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Abstract

We formulate and study the infinite dimensional linear programming (LP) problem
associated with the deterministic discrete time long-run average criterion optimal control
problem. Along with its dual, this LP problem allows one to characterize the optimal
value of the optimal control problem. The novelty of our approach is that we focus on the
general case wherein the optimal value may depend on the initial condition of the system.

1 Introduction and Preliminaries

In this paper, we formulate and study the infinite dimensional (ID) linear programming
(LP) problem associated with the deterministic discrete time optimal control problem with
long-run average cost, in which the optimal value may depend on the initial condition of
the system. The paper continues the line of research started in [10], where similar issues
were dealt with in the context of systems evolving in continuous time. Note that, although
ideas behind the consideration of continuous and discrete time cases are similar, results in
the discrete time case are stronger and are obtained under weaker assumptions compar-
atively to their continuous time counterparts presented in [10] (we discuss relationships
between the two groups of results in detail in the conclusions section at the end of the
paper).1

Allowing one to use the convex duality theory and linear programming based numerical
techniques, LP formulations of various classes of optimal control problems have been
studied extensively in the literature. For example, LP formulations of problems of optimal
control of stochastic systems evolving in continuous time have been considered in [5, 8,
11, 16, 29, 37]. Various aspects of the LP approach to problems of optimization of discrete
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time stochastic systems (controlled Markov chains) have been discussed in [9, 25, 26, 27].
In the deterministic setting, the LP approach has been developed/applied in [21, 24, 30,
35, 38] for systems evolving in continuous time considered on a finite time interval. The
applicability of the LP approach to deterministic continuous and discrete time systems
considered on the infinite time horizon has been explored in [17, 18, 19, 20, 34].2

Note that, while the form and the properties of the IDLP problem related to the ergodic
case (that is, the case when the optimal value is independent of the initial conditions) have
been well understood, the linear programming formulation of the long-run average optimal
control problem in the non-ergodic case has not been discussed much in the literature. In
fact, a justification of counterparts of LP formulations for reducible finite state Markov
chains, as in, e.g., [26] and [27], presents a significant mathematical challenge. First steps
to address this challenge have been made in [10], and (as mentioned above) the present
paper is a continuation of this work.

Everywhere in what follows, we will be dealing with the discrete time controlled dy-
namical system

y(t+ 1) = f(y(t), u(t)), t = 0, 1, . . .

y(0) = y0,

y(t) ∈ Y,

u(t) ∈ U(y(t)).

(1.1)

Here Y is a given nonempty compact subset of IRm, U(·) : Y ❀ U0 is an upper semicon-
tinuous compact-valued mapping to a given compact metric space U0, f(·, ·) : IR

m×U0 →
IRm is a continuous function.

It can be observed that the last two constraints of (1.1) can be rewritten as one:

u(t) ∈ A(y(t)),

where the map A(·) : Y ❀ U0 is defined by the equation

A(y) := {u ∈ U(y)| f(y, u) ∈ Y } ∀y ∈ Y.

The map A(·) is upper semicontinuous and its graph G,

G := graphA = {(y, u)| y ∈ Y, u ∈ U(y), f(y, u) ∈ Y },

is a compact subset of Y × U0.
A control u(·) and the pair (y(·), u(·)) will be called an admissible control and an ad-

missible process, respectively, if the relationships (1.1) are satisfied. The set of admissible
controls will be denoted U(y0) or UT (y0), depending on whether the problem is considered
on the infinite time horizon or on a finite time sequence t ∈ {0, . . . , T − 1}.

Everywhere in the paper, it is assumed that

A1. The set A(y) is not empty for any y ∈ Y .

This assumption implies that the sets UT (y0) (with T being an arbitrary positive
interger) and the set U(y0) are not empty for any y0 ∈ Y . That is, there exists at least
one admissible control for any initial condition (systems that satisfy such a property are

2Infinite time horizon optimal control problems have been traditionally studied with the help of other (not
LP related) techniques; see, e.g., [7, 13, 14, 15, 22, 23, 39, 40] and references therein. Note that the list of
references mentioned above represents only a sample of the available literature and is not even close to being
exhaustive.
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called viable; see [4]).
On the trajectories of (1.1), we consider the following optimal control problems:

1

T
min

u(·)∈UT (y0)

T−1
∑

t=0

k(y(t), u(t)) =: VT (y0), (1.2)

(1− α) min
u(·)∈U(y0)

∞
∑

t=0

αtk(y(t), u(t)) =: hα(y0), (1.3)

where k : IRm × U0 → IRm is a continuous function and α ∈ (0, 1) is a discount factor.
Note that, under Assumption A1, the minima in (1.2) and (1.3) are achieved and the
optimal value functions VT (·), hα(·) are lower semicontinuous (see, e.g., Propositions 1-3
and Corollary 1 in [19]).

An extensive literature is devoted to matters related to the existence and equality of
the limits limT→∞ VT (y0) and limα↑1 h

α(y0). The ergodic case, when these limits are
constants (that is, when they do not depend on the initial condition y0), was studied, for
example, in [3, 5, 7, 17] (see also references therein). Results for the non-ergodic case
were obtained in [12, 22, 23, 28, 31, 32, 33]. In particular, it was results of [12] that
were instrumental for obtaining the IDLP representation for the aforementioned limits for
systems evolving in continuous time in [10]. Some ideas from [12] are used in this paper
too.

The paper is organized as follows. In the remainder of this introductory section, we
give some definitions and state some earlier results that are used further in the text. In
Section 2, we introduce an IDLP problem and its dual, the optimal value of the latter
giving a lower bound for lim infT→∞ VT (y0) and lim infα↑1 hα(y0) (see Proposition 2.3). In
Section 3, we establish (see Theorem 3.1) that lim supT→∞ VT (y0) and lim supα↑1 hα(y0)
are bounded from above by the optimal value of the IDLP problem introduced in Section
2 provided that the value functions VT (·), hα(·) are continuous. Note that the proof of
Theorem 3.1 is based on a lemma that extends some results of [12] to the discrete time
case (see Lemma 3.2). A direct corollary from the above mentioned results is Proposition
4.1 of Section 4 stating that the limits limT→∞ VT (y0) and limα↑1 h

α(y0) exist and are
equal to the optimal value of the IDLP problem if there is no duality gap. The main result
of Section 4 is Theorem 4.2 establishing that, if the pointwise limits limT→∞ VT (y0) and
limα↑1 h

α(y0) exist and are continuous, then they are equal to the optimal value of the
dual problem. Also in this section, we use the optimal solution of the dual IDLP problem
to state sufficient and necessary optimality conditions for the long-run average optimal
control problem (see Propostions 4.5 and 4.6), these optimality conditions are illustrated
with an elementary “toy example”. In Section 5, we establish some auxiliary results
used in the proofs of the previous sections and in Section 6, we present some conclusions
summarizing results obtained and comparing them with results of [10].

We conclude this section with the introduction of notations and results that are used in
the sequel. Let (y(·), u(·)) be an admissible process. A probability measure γ(y(·),u(·)),S is
called the occupational measure generated by the process (y(·), u(·)) over the time sequence
{0, 1, ..., S − 1} if, for any Borel set Q ⊂ G,

γ(y(·),u(·)),S(Q) =
1

S

S−1
∑

t=0

1Q(y(t), u(t)).

A probability measure γα(y(·),u(·)) is called the discounted occupational measure generated
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by the process (y(·), u(·)) if, for any Borel set Q ⊂ G,

γα(y(·),u(·))(Q) = (1− α)
∞
∑

t=0

αt1Q(y(t), u(t)), (1.4)

where 1Q(·) is the indicator function of Q.
It can be shown that, if γ(y(·),u(·)),S is the occupational measure generated by the

process (y(·), u(·)) over the time sequence {0, 1, ..., S − 1}, then

∫

G

q(y, u)γ(y(·),u(·)),S(dy, du) =
1

S

S−1
∑

t=0

q(y(t), u(t)) (1.5)

for any Borel measurable function q on G. Also, it can be shown that if γα(y(·),u(·)) is the

discounted occupational measure generated by the process (y(·), u(·)), then

∫

G

q(y, u)γα(y(·),u(·))(dy, du) = (1− α)
∞
∑

t=0

αtq(y(t), u(t)) (1.6)

for any Borel measurable function q on G.
Let us introduce the following notations for the sets of occupational measures:

ΓT (y0) :=
⋃

u(·)∈UT (y0)

{γ(y(·),u(·)),T }, ΓT :=
⋃

y0∈Y

{ΓT (y0)}, (1.7)

Θα(y0) :=
⋃

u(·)∈U(y0)

{γα(y(·),u(·))}, Θα :=
⋃

y0∈Y

{Θα(y0)}. (1.8)

Note that, due to (1.5) and (1.6), problems (1.2) and (1.3) can be rewritten in the form

min
γ∈ΓT (y0)

∫

G

k(y, u)γ(dy, du) = VT (y0) (1.9)

and

min
γ∈Θα(y0)

∫

G

k(y, u)γ(dy, du) = (1− α)hα(y0), (1.10)

respectively.
To describe convergence properties of occupational measures, we introduce the fol-

lowing metric on P(G) (the space of probability measures defined on Borel subsets of
G):

ρ(γ′, γ′′) :=

∞
∑

j=1

1

2j

∣

∣

∣

∣

∫

G

qj(y, u)γ
′(dy, du) −

∫

G

qj(y, u)γ
′′(dy, du)

∣

∣

∣

∣

for γ′, γ′′ ∈ P(G), where qj(·), j = 1, 2, . . . , is a sequence of Lipschitz continuous functions
dense in the unit ball of the space of continuous functions C(G) from G to IR. This metric
is consistent with the weak∗ convergence topology on P(G), that is, a sequence γk ∈ P(G)
converges to γ ∈ P(G) in this metric if and only if

lim
k→∞

∫

G

q(y, u)γk(dy, du) =

∫

G

q(y, u)γ(dy, du)

for any q ∈ C(G). Using the metric ρ, we can define the “distance” ρ(γ,Γ) between
γ ∈ P(G) and Γ ⊂ P(G) and the Hausdorff metric ρH(Γ1,Γ2) between Γ1 ⊂ P(G) and
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Γ2 ⊂ P(G) as follows:

ρ(γ,Γ) := inf
γ′∈Γ

ρ(γ, γ′), ρH(Γ1,Γ2) := max{ sup
γ∈Γ1

ρ(γ,Γ2), sup
γ∈Γ2

ρ(γ,Γ1)}.

Note that, although, by some abuse of terminology, we refer to ρH(·, ·) as a metric on the
set of subsets of P(G), it is, in fact, a semi metric on this set (since ρH(Γ1,Γ2) = 0 implies
Γ1 = Γ2 if Γ1 and Γ2 are closed, but the equality may not be true if at least one of these
sets is not closed).

Let us define the sets W and W (α, y0) by the equations:

W := {γ ∈ P(G) |

∫

G

(ϕ(f(y, u)) − ϕ(y))γ(dy, du) = 0 for all ϕ ∈ C(Y )},

W (α, y0) ={γ ∈ P(G)|
∫

G

(αϕ(f(y, u)) − ϕ(y) + (1− α)(ϕ(y0)− ϕ(y)))γ(dy, du) = 0 for all ϕ ∈ C(Y )}.

Note that the sets W and W (α, y0) are convex and compact in the topology specified
above. The following equalities establish relationships between these sets and the occu-
pational measures sets introduced earlier (see Theorem 5.4 in [19]):

lim
T→∞

ρH(c̄o ΓT ,W ) = lim
α↑1

ρH(c̄o Θα,W ) = 0. (1.11)

Also (see Corollary 2 in [19]),

c̄o Θα(y0) =W (α, y0) ∀ α ∈ (0, 1). (1.12)

Here and in what follows, c̄o stands for the closed convex hull of the corresponding set.

2 Estimates of the Limit Optimal Value Func-

tions from Below

Consider the IDLP problem

inf
(γ,ξ)∈Ω(y0)

∫

G

k(y, u)γ(dy, du) =: k∗(y0), (2.1)

where

Ω(y0) := {(γ, ξ) ∈ P(G) ×M+(G)| γ ∈W,
∫

G

(ϕ(y0)− ϕ(y))γ(dy, du) +

∫

G

(ϕ(f(y, u)) − ϕ(y))ξ(dy, du) = 0 for all ϕ ∈ C(Y )},

(2.2)
with M+(G) standing for the space of nonnegative measures defined on Borel subsets of
G. Also consider the problem

sup
(µ,ψ,η)∈D

µ =: d∗(y0), (2.3)

5



where D(y0) is the set of triplets (µ,ψ(·), η(·)) ∈ IR×C(Y )×C(Y ) that for all (y, u) ∈ G
satisfy the inequalities

k(y, u) + (ψ(y0)− ψ(y)) + η(f(y, u)) − η(y)− µ ≥ 0,

ψ(f(y, u)) − ψ(y) ≥ 0.
(2.4)

Note that the optimal value of problem (2.3) can be equivalently represented as

d∗(y0) = sup
ψ,η

min
(y,u)∈G

{k(y, u) + (ψ(y0)− ψ(y)) + η(f(y, u))− η(y)}, (2.5)

where ψ and η are continuous functions, and ψ satisfies the second inequality in (2.4).
The optimal values of (2.3) and (2.1) are related by the inequality

d∗(y0) ≤ k∗(y0) (2.6)

(see Lemma 5.3 in Section 5.2). Problem (2.3) is, in fact, dual with respect to (2.1), with
(2.6) being a part of the duality relationships (see more details in Section 5.2).

As can be readily seen, problem (2.1) can be equivalently written as

inf
γ∈W1(y0)

∫

G

k(y, u)γ(dy, du) = k∗(y0), (2.7)

where

W1(y0) = {γ ∈W | there exists ξ ∈ M+(G) such that (γ, ξ) ∈ Ω(y0)} =

{γ ∈W | there exists ξ ∈ M+(G) such that
∫

G

(ϕ(y) − ϕ(y0))γ(dy, du) =

∫

G

(ϕ(f(y, u)) − ϕ(y))ξ(dy, du) ∀ ϕ ∈ C(Y )}.

Along with (2.7), consider the problem

min
γ∈W2(y0)

∫

G

k(y, u)γ(dy, du), (2.8)

where

W2(y0) = {γ ∈W | there exists a sequence ξi ∈ M+(G), i = 1, 2, . . . , such that
∫

G

(ϕ(y) − ϕ(y0))γ(dy, du) = lim
i→∞

∫

G

(ϕ(f(y, u)) − ϕ(y))ξi(dy, du) ∀ ϕ ∈ C(Y )}.

It is easy to see that both sets W1(y0) and W2(y0) are convex, set W2(y0) is closed (and,
therefore, compact), and

clW1(y0) ⊂W2(y0).

Lemma 2.1 The following inclusions are true:

lim sup
T→∞

ΓT (y0) ⊂W2(y0) and lim sup
α↑1

Θα(y0) ⊂W2(y0). (2.9)

This implies, in particular, that the set W2(y0) is not empty.

Proof. Note first that since the sets ΓT (y0) and Θα(y0) are not empty for all admissible
T and α, so are the sets lim sup

T→∞
ΓT (y0) and lim sup

α↑1
Θα(y0). Note also that from (1.11) it

6



follows that
lim sup
T→∞

ΓT (y0) ⊂W and lim sup
α↑1

Θα(y0) ⊂W. (2.10)

Let γ ∈ lim sup
T→∞

ΓT (y0). Then there exist sequences Ti → ∞ and γi ∈ ΓTi(y0) such that

γi → γ as i → ∞. Let ui(·) ∈ UTi(y0) be the control generating γi and yi(·) be the
corresponding trajectory. For any ϕ ∈ C(Y ) we have

∫

G

(ϕ(y) − ϕ(y0)) γi(dy, du) =
1

Ti

Ti−1
∑

t=0

(ϕ(yi(t))− ϕ(y0))

=
1

Ti

Ti−1
∑

t=0

t−1
∑

s=0

(ϕ(yi(s+ 1))− ϕ(yi(s))) =
1

Ti

Ti−1
∑

t=0

t−1
∑

s=0

(ϕ(f(yi(s), ui(s)))− ϕ(yi(s))).

(2.11)
Define the functional ζi ∈ C∗(G) (here and in what follows, C∗(G) stands for the space
of continuous linear functionals on C(G)) by the equation

〈ζi, q〉 =
1

Ti

Ti−1
∑

t=0

t−1
∑

s=0

q(yi(s), ui(s)) for all q ∈ C(G).

Due to Riesz representation theorem (see, e.g., Theorem 4.3.9, p. 181 in [6]), there exists
ξi ∈ M+(G) such that

〈ζi, q〉 =

∫

G

q(y, u)ξi(dy, du) for all q ∈ C(G).

Then (2.11) can be written as

∫

G

(ϕ(y) − ϕ(y0)) γi(dy, du) = 〈ζi, ϕ(f(y, u)) − ϕ(y)〉 =

∫

G

(ϕ(f(y, u)) − ϕ(y)) ξi(dy, du).

Passing to the limit, we obtain

∫

G

(ϕ(y) − ϕ(y0)) γ(dy, du) = lim
i→∞

∫

G

(ϕ(f(y, u)) − ϕ(y)) ξi(dy, du).

Since γ ∈ W (due to (2.10)), the latter equality implies that γ ∈ W2(y0). Thus, the first
inclusion in (2.9) is proved.

Let us prove the second inclusion. By (1.12), to prove the second inclusion in (2.9), it
is sufficient to prove that

lim sup
α↑1

W (α, y0) ⊂W2(y0).

Note that from (1.11) and (1.12) it follows that

lim sup
α↑1

W (α, y0) ⊂W.

Take γ ∈ lim supα↑1W (α, y0). There exist sequences αi ↑ 1 and γi ∈ W (αi, y0) such that

7



γi → γ as i→ ∞. Since γi ∈W (αi, y0), we have

∫

G

(ϕ(y) − ϕ(y0)) γi(dy, du) =
1

1− αi

∫

G

(ϕ(f(y, u)) − ϕ(y)) γi(dy, du)

=

∫

G

(ϕ(f(y, u)) − ϕ(y)) ξi(dy, du), (2.12)

where ξi = γi/(1− αi). Passing to the limit as i→ ∞ we obtain

∫

G

(ϕ(y) − ϕ(y0)) γ(dy, du) = lim
i→∞

∫

G

(ϕ(f(y, u)) − ϕ(y)) ξi(dy, du).

Since γ ∈W , the second inclusion in (2.9) is proved. ✷

The next lemma establishes a relation between the optimal values in problems (2.3)
and (2.8).

Lemma 2.2 The optimal value in problems (2.3) and (2.8) are equal, that is,

d∗(y0) = min
γ∈W2(y0)

∫

G

k(y, u) γ(dy, du).

Proof. The proof of the lemma is given in Section 5.2. ✷

Proposition 2.3 The lower limits of the optimal value functions in problems (1.2) and
(1.3) are bounded from below by the optimal value of (2.3), that is,

lim inf
T→∞

VT (y0) ≥ d∗(y0),

lim inf
α↑1

hα(y0) ≥ d∗(y0).
(2.13)

Proof. This proposition follows from Lemmas 2.1 and 2.2, and from the fact that the
equalities

lim inf
T→∞

VT (y0) = inf

{
∫

G

k(y, u)γ(dy, du), γ ∈ lim sup
T→∞

ΓT (y0)

}

,

lim inf
α↑1

hα(y0) = inf

{

∫

G

k(y, u)γ(dy, du), γ ∈ lim sup
α↑1

Θα(y0)

}

are valid. ✷

Let T be a positive integer and let (yT (·), uT (·)) be a T -periodic admissible process.
This process will be referred to as finite time (FT) reachable from y0 if there exist an
integer t̄ ≥ 0 and a control u(·) ∈ Ut̄(y0) such that the solution y(t) = y(t, y0, u) of (1.1)
obtained with this control satisfies the equality y(t̄) = yT (0).

Consider the optimal control problem

inf
T ,(yT (·),uT (·))

{

1

T

T −1
∑

t=0

k(yT (t), uT (t))

}

:= Vper(y0), (2.14)

where inf is over all integer T > 0 and over all T -periodic pairs (yT (·), uT (·)) that are
FT reachable from y0. Similarly to (1.9), this problem can be reformulated in terms of

8



occupational measures

inf
γ∈Γper(y0)

∫

Y×U
k(y, u)γ(dy, du) = Vper(y0), (2.15)

where Γper(y0) is the set of occupational measures generated by all FT reachable from
y0-admissible periodic pairs. Note that

Γper(y0) ⊂ lim sup
T→∞

ΓT (y0) (2.16)

and, therefore,
Vper(y0) ≥ lim inf

T→∞
VT (y0). (2.17)

Proposition 2.4 The following relationships are valid:

Γper(y0) ⊂W1(y0), Vper(y0) ≥ k∗(y0). (2.18)

Proof. Due to (2.7) and (2.15), it is sufficient to prove only the first relationship.
Note that from (2.10) and (2.16) it follows that

Γper(y0) ⊂W. (2.19)

Take now an arbitrary γ ∈ Γper(y0). By definition, it means that γ is generated by a
T -periodic pair (yT (·), uT (·)) that is FT reachable from y0. That is, for any continuous
function q(y, u),

∫

G

q(y, u)γ(dy, du) =
1

T

T −1
∑

t=0

q(yT (t), uT (t)).

Consequently, for any φ ∈ C(Y ),

∫

G

(φ(y)− φ(y0))γ(dy, du) =
1

T

T −1
∑

t=0

(φ(yT (t))− φ(y0))

=
1

T

T −1
∑

t=0

(φ(yT (t)) − φ(yT (0))) + (φ(y(t̄))− φ(y0))

=
1

T

T −1
∑

t=0

(

t−1
∑

s=0

(φ(yT (s+ 1)) − φ(yT (s)))

)

+
t̄−1
∑

s=0

(φ(y(s+ 1)) − φ(y(s))) , (2.20)

where y(t) = y(t, y0, u) is a solution of (1.1) that satisfies the equality y(t̄) = yT (0) (the
existence of t̄ ≥ 0 and the existence of a control u(·) ∈ Ut̄(y0) that ensure the validity
of this equality follows from the fact that (yT (·), uT (·)) is FT reachable from y0). Since
yT (s+ 1) = f(yT (s), uT (s)) and y(s+ 1) = f(y(s), u(s)), from (2.20) it follows that

∫

G

(φ(y) − φ(y0))γ(dy, du)

=
1

T

T −1
∑

t=0

(

t−1
∑

s=0

(φ((f(yT (s), uT (s))) − φ(yT (s)))

)

+
t̄−1
∑

s=0

(φ(f(y(s), u(s))) − φ(y(s))) .

(2.21)
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Define ζ ∈ C∗(G) by the equation

〈ζ, q〉 =
1

T

T −1
∑

t=0

t−1
∑

s=0

q(yT (s), uT (s)) +

t̄−1
∑

s=0

q(y(s), u(s)) ∀ q ∈ C(G).

Due to Riesz representation theorem, there exists ξ ∈ M+(G) such that

〈ζ, q〉 =

∫

G

q(y, u)ξ(dy, du) ∀ q ∈ C(G).

Therefore, (2.21) can be rewritten as

∫

G

(φ(y)− φ(y0))γ(dy, du) = 〈ζ, φ(f(y, u)) − φ(y)〉 =

∫

G

(ϕ(f(y, u)) − ϕ(y)) ξ(dy, du).

Since γ ∈ W (by (2.19)), the latter implies that γ ∈ W1(y0). Thus, the first relationship
in (2.18) is established. ✷

Corollary 2.5 If
Vper(y0) = lim inf

T→∞
VT (y0), (2.22)

then
lim inf
T→∞

VT (y0) ≥ k∗(y0).

3 Estimates of the Limit Optimal Value Func-

tions from Above

Theorem 3.1 (a) Let VT (·) be continuous on Y for all natural T . Then

lim sup
T→∞

VT (y0) ≤ k∗(y0) ∀ y0 ∈ Y, (3.1)

(b) Let hα(·) be continuous on Y for all α ∈ (0, 1). Then

lim sup
α↑1

hα(y0) ≤ k∗(y0) ∀ y0 ∈ Y. (3.2)

Proof of the theorem is based on the following lemma.

Lemma 3.2 For any natural T ,

∫

G

VT (y) γ(dy, du) ≤

∫

G

k(y, u) γ(dy, du) ∀ γ ∈W. (3.3)

Also, for any α ∈ (0, 1),

∫

G

hα(y) γ(dy, du) ≤

∫

G

k(y, u) γ(dy, du) ∀ γ ∈W. (3.4)

The proof of the lemma is given at the end of the section.

Proof of Theorem 3.1.
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Proof of (a). Let us fix an arbitrary natural T and let us consider the following IDLP
problem

sup
(ψ,η)∈Q(T )

ψ(y0) =: d∗(T, y0), (3.5)

where Q(T ) is the set of pairs (ψ(·), η(·)) ∈ C(Y )×C(Y ) that satisfy the inequalities

k(y, u) − ψ(y) + η(f(y, u))− η(y) ≥ 0,

ψ(f(y, u)) − ψ(y) ≥ −
2M

T
∀ (y, u) ∈ G,

(3.6)

with
M := max

(y,u)∈Y×U0

|k(y, u)|. (3.7)

Let us show that, for an arbitrary small ε > 0, there exists a function ηT,ε(·) ∈ C(Y ) such
that

(ψT,ε(·), ηT,ε(·)) ∈ Q(T ), where ψT,ε(·) := VT (·)− ε. (3.8)

Note that, if the inclusion above is established, it would imply that

VT (y0)− ε ≤ d∗(T, y0). (3.9)

Let us first verify that there exists ηT,ε(·) ∈ C(Y ) such that the pair (ψT,ε(·), ηT,ε(·))
satisfies the first inequality in (3.6). To this end, note that the inequality (3.3) is equivalent
to the inequality

∫

G

(k(y, u) − VT (y)) γ(dy, du) ≥ 0 for all γ ∈W,

which, in turn, is equivalent to

min
γ∈W

∫

G

(k(y, u) − VT (y)) γ(dy, du) ≥ 0. (3.10)

The problem on the left hand side of (3.10), i.e.,

min
γ∈W

∫

G

(k(y, u) − VT (y)) γ(dy, du), (3.11)

is an IDLP problem, its dual being

sup
η∈C(Y )

inf
(y,u)∈G

{k(y, u) − VT (y) + η(f(y, u))− η(y)}. (3.12)

The optimal values of (3.11) and (3.12) are equal (see Proposition 6 in [19]). Therefore,
(3.10) is equivalent to

sup
η∈C(Y )

inf
(y,u)∈G

{k(y, u) − VT (y) + η(f(y, u)) − η(y)} ≥ 0. (3.13)

From (3.13) it follows that, for any ε > 0, there exists a function ηT,ε(·) ∈ C(Y ) such that

k(y, u) − VT (y) + ηT,ε(f(y, u))− ηT,ε(y) ≥ −ε for all (y, u) ∈ G. (3.14)

The latter implies that that the pair (ψT,ε(·), ηT,ε(·)), where ψT,ε(·) := VT (·)− ε, satisfies
the first inequality in (3.6).
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Let us now verify that the function ψT,ε(·) = VT (·)− ε satisfies the second inequality
in (3.6). From the dynamic programming principle applied to problem (1.2), it follows
that, for any T ≥ 1,

TVT (y) ≤ k(y, u) + (T − 1)VT−1(f(y, u)) ∀ (y, u) ∈ G. (3.15)

Also, as can be readily seen,

(T − 1)VT−1(y) ≤ TVT (y) +M ∀ y ∈ Y. (3.16)

By (3.15) and (3.16),

TVT (y) ≤ k(y, u) + TVT (f(y, u)) +M ≤ TVT (f(y, u)) + 2M.

Consequently,

VT (y) ≤ VT (f(y, u)) +
2M

T
⇒ ψT,ε(y) ≤ ψT,ε(f(y, u)) +

2M

T

Thus, ψT,ε(·) = VT (·)− ε satisfies the second inequality in (3.6). Hence, (3.8) is valid and,
consequently, (3.9) is valid too.

By Lemma 5.3 of Section 5,

d∗(T, y0) ≤ k∗(T, y0), (3.17)

where

k∗(T, y0) = inf
(γ,ξ)∈Ω(y0)

{
∫

G

k(y, u)γ(dy, du) +
2M

T

∫

G

ξ(dy, du)

}

. (3.18)

(Note that, to adjust the notations used above and those used in Lemma 5.3, one should
write d∗(T, y0) and k

∗(T, y0) as d
∗(θT , y0) and k

∗(θT , y0), where θT = 2M
T
.)

From (3.9) and (3.17) it follows that VT (y0)− ε ≤ k∗(T, y0), which implies that

VT (y0) ≤ k∗(T, y0) (3.19)

since ε > 0 is arbitrary small. Due to (3.19), to prove (3.1), it is sufficient to establish
that

lim
T→∞

k∗(T, y0) = k∗(y0). (3.20)

One can readily see that k∗(T, y0) is a decreasing function of T and that k∗(T, y0) ≥ k∗(y0)
for any T ≥ 1. Hence,

lim
T→∞

k∗(T, y0) ≥ k∗(y0).

Let us now show that the opposite inequality is also valid. Let δ > 0 be arbitrary small
and let (γ′, ξ′) ∈ Ω(y0) be δ-optimal for (2.1). That is,

∫

Y×U
k(y, u)γ′(dy, du) ≤ k∗(y0) + δ.

Then

k∗(y0, T ) ≤

∫

Y×U
k(y, u)γ′(dy, du) +

2M

T

∫

Y×U
ξ′(dy, du)

≤ k∗(y0) + δ +
2M

T

∫

Y×U
ξ′(dy, du),
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⇒ lim
T→∞

k∗(y0, T ) ≤ k∗(y0) + δ ⇒ lim
T→∞

k∗(y0, T ) ≤ k∗(y0)

(δ > 0 can be arbitrary small). Thus (3.20) is established and statement (a) is proved.

Proof of (b) The proof of (b) is very similar to that of (a). We fix an arbitrary α ∈ (0, 1)
and consider the IDLP problem

sup
(ψ,η)∈Q(α)

ψ(y0) =: d∗(α, y0), (3.21)

where Q(α) is the set of pairs (ψ(·), η(·)) ∈ C(Y )× C(Y ) that satisfy the inequalities

k(y, u) − ψ(y) + η(f(y, u))− η(y) ≥ 0,

ψ(f(y, u)) − ψ(y) ≥ −2M(1 − α) ∀ (y, u) ∈ G.
(3.22)

We then show that, for an arbitrary small ε > 0, there exists a function ηα,ε(·) ∈ C(Y )
such that

(ψα,ε(·), ηα,ε(·)) ∈ Q(α), where ψα,ε(·) := hα(·)− ε, (3.23)

with the inclusion above implying that

hα(y0)− ε ≤ d∗(α, y0). (3.24)

To verify (3.23), we first show that there exists ηα,ε(·) ∈ C(Y ) such that the pair
(ψα,ε(·), ηα,ε(·)) satisfies the first inequality in (3.22). As in the proof of (a), we rewrite
the inequality (3.4) in the form

∫

G

(k(y, u)− hα(y)) γ(dy, du) ≥ 0 ∀ γ ∈W,

which is equivalent to

min
γ∈W

∫

G

(k(y, u) − hα(y)) γ(dy, du) ≥ 0. (3.25)

The problem on the left hand side of (3.25), i.e.,

min
γ∈W

∫

G

(k(y, u) − hα(y)) γ(dy, du), (3.26)

is an IDLP problem, the dual of which is

sup
η∈C(Y )

inf
(y,u)∈G

{k(y, u) − hα(y) + η(f(y, u)) − η(y)}. (3.27)

The optimal values of (3.26) and (3.27) are equal (Proposition 6 in [19]). Therefore, (3.25)
is equivalent to

sup
η∈C(Y )

inf
(y,u)∈G

{k(y, u) − hα(y) + η(f(y, u)) − η(y)} ≥ 0. (3.28)

From (3.28) it follows that, for any ε > 0, there exists a function ηα,ε(·) ∈ C(Y ) such that

k(y, u) − hα(y) + ηα,ε(f(y, u))− ηα,ε(y) ≥ −ε ∀ (y, u) ∈ G. (3.29)

The latter implies that the pair (ψα,ε(·), ηα,ε(·)), where ψα,ε(·) := hα(·) − ε, satisfies the
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first inequality in (3.22).
To verify that the function ψα,ε(·) = hα(·)− ε satisfies the second inequality in (3.22),

note that from the dynamic programming principle applied to problem (1.3), it follows
that

hα(y) ≤ (1− α)k(y, u) + αhα(f(y, u)) ∀ (y, u) ∈ G (3.30)

(see, e.g., Proposition 4 in [19]). The latter implies that

hα(y) ≤ hα(f(y, u)) + (1− α)(k(y, u) − hα(f(y, u))),

which, in turn, implies that

hα(y) ≤ hα(f(y, u))) + 2M(1− α) ∀ (y, u) ∈ G (3.31)

(since, as can be readily seen, maxy∈Y |hα(y)| ≤ M). Thus, ψα,ε(·) = hα(·) − ε satisfies
the second inequality in (3.22), and, therefore, (3.24) is valid too. Starting from this
point, the proof of (b) follows exactly the same steps as that of (a). ✷

Proof of Lemma 3.2. Let us prove (3.3). To this end, let us show first that, for any
natural T and T ′,

∫

G

VT (y) γ
′(dy, du) ≤

∫

G

k(y, u) γ′(dy, du) +
M(T − 1)

T ′
∀ γ′ ∈ ΓT ′(y0), ∀ y0 ∈ Y,

(3.32)
whereM is as in (3.7). Take y0 ∈ Y , γ′ ∈ ΓT ′(y0), and let u(·) ∈ UT ′(y0) be a control that
generates γ′ on {0, . . . , T ′ − 1}. Extend u from the interval {0, . . . , T ′ − 1} to the interval
{0, . . . , T ′ + T − 1} so that u ∈ UT ′+T (y0). Such extension is possible due to viability
of Y . Let y(·) be the corresponding trajectory. Taking into account that VT (y(s)) ≤

1

T

T−1
∑

r=0

k(y(r + s), u(r + s))) for all s ∈ {0, . . . , T ′ − 1}, we obtain

∫

G

VT (y) γ
′(dy, du) =

1

T ′

T ′−1
∑

s=0

VT (y(s)) ≤
1

T ′

T ′−1
∑

s=0

1

T

T−1
∑

r=0

k(y(r + s), u(r + s)))

=
1

T

T−1
∑

r=0

1

T ′

T ′−1
∑

s=0

k(y(r + s), u(r + s))

=
1

T

T−1
∑

r=0

1

T ′

T ′+r−1
∑

σ=r

k(y(σ), u(σ)) ≤
1

T

T−1
∑

r=0

1

T ′

(

T ′−1
∑

σ=0

k(y(σ), u(σ)) + 2Mr

)

=
1

T

T−1
∑

r=0

1

T ′

T ′−1
∑

σ=0

k(y(σ), u(σ)) +
1

TT ′

T−1
∑

r=0

2Mr

=
1

T

T−1
∑

r=0

∫

G

k(y, u) γ′(dy, du) +
M(T − 1)

T ′
=

∫

G

k(y, u) γ′(dy, du) +
M(T − 1)

T ′
.

Thus the inequality (3.32) is established. From this inequality it follows that

∫

G

VT (y) γ
′(dy, du) ≤

∫

G

k(y, u) γ′(dy, du) +
M(T − 1)

T ′
∀γ′ ∈ co ΓT ′ , (3.33)

where ΓT ′ is the union of ΓT ′(y0) over y0 ∈ Y (see (1.7)). Take an arbitrary γ ∈ W .
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From (1.11) it follows that there exist sequences T ′
l > 0, γ′l ∈ ΓT ′

l
, l = 1, 2, ..., such that

T ′
l → ∞ and γ′l → γ. Passing to the limit along these sequences in (3.33) and having in

mind that
∫

G

VT (y) γ(dy, du) ≤ lim inf
γ′
l
→γ

∫

G

VT (y) γ
′
l(dy, du)

(since VT (·) is lower semicontinuous for any T > 0; see, e.g., Theorem 3.1.5 in [36]), one
arrives at inequality (3.3).

Let us now prove (3.4). To this end, let us show first that, for any α ∈ (0, 1) and any
α′ ∈ (α, 1),

∫

G

hα(y) γ
′(dy, du) ≤

1− α

1− α
α′

∫

G

k(y, u) γ′(dy, du) (3.34)

+

(

1− α

1− α
α′

− 1

)

M ∀ γ′ ∈ Θα′(y0), ∀y0 ∈ Y.

Take y0 ∈ Y , γ′ ∈ Θα′(y0), and let u(·) ∈ U(y0) be a control that generates γ′. Let also
y(·) be the trajectory corresponding to u(·). We have

∫

G

hα(y) γ
′(dy, du) = (1− α′)

∞
∑

s=0

(α′)shα(y(s))

≤ (1− α′)

∞
∑

s=0

(α′)s(1− α)

∞
∑

r=0

αrk(y(r + s), u(r + s))

= (1− α)
∞
∑

r=0

αr(1− α′)
∞
∑

s=0

(α′)sk(y(r + s), u(r + s))

= (1− α)

∞
∑

r=0

αr(1− α′)(α′)−r
∞
∑

σ=r

(α′)σk(y(σ), u(σ))

≤ (1− α)

∞
∑

r=0

αr(1− α′)(α′)−r

(

∞
∑

σ=0

(α′)σk(y(σ), u(σ)) +

r−1
∑

σ=0

(α′)σM

)

= (1− α)
∞
∑

r=0

αr(α′)−r
∫

G

k(y, u) γ′(dy, du) + (1− α)
∞
∑

r=0

αr(α′)−r(1− (α′)r)M

=
1− α

1− α
α′

∫

G

k(y, u) γ′(dy, du) +

(

1− α

1− α
α′

− 1

)

M.

From (3.34) it follows that

∫

G

hα(y) γ
′(dy, du) ≤

1− α

1− α
α′

∫

G

k(y, u) γ′(dy, du) +

(

1− α

1− α
α′

− 1

)

M ∀ γ′ ∈ co Θα′ ,

(3.35)
where Θα′ is the union of Θα′(y0) over y0 ∈ Y (see (1.8)). Take an arbitrary γ ∈ W .
From (1.11) it follows that there exist sequences α′

l ∈ (0, 1), γ′l ∈ Γα′
l
, l = 1, 2, ..., such

that α′
l ↑ 1 and γ′l → γ. Passing to the limit along these sequences in (3.35) and keeping

in mind that
∫

G

hα(y) γ(dy, du) ≤ lim inf
γ′
l
→γ

∫

G

hα(y) γ
′
l(dy, du)

(since hα(·) is lower semicontinuous for any α ∈ (0, 1); see also Theorem 3.1.5 in [36]),
one arrives at inequality (3.4). ✷

15



4 LP Representation for the Optimal Value and

Related Sufficient/Necessary Optimality Conditions

The following statement is a direct corollary of Theorem 3.1 and Proposition 2.3.

Proposition 4.1 If
d∗(y0) = k∗(y0), (4.1)

then, provided that VT (·) is continuous for any T > 1, there exists the pointwise limit

lim
T→∞

VT (y0) = d∗(y0) ∀ y0 ∈ Y. (4.2)

Also, provided that hα(·) is continuous for any α ∈ (0, 1), there exists the pointwise limit

lim
α→0

hα(y0) = d∗(y0) ∀ y0 ∈ Y. (4.3)

Note that a statement about the LP representation of the pointwise limits (4.2) and
(4.3) can be established without the strong duality assumption (4.1) . Namely, the fol-
lowing result is valid.

Theorem 4.2 (a) Let the pointwise limit

lim
T→∞

VT (y0) := V (y0) ∀ y0 ∈ Y. (4.4)

exist and let the function V (·) be continuous. Then

V (y0) = d∗(y0) ∀ y0 ∈ Y. (4.5)

(b) Let the pointwise limit

lim
α→1

hα(y0) := h(y0) ∀ y0 ∈ Y, (4.6)

exist and the function h(·) be continuous. Then

h(y0) = d∗(y0) ∀ y0 ∈ Y. (4.7)

Proof. The proof of the theorem is given at the end of this section. ✷

Remark 4.3 If (4.4) and (4.5) are valid, then the strong duality equality (4.1) is true
provided that condition (2.22) of Corollary 2.5 is satisfied.

In the rest of this section, we assume that the pointwise limit limT→∞ VT (·) = V (y)
exists and is continuous, and, therefore, it is equal to the optimal value d∗(y0) of the dual
problem (2.3) (by Theorem 4.2). That is, (4.4) and (4.5) are valid.

Consider the optimal control problem

inf
u(·)∈U(y0)

lim inf
T→∞

1

T

T−1
∑

t=0

k(y(t), u(t)) = V (y0). (4.8)

Note that, due to (4.4), the optimal value of (4.8) is equal to V (y0) (see Proposition 5.4 in
Section 5). Below, we discuss sufficient and necessary optimality conditions for problem
(4.8) stated in terms of an optimal solution of problem (2.3).
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DEFINITION. A pair (ψ̄(·), η̄(·)) ∈ C(G)×C(G) will be called an optimal solution of
(2.3) if it satisfies the inequalities (compare with (2.4))

k(y, u) + (ψ̄(y0)− ψ̄(y)) + η̄(f(y, u))− η̄(y) ≥ d∗(y0),

ψ̄(f(y, u)) − ψ̄(y) ≥ 0.
(4.9)

Proposition 4.4 (a) A pair (ψ̄(·), η̄(·)) is an optimal solution of (2.3) if and only if ψ̄(·)
satisfies the second inequality in (4.9) and

min
(y,u)∈G

{k(y, u) − ψ̄(y) + η̄(f(y, u))− η̄(y)} = V (y0)− ψ̄(y0). (4.10)

(b) If η̄(·) is such that

min
(y,u)∈G

{k(y, u) − V (y) + η̄(f(y, u))− η̄(y)} = 0, (4.11)

then the pair (ψ̄(·), η̄(·)), where ψ̄(·) = V (·), is an optimal solution of problem (2.3).

Proof. By (2.5), the first inequality in (4.9) is equivalent to the equality

min
(y,u)∈G

{k(y, u) + ψ̄(y0)− ψ̄(y) + η̄(f(y, u))− η̄(y)} = d∗(y0). (4.12)

Also, (4.12) is equivalent to (4.10) (due to (4.5)). Thus (a) is proved.
If η̄(·) is such that (4.11) is satisfied, then the pair (ψ̄(·), η̄(·)), where ψ̄(·) = V (·),

satisfies (4.10). Therefore, by (a), this pair is an optimal solution of (2.3). This proves
(b). ✷

Proposition 4.5 Let an optimal solution (ψ̄(·), η̄(·)) of (2.3) exist. Then, for an admis-
sible process (y(·), u(·)) to be optimal in (4.8) it is sufficient that the equalities

k(y(t), u(t)) − ψ̄(y(t)) + η̄(f(y(t), u(t))) − η̄(y(t)) = V (y0)− ψ̄(y0), (4.13)

ψ̄(y(t)) = ψ̄(y0) (4.14)

are satisfied for all t = 0, 1, ... .

Proof. From (4.13) and (4.14) it follows that

k(y(t), u(t)) + η̄(f(y(t), u(t))) − η̄(y(t)) = V (y0)

for all t = 0, 1, ... . Therefore, for any T ≥ 1,

1

T

T−1
∑

t=0

(

k(y(t), u(t)) + η̄(f(y(t), u(t))) − η̄(y(t))
)

=
1

T

T−1
∑

t=0

(

k(y(t), u(t)) + η̄(y(t+ 1))− η̄(y(t))
)

=
1

T

T−1
∑

t=0

k(y(t), u(t)) +
1

T
(η̄(y(T ))) − η̄(y(0))) = V (y0).

(4.15)
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Taking into account that

lim
T→∞

1

T
(η̄(y(T ))− η̄(y(0))) = 0,

we obtain

lim
T→∞

1

T

T−1
∑

t=0

k(y(t), u(t)) = V (y0).

That is, the process (y(·), u(·)) is optimal in (4.8). ✷

We will now establish that the fulfillment of (4.13)-(4.14) is also a necessary condition
of optimality of an admissible process (y(·), u(·)) provided that the latter is periodic, that
is, there exists a positive integer T0 such that, for any t = 0, 1, ...,

(y(t), u(t)) = (y(t+ T0), u(t+ T0)) ∀ t = 0, 1, ... . (4.16)

Proposition 4.6 Let an optimal solution (ψ̄(·), η̄(·)) of (2.3) exist. Then, for an admis-
sible process (y(·), u(·)) satisfying the periodicity conditions (4.16) to be optimal in (4.8),
it is necessary that the equalities (4.13)-(4.14) are satisfied for all t = 0, 1, ....

Proof. Note that the fact that the periodic admissible process is optimal in (4.8) means
that

1

T0

T0−1
∑

t=0

k(y(t), u(t)) = V (y0). (4.17)

Note also that from Proposition 4.4 it follows that, for any t = 0, 1, ..., T0 − 1,

k(y(t), u(t)) − ψ̄(y(t)) + η̄(f(y(t), u(t))) − η̄(y(t)) ≥ V (y0)− ψ̄(y0), (4.18)

ψ̄(y(t)) ≥ ψ̄(y0) (4.19)

From (4.17) and (4.18) it follows that

T0−1
∑

t=0

(ψ̄(y0)− ψ̄(y(t))) +

T0−1
∑

t=0

(η̄(f(y(t), u(t))) − η̄(y(t))) ≥ 0,

which implies that
T0−1
∑

t=0

(ψ̄(y0)− ψ̄(y(t))) ≥ 0 (4.20)

due to the fact that

T0−1
∑

t=0

(η̄(f(y(t), u(t)))−η̄(y(t))) =

T0−1
∑

t=0

(η̄(y(t+1))−η̄(y(t))) = η̄(y(T0))−η̄(y0) = 0 (4.21)

(by (4.16)). The inequalities (4.19) and (4.20) establish the validity of (4.14). In view of
(4.14), the inequality (4.18) is equivalent to that

k(y(t), u(t)) + η̄(f(y(t), u(t))) − η̄(y(t)) ≥ V (y0) (4.22)

for all t = 0, 1, ..., T0 − 1. If the above inequality was strict for at least one t, then one
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would obtain

1

T0

T0−1
∑

t=0

(k(y(t), u(t)) + η̄(f(y(t), u(t))) − η̄(y(t))) > V (y0),

which, by (4.21), would lead to

1

T0

T0−1
∑

t=0

k(y(t), u(t)) > V (y0).

The latter contradicts (4.17). Hence, (4.22) is satisfied as equality for all t = 0, 1, ...T0−1.
This proves (4.13). ✷

Remark 4.7 As established by Proposition 4.5, an admissible process (y(·), u(·)) is op-
timal if it satisfies the equalities (4.13), (4.14). Assuming that these are valid, one may
conclude (due to (4.10)) that the equality (4.13) is equivalent to

(y(t), u(t)) = argmin(y,u)∈G{k(y, u) − ψ̄(y) + η̄(f(y, u))− η̄(y)}

which leads to

u(t) = argminu∈A(y){k(y(t), u) + η̄(f(y(t), u))} ∀t = 0, 1, ... .

The latter implies that the feedback control

u(y) = argminu∈A(y){k(y, u) + η̄(f(y, u))} (4.23)

is optimal in the sense that, being used in (1.1), it allows one to obtain the optimal “open
loop” admissible process (y(·), u(·)).

Let us illustrate the optimality conditions discussed above with the following “toy
example”.

Example. Let the dynamics be one-dimensional and be described by the equation
(compare with (1.1))

y(t+ 1) = u(t)y(t) ∀ t = 0, 1, ... ,

with Y = [−1, 1] and with U(y) = {−1, 1} (that is, the control can be either equal to 1
or to −1). Consider problem (1.2) with k(y, u) = y. As can be readily understood, the
optimal admissible processes in this example are as follows. If y0 ∈ (0, 1], then

u(0) = −1, y(0) = y0 and u(t) = 1, y(t) = −y0 ∀ t ≥ 1.

If y0 ∈ [−1, 0), then
u(t) = 1, y(t) = y0 ∀ t ≥ 0.

Also, if y0 = 0, then the system is uncontrollable, and the only admissible trajectory is
y(t) = 0 ∀ t ≥ 0. The admissible processes described above are optimal on any time
horizon (both finite and infinite), with the optimal value function being defined by the
equation

VT (y0) =
1

T
y0−

T − 1

T
y0 = −y0+

2

T
y0 if y0 ∈ (0, 1] and VT (y0) = y0 if y0 ∈ [−1, 0].

(4.24)
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Thus, V (y) = −|y|. Note that condition (2.22) of Corollary 2.5 is satisfied and, therefore,
the strong duality equality (4.1) is valid in the given example (see Remark 4.3).

Define the function η̄(·) by the equation

η̄(y) := max{2y, 0} ∀ y ∈ [−1, 1]. (4.25)

One can readily verify that

min
u∈{−1,1}

η̄(uy) = 0 ∀ y ∈ [−1, 1],

the latter implying that

y + |y|+ min
u∈{−1,1}

η̄(uy)− η̄(y) = 0 ∀y ∈ [−1, 1].

That is, η̄(·) satisfies (4.11). Therefore, the pair (ψ̄(·), η̄(·)), where ψ̄(y) = −|y|, is an
optimal solution of (2.3). The argmin feedback control defined in (4.23) takes in this case
the form

argminu∈{−1,1}η̄(uy) = −1 if y ∈ (0, 1), argminu∈{−1,1}η̄(uy) = 1 if y ∈ (−1, 0).

This feedback control is optimal and it is consistent with the optimal open loop solution
shown above.

Remark 4.8 If (4.13), (4.14) are valid, then the relationships (4.15) are valid, the latter
implying that

1

T
(η̄(y(T ))− η̄(y0)) = V (y0)−

1

T

T−1
∑

t=0

k(y(t), u(t)). (4.26)

This provides an interpretation of η̄(·) as a function that defines the difference between the

running cost
1

T

T−1
∑

t=0

k(y(t), u(t)) and the optimal value V (y0) along the optimal trajectory.

Note that, if

1

T

T−1
∑

t=0

k(y(t), u(t)) = VT (y0),

that is the process (y(·), u(·)) is optimal on any finite time horizon as well, then (4.26)
can be rewritten as follows

VT (y0) = V (y0)−
1

T
(η̄(y(T )) − η̄(y0)) ∀ T ≥ 1. (4.27)

That was the case in the example considered above, in which the optimal trajectory y(·)
satisfies the equalities: y(T ) = −y0 ∀y0 ∈ (0, 1] and y(T ) = y0 ∀y0 ∈ [−1, 0] for all
T ≥ 1. This leads to η̄(y(T )) = 0 (see (4.25)) and, consequently, to that

−
1

T
(η̄(y(T )) − η̄(y0)) =

1

T
η̄(y0) ∀ T ≥ 1.

Thus, the relationships in (4.24) are consistent with (4.27).

Proof of Theorem 4.2. If the pointwise limit (4.4) exists, then, by Proposition 2.3,

20



the limit function V (·) satisfies the inequality

V (y0) ≥ d∗(y0) ∀ y0 ∈ Y.

Therefore, to prove the statement (a), one needs to show that

V (y0) ≤ d∗(y0) ∀ y0 ∈ Y. (4.28)

Similarly, if the pointwise limit (4.6) exists, then, by Proposition 2.3, the limit function
hα(·) satisfies the inequality

h(y0) ≥ d∗(y0) ∀ y0 ∈ Y.

Therefore, to prove the statement (b), one needs to show that

h(y0) ≤ d∗(y0) ∀ y0 ∈ Y. (4.29)

Proof of (4.28). Firstly, note that, by dividing (3.15) by T and passing to the limit as
T → ∞, one obtains

V (y) ≤ V (f(y, u)) ∀ (y, u) ∈ G. (4.30)

Also, by passing to the limit as T → ∞ in (3.3), one obtains

∫

G

V (y) γ(dy, du) ≤

∫

G

k(y, u) γ(dy, du) ∀ γ ∈W. (4.31)

Inequality (4.31) can be rewritten in the form

∫

G

(k(y, u) − V (y)) γ(dy, du) ≥ 0 for all γ ∈W,

which is equivalent to that

min
γ∈W

∫

G

(k(y, u) − V (y)) γ(dy, du) ≥ 0. (4.32)

The problem in the left hand side of the above inequality,

min
γ∈W

∫

G

(k(y, u)− V (y)) γ(dy, du), (4.33)

is an IDLP problem, whose dual is

sup
η∈C(Y )

inf
(y,u)∈G

{k(y, u) − V (y) + η(f(y, u)) − η(y)}. (4.34)

Through equality of the optimal values of (4.33) and (4.34) (see Proposition 6 in [19]),
we conclude that (4.32) is equivalent to

sup
η∈C(Y )

inf
(y,u)∈G

{k(y, u) − V (y) + η(f(y, u))− η(y)} ≥ 0. (4.35)

From (4.35) it follows that, for any ε > 0, there exists a function ηε(·) ∈ C(Y ) such that

k(y, u) − V (y) + ηε(f(y, u))− ηε(y) ≥ −ε for all (y, u) ∈ G. (4.36)
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Consider the problem
sup

(ψ,η)∈Q
ψ(y0) = d∗(y0), (4.37)

where Q is the set of pairs (ψ, η) ∈ C(Y )× C(Y ) that satisfy inequalities

k(y, u)− ψ(y) + η(f(y, u)) − η(y) ≥ 0,

ψ(f(y, u))− ψ(y) ≥ 0 for all (y, u) ∈ G.
(4.38)

Note that the optimal value of problem (4.37) is the same as that of (2.3) (see (5.15) in
the proof of Lemma 5.3 taken with θ = 0). Due to (4.30) and (4.36), the pair (ψε(·), ηε(·)),
where ψε(·) := V (·)− ε, satisfies the inequalities (4.38). Consequently,

d∗(y0) ≥ V (y0)− ε.

This proves (4.28) since ε > 0 is arbitrarily small .
Proof of (4.29). By passing to the limit as α ↑ 1 in (3.30), we conclude that h(·)

satisfies the inequality

h(y) ≤ h(f(y, u)) for any (y, u) ∈ G. (4.39)

Also, by passing to the limit as α ↑ 1 in (3.4) we establish that

∫

G

h(y) γ(dy, du) ≤

∫

G

k(y, u) γ(dy, du) ∀ γ ∈W. (4.40)

Proceeding from this point in exactly the same way as above, one establishes the validity
of (4.29) ✷

5 Appendix

5.1 Another representation for the limit optimal values

Let K be the set of continuous functions that satisfy the following relationships:

w(y) ≤ w(f(y, u)) for any (y, u) ∈ G (5.1)

and
∫

G

w(y) γ(dy, du) ≤

∫

G

k(y, u) γ(dy, du) for all γ ∈W. (5.2)

In these notations, the relationships (4.30), (4.31) and (4.39), (4.40) are equivalent to the
inclusions

V (·) ∈ K, (5.3)

and
h(·) ∈ K, (5.4)

respectively.

Proposition 5.1 (a) Let the pointwise limit (4.4) exist and the function V (·) be contin-
uous. Then

V (y0) = sup{w(y0) | w(·) ∈ K} ∀ y0 ∈ Y. (5.5)
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(b) Let the pointwise limit (4.6) exists and the function h(·) be continuous. Then

h(y0) = sup{w(y0) | w(·) ∈ K} ∀ y0 ∈ Y. (5.6)

Proof. Note that, due to (5.3) and (5.4)

V (y0) ≤ sup{w(y0) | w(·) ∈ K}, h(y0) ≤ sup{w(y0) | w(·) ∈ K} ∀ y0 ∈ Y. (5.7)

Therefore, to prove the proposition, it is sufficient to establish that the inequalities oppo-
site to (5.7) are valid. For a natural T , let uT (·) be an optimal control in (1.2), γT ∈ ΓT (y0)
be the occupational measure generated by this control, and yT (·) be the corresponding
trajectory. Then

1

T

T−1
∑

t=0

k(yT (t), uT (t)) =

∫

G

k(y, u) γT (dy, du) = VT (y0).

Let γT (dy, du) converge to γ in weak∗ topology as T → ∞ along a subsequence (we do
not relabel). Note that γ ∈ W (due to (1.11)). From the equality above, by passing to
the limit as T → ∞, we obtain

∫

G

k(y, u) γ(dy, du) = V (y0). (5.8)

For w ∈ K, taking into account the monotonicity property (5.1), we have

w(y0) =
1

T

T−1
∑

t=0

w(y0) ≤
1

T

T−1
∑

t=0

w(yT (t)) =

∫

G

w(y) γT (dy, du).

Since w is continuous, we can pass to the limit as T → ∞ and obtain

w(y0) ≤

∫

G

w(y) γ(dy, du).

Combining this with (5.2) and (5.8) we obtain

w(y0) ≤

∫

G

w(y) γ(dy, du) ≤

∫

G

k(y, u) γ(dy, du) = V (y0).

The latter implies that the inequality opposite to the first inequality in (5.7) is valid. This
proves part (a) of the proposition.

The proof of the inequality opposite to the second inequality in (5.7) is similar. For
α ∈ (0, 1), let uα(·) be an optimal control in (1.3), γα ∈ Θα(y0) be the occupational
measure generated by this control, and yα(·) be the corresponding trajectory. Then

(1− α)
∞
∑

0

αtk(yα(t), uα(t)) =

∫

G

k(y, u) γα(dy, du) = hα(y0).

Let γα(dy, du) converge to γ in weak∗ topology as α→ 1 along a subsequence (we do not
relabel). Note that γ ∈ W (due to (1.11)). From the equality above, by passing to the
limit as α→ 1 we obtain

∫

G

k(y, u) γ(dy, du) = h(y0). (5.9)
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Combining this with (5.2) and (5.9) we obtain

w(y0) ≤

∫

G

w(y) γ(dy, du) ≤

∫

G

k(y, u) γ(dy, du) = h(y0).

The latter implies that the inequality opposite to the second inequality in (5.7) is valid,
and, thus, proves part (b) of the proposition. ✷

Remark 5.2 It can be verified directly that the optimal value of the problem in the right
hand side of (5.5) and (5.6) is equal to d∗(y0) (the optimal value of the dual problem (2.3)).
Results establishing the validity of presentations similar to (5.5) and (5.6) in continuous
time setting were obtained in [12].

5.2 Results referred to in Sections 3 and 4

Consider a perturbed version of the IDLP problem (2.1)

inf
(γ,ξ)∈Ω(y0)

{
∫

G

k(y, u)γ(dy, du) + θ

∫

G

ξ(dy, du)

}

:= k∗(θ, y0), (5.10)

and the corresponding perturbed version of the dual problem (2.3)

sup
(µ,ψ,η)∈D(θ,y0)

µ =: d∗(θ, y0), (5.11)

where D(θ, y0) is the set of triplets (µ,ψ(·), η(·)) ∈ IR × C(Y ) × C(Y ) that satisfy the
inequalities

k(y, u) + (ψ(y0)− ψ(y)) + η(f(y, u)) − η(y)− µ ≥ 0,

ψ(f(y, u)) − ψ(y) ≥ −θ ∀ (y, u) ∈ G,
(5.12)

Note that θ ≥ 0 is a perturbation parameter and note that (5.10) and (5.11) become (2.1)
and (2.3) with θ = 0. Consider also the problem

sup
(ψ,η)∈Q(θ)

ψ(y0) := d̄∗(θ, y0), (5.13)

where Q(θ) is the set of pairs (ψ(·), η(·)) ∈ C(Y )× C(Y ) that satisfy the inequalities

k(y, u)− ψ(y) + η(f(y, u)) − η(y) ≥ 0,

ψ(f(y, u))− ψ(y) ≥ −θ ∀ (y, u) ∈ G,
(5.14)

Lemma 5.3 The following relationships are valid:

d̄∗(θ, y0) = d∗(θ, y0) ≤ k∗(θ, y0) ∀ θ ≥ 0. (5.15)

Proof. Let us prove, first, that

d̄∗(θ, y0) = d∗(θ, y0) ∀ θ ≥ 0. (5.16)

In fact, the inequality d̄∗(θ, y0) ≤ d∗(θ, y0) is true (since, for any pair (ψ(·), η(·)) ∈ Q(θ),
the triplet (µ,ψ(·), η(·)) ∈ D(θ, y0) with µ = ψ(y0)). Let us prove the opposite inequality.
Let a triplet (µ′, ψ′(·), η′(·)) ∈ D(θ, y0) be such that µ′ ≥ d∗(θ, y0)− δ, with δ > 0 being
arbitrarily small. Then the pair (ψ̃′(·), η′(·)) ∈ Q(θ), with ψ̃′(y) = ψ′(y) − ψ′(y0) + µ′.
Since ψ̃′(y0) = µ′, it leads to the inequality d̄∗(θ, y0) ≥ d∗(θ, y0)− δ and, consequently, to
the inequality d̄∗(θ, y0) ≥ d∗(θ, y0) since δ > 0 is arbitrarily small. Thus, (5.16) is proved.
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Let us now prove the inequality

d∗(θ, y0) ≤ k∗(θ, y0) ∀ θ ≥ 0. (5.17)

Take any (γ, ξ) ∈ Ω(y0) and (µ,ψ, η) ∈ D(θ, y0). Integrating the first inequality in (5.12)
with respect to γ and taking into account that γ ∈W we conclude that

∫

G

k(y, u)γ(dy, du) +

∫

G

(ψ(y0)− ψ(y))γ(dy, du) ≥ µ.

Taking into account that (γ, ξ) ∈ Ω(y0) and the second inequality in (5.12), we obtain

∫

G

(ψ(y0)− ψ(y))γ(dy, du) = −

∫

G

(ψ(f(y, u)) − ψ(y))ξ(dy, du) ≤ θ

∫

G

ξ(dy, du).

Therefore,
∫

G

k(y, u)γ(dy, du) + θ

∫

G

ξ(dy, du) ≥ µ.

This proves (5.17). ✷

Let C∗(Y ) stand for the space of continuous linear functionals on C(Y ) and let M(G)
stand for the space of measures defined on Borel subsets of G. Define a linear operator
A(·) : M(G)×M(G) 7→ IR1×C∗(Y )×C∗(Y ) as follows: for any (γ, ξ) ∈ M(G)×M(G),

A(γ, ξ) :=

(
∫

G

γ(dy, du), a(γ,ξ), bγ

)

, (5.18)

where a(γ,ξ), bγ ∈ C∗(Y ) are defined by the equation: ∀ φ(·) ∈ C(Y ),

a(γ,ξ)(φ) := −

{
∫

G

(φ(y0)− φ(y))γ(dy, du) +

∫

G

(φ(f(y, u))− φ(y))ξ(dy, du)

}

,

bγ(φ) := −

{
∫

G

(φ(f(y, u)) − φ(y))γ(dy, du)

}

.

In this notation, the set Ω(y0) defined in (2.2) can be rewritten as follows

Ω(y0) = {(γ, ξ) ∈ M+(G) ×M+(G) : A(γ, ξ) = (1,0,0)},

where 0 stands for the zero element of C∗(Y ). Also, problem (2.1) takes the form

inf
(γ,ξ)∈Ω(y0)

〈k, γ〉 = k∗(y0), (5.19)

where 〈·, γ〉 (also, 〈·, ξ〉 in the sequel) denoting the integral of the corresponding function
over γ (respectively, over ξ). Note that, for any (µ,ψ(·), η(·)) ∈ IR1 × C(Y )× C(Y ),

〈A(γ, ξ), (µ,ψ, η)〉 = µ

∫

G

γ(dy, du) + a(γ,ξ)(ψ) + bγ(η)

=

∫

G

(µ− (ψ(y0)− ψ(y))− (η(f(y, u)) − η(y))) γ(dy, du)

−

∫

G

(ψ(f(y, u)) − ψ(y))ξ(dy, du).

Define now the linear operator
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A∗(·) : IR1 × C(Y ) × C(Y ) 7→ C(G) × C(G) ⊂ M∗(G) ×M∗(G) in such a way that, for
any (µ,ψ(·), η(·)) ∈ IR1 × C(Y )×C(Y ),

A∗(µ,ψ, η)(y, u) := (µ− (ψ(y0)− ψ(y)) − (η(f(y, u)) − η(y)), −(ψ(f(y, u)) − ψ(y))) .

Thus,

〈A∗(µ,ψ, η), (γ, ξ)〉 =

∫

G

(µ− (ψ(y0)− ψ(y)) − (η(f(y, u)) − η(y))) γ(dy, du)

−

∫

G

(ψ(f(y, u)) − ψ(y))ξ(dy, du) = 〈A(γ, ξ), (µ,ψ, η)〉.

That is, the operator A∗(·) is the adjoint of A(·). The problem dual to (5.19) is of the
form (see [1] and [2])

sup
(µ,ψ(·),η(·))∈IR1×C(Y )×C(Y )

µ = d∗(y0)

s. t.

−A∗(µ,ψ, η)(y, u) + (k(y, u), 0) ≥ (0, 0) ∀(y, u) ∈ G,

the latter being equivalent to (2.3).
Proof of Lemma 2.2. Let

H :=
{

(

A(γ, ξ),

∫

G

k(y, u)γ(dy, du) + r

)

:

(γ, ξ) ∈ M+(G)×M+(G), r ≥ 0
}

⊂ IR1 × C∗(Y )× C∗(Y )× IR1,

and let H̄ stand for the closure of H in the weak∗ topology of IR1×C∗(Y )×C∗(Y )× IR1.
Consider the problem

inf{θ | (1,0,0, θ) ∈ H̄} := k∗sub(y0). (5.20)

Its optimal value k∗sub(y0) is called the subvalue of the IDLP problem (5.19). Let us show
that the optimal value of (2.8) is equal to the subvalue. In fact, as can be readily seen,
(

1,0,0,
∫

G
k(y, u)γ(dy, du)

)

∈ H̄ if γ ∈W2(y0). Consequently,

k∗sub(y0) ≤ min
γ∈W2(y0)

∫

G

k(y, u)γ(dy, du).

From the fact that k∗sub(y0) is defined as the optimal value in (5.20) it follows that there
exists a sequence (γl, ξl) ∈ M+(G) × M+(G) such that A(γl, ξl) converges (in weak∗

topology) to (1,0,0), with
∫

G
k(y, u)γl(dy, du) converging to k∗sub(y0) as l tends to infinity.

That is (see (5.18)),

∫

G

γl(dy, du) → 1, a(γl,ξl) → 0, bγl → 0,

∫

G

k(y, u)γl(dy, du) → k∗sub(y0).

Without loss of generality, one may assume that γl converges in weak∗ topology to a
measure γ that satisfies the relationships

∫

G

γ(dy, du) = 1, bγ = 0 ⇒ γ ∈W.
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Also, a(γ,ξl) → 0 and
∫

G
k(y, u)γ(dy, du) = k∗sub(y0). That is, γ ∈W2(y0) and therefore,

min
γ∈W2(y0)

∫

G

k(y, u)γ(dy, du) ≤ k∗sub(y0).

Thus, the optimal value of (2.8) is equal to the subvalue. To complete the proof, it is
sufficient to note that the subvalue of an IDLP problem is equal to the optimal value
of its dual provided that the former is bounded (see, e.g., Theorem 3 in [1]). That is,
k∗sub(y0) = d∗(y0). ✷

Let us conclude this section with proving the validity of the following proposition.

Proposition 5.4 The optimal value of the problem in the left hand side of (4.8) is equal
to lim infT→∞ VT (y0). That is,

inf
u(·)∈U(y0)

lim inf
T→∞

1

T

T−1
∑

t=0

k(y(t), u(t)) = lim inf
T→∞

VT (y0) ∀ y0 ∈ Y.

Proof. Let u(·) ∈ U(y0) and let y(·) be the corresponding trajectory. Then

1

T

T−1
∑

t=0

k(y(t), u(t)) ≥ VT (y0).

Therefore,

lim inf
T→∞

1

T

T−1
∑

t=0

k(y(t), u(t)) ≥ lim inf
T→∞

VT (y0)

and, hence,

inf
u(·)∈U(y0)

lim inf
T→∞

1

T

T−1
∑

t=0

k(y(t), u(t)) ≥ lim inf
T→∞

VT (y0).

Let us prove the opposite inequality. For any ε > 0 and u(·) ∈ U(y0), and for sufficiently
large T ,

1

T

T−1
∑

t=0

k(u(t), y(t)) ≥ lim inf
T→∞

1

T

T−1
∑

t=0

k(u(t), y(t)) − ε,

where y(·) = y(t, y0, u). Therefore,

1

T

T−1
∑

t=0

k(u(t), y(t)) ≥ inf
u′∈U(y0)

lim inf
T→∞

1

T

T−1
∑

t=0

k(u′(t), y′(t))− ε

and, consequently,

VT (y0) ≥ inf
u∈U(y0)

lim inf
T→∞

1

T

T−1
∑

t=0

k(u(t), y(t)) − ε.

Hence,

lim inf
T→∞

VT (y0) ≥ inf
u∈U(y0)

lim inf
T→∞

1

T

T−1
∑

t=0

k(u(t), y(t)).

The proposition is proved. ✷
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6 Conclusions

We have introduced the IDLP problem, the optimal value of which gives an upper bound
for lim supT→∞ VT (y0) and lim supα↑1 hα(y0), with the optimal value of the corresponding
dual problem providing a lower bound for lim infT→∞ VT (y0) and lim infα↑1 hα(y0). While
the result establishing the validity of the lower bound (Proposition 2.3) is very similar
to the corresponding result in [10], the statement about the validity of the upper bound
(Theorem 3.1) is much stronger than its continuous time counterpart in [10], where it
was assumed that the uniform limits limT→∞ VT (y0) and limα↑1 hα(y0) exist and are
Lipschitz continuous. Note also that, in contrast to the result of [10], we did not assume
that the set Y is invariant (only that it is viable). We believe that establishing the validity
of the upper bound for systems evolving in continuous time under assumptions similar to
those of Theorem 3.1 is possible, and it can be a subject for future research.

We have also established that, if the pointwise limits limT→∞ VT (y0) and limα↑1 hα(y0)
exist and are continuous, then they are equal to the optimal value of the dual problem
(Theorem 4.2). A similar statement in the continuous time setting can be established
using a similar argument if the limits of the optimal value functions exist and are contin-
uously differentiable. This assumption is, however, too strong, and finding less restrictive
conditions, under which a statement similar to Theorem 4.2 for systems in continuous
time is valid, can also be a subject for future research.

Finally, we have stated sufficient and necessary optimality conditions for the long-run
average optimal control problem using an optimal solution of the dual problem (Propo-
sitions 4.5 and 4.6). Similar results can be readily obtained in the continuous time case
too.
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