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EFFICIENT MULTISTEP METHODS FOR TEMPERED
FRACTIONAL CALCULUS: ALGORITHMS AND SIMULATIONS ∗

LING GUO† , FANHAI ZENG‡ , IAN TURNER‡,§ , KEVIN BURRAGE‡,¶, AND GEORGE

EM KARNIADAKIS‖

Abstract. In this work, we extend the fractional linear multistep methods in [C. Lubich, SIAM
J. Math. Anal., 17 (1986), pp.704–719] to the tempered fractional integral and derivative operators
in the sense that the tempered fractional derivative operator is interpreted in terms of the Hadamard
finite-part integral. We develop two fast methods, Fast Method I and Fast Method II, with linear
complexity to calculate the discrete convolution for the approximation of the (tempered) fractional
operator. Fast Method I is based on a local approximation for the contour integral that represents the
convolution weight. Fast Method II is based on a globally uniform approximation of the trapezoidal
rule for the integral on the real line. Both methods are efficient, but numerical experimentation
reveals that Fast Method II outperforms Fast Method I in terms of accuracy, efficiency, and cod-
ing simplicity. The memory requirement and computational cost of Fast Method II are O(Q) and
O(QnT ), respectively, where nT is the number of the final time steps and Q is the number of quadra-
ture points used in the trapezoidal rule. The effectiveness of the fast methods is verified through a
series of numerical examples for long-time integration, including a numerical study of a fractional
reaction-diffusion model.

Key words. fractional linear multistep method, fast convolution, (tempered) fractional integral
and derivative, fractional activator-inhibitor system, fractional Brusselator model.
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1. Introduction. Fractional calculus is emerging as a powerful tool to model
various physical processes involving anomalous diffusion. Under the framework of
the continuous time random walks (CTRWs) model, the fractional Fokker-Planck
and Klein-Kramers equations [26] are derived with power law waiting time distribu-
tion, assuming the particles may exhibit long waiting time. However, for practical
physical processes, it is necessary to make the waiting time finite, for example, the
biological particles moving in viscous cytoplasm and displaying trapped dynamical
behavior must have finite lifetime. This leads to the tempered Fokker-Planck equa-
tion corresponding to the CTRWs model with a tempered power law waiting time
distribution [31, 7]. For more applications of tempered fractional calculus and differ-
ential equations in poroelasticity, ground water hydrology and geophysical flows, see
[9, 3, 25, 24, 23].

The aim of this paper is to develop fast and memory-saving methods for discretiz-
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ing the (tempered) fractional integral of the following form

(1.1)
1

Γ(α)

∫ t

0

(t− s)α−1e−σ(t−s)u(s) ds, α < 1, σ ≥ 0.

If α < 0, the above integral is interpreted in terms of the Hadamard finite-part
integral, which is equivalent to the (tempered) fractional derivative of order −α, see
Lemma 2.7.

When σ = 0, (1.1) reduces to the Riemann–Liouville (RL) fractional integral
of order α (α > 0) or the RL fractional derivative of order −α (α < 0). Thus,
the method developed in the present paper is a general framework for (tempered)
fractional calculus. Therefore, we will mainly focus on the fast computation of the
tempered fractional integral (1.1) for α < 0. Recently, some numerical methods
have been developed to solve the tempered fractional differential equations via finite
difference methods, see [3, 5, 13, 20]. However, fast and memory-saving methods for
tempered fractional differential equations are limited.

In this paper, we extend Lubich’s fractional linear multistep methods (FLMMs)
(see [18]) to discretize the tempered fractional integral and derivative operators, which
yields the discrete convolution as

(1.2) τ−α
n∑

j=0

ω
(α,σ)
n−k uk, 0 ≤ n ≤ nT ,

where τ is the time step size, nT is a positive integer, α is real, σ ≥ 0, ω
(α,σ)
k are the

convolution quadrature weights, and uk can be any number; see Section 3 for details.
The discrete convolution (1.2) requires O(nT ) active memory and O(n2

T ) arith-
metic operations by direct computation. Thus, the direct calculation of (1.2) becomes
computationally expensive when it is applied to discretize time-fractional partial dif-
ferential equations (PDEs). Recently, some progress has been made to reduce the
memory requirement and computational cost of the discrete convolution for approx-
imating the RL fractional operators [1, 12, 15, 17, 21, 34, 36]. For the fast methods
based on piecewise polynomial interpolation, the kernel function in the fractional op-
erators is approximated by the sum-of-exponentials, that is to say, the quadrature

weights ω
(α,σ)
n in (1.2) originate from interpolation; see [12, 15, 34, 35].

In this work, we develop two fast methods for calculating (1.2) with the quadrature

weights ω
(α,σ)
n derived from generating functions, where the methods in [12, 15, 34, 35]

cannot apply here. The basic idea is to re-express the weight ω
(α,σ)
n as an integral

form. In the first method, we express ω
(α,σ)
n as a contour integral of the form

(1.3) ω(α,σ)
n =

τ1+αe−nστ

2πi

∫

C

λα(1− λτ)−1−nFω(λ) dλ,

then a suitable contour quadrature (such as Talbot, hyperbolic, or parabolic contour
quadrature) is used to discretize (1.3). The case of σ = 0 has been investigated in
[1, 17, 36]. The detailed derivation of (1.3) is illustrated in [17, 36]. In this work, we
extend the method in [36] to the tempered fractional calculus (σ > 0) to obtain Fast
Method I, in which the Talbot contour quadrature used in [36] is also applied here.

The second method is inspired by [1], where a Hankel contour beginning and end-
ing in the left half of the complex plane is applied to transform the contour integral
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into an integral on the half line, which is discretized by a multi-domain Gauss quadra-
ture, yielding a uniform approximation. We can also choose the same Hankel contour

as in [1] to express the quadrature weight ω
(α,σ)
n defined by (1.3) as an integral on the

half line

(1.4) ω(α,σ)
n = τ1+αe−nστ sin(απ)

π

∫ ∞

0

λα(1 + λτ)−1−nFω(−λ) dλ.

The above integral is further transformed into an integral on the real line by letting
λ = exp(x); see (4.11). Finally, the exponentially convergent trapezoidal rule [32] is
applied to obtain a uniform approximation for (1.4), which leads to Fast Method II.

We list the main contributions of this work as follows.
• We extend the fractional linear multistep methods (FLMMs) proposed in
[18] to both the tempered fractional integral and derivative operators, where
the tempered fractional operators are interpreted in terms of the Hadamard
finite-part integral, which significantly simplifies the results in [4].

• We develop two new fast methods, Fast Methods I and II, to calculate the
discrete convolutions to the approximation of the (tempered) fractional in-
tegral and derivative operators. Fast Method II outperforms Fast Method I
in terms of accuracy, efficiency, and coding simplicity, and has the following
advantages.
(a) The time interval is not divided into exponentially increasing subinter-

vals, which makes the implementation of Fast Method II much easier
than Fast Method I and the existing fast methods in [2, 30, 36].

(b) Only real operations are performed and the recurrence relation (4.20)
used in Fast Method II is stable.

(c) Fast Method II also works very well for fractional orders greater than
one.

(d) Using the same number of quadrature points, Fast Method II achieves
higher accuracy than Fast Method I.

We emphasize that Fast Method I still works well. The obvious disadvantage of
Fast Method I is that its implementation is more complicated than Fast Method II.
We compare the two fast methods to show the superiority of Fast Method II over Fast
Method I. We focus on the use of Fast Method II to solve fractional models through
numerical simulations.

This paper is organized as follows. In Section 2, we prove that the tempered frac-
tional derivative can be interpreted in terms of the Hadamard finite-part integral. This
interpretation helps us to extend Lubich’s FLMMs to both the tempered fractional
integral and derivative operators directly, see Section 3. In Section 4, we propose two
fast methods for approximating the discrete convolution in the considered FLMM for
the tempered fractional operator, and we also make a comparison between these two
methods. Fast Method II is applied to solve tempered fractional ordinary differen-
tial equations and a coupled system of nonlinear time-fractional activator-inhibitor
equations in Section 5 before the conclusion is given in the last section.

2. Preliminaries. In this section, we introduce definitions of fractional integrals
and derivatives, and the properties that will be used in this paper.

Definition 2.1 (RL fractional integral). The RL fractional integral operator
Iα0,tu(t) of order α (α ≥ 0) is defined by

(2.1) Iα0,tu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds.
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Definition 2.2 (RL fractional derivative). The RL fractional derivative operator

RLD
α
0,t of order α is defined by

(2.2) RLD
α
0,tu(t) =

1

Γ(m− α)

[
dm

dtm

∫ t

0

(t− s)m−α−1u(s) ds

]
,

where m− 1 < α ≤ m, m is a positive integer.
Definition 2.3 (Tempered factional integral). The tempered fractional integral

operator Iσ,α0,t of order α (α, σ ≥ 0) is defined by

(2.3) Iσ,α0,t u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1e−σ(t−s)u(s) ds.

Definition 2.4 (Tempered fractional derivative). The tempered fractional
derivative operator Dσ,α

0,t of order α > 0 is defined by

(2.4)

Dσ,α
0,t u(t) =(∂t + σ)mIσ,m−α

0,t u(t)

= (∂t + σ)
m

[
1

Γ(m− α)

∫ t

0

(t− s)m−α−1e−σ(t−s)u(s) ds

]
,

where σ ≥ 0, (∂t + σ)
m

=
∑m

k=0

(
m
k

)
∂k
t σ

m−k, m−1 < α ≤ m, m is a positive integer.
Next, we introduce the Hadamard finite-part integral, which plays a crucial role

in the numerical approximation of the (tempered) fractional derivative operator.

2.1. Fractional derivatives in the Hadamard sense. In [28, 29], the RL
fractional derivative operator is proved to be equivalent to a Hadamard finite-part
integral. In this section, we extend this proof to the tempered fractional calculus.

Definition 2.5 (Hadamard finite-part integral, see [28, 29]). Let a function f(x)
be integrated on an interval (ǫ, A) for any A > 0 and 0 < ǫ < A. The function f(x)
is said to possess the Hadamard property at the point x = 0 if there exist constants
ak, b0 and λk > 0 such that

(2.5)

∫ A

ǫ

f(x) dx =
N∑

k=1

akǫ
−λk + b0 ln

1

ǫ
+ J0(ǫ),

where limǫ→0 J0(ǫ) exists and is finite, which is also denoted by

(2.6) P.V.

∫ A

0

f(x) dx = lim
ǫ→0

J0(ǫ).

Lemma 2.6 (see [29, p. 112]). The RL fractional derivative RLD
α
0,tu(t), α >

0, α 6= 1, 2, ..., is equivalent to the following integral in the Hadamard sense, that is

(2.7) RLD
α
0,tu(t) =

1

Γ(−α)
P.V.

∫ t

0

(t− s)−α−1u(s) ds.

Lemma 2.7. The tempered fractional derivative of order α > 0 is equivalent to
the following Hadamard finite-part integral

(2.8) Dσ,α
0,t u(t) =

1

Γ(−α)
P.V.

∫ t

0

(t− s)−α−1e−σ(t−s)u(s) ds.
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Proof. Let f(t) = e−σt and g(t) = 1
Γ(m−α)

∫ t

0 (t− s)m−α−1eσsu(s) ds. Then

Dσ,α
0,t u(t) = (∂t + σ)m(fg) =

m∑

k=0

(
m

k

)
σm−k∂k

t (fg)

=

m∑

k=0

(
m

k

)
σm−k

k∑

j=0

(
k

j

)
f (k−j)(t)g(j)(t)

= f(t)
m∑

k=0

k∑

j=0

(
m

k

)(
k

j

)
σm−j(−1)k−jg(j)(t)

= f(t)

m∑

j=0

σm−jg(j)(t)

m∑

k=j

(
m

k

)(
k

j

)
(−1)k−j ,(2.9)

where we have used f (k)(t) = (−σ)ke−σt = (−σ)kf(t).
In the following, we will prove that

(2.10)

m∑

k=j

(
m

k

)(
k

j

)
(−1)k−j =

{
0, 0 ≤ j ≤ m− 1,

1, j = m.

Obviously, one has
∑m

k=j

(
m
k

)(
k
j

)
(−1)k−j = 1 for j = m. For 0 ≤ j ≤ m− 1, we have

(2.11)

m∑

k=j

(
m

k

)(
k

j

)
(−1)k−j =

m∑

k=j

(−1)k−j m!

k!(m− k)!

k!

(k − j)!j!

=
m(m− 1) · · · (m− j + 1)

j!

m∑

k=j

(m− j)!(−1)k−j

(m− k)!(k − j)!

=
m(m− 1) · · · (m− j + 1)

j!
(1− 1)m−j = 0, j < m.

Combining (2.9) and (2.10) yields

(2.12)

Dσ,α
0,t u(t) =f(t)g(m)(t) = e−σt dm

dtm

[
1

Γ(m− α)

∫ t

0

(t− s)m−α−1eσsu(s) ds

]

=
e−σt

Γ(−α)
P.V.

∫ t

0

(t− s)−α−1eσsu(s) ds,

where Lemma 2.6 is applied. The proof is complete.

3. Fractional linear multistep methods (FLMMs). In this section, we ex-
tend Lubich’s FLMMs (see [18]) to discretize the tempered fractional integral and
derivative operators. For convenience, we introduce the following notation:

(3.1) Dα,σ,γ,m,n
τ u = τ−α

n∑

k=0

ω
(α,σ)
n−k (u(tk)− u0) + τ−α

m∑

k=1

w
(α,σ)
n,k (u(tk)− u0),

where τ is the step size, tk = kτ is the grid point, γ = (γ1, γ2, · · · ), γj+1 > γj > 0, and

the quadrature weights ω
(α,σ)
k are chosen such that Dα,σ,γ,m,n

τ u is a stable approxima-

tion of
[
Dσ,α

0,t (u(t)− u0)
]
t=tn

. When the quadrature weights ω
(α,σ)
k are determined,
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the starting weights w
(α,σ)
n,k (1 ≤ k ≤ m) will be chosen such that Dα,σ,γ,m,n

τ u =[
Dσ,α

0,t u(t)
]
t=tn

for some u(t) = tγj , 1 ≤ j ≤ m.

The convolution quadrature weights ω
(α,σ)
k in (3.1) can be given by the following

generating functions; see [18].
• The fractional backward difference formula of order p (FBDF-p):

(3.2) ω(α,σ)(z) =

(
p∑

k=1

1

k
(1 − ze−στ )k

)α

=

∞∑

k=0

ω
(α,σ)
k zk.

• The generalized Newton–Gregory formula of order p (GNGF-p)

(3.3) ω(α,σ)(z) =
(
1− ze−στ

)α p∑

k=1

gk−1(1 − ze−στ)k−1 =

∞∑

k=0

ω
(α,σ)
k zk,

where g0 = 1 and g1 = α/2; see [8] for gk(k = 2, 3, 4, 5).
• The fractional trapezoidal rule

(3.4) ω(α,σ)(z) =

(
(1− ze−στ )

2(1 + ze−στ )

)α

=

∞∑

k=0

ω
(α,σ)
k zk.

• See (3.6) for other choices of the coefficients ω
(α,σ)
k .

Under suitable conditions, (3.1) is a p-th order approximation of Dσ,α
0,t (u(t)− u0)

if the generating function (3.2) or (3.3) is used, and a second-order approximation is
derived if (3.4) is applied.

From [18], we immediately derive the following two theorems.
Theorem 3.1. Let α ∈ R, δ > 0. Then for u(t) = tδ, one has

(3.5)
[
Dσ,α

0,t u(t)
]
t=tn

= Dα,σ,γ,0,n
τ u+O(tα+δ−p

n τp) +O(tα−1
n τδ+1).

Theorem 3.2. Let (ρ̂, σ̂) denote an implicit linear multistep method (LMM)
which is stable and consistent of order p, i.e., ρ̂(z) and σ̂(z) are the characteristic
polynomials of the LMM of order p for the first-order ordinary differential equation.

Assume that the zeros of σ̂(z) have absolute value less than 1. Let ω(z) = σ̂(1/z)
ρ̂(1/z) and

(3.6) ω(α,σ)(z) = (ω(ze−στ ))α =

∞∑

k=0

ω
(α,σ)
k zk.

Then, we have

(3.7)
[
Dσ,α

0,t (u(t)− u(0))
]
t=tn

= Dα,σ,γ,m,n
τ u+O(τp).

Next, we discuss how to implement the fast computation of the convolution

quadrature coefficients ω
(α,σ)
k defined by (3.2), (3.3), and (3.4). In fact, we need

only to consider how to derive ω
(α,σ)
k defined by (3.2), since ω

(α,σ)
k given in (3.3) and

(3.4) can be derived from the coefficients given in (3.2) for p = 1. For the FBDF-

p given in (3.2), the coefficients satisfy ω
(α,σ)
k = e−kτσω

(α,0)
k , where ω

(α,0)
k can be

efficiently calculated by the recurrence formula; see, e.g., [6, 14].
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4. Fast calculation. In this section, we present fast calculations for the con-

volution τ−α
∑n

k=0 ω
(α,σ)
n−k u(tk) defined in (3.5), where the coefficients ω

(α,σ)
k can be

derived from (3.2), (3.3), (3.4), or (3.6). The key idea is to represent the coefficients

ω
(α,σ)
k using the integral formula and then approximate it using numerical quadra-

ture. We first extend the fast method in [36] to calculate the discrete convolution

τ−α
∑n

k=0 ω
(α,σ)
n−k u(tk) in (3.1), which is called Fast Method I in the following context.

Then we propose the second fast method based on the approaches in [1, 19, 36], which
is called Fast Method II.

4.1. Fast Method I. Following the approach developed in [36], the convolution

quadrature weights ω
(α,σ)
n in (3.5) can be expressed as

(4.1) ω(α,σ)
n = e−nστω(α,0)

n =
τ1+αe−nστ

2πi

∫

Cℓ

λα(1− λτ)−1−nFω(λ) dλ,

where Cℓ is a contour that surrounds the poles of (1 − λτ)−1−n and Fω(λ) (see also
(38) in [36]) is related to the FLMM (3.1) defined by the generating functions, which
is given by

(4.2) Fω(λ) = (τλ)−αω(α,0)(1− τλ).

where ω(α,0)(z) is defined by (3.2), (3.3), (3.4), or (3.6)
To approximate the contour integral (4.1) with high accuracy, we apply the trape-

zoidal rule based on the Talbot contour (see, e.g., [17, 36]) to obtain

(4.3) ω(α,σ)
n ≈ ω̃(α,σ)

n = 2τ1+αe−nστIm




N−1∑

j=0

w
(ℓ)
j (λ

(ℓ)
j )α(1− λ

(ℓ)
j τ)−1−nFω(λ

(ℓ)
j )


 ,

where the quadrature points λ
(ℓ)
j and weights w

(ℓ)
j are given by (see, e.g., [33, 36])

(4.4) λ
(ℓ)
j = z(θj , N/Tℓ), w

(ℓ)
j = ∂θz(θj, N/Tℓ), θj = (2j + 1)π/(2N),

with z(θ,N) = N (−0.4814+ 0.6443(θ cot(θ) + i0.5653θ)), Tℓ = (2Bℓ − 2 + n0)τ ,
B > 1 is a positive integer.

According to the procedure in [19, 30, 36], we need to first find the smallest integer
L satisfying n − n0 + 1 ≤ 2BL for each n ≥ n0. Then for ℓ = 1, 2, ...L, we obtain a
unique integer qℓ satisfying

(4.5) b
(n)
ℓ = qℓB

l with n− n0 + 1− b
(n)
ℓ ∈ [Bℓ−1, 2Bℓ − 1].

Set b
(n)
0 = n − n0 and bnL = 0. Readers can refer to [30] for the pseudocode for

determining qℓ and b
(n)
ℓ .

To develop the fast method, the convolution u
(α,σ)
n = τ−α

∑n
k=0 ω

(α,σ)
n−k uk is de-

composed as

(4.6) u(α,σ)
n = τ−α

n∑

k=0

ω
(α,σ)
n−k uk =

n∑

ℓ=0

u(ℓ)
n ,

with u
(0)
n =

∑n
k=n−n0

ω
(α,σ)
n−k uk and u

(ℓ)
n =

∑b
(n)
ℓ−1−1

k=b
(n)
ℓ

ω
(α,σ)
n−k uk. For each part u

(ℓ)
n , we

can use (4.3) to approximate the corresponding quadrature weights. The summary of
Fast Method I is given in Algorithm 1.
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Algorithm 1 Fast Method I for approximating u
(α,σ)
n = τ−α

∑n
k=0 ω

(α,σ)
n−k uk, where

ω
(α,σ)
k satisfies (4.1).

1: Input: the fractional order α and σ ≥ 0, a time stepsize τ > 0, the suitable

positive integers n0, N , and B ≥ 2, the quadrature points λ
(ℓ)
j and weights w

(ℓ)
j

(see (4.15)), the coefficients ω
(α,σ)
n (0 ≤ n ≤ n0) defined by (3.2), (3.3), (3.4), or

(3.6), and the function Fω(λ) defined by (4.2).

2: Output: the fast approximation Fu
(α,σ)
n of u

(α,σ)
n (see (4.6)).

• Step 1. Find the smallest integer L satisfying n − n0 + 1 ≤ 2BL for each
n ≥ n0.

• Step 2. Determine qℓ according to (4.5) for ℓ = 1, 2, ..., L− 1.

• Step 3. For every 1 ≤ ℓ ≤ L, approximate u
(ℓ)
n by

(4.7) û(ℓ)
n = 2Im

{N−1∑

j=0

w
(ℓ)
j Fω(λ

(ℓ)
j )(1 − τλ

(ℓ)
j )−[n−b

(n)
ℓ−1−1]y(ℓ)(τλ

(ℓ)
j )

}
,

where y(ℓ)(τλ) = y(ℓ)(b
(n)
ℓ−1τ, b

(n)
ℓ τ, τλ) is the backward Euler approximation

to the solution at t = b
(n)
ℓ−1τ of the linear initial-value problem

(4.8) (y(ℓ))′(t) = λy(ℓ)(t) + u(t), y(ℓ)(b
(n)
ℓ τ) = 0.

• Step 4. Calculate

(4.9) Fu
(α,σ)
n = u(0)

n + û(1)
n + · · ·+ û(L)

n .

Remark 4.1. Here we use the Talbot contour quadrature to approximate the
contour integral (4.1). However, other contour quadratures can be used to discretize
(4.1), such as the hyperbolic and parabolic contour quadratures. For more details, see
[2, 16, 30, 36] and references therein.

Remark 4.2. It is shown in [36] that the memory requirement and computational
cost of Fast Method I are about O(N log nT ) and O(NnT lognT ), respectively, when
nT is sufficiently large.

4.2. Fast Method II. Instead of using (4.1) for expressing the convolution

weights ω
(α,σ)
n , we extend Lemma 9 in [1] to re-express the contour integral (4.1) into

the following form

(4.10) ω(α,σ)
n = τ1+αe−nστ sin(απ)

π

∫ ∞

0

λα(1 + λτ)−1−nFω(−λ) dλ,

where Fω is given by (4.2). The key point is how to approximate (4.10) efficiently
and accurately. Here we follow the idea in [22] and let λ = exp(x). Then the integral
(4.10) becomes

(4.11) ω(α,σ)
n = τ1+αe−nστ

∫ ∞

−∞

φn(x) dx,

where

(4.12) φn(x) = (1 + exτ)−1−nφ(x), φ(x) = −
sin(απ)

π
e(1+α)xFω(−ex).

8



We find that φn(x) decays exponentially as |x| → ∞ for any n > n0, where n0 is a
suitable positive integer. Figure 4.1 shows the exponential decay of φn(x) for α = 0.2
and 0.8 when the second-order GNGF (3.3) is applied, n0 = 50. For the GNGF-
p and FBDF-p, and any fractional order α > 0, the corresponding φn(x) decays
exponentially for n > n0 as |x| → ∞ but these results are not shown here.
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(a) α = 0.2.
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(b) α = 0.8.

Fig. 4.1. The exponential decay of φn(x) for second-order GNGF, τ = 0.01.

The exponential decay of φn(x) inspires us to use the exponentially convergent
trapezoidal rule (see [32]) to approximate the integral

∫∞

−∞ φn(x) dx. Thus, we have

(4.13)

ω(α,σ)
n ≈ ω̂(α,σ)

n =τ1+αe−nστ∆x

∞∑

j=−∞

(1 + exjτ)−1−nφ(xj)

=τ1+αe−nστ
∞∑

j=−∞

wj(1 + λjτ)
−1−n,

where λj = exj , xj = j∆x, ∆x > 0 is a positive number, wj = ∆xφ(xj).
We have the following theorem for the error of (4.13), see [32].
Theorem 4.1 ([32]). Suppose φn(x) is analytic in the strip

∣∣Im(x)
∣∣ < a for

some a > 0. Suppose further that φn(x) → 0 uniformly as |x| → ∞ in the strip, and
for some M ,

∫∞

−∞ |φn(x + ib)| dx ≤ M for all b ∈ (−a, a). Then, for any ∆x > 0,

ω̂
(α,σ)
n as defined by (4.13) exists and satisfies

(4.14) |ω(α,σ)
n − ω̂(α,σ)

n | ≤ τ1+απ−1| sin(απ)|
2M

e2πa/∆x − 1
.

In real applications, we do not use (4.13). Instead, we truncate (4.13) and derive
the following modified version, which is used in this paper

(4.15) ω̂(α,σ)
n =τ1+αe−nστ

Q−1∑

j=0

wj(1 + λjτ)
−1−n,

where wj and λj are determined according to the property of φn(x) (see Figure 4.1),
which may be different from those used in (4.13).

We illustrate how to derive wj and λj in (4.15). Denote φn,max = max
|x|<∞

φn(x)

and Sn(x) = {x|φn(x)/φn,max ≥ ǫ, x ∈ R}, where ǫ > 0 is given (we set ǫ = 10−20

9



in this paper). Find xn
min = min

x
{Sn(x)} and xn

max = max
x

{Sn(x)}. Denote xmin =

min{xn0

min, x
nT

min} and xmax = max{xn0
max, x

nT
max}. Given a positive integer Q, let ∆x =

(xmax − xmin)/(Q − 1) and xj = xmin + j∆x. Then, wj and λj are determined by
wj = ∆xφ(xj) and λj = exp(xj).

Based on (4.15), we give a detailed implementation of Fast Method II. We first

decompose the discrete convolution u
(α,σ)
n = τ−α

∑n
j=0 ω

(α,σ)
n−j uj into

(4.16) u(α,σ)
n = Lu

(α,σ)
n,n0

+ Hu(α,σ)
n,n0

≡ τ−α
n∑

k=n−n0

ω
(α,σ)
n−k uk + τ−α

n−n0−1∑

k=0

ω
(α,σ)
n−k uk.

Then, the local part Lu
(α,σ)
n,n0 is calculated directly. In the following, we give a simple

illustration on how to obtain Hu
(α,σ)
n,n0 . Inserting ω

(α,σ)
n defined by (4.11) into Hu

(α,σ)
n,n0 ,

we obtain

(4.17) Hu(α,σ)
n,n0

=τ

n−n0−1∑

k=0

e−(n−k)στuk

∫ ∞

−∞

(1 + exτ)−1−(n−k)φ(x)dx.

Applying (4.15) to the above integral yields

(4.18)

Hu(α,σ)
n,n0

≈F
Hu(α,σ)

n,n0
= τ

n−n0−1∑

k=0

uke
−(n−k)σ

Q−1∑

j=0

wj(1 + λjτ)
−1−(n−k)

=

Q−1∑

j=0

wjτ

n−n0−1∑

k=0

e−(n−k)στ (1 + λjτ)
−1−(n−k)uk

=e−n0τσ(1 + λjτ)
−(n0+1)

Q−1∑

j=0

wjy
(j)
n−n0

,

where y
(j)
n−n0

= τ
∑n−n0−1

k=0 (eστ (1 + λjτ))
−(n−n0−k) uk, which satisfies (4.20).

A summary of the entire procedure of Fast Method II is given in Algorithm 2.
We now compare the computational performance and accuracy of the proposed

fast methods against the direct method.

Example 4.1. Let u
(α,σ)
n = τ−α

∑n
k=0 ω

(α,σ)
n−k uk, where ω

(α,σ)
n satisfies (3.3).

Compute u
(α,σ)
n by the direct convolution method, Fast Method I, and Fast Method II.

Define the pointwise error e
(r)
n and the maximum pointwise error ‖e(r)‖∞ by

e(r)n =
∣∣u(α,σ)

n −
(r)
F u(α,σ)

n

∣∣/
∣∣u(α,σ)

n

∣∣, ‖e(r)‖∞ = max
0≤n≤T/τ

e(r)n , r = 1, 2,

where
(1)
F u

(α,σ)
n = Fu

(α,σ)
n is the fast solution from Fast Method I and

(2)
F u

(α,σ)
n is the

fast solution from Fast Method II.
Figure 4.2 shows the relative errors of Fast Method I and Fast Method II for

Example 4.1. We can see that Fast Method II shows better accuracy than Fast
Method I when the same number of the quadrature points is used, which means
Fast Method II saves memory and computational cost to achieve the same level of
accuracy. Furthermore, Fast Method II requires only real arithmetic operations rather
than complex arithmetic operations as in Fast Method I, which further reduces the
computational cost.
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Algorithm 2 Fast calculation of u
(α,σ)
n = τ−α

∑n
k=0 ω

(α,σ)
n−k uk, where ω

(α,σ)
k satisfies

(3.2), (3.3), (3.4), or (3.6) (see also (4.10)).

1: Input: the fractional order α and σ ≥ 0, a time stepsize τ > 0, a suitable pos-

itive integer n0, the convolution weights ω
(α,σ)
n (0 ≤ n ≤ n0) defined by (3.2),

(3.3), (3.4), or (3.6), the quadrature points λj and weights wj (see (4.15) and its
following paragraph).

2: Output: Fu
(α,σ)
n .

• Step 1. Approximate the history part Hu
(α,σ)
n,n0 = τ−α

∑n−n0−1
k=0 ω

(α,σ)
n−k uk by

(4.19) F
Hu(α,σ)

n,n0
= e−n0τσ(1 + λjτ)

−(n0+1)τ

Q−1∑

j=0

wjy
(j)
n−n0

,

where y
(j)
n is calculated by the following recurrence formula

(4.20) y(j)n =
e−τσ

1 + λjτ

(
y
(j)
n−1 + τun−1

)
, y

(j)
0 = 0.

• Step 2. Calculate the local part Lu
(α,σ)
n,n0 directly and let

(4.21) Fu
(α,σ)
n = Lu

(α,σ)
n,n0

+ F
Hu(α,σ)

n,n0
.

Figure 4.3 depicts a comparison of the computational time of the direct method
and the fast methods. We can see that both fast methods are more efficient than
the direct method for long time computation, while Fast Method II is much faster
than Fast Method I, since Fast Method II uses real arithmetic operations instead of
complex arithmetic operations in Fast Method I.

Figure 4.4 further illustrates why Fast Method II is more accurate than Fast
Method I, since the trapezoidal rule (4.15) used in Fast Method II for approximating
the quadrature weights is more accurate than the Talbot contour quadrature (4.3).
Moreover, Figure 4.4 shows that both the trapezoidal rule and Talbot contour quadra-
ture are also effective for the fractional orders greater than one and the trapezoidal
rule shows more accurate approximations.

In summary, Fast Method II is more efficient than Fast Method I for any fractional
orders α ∈ (0, 2) and σ ≥ 0. For the fractional order α ∈ (−1, 0) and α > 2, the same
effect is still observed, but the results are not displayed here.

In the following section, we apply Fast Method II to solve a number of time-
fractional differential models.

5. Numerical examples. In this section, two examples are presented to verify
the effectiveness of the present fast convolution. In the direct methods for solving
FDEs in this section, the (tempered) fractional operators in the considered FDEs are
always discretized by Dα,σ,γ,m,n

τ (see (3.1)) with the convolution quadrature weights
defined by (3.3) with p = 2, i.e., GNGF-2 is applied. For convenience, we define

(5.1) FD
α,σ,γ,m,n
τ u = Fu

(α,σ)
n + τ−α

m∑

k=1

w
(α,σ)
n,k (uk − u0)− b(α,σ)n u0,

11
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(a) Fast Method I, B = 5.
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(b) Fast Method II.

Fig. 4.2. The relative errors of Fast Method I and Fast Method II, Example 4.1: u(t) = t+ t2,
τ = 0.01, σ = 0. The total number of quadrature points used for Fast Method I is N × 7 for
n0 = 50, τ = 0.01 and T = 1000. The same number Q = N × 7 of quadrature points are used in
Fast Method II for a fair comparison.
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(a) Computational time.
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Fig. 4.3. The computational time of direct method, Fast Method I and Fast Method II, Example
4.1: u(t) = t+t2, τ = 0.01, σ = 0. The total number of quadrature points: (a) Q = N×7 = 20×7 =
140; (b) Q = N × 7 = 36× 7 = 252.

where b
(α,σ)
n = τ−α

∑n
j=0 ω

(α,σ)
j and Fu

(α,σ)
n is defined by (4.21).

All the algorithms are implemented using MATLAB 2017b, which were run in a
3.40 GHz PC having 16GB RAM and Windows 7 operating system.

Example 5.1. Consider the following scalar FODE

(5.2) Dσ,α
0,t (u(t)− u(0)) = −u(t) + f(u, t), u(0) = u0, t ∈ (0, T ],

where 0 < α ≤ 1 and σ ≥ 0.
Let Un be the numerical solution of (5.2). The fully implicit fast method for

solving (5.2) is given by

(5.3) FD
α,σ,γ,m,n
τ U = −Un + f(Un, tn), U0 = u0,

where FD
α,σ,γ,m,n
τ is defined by (5.1), m is the number of correction terms.

We need to know Uk(1 ≤ k ≤ m) when (5.3) is applied. In this paper, Uk(1 ≤
k ≤ m) are obtained by solving (5.3) with a small step size 2−7τ and m = 0 or m = 1
if there is at least one correction term. When we say the direct method is applied,
we mean that FD

α,σ,γ,m,n
τ in (5.3) is replaced by Dα,σ,γ,m,n

τ . The Newton method is
applied to solve the nonlinear system (5.3) to obtain Un.

The following two cases are considered in this example.
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(a) α = 0.5, σ = 0.
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(b) α = 0.5, σ = 0.5.
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(c) α = 1.5, σ = 0.
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(d) α = 1.5, σ = 0.5.

Fig. 4.4. The relative errors |ω
(α,σ)
n − ω̂

(α,σ)
n |/|ω

(α,σ)
n | (circles) and |ω

(α,σ)
n − ω̃

(α,σ)
n |/|ω

(α,σ)
n |

(diamonds), Example 4.1, B = 5, τ = 0.01. The number of quadrature points for discretizing each
Talbot contour quadrature is N = 64; the number of quadrature points for the trapezoidal rule is
Q = N × L = 64× 7 = 448.

• Case I: For the linear case of f = 0, the exact solution of (5.2) is

u(t) = Eα(−tα)e−σt,

where Eα(t) is the Mittag–Leffler function defined by Eα(t) =
∑∞

k=0
tk

Γ(kα+1) .

• Case II: Let f = u(1− u2) and u0 = 1.
The maximum error is defined by

‖e‖∞ = max
0≤n≤T/τ

|en| , en = u(tn)− Un, T = 10.

We first show that the use of the correction terms decreases the global error of
the method significantly for Case I. From Tables 5.1–5.2, we can see that increasing
the number of correction terms improves the accuracy significantly, and second-order
accuracy is observed for some suitable m. Numerical simulations show that the in-
accurate numerical solutions near the origin weakly affect the numerical solutions far
from the origin. We show the numerical solutions at t = 10 for σ = 0.2 and 0.5
in Table 5.3. We can see that much better numerical solutions are obtained even if
no correction term is added and second-order accuracy is observed using one or two
correction terms.

For Case II, the explicit form of the analytical solution is unknown, and numerical
solutions are shown in Figure 5.1. For a fixed fractional order α = 0.3, the solution
decays slower and attains a steady state as σ increases, see Figure 5.1(a). We observe
similar behavior for α = 0.8, see Figure 5.1(b). For other fractional orders α ∈ (0, 1),
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Table 5.1
The maximum error ‖e‖∞ for Example 5.1, Case I, γk = kα, α = 0.5, T = 10, N = 256, and

σ = 0.

τ m = 0 Order m = 1 Order m = 2 Order m = 3 Order
2−5 4.8036e-2 4.7715e-4 2.5974e-5 1.9848e-5
2−6 3.5869e-2 0.4214 2.5331e-4 0.9135 1.2654e-5 1.0374 6.9865e-6 1.5064
2−7 2.6373e-2 0.4437 1.3164e-4 0.9443 5.6593e-6 1.1609 2.3047e-6 1.6000
2−8 1.9175e-2 0.4598 6.7484e-5 0.9640 2.3617e-6 1.2608 7.2179e-7 1.6749
2−9 1.3830e-2 0.4714 3.4294e-5 0.9766 9.3879e-7 1.3309 2.1679e-7 1.7353

Table 5.2
The maximum error ‖e‖∞ for Example 5.1, Case I, γk = kα, α = 0.5, N = 256, and σ = 0.5.

τ m = 0 Order m = 1 Order m = 3 Order m = 5 Order
2−5 4.8581e-2 2.1708e-4 4.1006e-5 3.6445e-5
2−6 3.6270e-2 0.4216 1.2066e-4 0.8473 1.1085e-5 1.8873 1.1950e-5 1.6087
2−7 2.6622e-2 0.4462 6.4140e-5 0.9116 2.9336e-6 1.9178 3.5868e-6 1.7363
2−8 1.9318e-2 0.4627 3.3264e-5 0.9473 7.6422e-7 1.9406 1.0161e-6 1.8196
2−9 1.3908e-2 0.4740 1.7008e-5 0.9677 2.3723e-7 1.6877 2.7697e-7 1.8753

Table 5.3
The absolute error |en| at t = 10, Example 5.1, Case I, γk = kα, α = 0.5, N = 256.

σ = 0.2
τ m = 0 Order m = 1 Order m = 2 Order

2−5 1.5240e-5 6.0747e-6 1.4693e-5
2−6 7.9796e-6 0.9335 1.5738e-6 1.9486 4.0865e-6 1.8462
2−7 4.0758e-6 0.9692 4.0084e-7 1.9731 1.1023e-6 1.8903
2−8 2.0580e-6 0.9859 1.0057e-7 1.9948 2.9090e-7 1.9220
2−9 1.0335e-6 0.9937 2.4856e-8 2.0166 7.5573e-8 1.9446

σ = 0.5
τ m = 0 Order m = 1 Order m = 2 Order

2−5 2.0238e-5 6.0702e-5 4.1007e-5
2−6 5.0097e-6 2.0142 1.5645e-5 1.9560 1.0668e-5 1.9426
2−7 1.2174e-6 2.0409 3.9910e-6 1.9709 2.7506e-6 1.9554
2−8 2.8564e-7 2.0916 1.0114e-6 1.9804 7.0398e-7 1.9661
2−9 6.1912e-8 2.2059 2.5521e-7 1.9866 1.7910e-7 1.9748

we observe similar results, which are not shown here. Figures 5.2 (a)–(c) show the
difference between the fast solution and the direct solution. We can see that the two
solutions are very close, which means the error caused from the trapezoidal (4.15)
rule in Fast Method II is very small. Figure 5.2 (d) shows the computational time
of the fast method and the direct method, and we observe that the fast method
really outperforms the direct method in efficiency and saves computational cost. The
advantage of the fast method will be further displayed in the following example,
solving a time-fractional activator-inhibitor system.

Example 5.2. Consider the fractional activator-inhibitor system [11]

∂tu(x, t) = κf1(u, v) + RLD
1−α1
0,t ∂2

xu(x, t), 0 ≤ x ≤ D,(5.4)

∂tv(x, t) = κf2(u, v) + dRLD
1−α2
0,t ∂2

xv(x, t), 0 ≤ x ≤ D,(5.5)

where u(x, t) and v(x, t) denote the concentrations of the activator and inhibitor,
respectively, 0 ≤ α1 ≤ 1 is the anomalous diffusion exponent of the activator, and
0 ≤ α2 ≤ 1 is the anomalous diffusion exponent of the inhibitor, d is the ratio of the
diffusion coefficients of inhibitor to activator, and κ > 0 is a scaling variable that can
be interpreted as the characteristic size of the spatial domain or as the relative strength
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Fig. 5.1. Numerical solutions for Example 5.1, Case II, τ = 0.001, N = 256.
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Fig. 5.2. (a)-(c): the difference between the numerical solutions of the direct method and the
fast method; (d): the computational time of the fast method and direct method; Example 5.1, Case
II, τ = 0.001, Q = 256.

of the reaction terms. The reaction kinetics is defined by the functions f1(u, v) and
f2(u, v).

In our following numerical test, we will consider the Turing pattern formation in
the fractional activator-inhibitor model system described by system (5.4)–(5.5) with
zero-flux boundary conditions at both ends of the spatial domain of length D, i.e.

(5.6) ∂xu(0, t) = ∂xv(0, t) = 0, ∂xu(D, t) = ∂xv(D, t) = 0.

We apply cubic finite element to approximate the space of (5.4)–(5.5). For the
time discretization, we apply a stabilized semi-implicit time-stepping method, i.e.,
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the first-order time derivative is discretized by the second-order backward difference
formula, the time-fractional derivative is discretized by the second-order generalized
Newton–Gregory formula, and the nonlinear term is approximated using a second-
order extrapolation with a stablization factor.

Let Xh be a cubic piecewise finite element space defined on the uniform grids
{xi}, where xi = ih, h is space stepsize, and D/h is a positive integer. The numerical
scheme for (5.4)–(5.6) is given by: For 2 ≤ n ≤ nT , find un

h, v
n
h ∈ Xh, such that

(Dn
τ uh, w) + (FD

1−α1,0,0,0,n
τ ∂xuh, ∂xw) + b(1−α1,0)

n (∂xu
0
h, ∂xw)

=κ(2Fn−1
1 − Fn−2

1 , w)− κ1(u
n
h − 2un−1

h + un−2
h , w), ∀w ∈ Xh,(5.7)

(Dn
τ vh, w) + d(FD

1−α2,0,0,0,n
τ ∂xvh, ∂xw) + db(1−α2,0)

n (∂xv
0
h, ∂xw)

=κ(2Fn−1
2 − Fn−2

2 , w)− κ2(v
n
h − 2vn−1

h + vn−2
h , w), ∀w ∈ Xh,(5.8)

(u0
h, w) = (u(0), w), (u1

h, w) = (u(0) + τ∂tu(0), w), ∀w ∈ Xh,(5.9)

(v0h, w) = (v(0), w), (v1h, w) = (v(0) + τ∂tv(0), w), ∀w ∈ Xh,(5.10)

where Fn
1 = f1(u

n
h, v

n
h), F

n
2 = f2(u

n
h, v

n
h ), u(t) = u(x, t), v(t) = v(x, t), κ1 and κ2 are

positive numbers that stabilize the time-stepping method, Dn
τ uh = (3un

h − 4un−1
h +

un−2
h )/(2τ), FD

α,0,0,0,n
τ and b

(α,σ)
n are defined in (5.1).

Two kinds of reaction kinetics, Gierer–Meinhardt and Brusselator, will be con-
sidered for the fractional activator-inhibitor model system. We consider the same
initial conditions as those in [10], which take the forms u(x, 0) = u∗ + ǫr1(x) and
v(x, 0) = v∗ + ǫr2(x). Three different types of perturbation are considered here: (i)
random, where rj(x) is a uniform random function on the interval [−1, 1]; (ii) long-
wavelength sinusoidal, r1(x) = r2(x) = ǫ sin(qx), with q = 0.4 (Gierer–Meinhardt)
or q = 0.5 (Brusselator); (iii) short-wavelength sinusoidal, r1(x) = r2(x) = ǫ sin(qx),
with q = 5 (both Gierer–Meinhardt and Brusselator). We set ǫ = 0.01 in each case.
• Gierer–Meinhardt reaction kinetics. For the Gierer-Meinhardt reaction kinet-
ics, f1 and f2 are given by

f1(u, v) = 1− u+ 3u2/v,(5.11)

f2(u, v) = u2 − v.(5.12)

The fractional activator-inhibitor model system defined by (5.4)–(5.6) and (5.11)–
(5.12) has a homogeneous steady state of u∗ = 4 and v∗ = 16. Standard linear
stability analysis [27, 11, 10] reveals that in the case of standard diffusion α1 =
α2 = 1 nonhomogeneous steady states can occur if the value of d exceeds the
critical value d∗ ≈ 19.79, while for d ≤ d∗ initial perturbations about the steady
state decay to zero and no pattern results. The critical value of d∗ for the fractional
Gierer–Meinhardt reaction kinetics and the corresponding maximally excited modes
over a range of α are listed in [10].

• Brusselator reaction kinetics. For the Brusselator reaction kinetics reaction
kinetics, f1 and f2 are given by

f1(u, v) = 2− 3u+ u2v,(5.13)

f2(u, v) = 2u− u2v.(5.14)

In this case, the homogeneous steady-state solution is given by u∗ = 2 and v∗ = 1.
The critical value of d for a turing instability is given by d∗ ≈ 23.31. It has been
shown that the overall pattern of behavior is similar to that found for the fractional
Gierer-Meinhardt model [10].
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The parameters are taken as h = D/256, D = 100, τ = 0.01, κ1 = κ2 = 10
(Gierer–Meinhardt) or κ1 = κ2 = 2 (Brusselator) when the numerical method (5.7)–
(5.10) is applied. For both Gierer–Meinhardt and Brusselator reaction kinetics, we
take the same values of α1, α2 and d as in [10] in our simulations.

Figures 5.3 and 5.4 show the full surface profiles for the concentrations of the
activator u (left column) and inhibitor v (right column) with randomly perturbed
initial conditions and α1 = α2 = α, where the activator shows similar behavior as
the inhibitor. We obtain similar results as those in [10]: i) The concentrations of the
activator and inhibitor both fluctuate about the homogenous steady-state values. ii) A
spatiotemporal pattern develops on or before t = 500. iii) The surface profiles become
more spatially rough and/or less stationary as the fractional order α decreases.

(a) Surface profile of u(x, t). (a) Surface profile of v(x, t).

(b) Surface profile of u(x, t). (b) Surface profile of v(x, t).

(c) Surface profile of u(x, t). (c) Surface profile of v(x, t).

Fig. 5.3. Fractional Gierer–Meinhardt model with randomly perturbed initial conditions (i),
Example 5.2: (a) α1 = α2 = 0.2, d = 7; (b) α1 = α2 = 0.5, d = 14; (c) α1 = α2 = 0.8, d = 21.

Figure 5.5 shows the surface density plots of u(x, t) ≥ u∗ (black) and u(x, t) <
u∗ (white) for the Brusselator model with sinusoidally perturbed initial conditions
(ii): long-wavelength sinusoidally perturbations (left column) and short-wavelength
sinusoidally perturbations (right column). We observe the same results as shown
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(a) Surface profile of u(x, t). (a) Surface profile of v(x, t).

(b) Surface profile of u(x, t). (b) Surface profile of v(x, t).

(c) Surface profile of u(x, t). (c) Surface profile of v(x, t).

Fig. 5.4. Fractional Brusselator model with randomly perturbed initial conditions (i), Example
5.2: (a) α1 = α2 = 0.2, d = 9; (b) α1 = α2 = 0.5, d = 17; (c) α1 = α2 = 0.8, d = 23.

in [10], but we use finer spatial resolution to obtain more accurate solutions. For
both long-wavelength sinusoidally perturbations and short-wavelength sinusoidally
perturbations, similar patterns are observed after t = 500 for the same parameters d
and fractional orders α1 = α2.

Next, we choose different fractional orders α1 = 0.5 (anomalous subdiffusion in
the activator u(x, t)) and α2 = 1 (standard diffusion in the inhibitor v(x, t)). In such
a case, turning-instability-induced pattern formation might occur for any d > 0 (see
[10, 11]). We perform a number of numerical simulations of the fractional activator-
inhibitor model with anomalous diffusion in the activator and standard diffusion in
the inhibitor over a range of parameters. Sample results are shown in Figures 5.6–5.7.
Figure 5.6 shows the surface profiles of the activator and inhibitor for the fractional
Gierer–Meinhardt model with randomly perturbed initial conditions (i). Figure 5.7
shows the surface profiles of the activator and inhibitor of the fractional Brusselator
model with short-wavelength sinusoidally perturbed initial conditions (iii). Obviously,
for both models, the activator and inhibitor display different fluctuations about the
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(a) (a)

(b) (b)

(c) (c)

Fig. 5.5. Surface density plots of fractional Brusselator model for u(x, t) with long-wavelength
(left column) and short-wavelength (right column) sinusoidally perturbed initial conditions (ii), Ex-
ample 5.2: (a) α1 = α2 = 0.2, d = 9; (b) α1 = α2 = 0.5, d = 17; (c) α1 = α2 = 0.8, d = 23.

homogenous steady-state solution. We obtain similar results as those obtained in [10].

Finally in this section, we show the efficiency and accuracy of the fast method.
Figure 5.8 (a) displays the difference ‖Fuh(t)−Duh(t)‖∞ of the fast solution and the
direct solution of the fractional Brusselator model with long-wavelength sinusoidally
perturbed initial conditions (ii), where Fuh is the fast solution obtained from (5.7)–
(5.10), Duh is the direct method solution that is obtained from (5.7)–(5.10) with

FD
1−α,0,0,0,n
τ replaced by the direct calculation method D1−α,0,0,0,n

τ . We choose 256
quadrature points in the trapezoidal rule used in the fast method, and an accuracy
of 10−9 is achieved (more accurate results can be obtained if we increase the number
of quadrature points Q, but these results are not shown here). The most obvious
observation is that the computational time of the fast method increases linearly, while
the computational cost of the direct method increases quadratically; see Figure 5.8
(b). For the case shown in Figure 5.8 (b), the computational times of the fast method
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(a) Surface profile of u(x, t). (b) Surface profile of v(x, t).

Fig. 5.6. Fractional Gierer–Meinhardt model with randomly perturbed initial conditions (i),
Example 5.2: α1 = 0.5, α2 = 1.0, d = 8.

(a) Surface profile of u(x, t). (b) Surface profile of v(x, t).

Fig. 5.7. Fractional Brusselator model with short-wavelength sinusoidally perturbed initial con-
ditions (iii), Example 5.2: α1 = 0.5, α2 = 1.0, d = 10.

and direct method are about 4000 seconds (about one hour) and 87000 seconds (about
one day and two hours), respectively.
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Fig. 5.8. (a) The maximum difference ‖F uh(t) − Duh(t)‖∞ between the direct solution and
fast solution of the fractional Brusselator model with long-wavelength sinusoidally perturbed initial
conditions (ii); (b) the computational time of the fast method and the direct method; Example 5.2,
α1 = α2 = 0.5, d = 17.

6. Conclusion and discussion. In this work, we first prove the equivalence
between the tempered fractional derivative operator and the Hadamard finite-part
integral. The interpretation of the tempered fractional derivative in terms of the
finite-part integral makes a direct and obvious extension of Lubich’s FLMMs to both
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the tempered fractional integral and derivative operators, which greatly simplifies the
method in [4].

We then propose two fast methods, Fast Method I and Fast Method II, to approxi-

mate the discrete convolution
∑n

j=0 ω
(α,σ)
n−j uj in the considered FLMM. Both methods

are effective and efficient. Fast Method I can be seen as a direct extension of the
fast method in [36] (σ = 0) to the tempered fractional operator (σ > 0). In Fast

Method I, the convolution weight ω
(α,σ)
n is represented by a contour integral, which

is approximated by a local contour quadrature for different n. The use of the local

approximation for approximating ω
(α,σ)
n makes the implementation of Fast Method

I a little complicated. Furthermore, complex arithmetic operations are performed in
Fast Method I, which leads to slightly larger roundoff errors, see Figure 4.2 (a).

In order to overcome the drawbacks of Fast Method I, we propose Fast Method
II, which has the following advantages.

• In Fast Method II, the convolution weight ω
(α,σ)
n is expressed by an integral on the

real line instead of the contour integral in the complex plane in Fast Method I.
A uniform approximation is derived to approximate this integral on the real line,
which makes the implementation of Fast Method II much easier and simpler than
that of Fast Method I.

• Only real arithmetic operations are performed in Fast Method II.
• In Fast Method I, an ODE of the form y′(t) = λy(t)+u(t) is solved by the backward
Euler method (see also (4.8)). However, the coefficient λmay have positive real part
if the Talbot or hyperbolic contour quadrature (see, e.g., [30, 36]) is applied, which
may affect the stability of Fast Method I. We always perform a stable recurrence
relation (4.20) in Fast Method II, which avoids a possible negative effect caused by
the positive real part of λ in Fast Method I.

In summary, Fast Method II outperforms Fast Method I in terms of both accuracy
and efficiency, and yields easier implementation, which is also verified by numerical
simulations in this work. Fast Method I still works well, but the most obvious dis-
advantage is its complicated implementation. The code for numerical simulations in
this paper can be found at https://github.com/fanhaizeng/fast-method-for-fractional-
operators-generating-functions.
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