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A TT-BASED HIERARCHICAL FRAMEWORK FOR
DECOMPOSING HIGH-ORDER TENSORS

YASSINE ZNIYED∗, RÉMY BOYER† , ANDRÉ L. F. DE ALMEIDA‡ , AND GÉRARD

FAVIER§

Abstract. In the context of big data, high-order tensor decompositions have to face a new
challenge in terms of storage and computational costs. The tensor train (TT) decomposition provides
a very useful graph-based model reduction, whose storage cost grows linearly with the tensor order
D. The computation of the TT-core tensors and TT-ranks can be done in a stable sequential (i.e.,
non-iterative) way thanks to the popular TT-SVD algorithm. In this paper, we exploit the ideas
developed for the hierarchical/tree Tucker decomposition in the context of the TT decomposition.
Specifically, a new efficient estimation scheme, called TT-HSVD for Tensor-Train Hierarchical SVD,
is proposed as a solution to compute the TT decomposition of a high-order tensor. The new algorithm
simultaneously delivers the TT-core tensors and their TT-ranks in a hierarchical way. It is a stable
(i.e., non-iterative) and computationally more efficient algorithm than the TT-SVD one, which is
very important when dealing with large-scale data. The TT-HSVD algorithm uses a new reshaping
strategy and a tailored partial SVD, which allows to deal with smaller matrices compared to those of
the TT-SVD. In addition, TT-HSVD suits well for a parallel processing architecture. An algebraic
analysis of the two algorithms is carried out, showing that TT-SVD and TT-HSVD compute the
same TT-ranks and TT-core tensors up to specific bases. Simulation results for different tensor
orders and dimensions corroborate the effectiveness of the proposed algorithm.

Key word. Tensor Train, hierarchical SVD, dimensionality reduction, tensor graph

1. Introduction. Massive and heterogeneous data processing and analysis have
been clearly identified by the scientific community as key problems in several applica-
tion areas [11, 12, 13]. It was popularized under the generic terms of “data science” or
“big data”. Processing large volumes of data, extracting their hidden patterns, while
performing prediction and inference tasks has become crucial in economy, industry
and science. Modern sensing systems exploit simultaneously different physical tech-
nologies. Assume that D specific sensing devices are available, to measure D different
parameters, or “modalities”, in a heterogeneous dataset. Treating independently each
set of measured data, or each modality, is clearly a reductive approach. By doing that,
“hidden relationships” or inter-correlations between the modes of the dataset may be
totally missed. Tensor decompositions have received a particular attention recently
due to their capability to handle a variety of mining tasks applied to massive datasets,
being a pertinent framework taking into account the heterogeneity and multi-modality
of the data. In this case, data can be arranged as a D-dimensional array, also referred
to as a D-order tensor, and denoted by X . In the context of big data processing
and analysis, the following properties are desirable: (i) a stable (i.e., non-iterative)
recovery algorithm, (ii) a low storage cost (i.e., the number of free parameters must
scale linearly with D), and (iii) an adequate graphical formalism allowing a simple
but rigorous visualization of the decomposition of tensors with D > 3.

In the literature [26, 36, 34, 58], two decompositions are popular, sharing a com-
mon goal, i.e., to decompose a tensor X into a D-order core tensor G and D factor
matrices. Due to the diagonality of the core tensor, the CPD [30, 28, 9] extends the
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§Laboratoire I3S, Université Côte d’Azur, CNRS, Sophia Antiplois, France. (favier@i3s.unice.fr).

1

mailto:yassine.zniyed@l2s.centralesupelec.fr
mailto:remy.boyer@univ-lille.fr
mailto:andre@gtel.ufc.br
mailto:andre@gtel.ufc.br
mailto:favier@i3s.unice.fr


2 TT-HSVD

definition of rank used in linear algebra to multilinear algebra. Indeed, the canonical
rank of a tensor X is defined as the smallest number R of rank-1 tensors necessary
to yield X in a linear combination. As a consequence, the number of free param-
eters (as well as the storage cost) of the CPD grows linearly with the tensor order
D. Unfortunately, without any additional structural assumptions [23, 67, 54, 52, 7],
the recovery of (i) the canonical rank is NP-hard [29] and (ii) the factor matrices
is ill-posed [17, 35]. This means that (i) there is no guarantee on the existence of a
low-rank approximation of a tensor by means of its rank-R CPD and (ii) a stable and
efficient algorithm to compute the factor matrices may not exist, or it performs poorly
when dealing with big data tensors. The HOSVD [41, 1] is the second approach for
decomposing a high-order tensor. In this case, the D factor matrices are obtained
from a low-rank approximation of the unfolding matrices of the tensor, which is pos-
sible by means of the SVD, under orthonormality constraint on the factor matrices.
Unfortunately, this orthonormality constraint implies that the core tensor G is gen-
erally not diagonal. Two remarks can be made at this point. First, unlike the SVD
[21], the HOSVD is a multilinear rank-revealing decomposition [4] but does not reveal
the canonical rank. Second, the storage cost associated with the computation of the
core tensor grows exponentially with the order D of the data tensor. From this brief
panorama, we can conclude that the CPD and the HOSVD are not the appropriate
solutions to deal with high-order big data tensors, and more efficient decompositions
should be considered.

Recently, a new paradigm for model reduction has been proposed in [48], therein
referred to as the tensor train (TT) decomposition and before in the physic of partic-
ules community [46]. The main idea of TT, also known as “tensor networks” (TNs)
[3, 12] is to split a high-order (D > 3) tensor into a product set of lower-order tensors
represented as a factor graph. Factor graphs allow visualizing the factorization of
multi-variate or multi-linear functions (the nodes) and their dependencies (the edges)
[42]. The graph formalism is useful in the big data context [56]. Particularly, the
TT decomposition [48, 47, 26] represents a D-order tensor by a product set of D
3-order tensors. Each 3-order tensor is associated with a node of the graph and is
connected to its left and right “neighbors” encoded in a one-to-one directional edge
[46]. The storage cost with respect to the order D has the same linear behavior [48] for
the CPD and the TT decomposition. Moreover, the TT decomposition has a stable
(non-iterative) SVD-based algorithm [48], even for large tensors. Therefore, the TT
decomposition helps to break the curse of dimensionality [49], as it can be seen as a
special case of the hierarchical/tree Tucker (HT) decomposition [25, 26, 65, 60, 49].
Note that the HT and the TT decompositions allow to represent a D-order tensor
of size I × · · · × I with a storage cost of O(DIR +DR3) and O(DIR2), respectively
[24, 11], where R is the rank of the considered decomposition. The use of the TT
decomposition is motivated by its applicability in a number of interesting problems,
such as super-compression [33], tensor completion [38], blind source separation [5], fast
SVD of large scale matrices [43], for linear diffusion operators [32], and machine learn-
ing [58], to mention a few. Another class of methods consists of data sub-division of
the data tensor into smaller “blocks”, followed by efficient computations over smaller
sub-tensors [51, 15, 16, 44]. These methods focus only on the CPD of a high-order
tensor.

In this paper, our interest is on the TT decomposition and the associated TT-SVD
algorithm [48]. It is worth noting that TT-SVD is a sequential algorithm, i.e., the
TT-cores are computed one after the other and not at the same time. Moreover, it is a
very costly algorithm in terms of complexity, since it involves the application of SVD
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to matrices of very large sizes. To tackle the computational complexity problem asso-
ciated with the decomposition of large-scale tensors, a number of methods have been
proposed [13], which either replace non-iterative methods by closed-form ones when
the tensor is structured [1], or exploit sparsity of the data [37, 50] or, yet, reduce the
size of the data using compression with parallel processing [45, 59]. As an alternative
to the TT-SVD algorithm, we propose a new algorithm called TT-HSVD algorithm,
for Tensor-Train Hierarchical SVD. This algorithm allows to simultaneously recover
the TT-core tensors and their TT-ranks in a hierarchical way and is computation-
ally more efficient than TT-SVD. The proposed TT-HSVD algorithm adopts a new
unfolding and reshaping strategy that, on one hand, enables to parallelize the decom-
position across several processors and, on the other hand, results in a less expensive
computational cost compared to competing solutions based on the TT-SVD. Our al-
gebraic analysis also shows that TT-SVD and TT-HSVD compute the same TT-ranks
and TT-core tensors up to specific bases.

This paper is organized as follows. In the next section, we introduce the nota-
tions and some important algebraic definitions. In Section 3, we give an overview
of standard tensor decompositions. In Section 4, after briefly recalling the TT-SVD
algorithm, we formulate the proposed TT-HSVD one. In Section 5, an algebraic anal-
ysis of both methods is made. In Section 6, the computational complexity of the two
algorithms is compared, and illustrated by means of some simulation results. Finally,
in Section 7, the paper is concluded and some perspectives for future work are drawn.

2. Notations and algebraic background. The notations used throughout
this paper are the following ones: the superscripts (·)T and (·)†, and rank(·) denote,
respectively, the transpose, the pseudo-inverse, and the rank. The Kronecker, outer,
and n-mode products are denoted as ⊗, ◦, and ×n, respectively. The Frobenius
norm is defined by || · ||F . κ(·) refers to the dominant term of a complexity. Scalars,
vectors, matrices and tensors are represented by x, x, X and X , respectively. The
(i1, i2, · · · , iD)-th entry of the D-order tensor X is denoted as X (i1, i2, · · · , iD), while
X(i, :) and X(:, j) are the i-th row and the j-th column of X ∈ RI×J , respectively.

Definition 2.1. The ×m
n tensor-tensor product of X ∈ RI1×···×IN and Y ∈

RJ1×···×JM , where In = Jm, gives the (N +M − 2)-order tensor defined as [11]:

Z = X ×m
n Y ∈ RI1×···×In−1×In+1×···×IN×J1×Jm−1×Jm+1×···×JM

where the entries of Z are expressed as:
Z(i1, · · · , in−1, in+1, · · · , iN , j1, · · · , jm−1, jm+1, · · · , jM ) =
In∑
i=1

X (i1, · · · , in−1, i, in+1, · · · , iN )Y(j1, · · · , jm−1, i, jm+1, · · · , jM ).

The ×m
n product is a generalization of the usual matrix product.

Indeed, A and B being two matrices of respective dimensions I1× I2 and J1×J2,
with I2 = J1, we have:

A×1
2 B = AB.

In this paper, factor graph representations will be intensively used. In a factor
graph, a node can be a vector, a matrix or a tensor as illustrated in Fig. 1-(a), (b), (c).
The edge encodes the dimension of the node. The order of the node is given by the
number of edges. In Fig. 1-(d), the ×1

3 product of two 3-order tensors with a common
dimension is illustrated.
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Fig. 1. (a) Vector x of size I1 × 1, (b) matrix X of size I1 × I2, (c) 3-order tensor X of size
I1 × I2 × I3, (d) ×1

3 product of two 3-order tensors.

The truncated SVD [21], also known as low rank approximation, will be also
intensively used. Note that the famous Eckart-Young theorem [18] provides a proof
of existence of the best approximation (in the sense of the Frobenius norm) of a given
matrix by another matrix of smaller rank. In addition, this theorem ensures that the
best low rank approximation can be computed in a stable, i.e., non-iterative, way by
means of the truncated SVD.

3. Standard tensor decompositions.

3.1. Canonical Polyadic and Tucker decompositions.

Definition 3.1. A D-order tensor of size I1 × . . .× ID that follows a Canonical
Polyadic Decomposition (CPD) [28] of rank-R admits the following definition:

X =

R∑
r=1

M1(:, r) ◦M2(:, r) ◦ . . . ◦MD(:, r)

where the d-th factor Md is of size Id ×R with 1 ≤ d ≤ D. The canonical rank R is
defined as the smallest number of rank-one tensors, M1(:, r)◦M2(:, r)◦ . . .◦MD(:, r),
that exactly generate X as their sum over index r. The storage cost of a CPD is
O(DIR) where I = max{I1, · · · , ID} and thus is linear in the order D.

Definition 3.2. A D-order tensor of size I1 × . . . × ID that follows a Tucker
decomposition [63] of multilinear rank-(R1, · · · , RD) admits the following definition:

X = G ×1 F1 ×2 F2 . . .×D FD

where the d-th factor Fd is of size Id × Rd and G is called the core tensor of size
R1 × . . . × RD. The storage cost of a Tucker decomposition is O(DIR + RD) where
R = max{R1, · · · , RD}. Note that this cost grows exponentially with the order D.
This is usually called the “curse of dimensionality”.

3.2. Tensor Network and Tensor Train for model reduction. The main
idea in model reduction is to split a high-order tensor into a collection of lower order
ones. Usually, such a lower order is at most equal to 3.

3.2.1. Graph-based illustrations of TN decomposition. Fig. 2-(a) gives
the graph-based representation of a Tucker decomposition of a 6-order tensor. Its
graph-based decompositions are given in Fig(s). 2-(b). The decomposition of the
initial tensor is not unique since several graph-based configurations are possible de-
pending on the tensor order and the number of connected nodes. In the literature,
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the graph on the right of Fig. 2-(b) is viewed as a Tensor Network (TN), also called
Hierarchical Tucker (HT) decomposition [27]. This is due to the property that a TN
can be alternatively represented as a tree (see Fig. 2-(c)) where the nodes are called
leafs. The graph-based representation on the left of Fig. 2-(b) is viewed as a train of
tensors with non-identity leafs. We call a Tensor Train (TT) decomposition [49, 48]
if all the leafs are associated with an identity matrix except the first and last ones.
The TT decomposition is one of the simplest and compact TN, and it is a special
case of the HT decomposition [65, 25, 26]. Hereafter, we give the definition of the TT
decomposition, and its graph-based representation is illustrated in Fig. 3.

Fig. 2. (a) Graph-based Tucker decomposition of a 6-order tensor, (b) TT-based (left) and
TN-based (right) decompositions, (c) HT decomposition.

3.2.2. TT decomposition and tensor reshaping.

Definition 3.3. The TT decomposition [48] with TT-ranks (R1, . . . , RD−1) of a
tensor X ∈ RI1×I2×···×ID into D 3-order TT-core tensors denoted by {G1, . . . ,GD}
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is given by

X (i1, i2, · · · , iD) = G1(:, i1, :)G2(:, i2, :) · · ·GD(:, iD, :)

=

R1,··· ,RD−1∑
r1,··· ,rD−1=1

G1(i1, r1)G2(r1, i2, r2) · · ·

· · ·GD−1(rD−2, iD−1, rD−1)GD(rD−1, iD).

where Gd(:, id, :) is a Rd−1×Rd matrix with the “boundary conditions”R0 = RD = 1.
Finally, collecting all the entries1, we have

X = G1 ×1
2 G2 ×1

3 G3 ×1
4 · · · ×1

D−1 GD−1 ×1
D GD.(1)

Fig. 3. TT decomposition of a D-order tensor.

In tensor-based data processing, it is standard to unfold a tensor into matrices.
We refer to Eq. (5) in [20], for a general matrix unfolding formula, also called tensor

reshaping. The d-th reshaping X(d), of size (
d∏

s=1
Is) × (

D∏
s=d+1

Is), of the tensor X ∈

RI1×I2×···×ID using the native reshape function of the software MATLAB [39], is defined
by:

X(d) = reshape

(
X ,

d∏
l=1

Il,

D∏
l=d+1

Il

)
.(2)

Definition 3.4. The d-th reshaping X(d) of the tensor X which follows the TT
decomposition (1) admits the following expression:

X(d) =

R1,··· ,RD−1∑
r1,··· ,rD−1=1

(
gd(rd−1, rd)⊗ . . .⊗ g1(r1)

)(
gT
D(rD−1)⊗ · · · ⊗ gT

d+1(rd, rd+1)
)(3)

where g1(r1) = G1(:, r1), gD(rD−1) = GD(rD−1, :)
T and gd(rd−1, rd) = Gd(rd−1, :

, rd) are column-vectors of length I1, ID and Id, respectively. An alternative expression
of (1) in terms of sum of outer products of vectors is given by:

X =

R1,··· ,RD−1∑
r1,··· ,rD−1=1

g1(r1) ◦ g2(r1, r2) ◦ · · · ◦ gD−1(rD−2, rD−1) ◦ gD(rD−1).

1Note that the product ×m
n is used here in a different way as in [11].
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3.2.3. Why to use the TT decomposition. There are four main motivations
for using a TT decomposition:

• The TT decomposition has a unique graph-based representation for a tensor
of known order, i.e., any D-order tensor can decomposed into the TT format
as a product set of D TT-cores of order at most 3, with respect to the one
configuration where all nodes of the underlying tensor network are aligned.
This is not the case for the HT decomposition as illustrated by Fig. 2-(c).
The number of possible configurations rapidly grows with the order D. For
instance, a 10-order tensor admits 11 different HT decompositions [39].

• The ranks for HT are upper bounded by R2 if the TT-ranks are upper
bounded by R [25]. If equal ranks is assumed and I is not too large, the
number of free parameters in the TT format is smaller than that in the HT
format due to the presence of leafs different from the identity matrix in the
HT format.

• The TT decomposition storage grows linearly with D, whereas the HOSVD
storage grows exponentially with D, with an important computational cost.

• The TT decomposition has a compact form, unlike the tree-like decomposi-
tions, such as Tree Tucker [49], that requires recursive algorithms based on
the competition of Gram matrices, which is complicated to implement [48].

4. Hierarchical methodology to compute the TT decomposition. In this
section, before presenting our main contribution, we first recall the TT-SVD algorithm
[49].

4.1. Description of the TT-SVD algorithm. In the practice, the TT decom-
position is performed thanks to the TT-SVD algorithm [49]. The complete algorithm
is described in Fig. 4 for a 4-order tensor. Note that when we apply the truncated
SVD on matrix X(d), the diagonal matrix constituted by the singular values is ab-
sorbed in Vd.

From this simple example, one can conclude that the TT-SVD algorithm consists
in sequentially truncating the SVD of a reshaped version of the matrices Vd, for
d = 1, · · · , D − 1. It is important to note that each step of the algorithm yields a
TT-core, leading to a sequential algorithm which cannot be parallelized.

4.2. Description of the TT-HSVD algorithm. In this section, the TT-
HSVD algorithm is presented, with the aim to derive the TT-cores in a parallel hi-
erarchical way. The main difference between the TT-SVD and TT-HSVD algorithms
lies in the initial matrix unfolding to be processed by the SVD, and the reshaping
strategy, i.e. the way to reshape the SVD factors (Ud,Vd), at each step. Fig. 5 illus-
trates the proposed strategy by means of the graph-based representation of the TT
decomposition of a 4-order tensor. This figure is to be compared with Fig. 4. With
the TT-HSVD algorithm, for an a priori chosen index D̄ ∈ {1, . . . , D}, the first matrix
unfolding X(D̄) is of size (I1 · · · ID̄) × (ID̄+1 · · · ID) instead of I1 × (I2 · · · ID) as for
the TT-SVD algorithm, which leads to a more rectangular matrix. Its RD̄-truncated
SVD provides two factors UD̄ and VD̄ of size (I1 · · · ID̄)×RD̄ and RD̄×(ID̄+1 · · · ID),
respectively. These two factors are now reshaped in parallel, which constitutes the
main difference with the TT-SVD algorithm for which only a single reshaping oper-
ation is applied to V1. This processing is repeated after each SVD computation, as
illustrated in Fig. 5 for a 4-order tensor.

Generally speaking, the choice of the best reshaping strategy, i.e., the choice of the
index D̄, is depending on an a priori physical knowledge related to each application
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Fig. 4. TT-SVD applied to a 4-order tensor.

[36, 6], as for instance, in bio-medical signal analysis, or in wireless communications
[14, 66, 20]. In Section 7, this best choice is discussed in terms of algorithmic com-
plexity. To illustrate this choice, two reshaping strategies are considered in Fig. 6
(left) and Fig. 6 (right) for computing the TT decomposition of a 8-order tensor with
the TT-HSVD algorithm. More precisely, Fig. 6 (left) corresponds to a balanced
unfolding with ID̄ = I4, while Fig. 6 (right) corresponds to an unbalanced unfolding
with ID̄ = I3. From this simple example, one can conclude that this graph-based rep-
resentation is not illustrative, which motivated the new graph-based representation
using patterns, introduced in the next section.

4.3. Graph-based representation with patterns. A group of algorithmic
instructions can be identified as recurrent in the TT-SVD and TT-HSVD algorithms.
Such a group will be called a pattern. The concept of pattern is introduced in this
work as a useful graphical tool to model the processing steps of TT decomposition
algorithms in an illustrative way. It also facilitates understanding of the main steps
of the TT-HSVD algorithm, although it can also be used to describe any algorithm.
Three types of pattern are now described.

4.3.1. Splitting/Splitting pattern.
The Splitting/Splitting pattern takes as input any matrix unfolding X(D̄) of size

RD̄f
(ID̄f+1ID̄f+2 · · · ID̄)× (ID̄+1ID̄+2 · · · ID̄l

)RD̄l
, where D̄f stands for the first index

and D̄l for the last index. This pattern applies the SVD to the input matrix and
generates a matrix UD̄, of size RD̄f

(ID̄f+1ID̄f+2 · · · ID̄) × RD̄, which contains the
left singular vectors, and a matrix VD̄, of size RD̄ × (ID̄+1ID̄+2 · · · ID̄l

)RD̄l
, equal to
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Fig. 5. TT-HSVD applied to a 4-order tensor.

the product of the diagonal singular values matrix with the matrix composed of the
right singular vectors. These two factors (UD̄,VD̄) are then reshaped using two new
indices D̄′ and D̄′′. This pattern is represented in Fig. 7. The corresponding graph is
characterized by one input X(D̄), two indices D̄′ and D̄′′, and two outputs X(D̄f+D̄′)

and X(D̄+D̄′′). This pattern plays the role of data preparation, before generating the
desired TT-cores using other patterns that will be called core generation patterns. One
can notice that this pattern is always used at the top of the TT-HSVD algorithm,
with D̄f = 0, and D̄l = D, the tensor order. (See Figs. 5, 6 (left) and 6 (right)).

4.3.2. Mixed patterns: data processing and TT-core generation. The
first mixed pattern, that will be called Splitting/Generation pattern, takes as in-
put any matrix X(D̄) of size RD̄f

(ID̄f+1ID̄f+2 · · · ID̄) × (ID̄+1RD̄+1), and returns a
reshaped matrix and a tensor. It has the same structure as the splitting/splitting
pattern, except that it generates a matrix and a tensor instead of two matrices. This
pattern is represented in Fig. 8 (left). For example, this pattern can be seen in Fig.
6 (right) as the function that takes as input X(2) and generates X(1) and G3. The
second mixed pattern, that will be called Generation/Splitting pattern, takes as input
any matrix X(D̄) of size (RD̄−1ID̄)× (ID̄+1ID̄+2 · · · ID̄l

)RD̄l
, and returns a tensor and

a reshaped matrix. This pattern is represented in Fig. 8 (right). For example, this
pattern can be seen in Fig. 6 (right) as the function that takes as input X(6) and
generates G6 and X(7).

4.3.3. TT-core generation pattern. The TT-core generation pattern gener-
ates two core tensors in parallel. It will be called Generation/Generation pattern. It
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Fig. 6. Balanced (left) and Unbalanced (right) TT-HSVD applied to a 8-order tensor.

is represented in Fig. 9. It takes as input X(D̄) of size (RD̄−1ID̄)× (ID̄+1RD̄+1) and
returns two core tensors as outputs. For example, this pattern can be recognized in
Fig. 6 (right) as the function that takes as input X(4) and generates G4 and G5.

4.4. Application of the pattern formalism. Note that the TT-SVD algo-
rithm uses one Splitting/Splitting pattern at the beginning and then a sequence of
Generation/Splitting patterns, while the three different patterns can be used for the
TT-HSVD algorithm. Figs.10 and 11 illustrate the pattern-based representation of
the TT-HSVD algorithm applied to an 8-order tensor, in the balanced and unbalanced
cases, respectively. These figures are to be compared with Figs. 6 (left) and 6 (right).

A pseudo-code of the TT-HSVD based on the patterns formalism is presented in
Algorithm 1.

5. Algebraic analysis of the TT-SVD and TT-HSVD algorithms. From
an algorithmic point of view, the TT-HSVD algorithm is based on a different reshaping-
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Fig. 7. Splitting/Splitting pattern.

Algorithm 1 TT-HSVD algorithm

Input: D-order tensor X , set of indices D̄, D̄
′

and D̄
′′
.

Output: TT-cores: Ĝhrl
1 , Ĝ

hrl

2 , · · · Ĝ
hrl

D−1, Ĝ
hrl
D .

1: Apply a splitting/splitting pattern to the matrix X(D̄) of size (I1I2 · · · ID̄) ×
(ID̄+1ID̄+2 · · · ID) with respect to indices D̄

′
and D̄

′′
.

2: while X(D̄) is of size RD̄f
(ID̄f+1ID̄f+2 · · · ID̄)×(ID̄+1ID̄+2 · · · ID̄l

)RD̄l
, with D̄f +

1 6= D̄ or D̄ + 1 6= D̄l
2:

Choose to apply either
• a splitting/splitting pattern (cf. Section 4.3.1),
• a generation/splitting pattern (cf. Section 4.3.2),
• or a splitting/generation pattern (cf. Section 4.3.2)

to this matrix with respect to indices D̄
′

and D̄
′′3.

end

3: if X(D̄) is of size (RD̄−1ID̄)× (ID̄+1RD̄+1):
Apply

• a splitting/generation pattern if RD̄−1 = 1,
• a generation/splitting pattern if RD̄+1 = 1,
• else, apply a generation/generation pattern (cf. Section 4.3.3).

end

strategy compared to the TT-SVD algorithm leading to a more flexible way to com-
pute the TT-cores. From the algebraic point of view, it is crucial to study the rela-
tionship between the estimated TT-cores and the true ones. In Lemma 5.1 and
Lemma 5.2, we expose this property in the context of the TT-SVD and the TT-HSVD
algorithms. Specifically, we show that these matrices play the role of change-of-basis
matrices when a dominant subspace is extracted by the SVD. It is important to note

2This condition means that we can still get down into the tree and continue to generate the
TT-cores. Furthermore, one may note that indices D̄f , D̄, and D̄l, defined in 4.3.1, are different for
each matrix.

3Indices D̄
′

and D̄
′′

are chosen by the user to fit a given topology of the tree.
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Fig. 8. Splitting/Generation pattern (left), Generation/Splitting pattern (right).

that although the TT-SVD has been proposed in [48], its algebraic analysis is to the
best of our knowledge original and is carried out for the first time in this work. In
[65, 55], the non-uniqueness of the TT decomposition is discussed. Each TT-core can
be post and pre-multiplied by any sequence of invertible matrices. First, we recall
that for a given rank-deficient matrix, the dominant left singular vectors of the SVD
span the column space up to an invertible change-of-basis matrix. In the sequel, these
matrices are denoted by P or Q.

5.1. Structure of the estimated TT-cores for the TT-SVD algorithm.

Lemma 5.1. Let Ĝ
seq

d be the sequentially estimated TT-core using the TT-SVD
algorithm and define a set of change-of-basis matrices {P1, . . . ,PD−1} with Pd of
dimensions Rd×Rd. The TT-cores associated with the TT-SVD algorithm verify the
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Fig. 9. Generation/Generation pattern.

Fig. 10. Graph-based representation using patterns for a balanced TT-HSVD applied to an
8-order tensor.

following relations:

Ĝseq
1 = G1P1,

Ĝ
seq

d = P−1
d−1 ×

1
2 Gd ×1

3 Pd, for 2 ≤ d ≤ D − 1,(4)

Ĝseq
D = P−1

D−1GD.

Proof. Based on the algebraic formalism of the patterns given in Appendix 8.1,
and giving the facts that

• the Splitting/Splitting patterns are always applied first, before applying any
other type of patterns in the TT-SVD algorithm, i.e., we always generate
matrices G1 and X(2) from matrix X(1) at the first step.

• Generation/Splitting pattern is always applied after Generation/Splitting and
Splitting/Splitting patterns in the TT-SVD. A combination of this type is
allowed, since the format of the outputs of these latters corresponds to the
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Fig. 11. Graph-based representation using patterns for an unbalanced TT-HSVD applied to an
8-order tensor.

format of the input of the Generation/Splitting pattern. This means that the
expressions of the outputs in (15) and (17) have the same structure of the
input in (16).

• the TT-SVD algorithm can be seen as a Splitting/Splitting pattern followed
by a succession of Generation/Splitting patterns.

the expression of the Generation/Splitting pattern output, given in (18), shows that
the TT-core associated to the TT-SVD admits a general and final formulation given
by (4).

5.2. Presentation and analysis of the TT-HSVD algorithm. In the fol-
lowing, we present the TT-HSVD algorithm. We also establish the link between the
TT-HSVD and TT-SVD algorithms, in terms of the TT-cores and TT-ranks.

5.2.1. Structure of the estimated TT-cores. Hereafter, we formulate a sim-
ilar result for the TT-HSVD.

Lemma 5.2. Let Ĝ
hrl

d be the hierarchically estimated TT-core using the TT-HSVD
algorithm and define a set of change-of-basis matrices {Q1, . . . ,QD−1} where Qd is a
Rd ×Rd. The TT-cores associated with the TT-HSVD algorithm verify the following
relations:

Ĝhrl
1 = G1Q1

Ĝ
hrl

d = Q−1
d−1 ×

1
2 Gd ×1

3 Qd, for 2 ≤ d ≤ D − 1(5)

Ĝhrl
D = Q−1

D−1GD.

Proof. The demonstration of this Lemma is based on the algebraic formalism of
the patterns given in Appendix 8.1. Note that in the TT-HSVD algorithm:
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• the Splitting/Splitting patterns are always applied first, before applying any
other type of patterns.

• the input and the outputs of the Splitting/Splitting pattern have the same
format. Any combination of Splitting/Splitting patterns is possible and al-
lowed (See (9), (14) and (15)).

• the output of the Splitting/Splitting pattern has the same format as the
input of all other generation patterns. Any combination of Splitting/Splitting
patterns with the other patterns is possible and allowed (See (14), (15), (16)
and (19)).

Based on the expressions of the generation patterns outputs, given in (18), (20) and
(21), it can be noticed that the TT-core associated to the TT-HSVD admits a general
and final formulation given by (5).

5.3. Comparison of the two schemes. In Fig. 12 and Fig. 13, we can see
that the TT-SVD and the TT-HSVD in the algebraic perspective estimate the same
TT-core up to different change-of-basis matrices. Based on the previous relations on

Fig. 12. Graph-based illustration of the TT-SVD algorithm.

Fig. 13. Graph-based illustration of the TT-HSVD algorithm.

the structure of the TT-cores, the following result can be formulated.

Lemma 5.3. Define a set of matrices: {H1, . . . ,HD−1}, with Hd = P−1
d Qd. The

TT-cores obtained by applying the TT-SVD and TT-HSVD algorithms satisfy the
following relations:

Ĝhrl
1 = Ĝseq

1 H1,(6)

Ĝ
hrl

d = H−1
d−1 ×

1
2 Ĝ

seq

d ×1
3 Hd for 2 ≤ d ≤ D − 1 ,(7)

Ĝhrl
D = H−1

D−1Ĝ
seq
D .(8)
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Proof. Note that to demonstrate Eq. (7), we use the identity A×1
2 B = AB.

From (4), we deduce:

Gd = Pd−1 ×1
2 Ĝ

seq

d ×1
3 P
−1
d .

Substituting this last equation into (5), we have:

Ĝ
hrl

d = (P−1
d−1Qd−1)−1 ×1

2 Ĝ
seq

d ×1
3 (P−1

d Qd) for 2 ≤ d ≤ D − 1

The above Lemma allows us to formulate the following theorem.

Theorem 5.4. The TT-ranks are equal for the TT-SVD and the TT-HSVD al-
gorithms.

Proof. From (6) and (8) in Lemma 5.3, the proof of the theorem is straightforward
for d = 1 and d = D. For 2 ≤ d ≤ D − 1, two alternative Tucker-based formulations
of (7) are

Ĝ
hrl

d = Ĝ
seq

d ×1 H
−1
d−1 ×2 IId ×3 H

T
d ,

Ĝ
seq

d = Ĝ
hrl

d ×1 Hd−1 ×2 IId ×3 H
−T
d .

Based on the two above relations, tensors Ĝ
hrl

d and Ĝ
seq

d have a multilinear
(Rd−1, Id, Rd)-rank. Since the TT-ranks correspond to the dimensions of the first

and third modes of Ĝ
hrl

d or Ĝ
seq

d , the proof is completed.

Intuitively, the above theorem seems natural since the TT-ranks are essentially related
to the TT model, and in particular to the matrices given by (2), and not to the choice
of the algorithm.
One may note that contrary to [48], in the TT-HSVD, we have to deal with non-
orthonormal factor since we reshape and use both the left and right parts of the
SVD at each step. In [61, 19], the authors have proposed an interesting strategy to
deal with non-orthonormal factors that can be applied in the context of the TT-HSVD
algorithm. However, we will show in the next section that even if the tensor is affected
by noise, both algorithms, namely the TT-SVD and the TT-HSVD, can still have the
same robustness when the TT-ranks are either assumed to be known or when they
are estimated in the algorithms.

6. Computational complexity and simulation results.

6.1. Numerical computation of the SVD. In this section, we compare the
computational complexity of both algorithms using the truncated SVD. Note that TT-
HSVD an TT-SVD involve the same number of SVDs. However, the TT-HSVD has
the advantage of applying SVDs to matrices of smaller dimensions compared to the
TT-SVD algorithm, which results in a lower computational complexity. The numerical
stability of the TT-SVD and the TT-HSVD is relied to the well-known numerical rank
determination in the SVD. We have essentially two scenarios of interest.

1. The true rank is a priori known. This is often realistic due to a priori knowl-
edge on the physical model as for instance in wireless communication applica-
tions where the rank can be the number of path/user, in array processing for
sky imaging where the rank is the number of most brining stars (known due
to decade and decade of sky observation), .... For these important scenarios,
the TT-SVD and the TT-HSVD algorithms provide an exact factorization of
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a high-order tensor into a collection of low-order tensors. This is mainly the
framework of our contribution. The computation of the SVD is done based
on two orthogonal iteration (OI) algorithms [21] executed in parallel. We
recall that computing the matrix U of size m× r consists in [21] recursively
computing the QR factorization of the m × r matrix (AAT )Ui−1 = UiR
with dominant complexity [21] O(r2m). In the same way, we can calculate
matrix V of size n × r, using the QR decomposition of (ATA)Vi−1 = ViR
with dominant complexity [21] O(r2n). The initial matrices U0 and V0 can
be randomly initialized, and the convergence is assumed according to a toler-
ence function or when a maximum number of iterations is reached. If the svds
function of MatLab is used, the initial matrices U0 and V0 are then drawn
from a Gaussian distribution, and the tolerence function is chosen by default
to be smaller than 10−10, while the maximum number of iterations is fixed by
default at 100. The singular values are automatically obtained with the calcu-
lation of U and V from the matrix R. Considering the matrix multiplication
cost O

(
rmn

)
, the overall SVD cost is evaluated at O

(
r2(m+ n) + rmn

)
.

2. The true rank is unknown. In this case, the problem is to find a robust esti-
mation of the true rank, called the numerical rank. Considering a numerical
rank larger than the true one can be problematic since the last columns of
the basis matrices are pondered by near-zero singular values. Typically, the
true rank is numerically estimated by searching a numerical gap toward the
dominant singular values and the others. Many dedicated methods exist to
find this gap [53, 64, 10, 40, 8]. In our work, the numerical rank is computed
with the native routine rank.m of MatLab as the number of singular values
that are larger than a tolerance. The tolerance is a function of the spacing
of floating point (eps), the size and the norm of the matrix as for instance
max{m,n} ·eps(||A||) where eps(x) is the distance from |x| to the next larger
in magnitude floating point number of the same precision as x. It makes
sense to use the bi-iteration algorithm based on the sequential computation
of two OI(s). Unlike the OI algorithm, the singular-values are an output of
the bi-iteration algorithm [21, 62]. The complexity cost per iteration of the
bi-iteration algorithm is in the same order as a single OI.

Finally, the two schemes, namely the popular TT-SVD and our proposition called
the TT-HSVD, inherit from the numerical robustness of the SVD. But, we think that
the optimization of this important operation (the numerical rank estimation) is out
of scope of our paper.

6.2. Complexity analysis and simulations. Considering a 4-order hypercu-
bic (I) tensor of TT-ranks equal to R, the complexity of the TT-SVD algorithm is
given by O(RI4) + O(R2I3) + O(R2I2) where,

1. the complexity of the first R-truncated SVD is O(R2(I3+I)+RI4) ≈ O(RI4)
for large I.

2. The complexity of the second R-truncated SVD applied on X(2) is O(R2(RI+
I2) +R2I3) ≈ O(R2I3) if I � R.

3. The complexity of the last R-truncated SVD applied on X(3) is O(R2(RI +
I) +R2I2) ≈ O(R2I2).

Following the same reasoning, the complexity of the TT-HSVD algorithm for a
mono-core architecture is given by O(RI4) + O(R2I2) where,

1. The complexity of the first R-truncated SVD of X(2) is O(R2(I2+I2)+RI4) ≈
O(RI4).
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2. The complexity of the R-truncated SVD of X(1) related to the left part of
the tree is O(R2(IR+ I) +R2I2) ≈ O(R2I2).

3. The complexity of the R-truncated SVD of X(3) related to the right part of
the tree is O(R2(IR+ I) +R2I2) ≈ O(R2I2).

The complexity of the TT-HSVD is much lower than that of the TT-SVD due to the
large term O(R2I3).
Moreover, for both algorithms, the term dominating the complexity corresponds to
the first SVD step, which is applied to the largest matrix at the beginning of the
process. For a D-order tensor, by considering the dominant cost of the truncated
SVD, and for a large Id = I for all d, the dominant complexities of TT-SVD and
TT-HSVD (in the balanced case), are respectively given by

κseq = O(RID) + O(R2I(D−1)) + O(R2I(D−2)) + · · ·+ O(R2I2),

and

κhrl = O(RID) + O(R2I
D
2 ) + O(R2I

D
4 ) + · · ·+ O(R2I2).

This means that the complexity of TT-SVD grows faster than that of the TT-HSVD
algorithm as a function of the tensor order. Thus, TT-HSVD offers a significant
advantage over the TT-SVD algorithm especially for high-order data tensors. This
gain in complexity for the TT-HSVD is due to the low storage cost of the considered
matrices X(d) in the TT-HSVD compared to those of the TT-SVD. One may note
that the storage cost of these matrices in TT-SVD and TT-HSVD corresponds to the
product of dimensions in the complexity of the truncated SVD. This means that the
TT-HSVD has advantages in both the algorithmic complexity and the intermediate
storage cost before recovering the TT-cores, which results in less memory resources
(both in terms of memory space and memory access) for the TT-HSVD compared to
the TT-SVD algorithm. For instance, for a 4-order tensor, the first reshaping matrices
for the TT-SVD and the TT-HSVD have both I4, the second reshapings of TT-SVD
and TT-HSVD have respectively RI3 and RI2, and the last ones have RI2 for both
algorithms. This means that the TT-HSVD needs less memory in view of the terms
RI3 and RI2 of the second reshapings. Now, if we consider a D-order hypercubic
tensor X , where D is a power of 2, i.e., D = 2n, and n is an integer. This means that
X can have balanced unfoldings in all the TT-HSVD steps (as in Fig. 6 (left)). The
storage cost needed for the singular vector matrices in the TT-HSVD at each step
varies then as follows.

2I
D
2 R︸ ︷︷ ︸

1st step

→ 2I
D
4 R2 + 2I

D
4 R︸ ︷︷ ︸

2nd step

→ 6I
D
8 R2 + 2I

D
8 R︸ ︷︷ ︸

3rd step

→ · · · → (D − 2)IR2 + 2IR︸ ︷︷ ︸
last step

.

On the other hand, the storage cost for the singular vector matrices in the TT-SVD
varies as follows.

I(D−1)R+ IR︸ ︷︷ ︸
1st step

→ ID−2R+ IR2︸ ︷︷ ︸
2nd step

→ ID−3R+ IR2︸ ︷︷ ︸
3rd step

→ · · · → IR+ IR2︸ ︷︷ ︸
last step

.

We can note that the dominant storage cost of the TT-SVD is reduced by a factor of
I between two consecutive steps, while for the TT-HSVD, this storage cost decreases
at a faster pace.

In Table 1, we compare the computation time of both algorithms using the “Tic-
Toc”functions of MATLAB to decompose a D-th order tensor X , for 9 ≤ I ≤ 13.
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To this end, we generate the tensor X with I = Id and R = Ri, for 1 ≤ d ≤ D,
1 ≤ i ≤ D−1, where Rd are the associated TT-ranks. The execution time is expressed
in seconds (s). The simulations were performed on a personal computer equipped with
an Intel(R) CORE(TM) i7-3687U CPU @ 2.10GHz processor and 8Gb RAM.

Remark 6.1. Note that the execution time of TT-HSVD is that of a sequential
processing, where all the SVD steps are run in batch. This execution time could be
significantly reduced [31] if a parallel processing architecture is used.

Table 1
Comparison of the computation time of both algorithms (D = 8, R = 3).

Tensor dimension I = 9 I = 10 I = 11 I = 12 I = 13
TT-SVD algorithm 5.9 13.3 29 88.1 −
TT-HSVD algorithm 1.9 4 8.3 17.3 43.9
Gain 3.1 3.3 3.5 5.1 ∞

In Table 1, we consider (D,R) = (8, 3). Note that the results shown in this table
are in agreement with the analytical complexity analysis, confirming that a significant
complexity gain is achieved by TT-HSVD in comparison with TT-SVD, especially for
very high-order tensors. In particular, for I = 13, the TT-SVD algorithm can not
be executed by the computer, which returned an out of memory error. Note that
the first unfolding matrix X(1) of the TT-SVD algorithm is of size 13 × 137, which
requires a right singular vectors matrix of size 3 × 137 for the truncated SVD. The
size of this matrix is actually beyond the allowed storage capacity. Notice that the
TT-HSVD algorithm has also the advantage of having a storage cost lower than the
TT-SVD algorithm.

In Table 2, we evaluate the impact of the choice of the unfolding used as the
starting point of the TT-HSVD, in terms of computational complexity. To this end,
we choose different values of Ii, with (D,R) = (8, 4). The two configurations used in
the results of Figs. 6 (left) and 6 (right) are considered here. The results shown in
this table correspond to the best computation time of the TT-HSVD algorithm.

Table 2
Comparison of the computation time of TT-HSVD and TT-SVD.

Scenarios
(I1, · · · , I8)

TT-HSVD
(Fig. 6 (left))

TT-HSVD
(Fig. 6 (right))

TT-SVD Gain

(18, 36, 32, 16,
6, 6, 6, 6).

22.6 16.3 152.2 9.3

(22, 36, 32, 19,
6, 6, 6, 6).

45.1 23.7 993.7 42

It can be noted that choosing the most “square” unfolding matrix (i.e. the one
with more balanced row and column dimensions) results in a lower overall compu-
tational complexity. The higher is the tensor order, more degrees of freedom are
available for choosing the best unfolding to start the TT-HSVD algorithm.

In the following experiment, we generate an 8-order tensor X of size I×· · ·× I in
the TT-format, with TT-ranks (R1, · · · , R7) chosen randomly between 2 and 4. This
tensor is decomposed by means of the TT-SVD and TT-HSVD algorithms. We fix
I = 4 and observe the TT-ranks calculated by each algorithm. In Fig. 14, we plot
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the observed ranks for both algorithms against the true TT-rank R4. We can see
that the TT-ranks calculated by both algorithms follow the true values. The same
results are found for the other TT-ranks. We note here that for random realizations

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

Fig. 14. The estimated ranks for the true TT-rank R4.

of the TT-ranks, we observe exactly the same ranks for both algorithms TT-SVD
and TT-HSVD. This illustrates well the results on the equality between the TT-SVD
ranks and the TT-HSVD ranks obtained previously.
In Table 3, we present the normalized reconstruction error of the estimated tensor for
both the TT-SVD and the TT-HSVD, considering a tensor affected by an additive
Gaussian noise. The original tensor is an 8-order hypercubic tensor following a CPD
of canonical rank R = 2 with dimension I = 4. This is an interesting and realistic
case regarding the Joint dImensionality Reduction And Factor rEtrieval (JIRAFE)
framework [69, 68], where the original tensor is a high-order CPD that is decomposed
into a TT format to break its dimensionality before estimating its parameters. Two
cases are considered in the following experiment, i.e., when the original noisy tensor
has known TT-ranks equal to R and when the TT-ranks are unkown and are estimated
at each step of the algorithm. The given errors are obtained by averaging the results
over 1000 Monte-Carlo runs. One may note that for a wide range of SNR, either when
the TT-ranks are estimated or are assumed to be known, both algorithms have the
same robustness. This means that the TT-HSVD can be a better alternative for the
TT-SVD algorithm in the JIRAFE framework for parameters estimation of high-order
tensors.

7. Conclusion and future work. In this work, we have proposed the TT-
HSVD algorithm, a hierarchical algorithm for Tensor Train decomposition. This new
algorithm allows to recover simultaneously/hierarchically the TT-core tensors and
their TT-ranks. A new graph-based representation using patterns has also been pro-
posed to simplify and make more illustrative the algorithmic representation of both
TT-SVD and TT-HSVD algorithms. Our analyses have shown that the TT-SVD and
TT-HSVD algorithms estimate the same TT-ranks and the same TT-core tensors up
to specific bases, with significant time and memory savings for the TT-HSVD algo-
rithm. Perspectives include the study of the combination of the tensor modes in a
random way, and the consequences of this modification on the estimation and the
complexity of the algorithm. Future research includes the use of cross interpolation
instead of the SVD in the proposed hierarchical algorithm. Several works have ad-
dressed the cross interpolation solution, either for discrete tensors as in [57, 2] or its
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Table 3
Comparison of the robustness of TT-HSVD and TT-SVD.

SNR (dB) Unknown rank Known rank
TT-HSVD TT-SVD TT-HSVD TT-SVD

30 1.28× 10−6 1.27× 10−6 1.28× 10−6 1.27× 10−6

25 4.02× 10−6 4.01× 10−6 4.06× 10−6 4.05× 10−6

20 1.3× 10−5 1.3× 10−5 1.29× 10−5 1.28× 10−5

15 4.06× 10−5 4.05× 10−5 4.06× 10−5 4.06× 10−5

10 1.3× 10−4 1.3× 10−4 1.3× 10−4 1.3× 10−4

5 4.07× 10−4 4.1× 10−4 4.1× 10−4 4.2× 10−4

0 1.3× 10−3 1.3× 10−3 1.3× 10−3 1.4× 10−3

−5 4× 10−3 4.7× 10−3 4.4× 10−3 5.7× 10−3

−10 1.36× 10−2 2.11× 10−2 1.71× 10−2 2.95× 10−2

generalization to the continous case as in [22]. For example, in [57], the quasiopti-
mal accuracy of the maximum-volume cross interpolation is proven, and an algorithm
using the same logic as TT-SVD while substituting the SVD approximation by the in-
terpolation is proposed. Besides the quasioptimality, results have also shown that this
solution can provide low rank approximations faster than the SVD. We can therefore
imagine that the use of TT-HSVD with patterns that use the interpolation instead of
the SVD would be a logical and interesting continuation of this work. Future works
also involve the application of the TT-HSVD algorithm on problems such as tensor
completion [38], blind source separation [5] and fast SVD of large scale matrices [43].

8. Appendix.

8.1. Algebraic analysis of the patterns. In this section, we give an alge-
braic analysis of the patterns to prove Lemmas 5.1 and 5.2. In the sequel only the
analysis of the Splitting/Splitting pattern is given in detail. The analysis of the Gen-
eration/Generation, Splitting/Generation and Generation/Splitting patterns is very
similar and is omitted here to the lack of space, only the expressions of inputs and
outputs of these patterns are given. Note that in an informatic point of view, all
the patterns can be implemented using the same function, that we call “Pattern”,
since they can be considered similar up to index grouping. Before giving the algebraic
analysis of the patterns, we present in Algorithm 2 a pseudocode of the function that
can be used in the TT-HSVD algorithm. In this example, we suppose that the rank
is estimated in the function “Pattern” using the rank.m of MatLab. Outputs S1, S2

can be either tensors or matrices depeding on their respective dimensions dim1 and
dim2.

8.1.1. Splitting/Splitting Pattern. This first pattern (Fig. 7) takes as input
a matrix and returns 2 matrices. It applies the SVD to the input matrix and reshape
the 2 matrices generated according to the choice we want. The graphical representa-
tion of this pattern is given in Fig. 7.
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Algorithm 2 Pattern

Input: M, dim1, dim2
Output: S1, S2, R.

1: R = rank(M)
2: [U,D,V] = svd(M, R)
3: V = DVT

4: S1 = reshape(U,dim1)
5: S2 = reshape(V,dim2)

The input matrix X(D̄) can be expressed as:

X(D̄) =

RD̄f
,··· ,RD̄l∑

rD̄f
,··· ,rD̄l

=1

(
gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄f+1(rD̄f

, rD̄f+1)⊗Q−1
D̄f

(:, rD̄f
)
)

·
(
QD̄l

(rD̄l
, :)T ⊗ gD̄l

(rD̄l−1, rD̄l
)⊗ · · · ⊗ gD̄+1(rD̄, rD̄+1)

)T
(9)

=

RD̄∑
rD̄=1

( RD̄f
,··· ,RD̄−1∑

rD̄f
,··· ,rD̄−1=1

gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄f+1(rD̄f
, rD̄f+1)⊗Q−1

D̄f
(:, rD̄f

)
)

·
( RD̄+1,··· ,RD̄l∑

rD̄+1,··· ,rD̄l
=1

QD̄l
(rD̄l

, :)T ⊗ gD̄l
(rD̄l−1, rD̄l

)⊗ · · · ⊗ gD̄+1(rD̄, rD̄+1)
)T

=

RD̄∑
rD̄=1

S(:, rD̄)T(rD̄, :) = ST.(10)

where S and T are respectively of sizeRD̄f
(ID̄f+1 · · · ID̄)×RD̄ andRD̄×(ID̄+1 · · · ID̄l

)RD̄l
,

and we have rank(X(D̄)) = RD̄.
Note that the expression (9) corresponds to the definition given in (3), where RD̄f

=
R0 = 1, RD̄l

= RD = 1, and Q0 = QD = 1.
Applying the SVD on X(D̄) gives:

X(D̄) = UD̄VD̄.(11)

From (10) and (11), we can conclude that:

UD̄ = SQD̄

=

RD̄∑
rD̄=1

( RD̄f
,··· ,RD̄−1∑

rD̄f
,··· ,rD̄−1=1

gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄f+1(rD̄f
, rD̄f+1)⊗Q−1

D̄f
(:, rD̄f

)
)

·Q(rD̄, :)

=

RD̄f
,··· ,RD̄∑

rD̄f
,··· ,rD̄=1

(
gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄f+1(rD̄f

, rD̄f+1)⊗Q−1
D̄f

(:, rD̄f
)
)
Q(rD̄, :)

(12)
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and

VD̄ = Q−1
D̄

T

=

RD̄∑
rD̄=1

Q−1
D̄

(:, rD̄)
( RD̄+1,··· ,RD̄l∑

rD̄+1,··· ,rD̄l
=1

QD̄l
(rD̄l

, :)T ⊗ gD̄l
(rD̄l−1, rD̄l

)⊗ · · · ⊗ gD̄+1(rD̄, rD̄+1)
)T

=

RD̄,··· ,RD̄l∑
rD̄,··· ,rD̄l

=1

Q−1
D̄

(:, rD̄)
(
QD̄l

(rD̄l
, :)T ⊗ gD̄l

(rD̄l−1, rD̄l
)⊗ · · · ⊗ gD̄+1(rD̄, rD̄+1)

)T(13)

where QD̄ is a RD̄ ×RD̄ change-of-basis matrix.
Let X(D̄f+D̄′) and X(D̄+D̄′′) be the reshaping of the matrices UD̄ and VD̄ according

to the chosen D̄′ and D̄′′. From (12) and (13), we have:

X(D̄f+D̄′) = reshape(UD̄, RD̄f
ID̄f+1 · · · ID̄f+D̄′ , ID̄f+D̄′+1 · · · ID̄RD̄)

=

RD̄f
,··· ,RD̄∑

rD̄f
,··· ,rD̄=1

(
gD̄f+D̄′(rD̄f+D̄′−1, rD̄f+D̄′)⊗ · · · ⊗ gD̄f+1(rD̄f

, rD̄f+1)⊗Q−1
D̄f

(:, rD̄f
)
)

·
(
QD̄(rD̄, :)

T ⊗ gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄′+1(rD̄′ , rD̄′+1)
)T(14)

and

X(D̄+D̄′′) = reshape(VD̄, RD̄ID̄+1 · · · ID̄+D̄′′ , ID̄+D̄′′+1 · · · ID̄l
RD̄l

)

=

RD̄,··· ,RD̄l∑
rD̄,··· ,rD̄l

=1

(
gD̄+D̄′′(rD̄+D̄′′−1, rD̄+D̄′′)⊗ · · · ⊗ gD̄+1(rD̄, rD̄+1)⊗Q−1

D̄
(:, rD̄)

)
·
(
QD̄l

(rD̄l
, :)T ⊗ gD̄l

(rD̄l−1, rD̄l
)⊗ · · · ⊗ gD̄+D̄′′+1(rD̄+D̄′′ , rD̄+D̄′′+1)

)T
(15)

8.1.2. Splitting/Generation Pattern:. This pattern (Fig. 8 (left)) also takes
as input a matrix and gives as outputs a tensor and a reshaped matrix according to
our choice. According to (14) and (15), the matrix X(D̄) will be expressed as:

X(D̄) =

RD̄f
,··· ,RD̄+1∑

rD̄f
,··· ,rD̄+1=1

(
gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄f+1(rD̄f

, rD̄f+1)⊗Q−1
D̄f

(:, rD̄f
)
)

·
(
QD̄+1(rD̄+1, :)

T ⊗ gD̄+1(rD̄, rD̄+1)
)T

(16)
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The outpouts X(D̄′) and ĜD̄+1 of this pattern will then be expressed as follows:

X(D̄f+D̄′) = reshape(UD̄, RD̄f
ID̄f+1 · · · ID̄f+D̄′ , ID̄f+D̄′+1 · · · ID̄RD̄)

=

RD̄f
,··· ,RD̄∑

rD̄f
,··· ,rD̄=1

(
gD̄f+D̄′(rD̄f+D̄′−1, rD̄f+D̄′)⊗ · · · ⊗ gD̄f+1(rD̄f

, rD̄f+1)⊗Q−1
D̄f

(:, rD̄f
)
)

(17)

·
(
QD̄(rD̄, :)

T ⊗ gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄′+1(rD̄′ , rD̄′+1)
)T

and

ĜD̄+1 = reshape(VD̄, RD̄, ID̄+1, RD̄+1)

= Q−1
D̄
×1

2 GD̄+1 ×1
3 QD̄+1(18)

The Generation/Splitting pattern has same expressions as the Splitting/Generation
pattern if the outputs are reversed.

Generation/Generation Pattern:. It is the third and last type of core gener-
ation patterns (Fig. 9). This pattern has as input matrices of dimension (RD̄−1ID̄)×
(ID̄+1RD̄+1). It outputs 2 tensors at time. From what we have seen before, the matrix
XD̄ will be expressed as:

X(D̄) =

RD̄−1,RD̄,RD̄+1∑
rD̄−1,rD̄,rD̄+1=1

(
gD̄(rD̄−1, rD̄)⊗Q−1

D̄−1
(:, rD̄−1)

)
(19)

·
(
QD̄+1(rD̄+1, :)

T ⊗ gD̄+1(rD̄, rD̄+1)
)T

The outpouts ĜD̄ and ĜD̄+1 of this pattern will then be expressed as follows:

ĜD̄ = reshape(UD̄, RD̄−1, ID̄, RD̄)

= Q−1
D̄−1
×1

2 GD̄ ×1
3 QD̄(20)

and

ĜD̄+1 = reshape(VD̄, RD̄, ID̄+1, RD̄+1)

= Q−1
D̄
×1

2 GD̄+1 ×1
3 QD̄+1(21)
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