
(A− Ā)χ, τ

)
|+ |θE

(
Ā(χ− χ̄), τ

)
| ≤ Ch(|A|1,∞,E‖χ‖E‖τ‖E + ‖A‖0,∞,E‖χ‖1,E‖τ‖E).

Similarly, using Lemma 2.1, Lemma 2.2, and (5.8), we have

|δE (τ, ξ) | = |δE
(
τ, ξ − ξ̄

)
| ≤ Ch‖τ‖E‖ξ‖1,E and |δE (τ, ξ) | = |δE (τ − τ̄ , ξ) | ≤ Ch‖τ‖1,E‖ξ‖E .

The proof is completed by summing over the elements.

5.1 First order convergence for all variables

Theorem 5.1. Let A ∈ W 1,∞
Th . For the solution (σ, u, γ) of (2.3) and its numerical approximation

(σh, uh, γh) obtained by either the MSMFE-0 method (3.1)–(3.3) or the MSMFE-1 method (4.1)–(4.3),
there exists a constant C independent of h such that

‖σ − σh‖div + ‖u− uh‖+ ‖γ − γh‖ ≤ Ch(‖σ‖1 + ‖ div σ‖1 + ‖u‖1 + ‖γ‖1). (5.15)

Proof. We present the argument for the MSMFE-1 method, which includes the proof for the MSMFE-0
method, as noted below. Subtracting the numerical method (4.1)-(4.3) from the variational formulation
(2.3), we obtain the error equations

(Aσ, τ)− (Aσh, τ)Q + (u− uh, div τ) + (γ, τ)− (γh, τ)Q = 0, τ ∈ Xh, (5.16)

(div(σ − σh), v) = 0, v ∈ Vh, (5.17)

(σ, ξ)− (σh, ξ)Q = 0, ξ ∈W1
h. (5.18)

Using (5.3), (2.13), (5.1), and that divXh = Vh, we can rewrite the above error system as

(A(Πσ − σh), τ)Q + (Ruhu− uh,div τ) + (τ,Rγhγ − γh)Q

= (A(Πσ − σ), τ)− θ (AΠσ, τ) +
(
τ,Rγhγ − γ

)
− δ

(
τ,Rγhγ

)
, (5.19)

div(Πσ − σh) = 0, (5.20)

(Πσ − σh, ξ)Q = (Πσ − σ, ξ)− δ (Πσ, ξ) . (5.21)
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We proceed by giving bounds for the terms on the right in (5.19) and (5.21), using Cauchy-Schwarz and
Young’s inequalities. Bound (5.6) yields

(A(Πσ − σ), τ) + (Πσ − σ, ξ) ≤ Ch‖σ‖1(‖τ‖+ ‖ξ‖) ≤ Ch2‖σ‖21 + ε‖τ‖2 + ε‖ξ‖2. (5.22)

It follows from (5.12) and (5.10) that

|θ (AΠσ, τ) | ≤ C
∑
E∈Th

h‖A‖1,∞,E‖Πσ‖1,E‖τ‖E ≤ Ch‖A‖1,∞‖σ‖1‖τ‖ ≤ Ch2‖σ‖21 + ε‖τ‖2. (5.23)

It follows from (5.5) and (5.6) that(
τ,Rγhγ − γ

)
≤ Ch‖τ‖‖γ‖1 ≤ Ch2‖γ‖21 + ε‖τ‖2. (5.24)

Using (5.13)–(5.14) and (5.10)–(5.11), we obtain

|δ
(
τ,Rγhγ

)
| ≤ C

∑
E∈Th

h‖Rγhγ‖1,E‖τ‖E ≤ Ch‖γ‖1‖τ‖ ≤ Ch
2‖γ‖21 + ε‖τ‖2, (5.25)

|δ (Πσ, ξ) | ≤ C
∑
E∈Th

h‖Πσ‖1,E‖ξ‖E ≤ Ch‖σ‖1‖ξ‖ ≤ Ch2‖σ‖21 + ε‖ξ‖2. (5.26)

Now, choosing τ = Πσ − σh and ξ = Rγhγ − γh in (5.19) and (5.21), and using (5.20), gives

(A(Πσ − σh),Πσ − σh)Q = (A(Πσ − σ),Πσ − σh)− θ (AΠσ,Πσ − σh)

+
(
Πσ − σh,Rγhγ − γ

)
− δ

(
Πσ − σh,Rγhγ

)
−
(
Πσ − σ,Rγhγ − γh

)
+ δ

(
Πσ,Rγhγ − γh

)
.

Combining (5.22)–(5.26), using (2.14), and choosing ε small enough, we obtain

‖Πσ − σh‖2 ≤ Ch2(‖σ‖21 + ‖γ‖21) + ε‖Rγhγ − γh‖
2. (5.27)

Using the inf-sup condition (S4), we have

‖Ruhu− uh‖+ ‖Rγhγ − γh‖

≤ C sup
τ∈Xh

1

‖τ‖div

(
(A(Πσ − σ), τ)− (A(Πσ − σh), τ)Q − θ (AΠσ, τ)− δ

(
τ,Rγhγ

) )
≤ C (‖Πσ − σ‖+ ‖Πσ − σh‖+ h‖σ‖1 + h‖γ‖1)

≤ C
(
h‖σ‖1 + h‖γ‖1 + ε‖Rγhγ − γh‖

)
,

where we used (5.6), (5.12), (5.14), and (5.27). Choosing ε small enough in the above, we obtain

‖Ruhu− uh‖+ ‖Rγhγ − γh‖ ≤ Ch(‖σ‖1 + h‖γ‖1), (5.28)

which, combined with (5.27), gives

‖Πσ − σh‖ ≤ Ch(‖σ‖1 + ‖γ‖1). (5.29)

Also, using (5.20) and (5.7) we get

‖ div(σ − σh)‖ ≤ ‖div(Πσ − σ)‖ ≤ Ch‖ div σ‖1. (5.30)

The assertion of the theorem for the MSMFE-1 method follows from combining (5.28)–(5.30) and using
(5.4)–(5.5). The proof the MSMFE-0 method follows from the above argument by omitting the quadrature
error terms δ(·, ·) in (5.19)–(5.21).

Remark 5.1. The error analysis for the modified MSMFE-1 method (4.4)–(4.6) based on the scaled
rotation γ̃ = A−1γ follows along the same lines. The resulting error estimate is

‖σ − σh‖div + ‖u− uh‖+ ‖γ̃ − γ̃h‖ ≤ Ch(‖σ‖1 + ‖ div σ‖1 + ‖u‖1 + ‖γ̃‖1). (5.31)

This bound indicates that the modified method has an advantage if γ̃ is smoother than γ, which is the case
when A is discontinuous.
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5.2 Second order convergence for the displacement

We next prove superconvergence for the displacement. The following bounds on the quadrature error will
be used in the analysis.

Lemma 5.3. Let A ∈W 2,∞
Th . There exists a constant C independent of h such that for all χ, τ ∈ Xh,

|θ (Aχ, τ) | ≤ C
∑
E∈Th

h2‖χ‖1,E‖τ‖1,E , (5.32)

and for all ξ ∈W1
h,

|δ (τ, ξ) | ≤ C
∑
E∈Th

h2‖τ‖1,E‖ξ‖1,E . (5.33)

Proof. On any element E, using Lemma 2.1 we have

θE (Aχ, τ) = θE
(
(A− Ā)(χ− χ̄), τ

)
+ θE

(
(A− Ā)χ̄, τ − τ̄

)
+ θE (Aχ̄, τ̄) + θE

(
Ā(χ− χ̄), τ − τ̄

)
≡

4∑
j=1

Ij .

Using (5.8), we obtain
I1 + I2 + I4 ≤ Ch2‖A‖1,∞,E‖χ‖1,E‖τ‖1,E ,

while, using that the quadrature rule is exact for linears, the Bramble-Hilbert lemma [21] gives

|θE (Aχ̄, τ̄) | ≤ Ch2|Aχ̄|2,E‖τ̄‖E ≤ Ch2|A|2,∞,E‖χ‖E‖τ‖E , (5.34)

which implies (5.32). Similarly, using Lemma 2.1 and (5.8), we have

δE (τ, ξ) = δE
(
τ − τ̄ , ξ − ξ̄

)
≤ Ch2‖τ‖1,E‖ξ‖1,E ,

which implies (5.33).

The superconvergence proof is based on a duality argument. We consider the auxiliary problem

ψ = A−1ε(φ), divψ = (Ruhu− uh) in Ω,

φ = 0 on ΓD, ψ n = 0 on ΓN ,
(5.35)

and assume that it is H2-elliptic regular:

‖φ‖2 ≤ ‖Ruhu− uh‖. (5.36)

Sufficient conditions for (5.36) can be found in [21,32,39].

Theorem 5.2. Let A ∈ W 2,∞
Th and A−1 ∈ W 1,∞

Th . Assuming H2-elliptic regularity (5.36), then for the
MSMFE-0 and MSMFE-1 methods, there exists a constant C independent of h such that

‖Ruhu− uh‖ ≤ Ch2 (‖σ‖1 + ‖γ‖1 + ‖ div σ‖1) . (5.37)

Proof. We present the argument for the MSMFE-1 method. The proof for the MSMFE-0 method follows
by omitting the the quadrature error term δ(·, ·). The error equation (5.16) can be written as

(A(σ − σh), τ) + (Ruhu− uh, div τ) + (γ − γh, τ) + θ (Aσh, τ) + δ (τ, γh) = 0. (5.38)
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Taking τ = ΠA−1ε(φ) in the equation above, we get

‖Ruhu− uh‖2 = −
(
A(σ − σh),ΠA−1ε(φ)

)
−
(
γ − γh,ΠA−1ε(φ)

)
− θ

(
Aσh,ΠA

−1ε(φ)
)
− δ

(
ΠA−1ε(φ), γh

)
.

(5.39)

For the first term on the right, we have(
A(σ − σh),ΠA−1ε(φ)

)
=
(
A(σ − σh),ΠA−1ε(φ)−A−1ε(φ)

)
+ (σ − σh,∇φ− Skew(∇φ))

=
(
A(σ − σh),ΠA−1ε(φ)−A−1ε(φ)

)
− (div(σ − σh), φ−Ruhφ)

−
(
σ − σh, Skew(∇φ)−Rγh Skew(∇φ)

)
+ δ(σ − σh,Rγh Skew(∇φ))

≤ Ch2 (‖σ‖1 + ‖γ‖1 + ‖ div σ‖1) ‖φ‖2,

(5.40)

where we used (5.4)–(5.6), (5.11), (5.13), (5.15), (5.17), and (5.18). For the second term on the right in
(5.39) we have (

γ − γh,ΠA−1ε(φ)
)

=
(
γ − γh,ΠA−1ε(φ)−A−1ε(φ)

)
+
(
γ − γh, A−1ε(φ)

)
=
(
γ − γh,ΠA−1ε(φ)−A−1ε(φ)

)
≤ Ch2 (‖σ‖1 + ‖γ‖1) ‖φ‖2,

(5.41)

where the second equality is due to the skew-symmetry of (γ−γh) and the symmetry of A−1ε(φ), and the
inequality follows from (5.6) and (5.15). For the third term on the right in (5.39) we write, using (5.32)

θ
(
Aσh,ΠA

−1ε(φ)
)
≤ C

∑
E∈Th

h2‖σh‖1,E‖ΠA−1ε(φ)‖1,E

≤ C
∑
E∈Th

h2 (‖σh −Πσ‖1,E + ‖Πσ‖1,E) ‖A−1ε(φ)‖1,E

≤ C
∑
E∈Th

h2
(
h−1‖σh −Πσ‖E + ‖σ‖1,E

)
‖ε(φ)‖1,E

≤ Ch2 (‖σ‖1 + ‖γ‖1) ‖φ‖2,

(5.42)

where we used (5.10), (5.9), and (5.15). Similarly, for the last term on the right in (5.39), using (5.33),
(5.11), (5.9), and (5.15), we have

δ
(
ΠA−1ε(φ), γh

)
≤ C

∑
E∈Th

h2
(
‖γh −Rγhγ‖1,E + ‖Rγhγ‖1,E

)
‖A−1ε(φ)‖1,E

≤ Ch2 (‖σ‖1 + ‖γ‖1) ‖φ‖2.
(5.43)

The statement of the theorem follows by combining (5.39)–(5.43) and elliptic regularity (5.36).

6 Numerical results

We present several numerical experiments confirming the theoretical convergence rates. We used FEniCS
Project [40] for the implementation of the MSMFE-0 and MSMFE-1 methods on simplicial grids in 2D
and 3D. Both methods have been implemented using the rotation variable ph = Ξ−1(γh), where Ξ is
defined in (2.4). For example, using (2.6), the MSMFE-1 method (4.1)–(4.3) can be written as

(Aσh, τ)Q + (uh, div τ) + (ph, as τ)Q = 〈g, τ〉ΓD
, τ ∈ Xh, (6.1)

(div σh, v) = (f, v), v ∈ Vh, (6.2)

(as σh, w)Q = 0, w ∈ Ξ−1(W1
h), (6.3)
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with a similar formulation for the MSMFE-0 method. Note that the rotation a scalar in Pk in 2D, and a
vector in (Pk)3 in 3D, with k = 0, 1 for MSMFE-0 and MSMFE-1, respectively.

In the first example we study the convergence of the proposed methods in 2D. We consider a test
case from [7] on the unit square with homogeneous Dirichlet boundary conditions and analytical solution
given by

u =

(
cos(πx) sin(2πy)
cos(πy) sin(πx)

)
.

The body force is then determined using Lamé coefficients λ = 123, µ = 79.3. The computed solution is
shown in Figure 5a. Since we use ph = Ξ−1(γh) for the Lagrange multiplier, the errors are also computed
using this variable. However, it is clear that the operator Ξ does not introduce extra numerical error.

In Table 1 we show errors and convergence rates on a sequence of mesh refinements, computed using the
MSMFE-0 and MSMFE-1 methods, including displacement superconvergence. All rates are in accordance
with the error analysis presented in the previous section. We note that the MSMFE-1 method with linear
rotations exhibits convergence for the rotation of order O(h1.5), slightly higher than the theoretical result.

(a) x-component of stress (b) y-component of stress (c) Displacement (d) Rotation

Figure 5: Computed solution for Example 1, h = 1/32

MSMFE-0

‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Ruhu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/2 8.01E-01 – 8.98E-01 – 8.37E-01 – 8.24E-01 – 1.02E+00 –
1/4 3.58E-01 1.17 4.26E-01 1.09 3.50E-01 1.27 1.82E-01 2.34 5.03E-01 1.02
1/8 1.53E-01 1.23 1.99E-01 1.10 1.73E-01 1.02 4.70E-02 1.96 3.13E-01 0.69
1/16 7.03E-02 1.12 9.84E-02 1.02 8.67E-02 1.00 1.20E-02 1.97 1.71E-01 0.87
1/32 3.42E-02 1.04 5.00E-02 0.98 4.35E-02 0.99 3.03E-03 1.99 8.78E-02 0.96
1/64 1.70E-02 1.01 2.60E-02 0.95 2.18E-02 1.00 7.59E-04 2.00 4.42E-02 0.99

MSMFE-1

‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Ruhu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/2 7.96E-01 – 9.01E-01 – 8.60E-01 – 8.47E-01 – 9.95E-01 –
1/4 3.67E-01 1.13 4.26E-01 1.09 3.55E-01 1.29 1.95E-01 2.28 4.55E-01 1.12
1/8 1.56E-01 1.23 1.93E-01 1.14 1.76E-01 1.01 5.67E-02 1.78 1.68E-01 1.44
1/16 7.11E-02 1.14 9.34E-02 1.05 8.75E-02 1.01 1.55E-02 1.87 5.37E-02 1.65
1/32 3.43E-02 1.05 4.66E-02 1.00 4.37E-02 1.00 4.01E-03 1.95 1.66E-02 1.70
1/64 1.70E-02 1.02 2.37E-02 0.98 2.18E-02 1.00 1.02E-03 1.98 5.26E-03 1.66

Table 1: Relative errors and convergence rates for Example 1, triangles.

20



The second test case illustrates the performance of the methods in 3D. We consider the unit cube
with homogeneous Dirichlet boundary conditions, analytical solution given by

u =


0

−(ex − 1)(y − cos( π12)(y − 1
2) + sin( π12)(z − 1

2)− 1
2)

−(ex − 1)(z − sin( π12)(y − 1
2)− cos( π12)(z − 1

2)− 1
2)

 , (6.4)

and Lamé coefficients λ = µ = 100. The computed solution is shown in Figure 6. In Table 2 we show
errors and convergence rates for both methods on a sequence of mesh refinements. Again we observe that
the numerical results verify the theoretical convergence rates.

49.8

Stress 1

0.41

(a) x-stress

45.3

Stress 2

0.332

(b) y-stress

45.5

Stress 3

0.246

(c) z-stress

0.306
Displacement

2.54e-05

(d) Displacement

0.507

Rotation

0.00301

(e) Rotation

Figure 6: Computed solution for Example 2, h = 1/32

MSMFE-0

‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Ruhu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/2 4.46E-01 – 2.45E-01 – 4.15E-01 – 1.32E-01 – 2.41E-01 –
1/4 1.96E-01 1.19 1.21E-01 1.02 2.06E-01 1.01 3.11E-02 1.98 1.20E-01 1.00
1/8 9.08E-02 1.11 6.02E-02 1.01 1.03E-01 1.00 7.72E-03 1.98 6.01E-02 1.00
1/16 4.40E-02 1.05 3.01E-02 1.00 5.14E-02 1.00 1.94E-03 1.99 2.99E-02 1.00
1/32 2.17E-02 1.02 1.51E-02 1.00 2.57E-02 1.00 4.85E-04 2.00 1.49E-02 1.00

MSMFE-1

‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Ruhu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/2 5.40E-01 – 2.45E-01 – 4.20E-01 – 1.55E-01 – 2.38E-01 –
1/4 2.42E-01 1.16 1.21E-01 1.02 2.07E-01 1.02 4.04E-02 1.83 1.00E-01 1.24
1/8 1.09E-01 1.15 6.02E-02 1.01 1.03E-01 1.01 1.07E-02 1.89 3.93E-02 1.35
1/16 5.05E-02 1.12 3.01E-02 1.00 5.14E-02 1.00 2.81E-03 1.93 1.47E-02 1.42
1/32 2.39E-02 1.08 1.51E-02 1.00 2.57E-02 1.00 7.20E-04 1.96 5.38E-03 1.45

Table 2: Relative errors and convergence rates for Example 2, tetrahedra.

Our third example, taken from [41], demonstrates the performance of the MSMFE methods for dis-
continuous materials. We consider a 3× 3 partitioning of the unit square and introduce heterogeneity in
the center block through

χ(x, y) =

{
1 if min(x, y) > 1

3 and max(x, y) < 2
3 ,

0 otherwise.
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We set κ = 106 to characterize the jump in the Lamé coefficients and take λ = µ = (1 − χ) + κχ. We
choose a continuous displacement solution as

u =
1

(1− χ) + κχ

(
sin(3πx) sin(3πy)
sin(3πx) sin(3πy)

)
,

so that the stress is also continuous and independent of κ. The body forces are recovered from the above
solution using the governing equations. We note that the rotation γ = Skew(∇u) is discontinuous. The
MSMFE-0 method, which has discontinuous displacements and rotations, handles properly the disconti-
nuity in these variables and exhibits first order convergence in all variables, as as well as displacement
superconvergence, see the top part of Table 3. The MSMFE-1 method uses continuous rotations and does
not resolve the rotation discontinuity, which results in a reduced convergence rate for the rotation, as well
as the stress. Instead, we can use the modified MSMFE-1 method (4.4)–(4.6) based on the scaled rotation
γ̃ = A−1γ, which in this case is continuous. In terms of the implemented method (6.1)–(6.3) with the re-
duced rotation ph = Ξ−1(γh), noting that p̃ = Ξ−1(γ̃), the third term in (6.1) becomes (p̃h, as (Aτ))Q and
the term in (6.3) becomes (as (Aσh), w)Q. The computed solution with the modified MSMFE-1 method,
including the scaled rotation p̃h, is shown in Figure 7. The bottom part of Table 3 indicates that the
method exhibits the same order of convergence for all variables as for smooth problems.

(a) x-stress (b) y-stress (c) Displacement (d) Rotation (e) Scaled rotation

Figure 7: Computed solution for Example 3, h = 1/48

Our final example, similar to the one in [33], is to study the locking-free property of the MSMFE
method. We consider the MSMFE-1 method on the unit square domain with the following boundary
conditions: u = 0 at y = 0, σ n = 0 at x = 0 and x = 1, and (σ n) · n = 0, (σ n) · t = 1 at y = 1, where t
denotes the unit tangential vector to the side. We recall that the Lamé coefficients are determined from
the Young’s modulus E and the Poisson’s ratio ν via the well-known relationships

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

We fix the Young’s modulus E = 105 and vary the Poisson’s ratio ν = 0.5−k, k = 1e−l, for l = {1, 2, 5, 9}.
Locking would result in the displacement solution going to zero as ν approaches 0.5. In Figure 8 (left) we
see that such behavior is not present, confirming the robustness of the method for almost incompressible
materials. In addition, a plot of the displacement magnitude along the top side of the square (y = 1)
for various choices of k is shown in the Figure 8 (right). One can see that there is little change in the
displacement solution when ν → 0.5.

7 Conclusion

We presented two BDM1-based MFE methods with quadrature for elasticity with weak stress symmetry
on simplicial grids. The MSMFE-0 method reduces to a cell-centered scheme for displacements and
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MSMFE-0

‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Ruhu− uh‖ ‖p− ph‖
h error rate error rate error rate error rate error rate

1/3 1.27E+00 - 1.20E+00 - 1.61E+00 - 1.49E+00 - 1.46E+00 -
1/6 6.97E-01 0.87 7.28E-01 0.73 5.87E-01 1.45 4.55E-01 1.71 6.50E-01 1.17
1/12 2.68E-01 1.38 3.33E-01 1.13 2.73E-01 1.10 1.19E-01 1.93 4.70E-01 0.47
1/24 1.05E-01 1.35 1.58E-01 1.07 1.33E-01 1.04 3.08E-02 1.95 2.76E-01 0.77
1/48 4.72E-02 1.16 7.79E-02 1.02 6.57E-02 1.01 7.79E-03 1.98 1.45E-01 0.93
1/96 2.28E-02 1.05 3.88E-02 1.01 3.28E-02 1.00 1.96E-03 1.99 7.34E-02 0.98

MSMFE-1 with scaled rotation

‖σ − σh‖ ‖ div(σ − σh)‖ ‖u− uh‖ ‖Ruhu− uh‖ ‖p̃− p̃h‖
h error rate error rate error rate error rate error rate

1/3 1.26E+00 - 1.20E+00 - 1.73E+00 - 1.59E+00 - 1.20E+00 -
1/6 6.82E-01 0.88 7.28E-01 0.73 5.74E-01 1.59 4.28E-01 1.89 5.46E-01 1.14
1/12 2.60E-01 1.39 3.33E-01 1.13 2.72E-01 1.08 1.17E-01 1.87 2.10E-01 1.38
1/24 1.03E-01 1.34 1.58E-01 1.07 1.33E-01 1.04 3.08E-02 1.92 6.68E-02 1.66
1/48 4.65E-02 1.14 7.79E-02 1.02 6.57E-02 1.01 7.90E-03 1.96 2.11E-02 1.66
1/96 2.26E-02 1.04 3.88E-02 1.01 3.28E-02 1.00 2.01E-03 1.98 6.95E-03 1.60

Table 3: Relative errors and convergence rates for Example 3, triangles.

Figure 8: Computed displacement solutions for Example 4, h = 1/32.

rotations, while the MSMFE-1 method reduces to a cell-centered scheme for displacements only. To prove
stability of the MSMFE-1 method, we established a discrete inf-sup condition with quadrature for the
Stokes problem. We showed that the resulting algebraic system for each of the methods is symmetric and
positive definite. We proved first order convergence for all variables in their natural norms, as well as
second order convergence for the displacements at the cell centers. The methods can also be developed
on quadrilateral grids, which is the subject of a forthcoming paper.
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