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THE GEOMETRY OF AMBIGUITY IN ONE-DIMENSIONAL PHASE

RETRIEVAL

DAN EDIDIN

Abstract. We consider the geometry associated to the ambiguities of the one-dimensional
Fourier phase retrieval problem for vectors in CN+1. Our first result states that the space
of signals has a finite covering (which we call the root covering) where any two signals in the
covering space with the same Fourier intensity function differ by a trivial covering ambiguity.

Next we use the root covering to study how the non-trivial ambiguities of a signal vary
as the signal varies. This is done by describing the incidence variety of pairs of signals with
same Fourier intensity function modulo global phase. As an application we give a criterion
for a real subvariety of the space of signals to admit generic phase retrieval. The extension
of this result to multi-vectors played an important role in the author’s work with Bendory
and Eldar on blind phaseless short-time Fourier transform recovery.

1. Introduction

The Fourier transform of a vector x ∈ CN+1 is the is the polynomial S1 → C defined by

the formula x̂(ω) =

N∑

n=0

x[n]ωn where we take ω = e−ιθ to be a coordinate on the unit circle.

Clearly, any vector is uniquely determined by its Fourier transform.
The phase retrieval problem asks if it possible to uniquely recover a vector x ∈ CN+1

from its Fourier intensity function A(ω) = |x̂(ω)|2. This problem occurs in many indirect
measurement systems including crystallography, astronomy and optics. For a contemporary
review of phase retrieval in optical imaging see [16].

Unfortunately, this problem is ill-posed. Obviously, x and eιθx have the same Fourier
intensity function, as does the vector ẋ obtained by reflection and conjugation since ˆ̇x = x̂.
However, even modulo these trivial ambiguities the phase retrieval problem has no unique
solution [6, 15]. In fact, it is known that for given x there are up to 2N−1 vectors modulo
trivial ambiguities with the same Fourier intensity function. These vectors are referred to as
the non-trivial ambiguities of the phase retrieval problem [1, 2].

Example 1.1. Let x = (9/2,−9,−1/2, 1). The Fourier transform of x is the polynomial
x̂(ω) = 9/2− 9ω − (1/2)ω2 + ω3 and the Fourier intensity function is

A(ω) = |x̂(ω)|2 = (9/2)ω−3 − (45/4)ω−2 − (73/2)ω−1 − (73/2)ω − (45/4)ω2 + (9/2)ω3.

By normalizing so that the first coordinate is positive real, we can eliminate the scaling
ambiguity. The reflected vector ẋ = (9/2, 1,−1/2,−9) has Fourier transform

ˆ̇x = 9/2 + ω − (1/2)ω2 − 9ω3
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which is the complex conjugate of x̂(ω) since ω̂ = ω−1 for ω ∈ S1. The real vectors

x2 = (9,−9/2,−1, 1/2)
x3 = (3/2,−7, 13/2, 3)
x4 = (3/2, 1,−19/2, 3)

all have the same Fourier intensity function as x. and are unrelated by a trivial ambiguity.
In total there are 24 = 8 vectors with positive first coordinate and Fourier intensity function

(9/2)ω−3 − (45/4)ω−2 − (73/2)ω−1 − (73/2)ω − (45/4)ω2 + (9/2)ω3.

They are {x, ẋ, x1, ẋ1, x2, ẋ2, x3, ẋ3}.
Similarly, the real and complex vectors

x1 = (9/2, 9, 1/2, 1)
x2 = (3/2, 3 + 4i, 3/2 + 8i, 3)
x3 = (3/2, 3− 4i, 3/2− 8i, 3)
x4 = (9, 9/2, 1, 1/2)

have the same Fourier intensity function

(9/2)ω−3 + (45/4)ω−2 + (91/2)ω−1 + (205/2) + (91/2)ω + (45/4)ω2 + (9/2)ω3

and are unrelated by a trivial ambiguity.

The discrete ambiguities of the phase retrieval problem can be understand algebraically
as follows: If x ∈ CN+1 has full support then by the fundamental theorem of algebra we can
factor the polynomial x̂(ω) as x̂(ω) = xN (ω − β1) . . . (ω − βN ) for some non-zero complex

numbers β1, . . . , βN . (Note that the βi are all non-zero because x0 = (−1)NxN

N∏

i=0

βi and

x0, xN must both be non-zero for x to have full support.) Using the fact that ω = ω−1 on
S1 the Fourier intensity function factors as

A(ω) = x0xNω
−N(ω − β1)(ω − 1

β1

) . . . (ω − βN)(ω − 1

βN

).

In particular, if for each k = 1, . . . , N we choose γk ∈ {βk,
1
βk

} then there is a constant b ∈ C

(whose modulus is unique) such that |b∏N
i=1(ω − γi)|2 = A(ω). Reading off the coefficients

of the polynomial b
∏N

i=1(ω− γi) gives a new vector x′ such that |x̂′(ω)|2 = A(ω). If we take
γk = 1

βk

for all k the new vector is the vector ẋ obtained by conjugating and reflecting the
vector x.

By contrast, the 2D and higher phase retrieval problem is known to have a solution for
almost all signals [6, 14]. Precisely almost all discrete functions f : Z2

N → C are uniquely
determined modulo trivial ambiguities by the Fourier intensity function |f(ω, η)|2. The
reason for the difference is that for generic (in the sense of complex algebraic geometry) f
the Fourier polynomial f(ω, η) is irreducible, while in one variable f(ω) always factors into
distinct linear factors [13].

Analyzing the possible signals with the same power spectrum naturally arises in systems
theory and digital signal processing. The method of spectral factorization produces a signal
with minimum phase; ie the solution where |γk| is minimized. A similar approach is used
in filter design for more general systems associated to rational functions, where only the
magnitude response is determined [15, Section 5.6].
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However, without other information there is no reason for the minimum phase signal to
equal the desired signal. A goal of this paper is to understand how the possible factorizations
vary with the signal. This question is also related to questions in convex algebraic geometry
involving sums of squares. In our case we are determining how the different ways to express
the non-negative polynomial A(ω) = |x̂(ω)|2 as a Hermitian square |p(ω)|2 vary with x. In the
language of [7] we are studying how the rank one extreme points of the Gram spectrahedron
of the non-negative polynomial |x̂(ω)|2 vary as x varies.

To do this we consider the geometry associated to the ambiguities of the one-dimensional
Fourier phase retrieval problem for vectors in CN+1. Our first results (Theorem 3.3, 3.6)
state that the space of signals has a finite covering (which we call the root covering) where
any two signals in the covering with the same Fourier intensity differ by a trivial covering
ambiguity. In other words, we prove that phase retrieval is possible on the root cover.

Next we use these results to study how the non-trivial ambiguities of a signal vector vary
as the signal varies. To do this we describe (Theorem 4.1) the incidence variety I consisting
of pairs (x, x′) with same Fourier intensity function modulo global phase. We show that I
consists of N + 1 connected irreducible components, I0, . . . , IN and that the component Ik
is a finite covering of degree

(
N

k

)
of the space signals modulo global phase.

Theorem 4.8 gives a geometric refinement of an earlier result of Beinert and Plonka [1,
Theorem 2.3]. Our result states that the connected irreducible component Ik of the incidence
variety I corresponds to pairs (x, x′) where x = x1 ⋆ x2, x′ = x1 ⋆ ẋ2 for some vectors
x1 ∈ Ck+1, x2 ∈ CN−k+1. Here x1 ⋆ x2 refers to the convolution. (See the notation section for
the definition of the convolution.)

As a consequence, if k 6= 0, N , then for a generic pair (x, x′) ∈ Ik, x
′ is not obtained from

x by a trivial ambiguity. We also prove that if (x, x′) ∈ Ik then (x, ẋ′) ∈ IN−k where ẋ′ is
obtained from x′ by reflection and conjugation.

As an application we give (Theorem 5.1) a criterion for a real subvariety W of the space
of signals to admit generic phase retrieval. Precisely we prove that if there exists a single
signal w0 ∈ W with the property that any w′

0 ∈ W with the same Fourier intensity function
is obtained from w0 by a trivial ambiguity then the generic w ∈ W has the same property.
In other words, the condition that a signal w lies in the subvariety W enforces uniqueness of
generic phase retrieval provided there exists a single signal in W with this property. Examples
of interesting W include subvarieties of signals with a fixed entry or sparse signals [1, 2].
This result for tuples of signals was our original motivation for writing this paper. It plays
a crucial role in the author’s work with Bendory and Eldar [3] proving that a pair of signals
can be recovered from their blind phaseless short-time Fourier transform measurements using
∼ 10N measurements where N is the length of the signal.

1.1. Notation. To slightly simplify our notation we assume that our signals are vectors
x ∈ CN+1 as opposed to vectors in CN which is often used in the literature [1, 2]. A vector
x ∈ CN+1 can also be thought of as a function Z → C with support in the interval [0, N ].
We use the notation x[n] to refer to the value of this function at the integer n; i.e., if
x = (x0, x1, . . . , xN) then x[n] = xn for n ∈ [0, N ] and zero otherwise.

If x ∈ CN+1 then the reflected vector x′ is defined by the formula x′[n] = x[N + 1 − n]
where the indices are taken modulo N + 1; i.e. (x0, x1, . . . , xN)

′ = (x0, xN , xN−1, . . . x1).
All signals x ∈ C

N+1 are assumed to have full support. This means that x[0], x[N ] are
both assumed to be non-zero. The set of such signals is parametrized by the complex variety
C× × CN−1 × C× which we view as a real variety of dimension 2N + 2. Because we work
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in CN+1 the Fourier intensity function |
∑N

n=0 x[n]ω
n|2 is a non-negative real trigonometric

polynomial of degree 2N which is uniquely determined by its value at 2N +1 distinct points
on the unit circle.

If x1 ∈ C
k+1 and x2 ∈ C

N−k+1 then the convolution x1 ⋆ x2 is the vector in C
N+1 defined

by the formula

(x1 ⋆ x2)[n] =
k∑

ℓ=0

x1[ℓ]x2[n− ℓ].

1.2. Acknowledgments. The results of this paper were inspired by the papers of Beinert
and Plonka [1, 2] on the topic of ambiguities in Fourier phase retrieval. The author is grateful
to Tamir Bendory for useful discussions as well as to the referees for a careful reading and
many helpful comments.

2. Background on algebraic geometry

2.1. Real algebraic sets. A real algebraic set is a subset X = V (f1, . . . , fr) ⊂ RM defined
by the simultaneous vanishing of polynomial equations f1, . . . , fr ∈ R[x1, . . . , xM ]. Note that
any real algebraic set is defined by the single polynomial F = f 2

1 + . . . + f 2
r . Given an

algebraic set X = V (f1, . . . , fm) we define the Zariski topology on X by declaring closed
sets to be the intersections of X with other algebraic subsets of RM . An algebraic set is
irreducible if it is not the union of proper algebraic subsets. An irreducible algebraic set is
called a real algebraic variety. Every algebraic set has a decomposition into a finite union of
irreducible algebraic subsets [4, Theorem 2.8.3].

An algebraic subset of X ⊂ RM is irreducible if and only if the ideal I(X) ⊂ R[x1, . . . , xM ]
of polynomials vanishing on X is prime. More generally we declare an arbitrary subset of
X ⊂ R

M to be irreducible if its closure in the Zariski topology is irreducible. This is
equivalent to the statement that I(X) is a prime ideal [4, Theorem 2.8.3].

Note that in real algebraic geometry irreducible algebraic sets need not be connected in
the classical topology. For example the real variety defined by the equation y2 − x3 + x
consists of two connected components.

2.2. Semi-algebraic sets and their maps. In real algebraic geometry it is also natural
to consider subsets of RM defined by inequalities of polynomials. A semi-algebraic subset of
RM is a finite union of subsets of the form:

{x ∈ R
M ;P (x) = 0 and (Q1(x) > 0, . . . , Qℓ(x) > 0)}

Note that if f ∈ R[x1, . . . , xM ] the set f(x) ≥ 0 is semi-algebraic since it is the union of the
set f(x) = 0 with the set f(x) > 0.

The reason for considering semi-algebraic sets is that the image of an algebraic set under
a real algebraic map need not be real algebraic. For a simple example consider the algebraic
map R → R, x 7→ x2. This map is algebraic but its image is the semi-algebraic set {x ≥
0} ⊂ R. A basic result in real algebraic geometry states that the image of a semi-algebraic
set under a polynomial map is semi-algebraic, [4, Proposition 2.2.7].

A map f : X ⊂ R
N → Y ⊂ R

M of semi-algebraic sets is semi-algebraic if the graph Γf =
{(x, f(x))} is a semi-algebraic subset of RN×RM . For example the map R≥0 → R≥0, x 7→ √

x
is semi-algebraic since the graph {(x,√x)|x ≥ 0} is the semi-algebraic subset of R2 defined
by the equation x = y2 and inequality x ≥ 0. Again the image of a semi-algebraic set under
a semi-algebraic map is semi-algebraic.
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2.3. Dimension of a semi-algebraic sets. A result in real algebraic geometry [4, Theorem
2.3.6] states that any real semi-algebraic subset of Rn admits a semi-algebraic homeomor-
phism1 to a finite disjoint union of hypercubes. Thus we can define the dimension of a
semi-algebraic set X to be the maximal dimension of a hypercube in this decomposition.
This can be shown to be equal to the Krull dimension of the Zariski closure of X in RM [4,
Corollary 2.8.9]. As a consequence we obtain the important fact that if Y is a semi-algebraic
subset of an algebraic set X with dimY < dimX then Y is a contained in a proper algebraic
subset of X.

2.4. Finite coverings of semi-algebraic sets. Following [9] we say that a map of f : X →
Y of locally connected, connected Hausdorff topological spaces is a finite or ramified cover if
it is open and closed and for all y ∈ Y , f−1(y) is a finite non-empty set. Define the degree of
f to be sup{|f−1(y)|, y ∈ Y } with the convention that that deg f = ∞ if the supremum does
not exist. A result in point-set topology [5, Theorem I.10.2.1] states that these conditions
are equivalent to the map f being proper2 with finite fibers.

In this paper all examples of finite coverings come from group actions. If X is a connected
Hausdorff topological space and G is a finite group acting discretely on X then set of orbits
X/G is also a Hausdorff topological space and the orbit map f : X → X/G is a finite covering.
This follows from a result in general topology [5, Proposition III.4.2.2] that states if G is
compact (for example finite) then X/G is Hausdorff and the orbit map X → X/G is proper.

If G acts almost freely, meaning that the set of points with trivial stabilizer is dense, then
the degree of f is |G| because the fibers are orbits and the assumption implies a dense set
of orbits has cardinality equal to |G|. A key fact about finite coverings is the following:

Proposition 2.1. Let X ⊂ R
N , Y ⊂ R

M be semi-algebraic sets and let f : X → Y be a
semi-algebraic map which is a finite covering. Then dimX = dimY .

Proof. By the semi-algebraic triviality theorem [4, Theorem 9.3.2], Y can be partitioned
into a finite number of semi-algebraic sets Y1, . . . , Yr such that f−1(Yℓ) is homeomorphic to
Fℓ × Yℓ, where Fℓ is the fiber over a point of Yℓ. Since f is a finite cover, Fℓ is a finite
set and we conclude that dim f−1(Yℓ) = dimYℓ since two homeomorphic semi-algebraic
sets have the same dimension [4, Theorem 2.8.8]. This also gives a partition of X into a
finite number of semi-algebraic sets of the same dimensions. Since the partition is finite
we necessarily have that dimY = maxℓ dim Yℓ and likewise dimX = maxℓ dim f−1(Yℓ).
Therefore dimX = dimY .

�

2.5. Finite coverings and quotients by finite groups in complex algebraic ge-

ometry. We briefly consider finite covers of complex algebraic varieties. A complex alge-
braic subset X ⊂ CM is the subset defined by the simultaneous vanishing of polynomials
f1, . . . , fr ∈ C[x1, . . . , xM ]. As in the real case we define the Zariski topology by declaring
algebraic sets to be closed. An algebraic subset which is irreducible is called a variety. Unlike
the real case, any complex algebraic variety is connected [4, Proposition 3.1.1].

1A semi-algebraic map f : A → B is a semi-algebraic homeomorphism if f is bijective and f−1 is semi-
algebraic.

2A map f : X → Y of topological spaces is proper if for any topological space Z the induced map
f : X × Z → Y × Z is closed. This is analogous to the notion of universally closed in algebraic geometry.
When X,Y are locally compact this is equivalent to the more familiar notion that the inverse image of any
compact set is compact, [5, Proposition I.3.7]
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If X is a complex algebraic variety then the ring C[x1, . . . , xM ]/I(X) is called the coordi-
nate ring of X where I(X) is the ideal of functions vanishing on X. We denote this ring by
C[X ]. The ring C[X ] is the ring of polynomial functions on X. Because X is irreducible,
I(X) is a prime ideal so C[X ] is an integral domain. We denote its field of fractions by
C(X).

Any polynomial map of complex varieties f : X ⊂ CM → Y ⊂ CM is induced by a ring
homomorphism f ♯ : C[Y ] → C[X ]. It is defined by the formula f ♯(h)(x) = h(f(x)) where
h ∈ C[Y ]. For more details see [12, Section I.3].

We say that a map of complex varieties is a finite algebraic cover if the map f ♯ is injective
and C[X ] is finitely generated as a C[Y ] module. The degree of f is the degree of the
necessarily finite field extension [C(X) : C(Y )]. Any finite algebraic cover f : X → Y of
degree d is also a finite cover in the sense of topology where X, Y are given the subspace
topologies induced by CM and CN respectively. To see this we first note that a finite algebraic
cover has finite fibers [12, Exercise 4.1] and is also projective. Hence, if f : X ⊂ CM → Y ⊂
CN is a finite algebraic map of varieties, then X can be identified with a closed algebraic
subset of Ps × Y for some s ≥ 0. Since complex projective space can be embedded as a
closed and bounded subset of Euclidean space it is compact [4, Proposition 3.4.11]. Thus
the projection Ps × Y → Y is proper as a map of topological spaces. The map f : X → Y
is the composition of a closed immersion with a proper map which implies that it is also
proper.

A finite group G acts algebraically on a variety X if for each g ∈ G the automorphism
X → X, x 7→ gx is a polynomial map. In particular, the group G acts on the coordinate
ring C[X ]. A fundamental result in invariant theory [10] states that the invariant subring
C[X ]G := {h ∈ C[X ]|g h = h ∀g ∈ G} is a finitely generated algebra, and that C[X ] is
a finitely generated C[X ]G module. This means that there is a complex variety Y whose
coordinate ring is C[X ]G and the map X → Y is a finite cover. In addition, if we view Y
as a subset of CN then it can be identified with the set of orbits X/G. As in topology, the
algebraic degree of the finite cover X → X/G equals to the maximal size of an orbit. See
[11, pp 124–126] for more details. A deep result on actions of algebraic groups states that
the set of points whose orbits have maximal size is Zariski open.

3. Phase retrieval on the root covering

To understand the non-trivial ambiguities we pass to an auxiliary variety which we call the
root covering. It parametrizes all orderings of the roots of the Fourier polynomials of signals
in C× × CN−1 × C×. The root covering has a bigger group of trivial ambiguities and we
demonstrate that every vector in the root covering is determined modulo trivial ambiguities
from the Fourier intensity function of the corresponding signal.

3.1. The group of trivial ambiguities of the space of signals. We begin by identifying
a group of trivial ambiguities acting on C××CN ×C× which preserves the Fourier intensity
function. There is a natural free action of the circle group S1 on C× × CN−1 × C× where
eιθ acts on a vector x by scalar multiplication. This action of of S1 clearly preserves the
Fourier intensity function |x̂(ω)|2. There is also an action of the group µ2 = {±1} where
the non-trivial element (−1) ∈ µ2 takes x to ẋ where ẋ is obtained from x by reflection and
conjugation. The action of µ2 is not free since it fixes vectors x ∈ CN+1 with the property
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that where x[k] = x[N − k]. However, it also preserves the Fourier intensity function since
ˆ̇x = x̂.

The group generated by S1 and the conjugation reflection involution is the orthogonal
group3 O(2) = S1 ⋉ µ2. We refer to this group as the group of trivial ambiguities of the
phase retrieval problem. In classical Fourier phase retrieval (cf. [1, Proposition 2.1]) shifts
are also considered to be trivial ambiguities. However, we eliminate the shift ambiguity from
the outset by assuming our signals have fixed support [0, N ].

The basic difficulty in phase retrieval is that the map

(C× × (CN−1)× C
×)/(S1

⋉ µ2) → R
2N+1
≥0

x 7→ |x̂(ω)|2 is not injective. Indeed the generic fiber has 2N−1 points. The elements of the
fiber are referred to as non-trivial ambiguities. In this paper we study how the non-trivial
ambiguities vary with the signal.

3.2. The root covering. If x ∈ CN+1 with x[N ] 6= 0, then Fourier transform x̂(ω) =∑N
n=0 x[n]ω

n is a polynomial of degree N on the unit circle. By the fundamental theorem of
algebra we can factor x̂(ω) = a0(ω − β1)(ω − β2) . . . (ω − βN). If we assume that x has full
support, then x[0] = (−1)Na0β1 . . . βN 6= 0, so none of the roots of x̂(ω) are 0.

We denote C× × (C×)N parametrizing tuples (a0, β1, . . . , βN) as the root covering of the
space of signals C× × CN−1 × C×. The reason for this terminology is that we show in
Proposition 3.1 that the map Φ: C× × (C×)N → C× × CN−1 × C× defined by the formula
(1)

(a0, β1, . . . , βN) 7→ a0 (eN (−β1, . . . ,−βN ), eN−1(−β1, . . . ,−βN), . . . e1(−β1, . . . ,−βN), 1)

where en(−β1, . . . ,−βN) indicates the n-th elementary symmetric polynomial in (−β1, . . . ,−βN)
is a finite algebraic covering.

By construction, the map Φ associates to the (N + 1)-tuple (a0, β1, . . . , βN) a vector
x = (x0, x1, . . . , xN) whose Fourier transform factors as

x̂(ω) = a0(ω − β1)(ω − β2) . . . (ω − βN ).

Note that the map Φ is multiple-to-one since any permutation of (β1, β2, . . . , βN) produces
the same vector.

Proposition 3.1. The map Φ is a finite algebraic covering of degree N !.

Example 3.2. Consider the vector x = (9/2, 9, 1, 1/2, 1). Its Fourier transform is x̂(ω) =
(ω − 3ι)(ω + 3ι)(ω + 1/2). The inverse image of x in the root cover consists of the 6 vectors

x̃1 = (1, 3ι,−3ι,−1/2)
x̃2 = (1, 3ι,−1/2,−3ι)
x̃3 = (1,−3ι, 3ι,−1/2)
x̃4 = (1,−3ι,−1/2, 3ι)
x̃5 = (1,−1/2, 3ι,−3ι)
x̃6 = (1,−1/2,−3ι, 3ι).

Note that N + 1 = 4 in this example.

3The reason we take the semi-direct product rather than the product is the actions of S1 and Z2 do
not commute. The semi-direct product consists of pairs (λ,±1) but the multiplication is non-commutative.
Precisely, that (λ,−1)(µ, 1) = (λµ,−1) while (µ, 1)(λ,−1) = (λµ,−1).
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Proof. The map Φ is the composition σ ◦ π where π : C× × CN → C× × CN is the map

(a0, β1, . . . , βN) 7→ (eN (−β1, . . . ,−βN ), . . . , e1(−β1, . . . ,−βN), a0)

and σ(x0, x1, . . . , xN ) = (xNx0, xNx1, . . . , xNxN−1, xN). The map σ is an isomorphism of
complex varieties with inverse given by (x0, x1, . . . , xN) 7→ (x0x

−1
N , x0x

−1
N , . . . , xN−1x

−1
N , xN ).

The map π a finite algebraic cover of complex varieties of degree N ! since it is the SN

quotient map C××CN → C××CN where SN acts by permuting the last N coordinates. This
fact follows from the classical fundamental theorem of symmetric polynomials. It states that
every symmetric polynomial can be uniquely expressed as a polynomial in the elementary
symmetric functions and the polynomial ring is a free module over the ring of symmetric
functions of degree N !. For a reference see [8, Chapter 7, Theorem 3].

Since σ is an isomorphism this means we can identify C× × CN−1 × C× as the quotient
of (C×)N+1 by the action of the symmetric group SN , where SN acts by permuting the last
N factors. Since SN acts with generically trivial stabilizer Φ is a finite algebraic covering of
degree N !. �

If we view Φ as a map of real algebraic varieties then Proposition 3.1 implies that Φ is a
finite covering of degree N ! in the sense of real algebraic geometry.

3.3. The group of ambiguities of the root covering. We now consider the group of
ambiguities of the root cover. Precisely we consider a group G acting faithfully on (C×)N+1

such that for all x̃ ∈ (C×)N+1 with Φ(x̃) = x and g ∈ G with Φ(gx̃) = x′ then |x̂(ω)|2 =
|x̂′(ω)|2.

Theorem 3.3 (The ambiguity group of the root cover). The group G = S1 ⋉
(
(µ2)

N ⋉ SN

)

is a group of ambiguities for phase retrieval on (C×)N+1.

We refer to G as the root ambiguity group.

Proof of Theorem 3.3. We first describe the Fourier intensity preserving action of G = S1 ×(
(µ2)

N ⋉ SN

)
on (C×)N+1.

The action of S1 is given as follows: If x̃ = (a0, β1, . . . , βN) then λ · x̃ = (λa0, β1, . . . , βN).
The effect of the action of S1 on Φ(x̃) is to multiply each entry of Φ(x̃) by the scalar λ. Since
λ ∈ S1 this does not change the Fourier intensity function.

We now describe the action of (µ2)
N ⋉ SN . The symmetric group SN acts by permuting

β1, . . . , βN . Since the elementary symmetric polynomials are invariant under permutations
of β1, . . . , βN , if τ ∈ SN then Φ(a0, β1, . . . , βN) = Φ(a0, βτ(1), . . . , βτ(N)), so Φ(τ · x̃) = Φ(x̃).

The group (µ2)
N is generated by elements si = (1, . . . , 1,−1, 1, . . .1) where the −1 is in

the ith position. The element si acts on x̃ = (a0, β1, . . . , βN) by

si · x̃ = (a0|β|i, β1, . . . , βi−1, βi

−1
, βi+1, . . . , βN).

The actions of SN and µN
2 do not commute since τsix̃ = sτ(i)τ x̃. Thus we have an action

of the semi-direct product of µN
2 ⋉ SN where SN acts on µN

2 by permutation. (Note that
the action of µ2 is only semi-algebraic because we need to multiply by |ai| in order to ensure
that s2i acts as the identity.)
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Let us verify that if x′ = Φ(si · x̃) and x = Φ(x̃) then x′ and x have the same Fourier

intensity function. The Fourier transform of x is x̂(ω) = a0
∏N

i=1(ω − βi). Thus

|x̂(ω)|2 = |a0|2
N∏

i=1

(ω − βi)(ω
−1 − βi)

while
x̂′(ω) = a0βi(ω − β1) . . . (ω − βi−1)(ω − β

−1

i )(ω − βi+1) . . . (ω − βN)

so

|x̂′(ω)|2 = |a0βi|2(ω + β1)(ω
−1 + β1) . . . (ω + βi−1)(ω

−1 + βi−1)

(ω + βi

−1
)(ω−1 + β−1

i )(ω + βi+1)(ω
−1 + βi+1) . . . (ω + βN )(ω

−1 + βN)

Since

(ω + βi
−1
)(ω−1 + β−1

i ) =
1

βiβi

(ω−1 + βi)(ω + βi)

we see that the two Fourier intensity functions are the same. Finally, note the actions of
SN and µN

2 do not commute since (τsi)x̃ = (sτ(i)τ)x̃ which corresponds to an action of the
semi-direct product (µ2)

N
⋉ SN where SN acts on (µ2)

N by permutations. �

Remark 3.4. The characterization of [1, Theorem 2.3] shows that the action of the G covers
all trivial and non-trivial ambiguities of the phase retrieval. Thus Theorem 3.3 is an algebraic
representation of the first statement of [1, Theorem 2.3].

Example 3.5. Consider the vector x̃1 = (1, 3ι,−3ι,−1/2) of Example 3.2. Its image under
the map Φ is the vector (9/2, 9, 1/2, 1) considered in Example 1.1. Its orbit under (µ2)

3⋉S3

(which is the discrete part of the ambiguity group G when N = 3) consists of 48 vectors.
Let us see how various group elements act on x̃1.

The element g = ((1,−1, 1), id) moves x̃1 to the vector x̃′
1 = (3, 3ι,−(1/3)ι,−1/2). Observe

that Φ(x̃1) = (9/2, 9, 1/2, 1) and that Φ(x̃′
1) = (3/2, 3 + 4ι, 3/2 + 8ι, 3). In the notation of

Example 1.1 this is the vector x3.
The element h = ((1, 1, 1), (12)) moves x̃1 to the vector x̃3 = (1,−3ι, 3ι,−1/2). Here

Φ(x̃1) = Φ(x̃2) = (9/2, 9, 1/2, 1). If we apply g to x̃3 = hx̃1 we obtain the vector (3,−3ι, (1/3)ι,−1/2)
whose image under Φ is the vector x2 = (3/2, 3 + 4ι, 3/2 + 8ι, 3).

On the other hand if we apply h to the vector x̃′
1 = gx̃ we obtain the vector (3,−(1/3)ι, 3ι,−1/2).

The image of this vector under Φ is the vector x3.

3.4. Phase retrieval on the root cover. Our next result shows that phase retrieval is
possible on the root coverings modulo its larger group of ambiguities. In other words, every
vector x̃ ∈ (C×)N+1 can be recovered from the corresponding Fourier intensity function up
to the action of the group G = S1 ⋉ (µN

2 ⋉ SN).

Theorem 3.6 (Phase retrieval on the root cover). Every x̃ can be uniquely determined
modulo the root ambiguity group G from the Fourier intensity function of Φ(x).

In other words the map (C×)N+1/G → R
2N+1
≥0 which sends the orbit of x̃ to the coefficients

of the Fourier intensity function of Φ(x) is well-defined and injective.

Proof of Theorem 3.6. Suppose that x = Φ(x̃) and x′ = Φ(x̃′) have the same Fourier intensity
function where x̃ = (a0, β1, . . . , βN) and x̃′ = (a′0, β

′
1, . . . , β

′
N). We wish to show that x̃ can

be obtained from x̃′ by the action of the root ambiguity group G.
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Expanding out the Fourier intensity functions we have

|x̂(ω)|2 = ω−N(|a0|2
N∏

i=1

βi)

N∏

i=1

(ω − βi)(ω − β
−1

i )

and

|x̂′(ω)|2 = ω−N(|a′0|2
N∏

i=1

β ′
i)

N∏

i=1

(ω − β ′
i)(ω − β ′

−1

i ).

Since the polynomial ring in one-variable is a unique factorization domain we must have that

|a0|2
∏

βi = |a′0|2
∏

β ′
i and an equality of sets {β1, β

−1

1 , . . . , βN , β
−1

N } = {β ′
1, β

′
−1

1 , . . . , β ′
N , β

′
−1

N }.
Hence after reordering the β1, . . . , βN , which corresponds to applying a permutation to x̃,

we may assume that β ′
i ∈ {βi, β

−1

i }. Let S be a subset of {1, . . . , N} such that β ′
i = βi

−1
if

i ∈ S and β ′
j = βj if j ∈ Sc. (Note that S is uniquely determined if and only if none of the βi

lies on the unit circle.) Let s =
∏

i∈S si. Then sx̃′ = (a′0
∏

i∈S β
−1

i , β1, . . . , βN). Since Φ(sx̃′)

and Φ(x̃) have the same Fourier intensity function, we conclude that |a′0
∏

i∈S β
−1

i | = |a0|.
Hence there is a scalar λ ∈ S1 such that λsx̃′ = x. �

Remark 3.7. Theorem 3.6 is an algebraic characterization of the second statement of [1,
Theorem 2.3]. That theorem would then imply that any two roots with the same Fourier
intensity function can only differ by an action of the root ambiguity group.

3.5. The Fourier intensity map for signals modulo trivial ambiguities. The space
of signals modulo trivial ambiguities is the quotient of the variety C× × CN−1 × C× by the
group S1 ⋉ µ2. Since C× × CN−1 × C× is the quotient of C× × (C×)N by SN we can realize
the quotient of C× × CN−1 × C× by its group of ambiguities as a quotient of the root cover
C× × (C×)N .

Proposition 3.8. The space of signals modulo trivial ambiguities (C××CN−1×C×)/S1⋉µ2

is homeomorphic to the quotient of (C××(C×)N) by a subgroup H of the root ambiguity group
G of index 2N−1.

Proof. Let H be the subgroup of G = S1 ⋉ (µN
2 ⋉ SN) consisting of triples (λ, s, τ) where

λ ∈ S1, τ ∈ SN and s = (1, . . . , 1) or s = (−1, . . . ,−1). Since (−1, . . . ,−1) and (1, . . . , 1) are
invariant under the action of permutations, this subgroup is isomorphic to the semi-direct
product S1

⋉ (µ2 × SN). Moreover, the group SN acts trivially on S1 so this semi-direct
product is the same as SN × (S1 ⋉ µ2). In particular, SN is a normal subgroup. Taking the
quotient by the action of SN produces C××CN−1×C× with a residual action of the quotient
group S1 ⋉ µ2.

To complete the proof of Proposition 3.8 we need show that the involution of C××CN−1×
C× coming from (−1) ∈ µ2 is the involution x 7→ ẋ. This follows from the following lemma
proved in [2].

Lemma 3.9. [2, Lemma 2.5] If β1, . . . , βN are the roots of x̂(ω), then the roots of ˆ̇x(ω) are

β1
−1
, . . . , βN

−1
.

�

Remark 3.10. One might hope that there is a larger group G of ambiguities acting on
C××CN−1×C× such that the Fourier intensity function is injective modulo this group. Such
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a group would necessarily be a quotient of the root ambiguity group G by the symmetric
group SN . However, H is not a normal subgroup of the full root ambiguity group G so the
quotient G/H is not a group. There is a map of quotients

(C× × C
N−1 → C

×)/(S1
⋉ µ2) = (C× × (C×)N)/H → (C× × (C×)N)/G

which is a G/H covering. This is a finite covering of connected, irreducible semi-algebraic
sets degree |G/H| = 2N−1 corresponding to the 2N−1 vectors modulo trivial ambiguities with
the same Fourier intensity function.

Precisely, the Fourier intensity map (C× × (C×)N)/H = (C× ×CN−1 × C×)/(S1 ⋉ µ2) →
R

2N+1
≥0 factors as

(C× × CN−1 × C×)/(S1 ⋉ µ2)

))❙
❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

��

(C× × (C×)N)/G // RN
≥0

where the bottom arrow is injective and the diagonal arrow is a finite covering of degree
2N−1.

4. The incidence variety of ambiguities

Let X be the quotient of the space C××CN−1×C× by the the free action of S1. The semi-
algebraic map (a0, a1 . . . , aN−1, aN) → (|a0|, a0

|a0|
a1, . . . ,

a0
|a0|

aN) identifies X with the semi-

algebraic variety R>0 × C
N−1 × C

×. The space X is the space of equivalence classes of
signals modulo global phase. Since S1 is a normal subgroup of S1 ⋉ µ2 there is an action of
µ2 on X. If x ∈ X is represented by (a0, a1, . . . , aN−1, aN) with a0 ∈ R>0, then (−1) · x is
represented by the vector (a0, aN , . . . , a1).

Let I ⊂ X × X be the subset of pairs (x, x′) of equivalence classes of signals such that

|x̂(ω)|2 = |x̂′(ω)|2. We call I the Fourier intensity incidence correspondence. Since I is
defined by real algebraic equations we say that I is a real algebraic subset of the semi-
algebraic set X × X. The goal of this section is to describe the decomposition of I into
irreducible components.

Theorem 4.1. (i) The real algebraic subset I ⊂ X ×X decomposes into N + 1 irreducible
components I0, . . . , IN each of which is connected.

(ii) The projection Ik → X is a finite cover of degree
(
N

k

)
.

(iii) The total degree of the map I → X is
N∑

n=0

(
N

k

)
= 2N and I0 and IN are both isomor-

phic to X as semi-algebraic sets.
(iv) There is an additional action of µ2 on I given by (x, x′) 7→ (x, ẋ′). Under this action

Ik 7→ IN−k.
(v) If (x, x′) ∈ Ik r (Ik ∩ (I0 ∪ In)) then x′ is not obtained from x by a trivial ambiguity.

Remark 4.2. We denote the union
⋃

k 6=0,N Ik by I0. The generic point of I0 is a pair of

S1-equivalence classes (x, x′) such that |x̂(ω)|2 = |x̂′(ω)|2 but x′ is not obtained from x by a
trivial ambiguity.

Remark 4.3. For a generic vector x ∈ CN+1 there are, modulo trivial ambiguities, 2N−1

vectors x′ such that |x̂(ω)|2 = |x̂′(ω)|2. This follows from our result since the finite covering
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(I/Z2) → X has degree 2N/2 = 2N−1 so the generic fiber has 2N−1 points. The 2N−1 points
are partitioned into ⌈(N + 1)/2⌉ components corresponding to the possible non-equivalent
convolutions x1 ⋆ ẋ2 with x1 ∈ Ck+1, x2 ∈ CN−k+1. See Section 4.3 for further discussion.

4.1. The incidence correspondence on the root covering. To prove Theorem 4.1 we
again pass to the root covering.

Let X̃ be the quotient of C× × (C×)N by the free action of S1 on (C×)N+1 given by
eιθ(a0, β1, . . . , βN) = (eιθa0, β1, . . . , βN). The semi-algebraic map

(a0, β1, . . . , βN) 7→ (|a0|, β1, . . . , βN)

identifes X̃ with R>0 × (C×)N .
The map Φ is S1-equivariant where S1 acts on (C×)N+1 and C××CN−1×C× as above. The

action of SN also commutes with the S1 action. Hence there is an induced map Φ̃ : X̃ → X
which identifies X as the quotient of X̃ by SN .

As a consequence of Proposition 3.1 we have

Proposition 4.4. The map Φ̃ is a finite algebraic covering of degree N ! �

Let Ĩ be the following subset of X̃ × X̃:

Ĩ := {(x̃ = (a0, β1, . . . , βN), x̃
′ = (a′0, β

′
1, . . . , β

′
N)| |x̂(ω)|2 = |x̂′(ω)|2 and ∀n β ′

n ∈ {βn, βn

−1}}
where x = Φ̃(x̃) and x′ = Φ̃(x̃′). We refer to Ĩ as the root incidence variety. Again Ĩ is a
real algebraic subset of the semi-algebraic set X̃ × X̃.

Proposition 4.5. The incidence Ĩ decomposes into 2N irreducible components each iso-
morphic via a semi-algebraic isomorphism to X̃ embedded as the diagonal in X̃ × X̃. In
particular, each irreducible component is connected.

Proof. Let x̃ = (a0, β1, . . . , βN) and x̃′ = (a′0, β
′
1, . . . , β

′
N) be vectors in X̃ and let x =

(a0, a1, . . . , aN) and x′ = (a′0, a
′
1, . . . , a

′
N) be their images in X. By the proof of Theorem

3.6 we know that |x̂(ω)|2 = |x̂(ω)|2 if and only if after possibly reordering the βi there

exists a subset S ⊂ {1, . . . , N} such that β ′
i = βi

−1
for i ∈ S and β ′

i = βi if i ∈ Sc and∏N

i=1
βi

β′

i

= (a0/a
′
0)

2.

Hence Ĩ is the union of 2N closed real algebraic subsets indexed by subsets of {1, . . . , N}.
Specifically if S is a subset then we let

ĨS = {(a0, β1, . . . , βN), (a
′
0, β

′
1, . . . , β

′
N)|β ′

i = βi

−1
for i ∈ S, β ′

j = βj for j /∈ S,

N∏

i=1

βi

β ′
i

= (a0/a
′
0)

2}.

Each of the ĨS is connected and irreducible because there is a semi-algebraic isomorphism
X̃ → ĨS and X̃ is connected and irreducible. The isomorphism is given by the formula

(a0, β1, . . . , βN) 7→ ((a0, β1, . . . , βN), (a
′
0, β

′
1, . . . , β

′
N))

where β ′
i = βi

−1
if i ∈ S, β ′

i = βi if i /∈ S and

a′0 =

√√√√a0

(
N∏

i=1

β ′
i

βi

)
.

�
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Remark 4.6. Note that the ĨS∩ Ĩ ′S can be identified with the real subvariety of X̃ consisting

of tuples x̃ = (a0, β1, . . . , βN) where |βi| = 1 for i ∈ (S ∪ S ′)r (S ∩ S ′). Hence ∩S ĨS can be
identified with R>0 × (S1)N , corresponding to vectors all of whose Fourier roots lie on the
unit circle.

4.2. Proof of Theorem 4.1. To prove the theorem we need to understand the images in
I of the irreducible components ĨS of Ĩ.

Lemma 4.7. The image of ĨS equals the image of ĨS′ if and only |S| = |S ′|.
Proof. If |S| = |S ′| then there is a permutation τ ∈ SN such that τ(S) = S ′. Under the
diagonal action of SN on Ĩ given by

τ ((a0, β1, . . . , βN), (a
′
0, β

′
1, . . . , β

′
N)) =

(
(a0, βτ(1), . . . , βτ(N)), (a

′
0, β

′
τ(1), . . . , β

′
τ(N))

)

ĨS is mapped to ĨS′. Since the map Ĩ → I obtained by restricting Φ̃× Φ̃ to Ĩ is SN invariant,
it follows that ĨS and ĨS′ have the same image in I.

Conversely suppose that |S| 6= |S ′|. Without loss of generality we may assume that
|S| < |S ′|. Also we can find a permutation τ such that τ(S) is a proper subset of τ(S ′).
Applying another permutation allows us to assume that S = {1, . . . , k} and S ′ = {1, . . . , l}
with l > k.

If β1, . . . , βN are chosen to be distinct and none of them lie on the unit circle (for example
we can take the βi to be positive real numbers more than 1) then the image of the pair

(x̃, x̃′) =
(
(a0, β1, . . . , βN), (a

′
0, β1

−1
, . . . , βl

−1
, βl+1, . . . , βN)

)
∈ ĨS′

is not in the image of ĨS. Likewise,

(x̃, x̃′) =
(
(a0, β1, . . . , βN), (a

′
0, β1

−1
, . . . , βk

−1
, βk+1, . . . , βN)

)
∈ ĨS

is not in the image of ĨS′.
�

Proof Theorem 4.1. (i) Since each ĨS is irreducible and connected, their images are irre-
ducible so I consists of N + 1 irreducible and connected components I0, . . . , IN where Ik is
the image of ĨS for any subset S ⊂ {1, . . . , N} such that |S| = k. (This includes the empty
set.)

(ii,iii) We now compute the degree of the projection Ik → X. We know that if S is any

subset with |S| = k then the map ĨS → Ik → X has degree N ! since IS is homeomorphic to
X̃. Two general elements of ĨS have the same image in Ik if and only if there is a permutation
τ ∈ SN such that τ(S) = S and τ(Sc) = Sc. Hence Ik may be identified with the quotient of
ĨS by a subgroup of SN isomorphic to Sk × SN−k. Hence the degree of of the map ĨS → Ik
is k!(N − k)!. Since the degree of a finite map is multiplicative it follows that the degree of
the map Ik → X equals to N !

k!(N−k)!
=
(
N

k

)
.

(iv) The involution (order two automorphism) of Ĩ given by

((a0, β1, . . . , βN), (a
′
0, β

′
1, . . . , β

′
N)) 7→

(
(a0, β1, . . . , βN), (a

′
0β1

′
. . . βN

′
, (β ′

1)
−1, . . . , (β ′

N )
−1
)
)

takes ĨS → ĨSc . Given (x̃, x̃′) ∈ Ĩ, let (x̃, ˜̇x′) be its image under the involution. If (x, x′)
is the image in I of (x̃, x̃′) then the image in I of (x̃, ˜̇x′) is (x, ẋ′) where ẋ′ is obtained by
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conjugation and reflection. If |S| = k then |Sc| = |N − k|, so we see that Ik 7→ IN−k under
the involution (x, x′) 7→ (x, ẋ′).

(v) Given x ∈ X, let β1, . . . , βN be the roots of the Fourier polynomial x̂(ω). For generic x
none of the roots β1, . . . , βN lie on the unit circle. If (x, x′) ∈ Ik and β ′

1, . . . , β
′
N are the roots

of x̂′(ω) then there is a subset S ⊂ {1, . . . , N} such that β ′
i = βi

−1
for i ∈ S and β ′

i = βi for
i ∈ Sc. If none of β1, . . . βN lie on the unit circle in the complex plane, then by Lemma 3.9,
x′ 6= ẋ unless S = {1, . . . , N} meaning |S| = N . Hence if 0 < k < N then for a generic pair
(x, x′) ∈ Ik, x

′ 6= x and x′ 6= ẋ. �

4.3. Characterization of the components of I in terms of convolution. In [1, Theo-
rem 2.3], Beinert and Plonka prove that two signals x and y have the same Fourier intensity
function if and only if there exist finite signals x1, x2 such that x = x1 ⋆ x2 and y = λx1 ⋆ ẋ2

for some λ ∈ S1.
Their result can be made more precise by using our analysis of the irreducible components

of the incidence variety.

Theorem 4.8. The component Ik ⊂ I parametrizes all pairs of equivalence classes (x, x′)
such that there exist vectors x1 ∈ Ck+1, x2 ∈ CN−k+1 such that x = x1 ⋆ x2 and x′ = x1 ⋆ ẋ2.

Proof. If x = x1 ⋆ x2 then x̂(ω) = x̂1(ω)x̂2(ω). Thus if x̂1(ω) = a0(ω − β1) . . . (ω − βk) and
x̂2(ω) = a′0(ω − βk+1) . . . (ω − βN−k) then x̂(ω) = (a0a

′
0ω

−1)(ω − β1) . . . (ω − βN).

Similarly if x′ = x1⋆ẋ2 then x̂′ = (βk+1 . . . βN−k)(ω−β1) . . . (ω−βk)(ω−β
−1

k+1) . . . (ω−β
−1

N ).
Hence (x, x′) ∈ Ik. The converse is similar. �

Remark 4.9. Theorem 4.8 above says that we can identify Ik with the image of Ck+1 ×
CN−k+1 under the map (x1, x2) 7→ ((x1 ⋆ x2), (x1 ⋆ ẋ2)).

5. Phase retrieval for vectors satisfying an algebraic condition

We can use our description of the incidence variety to prove that the generic vector satis-
fying any algebraic constraint can be uniquely recovered from its Fourier intensity function,
provided there exists one such vector. Examples include vectors with a fixed entry or sparse
vectors. This technique for multi-vectors played a crucial role in the paper [3] on STFT.

Theorem 5.1 (Phase retrieval for vectors satisfying an algebraic condition). Let W ⊂ X
be a real subvariety of X and suppose that there exists a point w0 ∈ W such that for all
(w0, w

′
0) ∈ π−1(w0)r (I0∪ IN ), w′

0 /∈ W a generic w ∈ W can be recovered up to global phase
from its Fourier intensity function |ŵ(ω)|2.

If the condition holds for all (w0, w
′
0) ∈ π−1(w0)rI0 then a generic w ∈ W can be recovered

up to trivial ambiguities. Here π : I → X is the projection onto the first factor.

Proof of Theorem. Let I0 = I r (I0 ∪ IN). Since I0 is closed the map I0 → X is still finite.
Let IW = I0 ∩ (W × W ) be the real algebraic subset of I0 consisting of pairs (w,w′) with
w,w′ both in W . The image of IW under the projection π : I → X is the set of w ∈ W
which cannot be recovered up to trivial ambiguity from |ŵ(ω)2|. We will show that W r IW
is Zariski dense.

By assumption there exists w0 ∈ W such that for all pairs (w0, w
′
0) ∈ I0, w′

0 /∈ W . This
implies that W ×W intersects each irreducible component of π−1(W ) in a proper algebraic
subset. Hence, dim IW < dim π−1(W ) = dimW . Thus, dim π(IW ) < dimW so π(IW ) is
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contained in a proper algebraic subset of W . Hence the complement of π(IW ) is dense in
the real Zariski topology on W . �

5.1. Imposing uniqueness with additional conditions. Using Theorem 5.1 we can show
that a signal can be recovered modulo trivial ambiguities from the Fourier intensity function
and the absolute value of a single entry. We illustrate with the following Corollary which
is also proved in [1, Corollary 4.4]. See the paper [2] for more conditions which impose
uniqueness.

Corollary 5.2. [1, Corollary 4.4] For generic x ∈ C× ×CN−1 ×C× the system of equations

|x̂′(ω)|2 = |x̂(ω)|2

|x′[N ]| = |x[N ]|
has a unique solution modulo global phase. If x′[N ] = x[N ] then the solution is unique.

Proof. Let |x[N ]| = a with a > 0. By Theorem 5 it suffices to find a single vector x with
x[N ] = a such that for all (x, x′) ∈ π−1(x) ∩ (I r I0 ∪ IN ), |x′[N ]| 6= a.

We do this as follows: Let x = (a′, 0, . . . , 0, a) with a′ > 0 and not equal to a. The
Fourier polynomial x̂(ω) = a′ + aωN so |x̂(ω)2| = (a2 + (a′)2) + (aa′)ωN + (a′a)ω−N . If
x′ = (a0, . . . , aN) has the same Fourier intensity function then a0aN = aa′. If |aN | = a then
|a0| = a′. But the constant coefficient is |a0|2 + . . . |aN |2 = a′2 + a2 so we conclude that all
other entries in x′ are 0. Hence, up to global phase x′ = (a0, 0, . . . , 0, a). But a0a = aa′ so
a0 = a′; ie x′ = x. �

5.2. Imposing uniqueness for multivectors. Theorem 5.1 can easily be generalized to
multi-vectors. It is this form of the theorem that was used in [3]. Given positive integers,
N1, . . . , Nm let X [n] = CNn+1/S1 Let I[n] ⊂ X [n] × X [n] be the incidence variety and let
π[n] : I[n] → X [n] be the projection to the first factor. Let X = X [1] × . . . × X [m] and
I = I[1]× . . . I[m] be the product of the incidences. Finally let π : I → X be the product of
the projections π[n].

Theorem 5.3 (Imposing uniqueness for multivectors). Let W be an irreducible algebraic
subset of X. Suppose that there exists an m-tuple of vectors w0 ∈ W such that for all
(w0, w

′
0) ∈ π−1(w), w′

0 is not obtained from w0 by a trivial ambiguity. Then the generic
m-tuple w ∈ W can be recovered (up to phase) from the Fourier intensity functions of its
component vectors.

Proof. We use the same argument as in the proof of Theorem 5.1 to show that the set of
w ∈ W that cannot be recovered from their Fourier intensity function has strictly smaller
dimension than W . �

Example 5.4. [3, Proposition B.1] In [3] we consider the problem of giving lower bounds
on the number of measurements required for blind phaseless STFT for signals of length
N , windows of length W and step size equal to L. The main result of that paper is that
∼ 10N measurements are sufficient for generic signal recovery modulo ambiguities and this
is independent of the step size or window length.

As part of the proof we need to show that a generic triple (y1, y2, y3) in the subvariety
Z ⊂ CL+1 × C2L+1 × C3L+1 defined by the system of quadratic equations

{y1[n]y3[L+ n] = y2[n]y2[L+ n]}n=0,...,L



16 DAN EDIDIN

is uniquely determined up to global phase by the Fourier intensity functions of the vectors
y1, y2, y3 . By Theorem 5.3 it suffices to explicitly demonstrate one triple (y1, y2, y3) ∈ Z
which is uniquely determined by the Fourier intensity functions of the vectors y1, y2, y3.

References

[1] Robert Beinert and Gerlind Plonka. Ambiguities in one-dimensional discrete phase retrieval from Fourier
magnitudes. J. Fourier Anal. Appl., 21(6):1169–1198, 2015.

[2] Robert Beinert and Gerlind Plonka. Enforcing uniqueness in one-dimensional phase retrieval by addi-
tional signal information in time domain. Appl. Comput. Harmon. Anal., 45(3):505–525, 2018.

[3] T. Bendory, D. Edidin, and Y. C. Eldar. Blind Phaseless Short-Time Fourier Transform Recovery.
ArXiv e-prints, August 2018.

[4] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume 36 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1998. Translated from the 1987 French original, Revised by the authors.

[5] Nicolas Bourbaki. General topology. Chapters 1–4. Elements of Mathematics (Berlin). Springer-Verlag,
Berlin, 1998. Translated from the French, Reprint of the 1989 English translation.

[6] Yu.M. Bruck and L.G. Sodin. On the ambiguity of the image reconstruction problem. Optics Commu-
nications, 30(3):304 – 308, 1979.

[7] Lynn Chua, Daniel Plaumann, Rainer Sinn, and Cynthia Vinzant. Gram spectrahedra. In Ordered
algebraic structures and related topics, volume 697 of Contemp. Math., pages 81–105. Amer. Math. Soc.,
Providence, RI, 2017.

[8] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts
in Mathematics. Springer, Cham, fourth edition, 2015. An introduction to computational algebraic
geometry and commutative algebra.

[9] Allan L. Edmonds. Branched coverings and orbit maps. Michigan Math. J., 23(4):289–301 (1977), 1976.
[10] John Fogarty. Invariant theory. W. A. Benjamin, Inc., New York-Amsterdam, 1969.
[11] Joe Harris. Algebraic geometry, volume 133 of Graduate Texts in Mathematics. Springer-Verlag, New

York, 1992. A first course, Corrected reprint of the 1992 original.
[12] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathemat-

ics, No. 52.
[13] Monson Hayes and James McClellan. Reducible polynomials in more than variable. Proceedings of the

IEEE, 70(2):197–198, 1982.
[14] Dani Kogan, Yonina C. Eldar, and Dan Oron. On the 2D phase retrieval problem. IEEE Trans. Signal

Process., 65(4):1058–1067, 2017.
[15] Alan Oppenheim and Ronald Schafer. Discrete time signal processing, 3rd edition. Pearson, 2010.
[16] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev. Phase retrieval with

application to optical imaging: A contemporary overview. IEEE Signal Processing Magazine, 32(3):87–
109, May 2015.

Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211

E-mail address : edidind@missouri.edu


	1. Introduction
	1.1. Notation.
	1.2. Acknowledgments.

	2. Background on algebraic geometry
	2.1. Real algebraic sets
	2.2. Semi-algebraic sets and their maps
	2.3. Dimension of a semi-algebraic sets
	2.4. Finite coverings of semi-algebraic sets
	2.5. Finite coverings and quotients by finite groups in complex algebraic geometry

	3. Phase retrieval on the root covering
	3.1. The group of trivial ambiguities of the space of signals
	3.2. The root covering
	3.3. The group of ambiguities of the root covering
	3.4. Phase retrieval on the root cover
	3.5. The Fourier intensity map for signals modulo trivial ambiguities

	4. The incidence variety of ambiguities
	4.1. The incidence correspondence on the root covering
	4.2. Proof of Theorem ??
	4.3. Characterization of the components of I in terms of convolution

	5. Phase retrieval for vectors satisfying an algebraic condition
	5.1. Imposing uniqueness with additional conditions
	5.2. Imposing uniqueness for multivectors

	References

