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Abstract

In this work, we propose a framework that combines the approximation-theory-based multifi-
delity method and Gaussian-process-regression-based multifidelity method to achieve data-model
convergence when stochastic simulation models and sparse accurate observation data are available.
Specifically, the two types of multifidelity methods we use are the bifidelity and CoKriging meth-
ods. The new approach uses the bifidelity method to efficiently estimate the empirical mean and
covariance of the stochastic simulation outputs, then it uses these statistics to construct a Gaussian
process (GP) representing low-fidelity in CoKriging. We also combine the bifidelity method with
Kriging, where the approximated empirical statistics are used to construct the GP as well. We prove
that the resulting posterior mean by the new physics-informed approach preserves linear physical
constraints up to an error bound. By using this method, we can obtain an accurate construction of
a state of interest based on a partially correct physical model and a few accurate observations. We
present numerical examples to demonstrate performance of the method.
Keywords: physics-informed, Gaussian process regression, CoKriging, multifidelity, bifidelity, error
bound.

1 Introduction

Gaussian process (GP), a widely used tool in statistics, and machine learning [7, 37, 40], has become
popular in probabilistic scientific computing. GP regression (GPR), also known as Kriging in geostatis-
tics, constructs a statistical model of a partially observed process by assuming that its observations are
a realization of a GP. A GP is uniquely described by its mean and covariance function (also known as
kernel). Its variant, CoKriging, was originally formulated to compute predictions of sparsely observed
states of physical systems by leveraging observations of other states or parameters of the system [39, 19].
Recently, it has been employed for constructing multi-fidelity models [17, 23, 33], and has been applied
in various fields, e.g., [22, 1, 30]. In the widely used stationary Kriging/CoKriging method, usually
parameterized forms of mean and covariance functions are assumed, and the hyperparameters of these
functions (e.g., variance and correlation length) are estimated by maximizing the log marginal likelihood
of the data.

Recently a new framework, physics-informed Kriging (PhIK)/physics-informed CoKriging (CoPhIK),
was developed for those applications where partially correct physical models along with sparse observation
data are available [49, 46]. These physical models are constructed based on domain knowledge, and they
include random variables or random fields to represent the lack of knowledge (e.g., unknown physical law,
uncertain parameters, etc). The PhIK/CoPhIK framework combines the realizations of the stochastic
physical model with the observation data to provide an accurate reconstruct of the state of interest on
the entire computational domain. These realizations are then used to approximate mean and covariance
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in the PhIK/CoPhIK framework. The most popular approach of obtaining model realizations is the
Monte Carlo (MC) simulation, and it can be replaced by more efficient approaches to estimate mean
and covariance, e.g., quasi-Monte Carlo [29], probabilistic collocation [42, 45], Analysis Of Variance
(ANOVA) [25, 47], compressive sensing [4, 48], and the moment equation method [41].

It is worthy to note that the aforementioned approaches rely on single a fidelity solver. For large scale
applications, the computational cost can still be prohibitive if a large number of samples are required. In
many practical problems, low-fidelity models for the underlying problem are often available, and it is much
less expensive to obtain the realizations of these models. Even though their accuracy is not high, they can
still capture some important physics of the underlying models with low computational cost. Therefore,
it is highly desirable to utilize the computational efficiency of low-fidelity models to reduce the overall
computational cost. Many multifidelity algorithms have been developed based on different principles in
different contexts. These include (a) multi-level Monte Carlo (MLMC) [10, 2], which is already used
in PhIK and CoPhIK to reduce the computational cost [49, 46]; (b) meta-models through GP, i.e.,
CoKriging [17, 43, 34]; (c) variance reduced based approaches, i.e., control-variate based approach [32],
importance sampling [31]; and (d) model discrepancy based approaches [28, 5]. Another trend in the
context of uncertainty quantification is to explore the parameter space by using a large number of low-
fidelity samples to identify a small set of important basis, then learn the “best” approximation rule of
the target high-fidelity solution or its statistics based on the selected basis [27, 51, 50, 6]. Previous
works demonstrated its potential to significantly reduce the computational cost for various applications
by utilizing O(10) high-fidelity simulations, including combustion modeling [26], orbit-state uncertainty
propagation [15], molecular dynamics simulations [36], and turbulence modeling [14], to name a few.

In this work, we propose to employ the multifidelity approaches presented in [27, 51] to accelerate the
computation of PhIK and CoPhIK. For demonstration purpose, we consider the bifidelity model in this
work, and the proposed framework can be implemented in multifidelity (more than two fidelity) models.

2 Methodology

In this section, we begin by reviewing the general GPR framework [44], the Kriging and CoKriging
methods with stationary kernel [7], the PhIK [49] and CoPhIK [46] methods, and the bi-fidelity approach
[51]. Then, we introduce the bi-fidelity-aided PhIK and CoPhIK methods.

2.1 GPR framework

We denote the observation locations as X = {x(i)}Ni=1 (x(i) are d-dimensional vectors in D ⊆ Rd) and
the observed state values at these locations as y = (y(1), y(2), . . . , y(N))> (y(i) ∈ R). For simplicity, we
assume that y(i) are scalars. We aim to predict y at any new location x∗ ∈ D. The GPR method assumes
that the observation vector y is a realization of the following N -dimensional random vector that satisfies
multivariate Gaussian distribution:

Y =
(
Y (x(1)), Y (x(2)), . . . , Y (x(N))

)>
,

where Y (x(i)) is the concise notation of Y (x(i);ω), and Y (x(i);ω) is a Gaussian random variable defined
on a probability space (Ω,F , P ) with ω ∈ Ω. Of note, x(i) can be considered as parameters for the GP
Y (·, ·) : D × Ω → R, such that Y (x(i), ·) : Ω → R is a Gaussian random variable for any x(i) in the set
D. Usually, the GP Y (x) is denoted as

Y (x) ∼ GP (µ(x), k(x,x′)) , (2.1)

where µ(·) : D → R and k(·, ·) : D ×D → R are the mean and covariance functions:

µ(x) = E {Y (x)} , (2.2)

k(x,x′) = Cov {Y (x), Y (x′)} = E {(Y (x)− µ(x))(Y (x′)− µ(x′))} . (2.3)

The variance of Y (x) is k(x,x), and its standard deviation is σ(x) =
√
k(x,x). The covariance matrix

of random vector Y , denoted as C, is defined as Cij = k(x(i),x(j)). Functions µ(x) and k(x,x′) are
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obtained by identifying their hyperparameters via maximizing the log marginal likelihood [44]:

lnL = −1

2
(y − µ)>C−1(y − µ)− 1

2
ln |C| − N

2
ln 2π, (2.4)

where µ = (µ(x(1)), . . . ,x(N))>. The result of GPR is a posterior distribution y(x∗) ∼ N (ŷ(x∗), ŝ2(x∗))
for any x∗ ∈ D, where

ŷ(x∗) = µ(x∗) + c(x∗)>C−1(y − µ), (2.5)

ŝ2(x∗) = σ2(x∗)− c(x∗)>C−1c(x∗), (2.6)

and c(x∗) is a vector of covariance, i.e., (c(x∗))i = k(x(i),x∗). In practice, it is common to use ŷ(x∗) as
the prediction, and ŝ2(x∗) is also called the mean squared error (MSE) of the prediction because ŝ2(x∗) =
E
{

(ŷ(x∗)− Y (x∗))2
}

[7]. Consequently, ŝ(x∗) is the root mean squared error (RMSE). Moreover, to
account for the observation noise, one can assume that the noise is independent and identically distributed
(i.i.d.) Gaussian random variables with zero mean and variance δ2, and replace C with C + δ2I. In
this study, we assume that observations y are noiseless. If C is not invertible or its condition number is
very large, one can add a small regularization term αI (α is a small positive real number) to C, which is
equivalent to assuming there is an observation noise. In addition, ŝ can be used in global optimization,
or in the greedy algorithm to identify locations of additional observations. Specifically, in the greedy
algorithm, the new observations can be added at the maxima of ŝ, see Appendix A for details.

2.2 Kriging and CoKriging with stationary kernel

In the widely used ordinary Kriging method, a stationary GP is assumed [18]. Specifically, µ is set as a
constant µ(x) ≡ µ, and k(x,x′) = k(τ ), where τ = x− x′. Consequently, σ2(x) = k(x,x) = k(0) = σ2

is a constant. Popular forms of kernels include polynomial, exponential, Gaussian (squared-exponential),
and Matérn functions. For example, the Gaussian kernel can be written as k(τ ) = σ2 exp

(
− 1

2‖x− x
′‖2w
)
,

where the weighted norm is defined as ‖x−x′‖2w =

d∑
i=1

(
xi − x′i
li

)2

. Here, li (i = 1, . . . , d), the correlation

lengths of y in the i direction, are constants. Given a stationary covariance function, the covariance
matrix C of Y can be written as C = σ2Ψ, where Ψij = exp(− 1

2‖x
(i)−x(j)‖2w). In the MLE framework,

the estimators of µ and σ2, denoted as µ̂ and σ̂2, are

µ̂ =
1>Ψ−1y

1>Ψ−11
, σ̂2 =

(y − 1µ̂)>Ψ−1(y − 1µ̂)

N
, (2.7)

where 1 is a constant vector consisting of 1 [7]. The hyperparameters σ and li are estimated by max-
imizing the log marginal likelihood in Eq. (2.4). The ŷ(x∗) and ŝ2(x∗) in Eq. (2.5) take the following
form:

ŷ(x∗) = µ̂+ψ>Ψ−1(y − 1µ̂), (2.8)

ŝ2(x∗) = σ̂2
(
1− ψ>Ψ−1ψ

)
, (2.9)

where ψ = ψ(x∗) is a vector of correlations between the observed data and the prediction, i.e., ψi =
1
σ2 k(x(i),x∗).

Next, we briefly review the formulation of CoKriging for two-level multifidelity modeling. Suppose

that we have high-fidelity data (e.g., accurate measurements of states) yH =
(
y

(1)
H , . . . , y

(NH)
H

)>
at

locations XH =
{
x

(i)
H

}NH

i=1
, and low-fidelity data (e.g., simulation results) yL =

(
y

(1)
L , . . . , y

(NL)
L

)>
at

locations XL =
{
x

(i)
L

}NL

i=1
, where y

(i)
H , y

(i)
L ∈ R and x

(i)
H ,x

(i)
L ∈ D ⊆ Rd. We denote X̃ = {XL,XH} and

ỹ =
(
y>L ,y

>
H

)>
.

Kennedy and O’Hagan [17] proposed a multifidelity formulation based on the auto-regressive model
for GP YH (∼ GP(µH(·), kH(·, ·))):

YH(x) = ρYL(x) + Yd(x), (2.10)
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where YL(·) (∼ GP(µL(·), kL(·, ·))) regresses the low-fidelity data, ρ ∈ R is a regression parameter and
Yd(·) (∼ GP(µd(·), kd(·, ·)) models the difference between YH and ρYL. This model assumes that

Cov {YH(x), YL(x′) | YL(x)} = 0, for all x′ 6= x, x,x′ ∈ D. (2.11)

The covariance of observations, C̃, is then given by

C̃ =

(
CL(XL,XL) ρCL(XL,XH)
ρCL(XH ,XL) ρ2CL(XH ,XH) + Cd(XH ,XH)

)
, (2.12)

where CL and Cd are the covariance matrices computed from kL(·, ·) and kd(·, ·), respectively. One can
assume parameterized forms for these kernels (e.g., Gaussian kernel) and employ the following two-step
approach [8, 7] to identify hyperparameters:

1. Use Kriging to construct YL using {XL,yL}.

2. Denote yd = yH − ρyL(XH), where yL(XH) are the values of yL at locations common to those of
XH , then construct Yd using {XH ,yd} via Kriging.

The posterior mean and variance of YH at x∗ ∈ D are given by

ŷ(x∗) = µH(x∗) + c̃(x∗)>C̃−1(ỹ − µ̃), (2.13)

ŝ2(x∗) = ρ2σ2
L(x∗) + σ2

d(x∗)− c̃(x∗)>C̃−1c̃(x∗), (2.14)

where µH(x∗) = ρµL(x∗) + µd(x
∗), σ2

L(x∗) = k
L

(x∗,x∗), σ2
d(x∗) = kd(x

∗,x∗), and

µ̃ =

(
µL
µH

)
=

( (
µL(x(1)

L
) . . . , µL(x(NL)

L
)
)>(

µH(x(1)
H

) . . . , µH(x(NH)
H

)
)>
)
, (2.15)

c̃(x∗) =

(
ρcL(x∗)
cH(x∗)

)
=

((
ρkL(x∗,x

(1)
L ), . . . , ρk

L
(x∗,x

(NL)
L )

)>(
kH(x∗,x

(1)
H ), . . . , kH(x∗,x

(NH)
H )

)>
)
, (2.16)

where kH(x,x′) = ρ2kL(x,x′) + kd(x,x
′). Here, we have neglected a small contribution to ŝ2 (see [7]).

Alternatively, one can simultaneously identify hyperparameters in kL(·, ·) and kd(·, ·) along with ρ by
maximizing the following log marginal likelihood:

lnL̃ = −1

2
(ỹ − µ̃)>C̃−1(ỹ − µ̃)− 1

2
ln
∣∣C̃∣∣− NH +NL

2
ln 2π. (2.17)

2.3 PhIK and CoPhIK

The recently proposed PhIK method [49] takes advantage of the existing domain knowledge, e.g., ap-
proximate numerical or analytical physics-based models, in the form of realizations of a stochastic model
of the system. Consequently, the mean and covariance of the GP model can be approximated using these
realizations. As such, there is no need to assume a specific form of the correlation functions and solve an
optimization problem for the hyperparameters. These stochastic models typically include random pa-
rameters or random processes/fields to reflect the lack of understanding (of physical laws) or knowledge
(of the coefficients, parameters, etc.) of the real system. Then, MC simulations can be conducted to
generate an ensemble of the state of interest, from which the statistics, e.g., mean and standard deviation,
are estimated.

Specifically, assume that we have M realizations of a stochastic model u(x;ω) (x ∈ D,ω ∈ Ω) denoted
as {um(x)}Mm=1, and we can build the following GP model:

Y (x) ∼ GP(µMC(x), kMC(x,x′)), (2.18)

where

µ(x) ≈ µMC(x) =
1

M

M∑
m=1

um(x),

k(x,x′) ≈ kMC(x,x′) =
1

M − 1

M∑
m=1

(um(x)− µMC(x)) (um(x′)− µMC(x′)) .

(2.19)
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Thus, the covariance matrix of Y can be estimated as

C ≈ CMC =
1

M − 1

M∑
m=1

(um − µMC) (um − µMC)
>
, (2.20)

where um =
(
um(x(1)), . . . , um(x(N))

)>
, µMC =

(
µMC(x(1)), . . . , µMC(x(N))

)>
. The prediction and

MSE at location x∗ ∈ D are

ŷ(x∗) = µMC(x∗) + cMC(x∗)>C−1
MC(y − µMC), (2.21)

ŝ2(x∗) = σ̂2
MC(x∗)− cMC(x∗)>C−1

MCcMC(x∗), (2.22)

where σ̂2
MC(x∗) = kMC(x∗,x∗) is the variance of data set {um(x∗)}Mm=1, and

cMC(x∗) =
(
kMC(x(1),x∗), . . . , kMC(x(N),x∗)

)>
.

Similarly, the CoPhIK method uses model realizations to construct YL in CoKriging. Specifically, we
set XL = XH to simplify the formula and computing, and denote N = NH = NL. We set µL(x) =
µMC(x) and kL(x,x′) = kMC(x,x′) to construct YL, where µMC and kMC are given by Eq. (2.19). The
GP model Yd is constructed using the same approach as in the second step of the Kennedy and O’Hagan
CoKriging framework. Specifically, we set yd = yH − ρµL(XL). The reason for this choice is that
µL(XH) is the most probable observation of the GP YL. Next, we need to assume a specific form of the
kernel function. Without loss of generality, we use the stationary Gaussian kernel model and constant
µd. Once yd is computed, and the form of µd(·) and kd(·, ·) are decided, Yd can be constructed as in

ordinary Kriging. Now that all components of lnL̃ in Eq. (2.17) are specified except for the yL in ỹ .

We set yL as the realization from the ensemble {um(x)}Mm=1 that maximizes lnL̃. The algorithm is
summarized in Algorithm 1.

Algorithm 1 CoPhIK using stochastic simulation model u(x;ω) on D ×Ω (D ⊆ Rd), and high-fidelity

observation yH = (y
(1)
H , . . . y(N)

H
)> at locations XH = {x(i)

H }Ni=1.

1: Conduct stochastic simulation, e.g., MC simulation, using u(x;ω) to generate realizations
{um(x)}Mm=1 on the domain D.

2: Use PhIK to construct GP YL on D × Ω, i.e., µL(·) = µMC(·) and kL(·, ·) = kMC(·, ·) in

Eq. (2.19). Compute µL(XL) =
(
µL(x

(1)
L ), . . . µL(x

(N)
L )

)>
, and CL(XL,XL) whose ij-th ele-

ment is kL(x
(i)
H ,x

(j)
H ). Set CL(XL,XH) = CL(XH ,XL) = CL(XH ,XH) = CL(XL,XL) (because

XL = XH).
3: Denote yd = yH − ρµL(XL), choose a specific kernel function kd(·, ·) (Gaussian kernel in this work)

for the GP Yd, and identify hyperparameters via maximizing the log marginal likelihood Eq. (2.4),
where y,µ,C are specified as yd,µd,Cd, respectively. Then construct µ̃ in Eq. (2.15), and Cd whose

ij-th element is kd(x
(i)
H ,x

(j)
H ).

4: Iterate over the set {um(x)}Mm=1 to identify um(x) that maximizes ln L̃ in Eq. (2.17), where yL =
(um(x(1)

H
), . . . , um(x(N)

H
))> is used in ỹ .

5: Compute the posterior mean using Eq. (2.13), and variance using Eq. (2.14) for any x∗ ∈ D.

It was demonstrated that PhIK prediction on the entire domain D preserves the linear physical
constraints up to an error bound that relies on the numerical error, discrepancy between the physical
model and real system, and the smallest eigenvalue of matrix C [49]. For example, the deterministic
periodic, Dirichelet or Neumann boundary condition can be preserved. Another type of example is the
linear derivative operator, e.g., Lu = ∇2u. If u satisfies ∇2u(x;ω) = 0 for any ω ∈ Ω, e.g., u is the
velocity potential, ŷ(x) from PhIK also guarantees a divergence-free flow field. CoPhIK has the potential
to improve the accuracy of the prediction, namely resulting in a smaller discrepancy between posterior
mean and the exact solution because CoPhIK incorporates observations in constructing the GP model,
while PhIK only uses model simulations. On the other hand, CoPhIK result may violate some physical
constraints because of the choice of Yd kernel [46].
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2.4 Bi-fidelity approximation

In this section, we present the bi-fidelity
method, and related error estimates when it is combined with PhIK and CoPhIK.

2.4.1 Algorithm

We briefly describe the bi-fidelity method [27, 51, 50, 26]. We slightly modify the notation u(x;ω) as
u(x; z(ω)) to denote the stochastic model used in PhIK and CoPhIK. Here, z(ω) is the finite-dimensional
random variable or field included in the model, and we denote it as z for simplicity. Subsequently,
zm = z(ωm) is a sample z, and we assume that zm ∈ Iz for any m. Let umH(x) denote the high-fidelity
simulation result for u(x; zm), e.g., simulation using fine grids or high-order scheme, and umL (x) denote
the low-fidelity simulation result for u(x; zm), e.g., simulation using coarse grids or low-order scheme. In
PhIK, the mean and covariance functions of GP Y (x) are approximated using um(x) (see Eq. (2.19)),
which are umH(x) in the bi-fidelity framework, and so as GP YL(x) in the CoPhIK method. Now, we aim
to approximate these mean and covariance functions using a few umH(x) and a large number of umL (x), as
such to reduce the computational cost of model simulations. More specifically, the bi-fidelity approach
aims to approximate mean and covariance functions in PhIK and CoPhIK functions using {umH(x)}MH

m=1

along with {umL (x)}ML
m=1, where MH �ML, and ML is M in the original PhIK and CoPhIK formulation.

For brevity, we denote umL (x) and umH(x) as umL and umH , respectively. We also assume that umH ∈ VH
and umL ∈ VL, where VH and VL are Hilbert spaces with inner product 〈·, ·〉H and 〈·, ·〉L, respectively.
Given a collection of parametric sample Γ = {z1, . . . , zML} ⊂ Iz, we introduce the following notations:

uL(Γ) = {umL }
ML

m=1 , UL(Γ) = spanuL(Γ) = span
{
u1
L, . . . , u

ML

L

}
,

uH(Γ) = {umH}
ML

m=1 , UH(Γ) = spanuH(Γ) = span
{
u1
H , . . . , u

ML

H

}
.

(2.23)

The procedure of the bi-fidelity algorithm for estimating mean and covariance functions is presented in
Algorithm 2.

Algorithm 2 Bi-fidelity method of computing mean and covariance functions in PhIK and CoPhIK.

1: Conduct the low-fidelity simulations at the sample set Γ to obtain realizations uL(Γ).
2: Select a subset of samples γ = {zi1 , . . . , ziMH } ⊂ Γ, where MH �ML.
3: Conduct high-fidelity computations at the subset γ and obtain the high-fidelity simulation samples,

uH(γ) =
{
ui1H , . . . , u

iMH

H

}
.

4: Construct uB(Γ) = {u1
B , . . . , u

ML

B } based on uH(γ).
5: Compute mean and covariance functions using uB(Γ).

We detail the steps 2 and 4 in Algorithm 2 as follows [27, 51]. Let W be the Gramian matrix of the
low-fidelity simulations uL(Γ), i.e.,

wij = 〈uiL, u
j
L〉L, 1 ≤ i, j ≤ML. (2.24)

Applying the pivoted Cholesky decomposition to the matrix W yields

W = P>LL>P, (2.25)

where L is lower-triangular and P is a permutation matrix due to pivoting. This will produce an
ordered permutation vector p = (i1, . . . , iML

), from which we choose the first MH points to define
γ = {zi1 , . . . , ziMH }. In practice, we can use a greedy algorithm to identify γ. In each iteration, we
find the next sample whose corresponding low-fidelity simulation is furthest to the space spanned by
the existing low-fidelity simulation set. Specifically, starting from a trivial initial choice γ0 = ∅, we let
γk = {zi1 , . . . , zik} ⊂ Γ be the k-point existing subset in Γ. We then find the (k + 1)-th point by

zik+1 = argmax
z∈Γ

dist(uL(x; z), UL(γk)), γk+1 = γk ∪ zik+1 , (2.26)

where, UL(γk) = spanuL(γk) = span
{
ui1L , . . . , u

ik
L

}
, the distance function dist(g,G) between the func-

tion g ∈ uL(Γ) and the space G ⊂ UL(Γ) follows the standard definition. This greedy algorithm can be
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readily implemented via simple operations of numerical linear algebra. More details and properties of
the algorithm can be found in [27, 51].

Once the steps 1-3 are accomplished in Algorithm 2, we have sample set Γ, low-fidelity simulations
uL(Γ), the subset samples γ ⊂ Γ, and high-fidelity simulations uH(γ). The next step is a lifting procedure:
we use the best approximation rule of uL we learned on VL to construct an interpolation operator, then

apply it to VH . Therefore, uL(γ) =
{
ui1L , . . . , u

iMH

L

}
forms a linearly independent set. The convergence

of the bifidelity method with respect to MH is investigated in [27]. In this work, we set the threshold to
be 10−12 in the greedy algorithm presented in [51] such that span uL(γ) is almost the same as span uL(Γ).

For any v ∈ UL(Γ) ⊂ VL, the projection of v on spanuL(γ) is

PLv =

MH∑
j=1

cju
ij
L . (2.27)

Then, we define the interpolation operator IHL (γ, v) : VL → UH(γ) as

IHL (γ, v) =

MH∑
j=1

cju
ij
H , v ∈ VL, (2.28)

where UH(γ) = spanuH(γ). Subsequently, we construct uB(Γ) as

umB = IHL (γ, umL ), m = 1, . . . ,ML. (2.29)

The mean and covariance in PhIK are approximated by replacing um, where um = umH , in Eq. (2.19)
with umB , and set M = ML. The GP YL in CoPhIK is constructed in the same manner. We name the
bifidelity-based PhIK and CoPhIK as BiPhIK and CoBiPhIK, respectively.

Here, we roughly compare the computational cost of constructing uH(Γ) and uB(Γ) for the sample
set Γ of size M . We denote the cost of obtaining one realization of uH and uL with CH and CL,
respectively. Therefore, the total cost of obtaining uH(Γ) is MLCH . The computational costs of the
pivot Cholesky decomposition and the lifting procedure are negligible when the simulation model is
complicated. Thus, the total cost of obtaining uB(Γ) is approximated MLCL +MHCH . Therefore, the

ratio of computational cost for obtaining uB(Γ) and uH(Γ) is
CL
CH

+
MH

ML
. The speedup of bifidelity

approximation over high-fidelity simulation on the data set Γ can be significant when CL � CH and
MH �ML.

2.4.2 Error estimate

Because umH in PhIK and CoPhIK are replaced by umB in BiPhIK and CoBiPhIK, we present error estimate
results to compare the new method with the original approaches. Recalling that um(x) in Eq. (2.19)
are umH(x) used in the bi-fidelity framework and M = ML, we denote µMC(x) and kMC(x,x′) in this
equation as µH(x) and kH(x,x′), respectively. Subsequently, we denote the resulting posterior mean and
variance as ŷH(x) and ŝ2

H(x). Similarly, when using bi-fidelity ensemble uB(Γ) to approximate mean and
covariance functions in Eq. (2.19), i.e. replacing um(x) with umB (x), we denote these two functions as
µB(x) and kB(x,x′), and the corresponding results as ŷB(x) and ŝ2

B(x). We use ‖ ·‖ to denote the norm
induced from the inner product 〈·, ·〉H in the Hilbert space VH , and introduce the following functions:

σH(x) =

(
1

M − 1

M∑
m=1

|umH(x)− µH(x)|2
) 1

2

,

σB(x) =

(
1

M − 1

M∑
m=1

|umB (x)− µB(x)|2
) 1

2

,

(2.30)
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and the following constants:

δ1 = sup
z∈Iz
‖uH(x; z)− uB(x; z)‖,

δ2 = sup
z∈Iz
‖uH(x; z)− uB(x; z)‖∞,

σH(Γ) =

(
1

M − 1

M∑
m=1

‖umH(x)− µH(x)‖2
) 1

2

,

σB(Γ) =

(
1

M − 1

M∑
m=1

‖umB (x)− µB(x)‖2
) 1

2

,

SH =

(
N∑
n=1

σ2
H(x(n))

) 1
2

, SB =

(
N∑
n=1

σ2
B(x(n))

) 1
2

,

∆H = sup
x∈D

σH(x), ∆B = sup
x∈D

σB(x).

(2.31)

The following two theorems describe the difference between the results by PhIK and BiPhIK.

Theorem 2.1.
‖ŷH(x)− ŷB(x)‖ ≤ C1δ1 + C2δ2, (2.32)

where

C1 =1 + 2SB

√
MN

M − 1

∥∥C−1
B

∥∥
2
‖y − µB‖2 ,

C2 =
√
NSHσH(Γ)

∥∥C−1
H

∥∥
2

{
2

√
2M

M − 1

(
S2
H + S2

B

) 1
2
∥∥C−1

H

∥∥
2
‖y − µB‖2 + 1

}

+ 2

√
MN

M − 1
σH(Γ)

∥∥C−1
B

∥∥
2
‖y − µB‖2 .

(2.33)

Theorem 2.2.
‖ŝ2
H(x)− ŝ2

B(x)‖∞ ≤ C3δ2, (2.34)

where

C3 = 2

√
2M

M − 1
(∆2

H + ∆2
B)

1
2 ·
{

1 +N
(

∆2
H‖C−1

H ‖2 +
√
N∆2

H∆2
B‖C−1

H ‖
2
2 + ∆2

B‖C−1
B ‖2

)}
. (2.35)

We present the proof of these two theorems in Appendix B. We note that Theorem 2.2 uses the L∞
norm because the greedy algorithm we use to add new observations is based on the maximum of ŝ. The
error estimate in L2 norm can also be derived using the similar procedure in the proofs of Theorems 2.2.
Moreover, although we present upper bounds in terms of δ1 and δ2, the error estimate is dependent on
the mean and covariance functions constructed by different methods. It is possible that in some cases,
the pathwise difference is large in different methods (i.e., δ1 and δ2 are large), but the difference between
the mean and covariance functions are small. Moreover, the quantitative error estimate for CoBiPhIK
is also dependent on the kernel function property for Yd and the convexity of the optimization, and it is
not available at this time. Empirically, CoPhIK is more sensitive to the difference between uH(Γ) and
uB(Γ).

The next two theorems describe how well a linear physical constraint is preserved in BiPhIK and
CoBiPhIK posterior means.

Theorem 2.3. Assume that ‖LuH(x; z(ωm)) − g(x)‖ ≤ ε for any ωm ∈ Ω, where L is a deterministic
bounded linear operator, g(x) is a well-defined deterministic function on Rd, and ‖ · ‖ is the norm in
VH . Then, the posterior mean ŷB(x) from BiPhIK satisfies

‖LŷB(x)− g(x)‖ ≤ ε

{
1 + 2SH

√
M

M − 1

∥∥C−1
H

∥∥
2
‖y − µH‖2

}
+ML(C1δ1 + C2δ2), (2.36)

where ML is the bound of L, C1 and C2 are defined in Theorem 2.1.
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Proof.
‖LŷB(x)− g(x)‖ =‖L[ŷB(x)− ŷH(x) + ŷH(x)]− g(x)‖

≤‖LŷH(x)− g(x)‖+ ‖L(ŷB(x)− ŷH(x))‖
=‖LŷH(x)− g(x)‖+ML‖ŷB(x)− ŷH(x)‖.

Theorem 2.1 presents the upper bound of ‖ŷB(x) − ŷH(x)‖. The upper bound for ‖LŷH(x) − g(x)‖
needs slightly modifying the proof of Theorem 2.1 in [49]. Specifically, by setting g(x;ω) = g(x) the last
line in that proof will be

‖LŷH(x)− g(x)‖ ≤ε+ 2ε

√
M

M − 1

N∑
n=1

|an|σH(x(n)), (2.37)

where

N∑
n=1

|an|σH(x(n)) ≤

(
N∑
n=1

a2
n

) 1
2
(

N∑
n=1

σ2
H(x(n))

) 1
2

= ‖C−1
H (y − µH)‖2SH ≤ ‖C−1

H ‖2‖y − µH‖2SH .

Theorem 2.4. Assume that ‖LuH(x; z(ωm)) − g(x)‖ ≤ ε for any ωm ∈ Ω, where L is a deterministic
bounded linear operator, g(x) is a well-defined deterministic function on Rd, and ‖ · ‖ is the norm in
VH . Then, the posterior mean ŷB(x) from CoBiPhIK, in which YL is constructed by uB(Γ), satisfies

‖LŷB(x)− g(x)‖ ≤ρε+ (1− ρ)‖g(x)‖+ 2ερSH

√
M

M − 1
‖C−1

B ‖2‖yL − µB‖2

+ ‖Lµd‖+ ‖C−1
2 ‖2‖yH − ρyB − 1µd‖2

N∑
n=1

∥∥∥Lkd
(x,x(n))

∥∥∥+ML(C1δ1 + C2δ2),

(2.38)
where C1 and C2 are CL(XL,XL) and Cd(XH ,XH) in Algorithm 1, respectively, and ML is the bound
of L.

Proof.
‖LŷB(x)− g(x)‖ ≤ ‖LŷH(x)− g(x)‖+ML‖ŷB(x)− ŷH(x)‖,

where ŷH(x) is the posterior mean by the original CoPhIK method, i.e., {um(x)}Mm=1 is taken as uH(Γ) in
Algorithm 1. Then similar to the proof in Theorem 2.4, we set g(x;ω) = g(x) and use Cauchy-Schwartz

inequality to slightly modify the upper bound estiamte of
∑N
n=1 |an|σH(x(n)) in Theorem 2.2 in [46] to

finish the proof.

3 Numerical Examples

We present three numerical examples to demonstrate the performance of the proposed methods. The
first two examples are drawn from the previous examples in [46] to compare different methods, and
they are two-dimensional problems in physical space. We denote a reference solution, a discretized two-
dimensional field, as matrix F, the reconstructed field (posterior mean) as Fr. We present the RMSE
ŝ, difference Fr − F and relative error ‖Fr − F‖F /‖F‖F (‖ · ‖F is the Frobenius norm) to compare
different methods. Moreover, we adaptively add new observations at the maxima of ŝ (see Appendix A)
to numerically study the convergence with respect to number of observations. In all three examples, we
use Gaussian kernel in Kriging, CoPhIK, and CoBiPhIK because the fields in the examples are relatively
smooth.

3.1 Branin function

We consider the following modified Branin function [7]:

f(x) = a(ȳ − bx̄2 + cx̄− r)2 + g(1− p) cos(x̄) + g + qx, (3.1)
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where x = (x, y),
x̄ = 15x− 5, ȳ = 15y, (x, y) ∈ D = [0, 1]× [0, 1],

and

a = 1, b =
5.1

4π2
, c =

5

π
, r = 6, g = 10, p =

1

8π
, q = 5.

The contour of f and eight randomly chosen observation locations {(0.1, 0.225),
(0.475, 0.2), (0.625, 0.5), (0.675, 0.55), (0.7, 0), (0.775, 0.1), (0.8, 0.9), (0.925, 0.9)} are
presented in Fig. 1. The function f is evaluated on a 41× 41 uniform grid.
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Figure 1: Contours of modified Branin function (on 41× 41 uniform grids) and locations of eight obser-
vations (black squares).

We assume that based on “domain knowledge”, f(x) is partially known. Specifically, its form is

known but the coefficients b and q are unknown. Then, we treat these coefficients as random fields b̂
and q̂, and we also modify the second g as ĝ, which indicates that the field f is described by a random
function f̂ : D × Ω→ R:

f̂(x;ω) = a(ȳ − b̂(x;ω)x̄2 + cx̄− r)2 + g(1− p) cos(x̄) + ĝ + q̂(x;ω)x, (3.2)

where ĝ = 20,

b̂(x;ω) = b

{
0.9 +

0.2

π

3∑
i=1

[
1

4i− 1
sin((2i− 0.5)πx)ξ2i−1(ω) +

1

4i+ 1
sin((2i+ 0.5)πy)ξ2i(ω)

]}
,

q̂(x;ω) = q

{
1.0 +

0.6

π

3∑
i=1

[
1

4i− 3
cos((2i− 1.5)πx)ξ2i+5(ω) +

1

4i− 1
cos((2i− 0.5)πy)ξ2i+6(ω)

]}
,

and {ξi(ω)}12
i=1 are i.i.d. Gaussian random variables with zero mean and unit variance. We use this

“physical knowledge” to compute the mean and covariance function of f̂ by generating M = 300 samples
of ξi(ω) and evaluating f̂ on the 21 × 21 uniform grid for each sample of ξi(ω) to obtain realization

ensemble uL(Γ). We set MH = 21 to construct γ and subsequently evaluate f̂ on a 41× 41 uniform grid
to obtain uH(γ). Finally, we construct uB(Γ) based on uH(γ) and uL(Γ) (Algorithm 2), and use it in
BiPhIK and CoBiPhIK.

It is shown in [49, 46] that Kriging results in inaccurate reconstruction of F by using the eight
observation data. The results of PhIK and BiPhIK are very similar in this case, and we present the
latter in Fig. 2. These results are much better than the Kriging (see also the quantitative comparison in
Fig. 6). There are slight difference betwen the results from CoPhIK and CoBiPhIK as shown in Fig. 3.

We then use a greedy algorithm (in the appendix) that acquires additional observations of the exact
field one by one. Fig. 4 presents the comparison of PhIK and BiPhIK when eight additional observa-
tions (marked as black stars) are added, which shows a slight difference in the location of additional
observations and small discrepancies between the results. Also, Fig. 5 illustrates the difference between
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(a) BiPhIK Fr
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(c) BiPhIK Fr − F

Figure 2: Reconstruction of the modified Branin function by BiPhIK with eight original observations
(squares).
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(a) CoPhIK Fr
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(b) CoPhIK ŝ
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(c) CoPhIK Fr − F
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(d) CoBiPhIK Fr
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(e) CoBiPhIK ŝ
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(f) CoBiPhIK Fr − F

Figure 3: Reconstruction of the modified Branin function by CoPhIK and Co-BiPhIK with eight original
observations (squares).

CoPhIK and CoBiPhIK, and we see more significant differences in the pattern of ŝ and Fr −F than the
comparison between PhIK and BiPhIK.

Fig. 6 presents a quantitative study of the difference between the posterior mean and the reference
solution with respect to the total number of observation data. The results are consistent with Fig.s 2-5
in that the difference between PhIK and BiPhIK is very small while the difference between CoPhIK
and CoBiPhIK is larger. We note that the latter is still very small ranging from O(10−3) to O(10−2)
depending on the number of observations. This is because uB(Γ) approximates uH(Γ) very well in this
case. Specifically, δ1 = 0.0279 and δ2 = 0.0012.

3.2 Heat transfer

In the second example, we consider the steady state of a heat transfer problem. The nondimesionalized
heat equation is given as

∂T

∂t
−∇ · (κ(T )∇T ) = 0, x ∈ D, (3.3)

where T (x, t) is the temperature, and the heat conductivity κ is set as a function of T . The computational
domain D is a rectangule [−0.5, 0.5] × [−0.2, 0.2] with two circular cavities R1(O1, r1) and R2(O2, r2),
where O1 = (−0.3, 0), O2 = (0.2, 0), r1 = 0.1, r2 = 0.15 (see Fig. 7). The boundary conditions are given
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(a) PhIK Fr

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0

0.005

0.01

0.015

0.02

(b) PhIK ŝ
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(d) BiPhIK Fr
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(f) BiPhIK Fr − F

Figure 4: Reconstruction of the modified Branin function by PhIK and BiPhIK with eight original
observations (squares) and eight additional observations (stars).
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(a) CoPhIK Fr
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(d) CoBiPhIK Fr
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(f) CoBiPhIK Fr − F

Figure 5: Reconstruction of the modified Branin function by CoPhIK and CoBiPhIK with eight original
observations (squares) and eight additional observations (stars).

as follows: 

T = −30 cos(2πx) + 40, x ∈ Γ1;

∂T

∂n
= −20, x ∈ Γ2;

T = 30 cos(2π(x+ 0.1)) + 40, x ∈ Γ3;

∂T

∂n
= 20, x ∈ Γ4;

∂T

∂n
= 0, x ∈ Γ5.

(3.4)
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Figure 6: Relative error of reconstructed modified Branin function ‖Fr−F ‖F /‖F ‖F using Kriging (“ ◦”),
PhIK (blue “�”), BiPhIK (black “�”), CoPhIK (blue “ �”) and CoBiPhIK (black “ �”) with different
numbers of total observations via active learning.

The “real” conductivity is set as
κ(T ) = 1.0 + exp(0.02T ), (3.5)

and the profile of the steady state temperature is presented in Fig. 7. This solution is obtained by the
finite element method with unstructured triangular mesh using MATLAB PDE toolbox, and the degree
of freedom (DOF) is 1319 (maximum grid size is 0.02). The observations of this exact profile (denoted
as F) are collected at six locations {(−0.4,±0.1), (−0.05,±0.1), (0.4,±0.1)} (black squares in Fig. 7).
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Figure 7: Heat transfer problem. Left: computational domain; right: contours of steady state solution
and locations of six observations (black squares).

Now we assume that due to the lack of knowledge, the conductivity is modeled as

κ(T ;ω) = 0.1 + ξT, (3.6)

where ξ(ω) is a uniform random variable U [0.0012, 0.0108]. Apparently, this physical model significantly
underestimates the heat conductivity, and its form is incorrect. We generate M = 400 samples of ξ(ω)
and solve Eq. (3.3) on a coarser grid (maximum grid size is 0.1) with DOF = 96 to obtain corresponding
temperature solutions which forms uL(Γ). We set MH = 19 in this example.

It is shown in [46], the Kriging reconstruction is not accurate because of the selection of observations
and the property of the exact solution. Fig. 8 presents the results by BiPhIK and CoBiPhIK, and they
are very similar to the results by PhIK and CoPhIK in [46] (not shown here), respectively. These results
are better than Kriging (see Fig. 11 for quantitative comparison).

Next, we adaptively add more observation data one by one. The results by PhIK and BiPhIK are
very similar. We only present Fr by these two methods in Fig. 9 for comparison. We can see that
the discrepancy in Fr is very insignificant, and there is only a slight difference in the locations of new
observations (marked as starts) on the boundary Γ2. Fig. 10 compares the results by CoPhIK and
CoBiPhIK. Although Fr and Fr − F are similar, there is significant discrepancy in ŝ, mainly because
the correlation length li in the Y

d
’s kernel function are different.

Fig. 11 presents the quantitative comparison of the relative error by different methods. In this case,
the PhIK and BiPhIK results are almost the same, and the CoPhIK and CoBiPhIK results are also
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(d) CoBiPhIK Fr
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(e) CoBiPhIK ŝ
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(f) CoBiPhIK Fr − F

Figure 8: Reconstruction of the steady state solution of heat transfer problem by BiPhIK (first row) and
CoBiPhIK (second row) with eight original observations (squares).
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(a) PhIK Fr
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(b) BiPhIK Fr

Figure 9: Reconstruction of the steady state solution of heat transfer problem by PhIK and BiPhIK with
eight original observations (squares) and eight additional observations (stars).
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(c) CoPhIK Fr − F
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(d) CoBiPhIK Fr
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Figure 10: Reconstruction of the steady state solution of heat transfer problem by CoPhIK and CoBiPhIK
with eight original observations (squares) and eight additional observations (stars).

very similar. Kriging performs poorly when the number of observations is smaller than 22, however it
outperforms PhIK (and BiPhIK) when 22 observations are available. CoPhIK (and CoBiPhIK) is always
better than Kriging and PhIK (and BiPhIK) as shown in [46]. Again, in this case, uB(Γ) approximates
uH(Γ) very well (δ1 = 0.0039 and δ2 = 0.0015), which yields a much smaller difference between PhIK
and BiPhIK, and between CoPhIK and CoBiPhIK.
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Figure 11: Relative error of reconstructed steady state solution of heat transfer problem ‖Fr−F ‖F /‖F ‖F
using Kriging (“ ◦”), PhIK (blue “�”), BiPhIK (black “�”), CoPhIK (blue “ �”) and CoBiPhIK (black
“ �”) with different numbers of total observations via active learning.

3.3 Kuramoto-Sivashinsky equation

As a final example, we consider the one-dimensional Kuramoto-Sivashinsy (KS) equation [21, 38]:

ut + 4uxxxx + α

[
uxx +

1

2
(ux)2

]
= 0, 0 ≤ x ≤ 2π,

u(x+ 2π, t) = u(x, t),

u(x, 0) = u0(x),

(3.7)

where
u0(x) = 2.9420 cos(2x) + 0.4642 cos(4x) + 0.0410 cos(6x) + 0.0034 cos(8x). (3.8)

It is well known that this equation can be used to depict a chaotic system, and it is very sensitive to
the parameter α when it is large. More importantly, in numerical simulation, high precision is necessary
because of the extreme sensitivity of the simulations with respect to numerical accuracy [12, 13]. We
use the spectral method for spacial derivatives as in [24]. Specifically, we use Fourier expansion with 256
terms to obtain the reference solution and uH , and use expansion with 128 terms to compute uL. For the
time integration, we use a fourth-order Runge-Kutta method [11] with time step 10−3. We investigate
the solution of a KS equation at T = 5, and the “exact” α = 37.545. Accurate observations are available
at

x =
12π

256
+

56π

256
· j, j = 0, 1, . . . , 8.

We assume that we do not know the exact α, and use the biased “domain knowledge” to set α as
a uniform random variable U [30, 36]. Apparently, this range is below the exact α. We generate 400
samples of α, and compute corresponding umH and umL to compare the performance of different methods.
Specifically, the we set MH = 17 to construct uB(Γ).

Fig. 12 illustrates the reference solution and the locations of accurate observations. The mean of the
{umH}400

m=1 is illustrated as the dashed line, which deviates from the exact solution significantly with the
relative L2 error more than 140%. We also compute the standard deviation of uH at each x. Since we
will use statistics of uH to construct a GP in PhIK, we present the “95% confidence interval”, i.e., mean
plus minus two standard deviations in Fig. 12. We note that this is not the exact confidence interval
of the ensemble {umH}400

m=1 itself. Fig. 12 shows clearly that the exact solution is not bounded by the
confidence interval. This is because in the stochastic model, the α is below its exact value, and the KS
equation is very sensitive to α.

Fig. 13 illustrates the Kriging results by using the nine accurate observations. The reconstruction is
less accurate near the right end than the other regions, and the uncertainty is larger (i.e., the confidence
interval is wider). This is because there is no observation near the right end compared with other
regions. Also, the periodic boundary condition is not preserved. Fig. 14 shows the results by PhIK
(using {umH}400

m=1) and BiPhIK (using {umB }400
m=1). The PhIK performs better than BiPhIK, and, more
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Figure 12: Exact solution of the KS equation (solid line), observations (circles), mean of the realizations
(dashed line) and the “ 95% confidence interval” (shaded area).

importantly, the periodic boundary condition is preserved by PhIK, and slightly violated by BiPhIK.
We note that in this figure, the confidence intervals in both methods are very narrow (∼ O(10−2)).
Similar to the examples in [49, 46] and the other two examples in this session, PhIK usually yields a
less uncertain result, but this result may not be very accurate because the uncertainty estimate of PhIK
relies on its prior covariance, which is totally dependent on the stochasticity of the physical model.
Fig. 15 demonstrates the results by CoPhIK and CoBiPhIK. The CoPhIK is the most accurate of all
the methods (smallest discrepancy between posterior mean and the exact accuracy) with confidence
intervals that cover the reference solution, and the periodic boundary condition is slightly violated. The
CoBiPhIK is the least accurate among all the methods.
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Figure 13: Kriging reconstruction of the KS equation: posterior mean (dashed line), exact solution (solid
line), observations (circles), and 95% confidence interval (shaded area).

Table 1 presents the relative L2 errors of all methods. Different from the previous two examples, in
this example, the structures of space UL(Γ) and UH(Γ) are different because of the sensitivity of the
system to the numerical solution, so uB(Γ) can not approximate uH(Γ) well. Specifically, in this case
δ1 = 89.8 and δ2 = 7.7. Consequently, the error of BiPhIK is larger than PhIK compared with the other
two examples, and the error of CoBiPhIK is much larger than CoPhIK.

Table 1: Relative L2 error (posterior mean vs. reference solution) of different methods for reconstructing
KS equation solution.

Kriging PhIK CoPhIK BiPhIK CoBiPhIK
0.1581 0.1145 0.0822 0.1439 0.2477
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Figure 14: PhIK (left) and BiPhIK (right) reconstruction of the KS equation: posterior mean (dashed
line), exact solution (solid line), observations (circles), and 95% confidence interval (very narrow in this
case).
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Figure 15: CoPhIK (left) and BiCoPhIK (right) reconstruction of the KS equation: posterior mean
(dashed line), exact solution (solid line), observations (circles), and 95% confidence interval (shaded
area).

4 Conclusion

In this work, we extend the PhIK/CoPhIK approach by combining two types of multifidelity methods
in the BiPhIK/CoBiPhIK framework to reduce the computational cost of physical models simulations.
Specifically, the approximation-theory-based bifidelity method is used to generate approximated high-
fidelity realizations of the physical model, which are used to construct GP in PhIK and CoPhIK. The
CoKriging approach utilizes an auxiliary GP to describe the discrepancy between the model outputs and
the sparse accurate observation data. We present the error estimate of the difference between the poste-
rior mean and variance in the resulting GPs by using BiPhIK/CoBiPhIK and PhIK/CoPhIK. We also an-
alyze the accuracy of preserving linear physical constraints in the posterior mean of BiPhIK/CoBiPhIK.

The presented methods are nonintrusive, and can utilize existing domain codes to compute the
necessary realizations. Therefore, these methods are suitable for large-scale complex applications for
which physical models and codes are available. When the parametric dependence of the low-fidelity
model can well inform the structure of the high-fidelity model, the computational cost can be reduced
dramatically.

Our future work would include two directions. One is to use advanced sampling strategies. For
example, instead of MC, the probabilistic collocation method is used for the bifidelity method in [27, 51],
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which can further reduce the computational cost. The other direction is to directly approximate high-
fidelity mean and covariance without generating approximated high-fidelity realizations as in [50]. This
approach will save the cost of the lifting procedure because it only requires solving a much simpler linear
system.

A Adaptive sampling

In this work, we use a greedy algorithm to add additional observations, i.e., to add new observations at
the maxima of s(x), e.g., [7, 35]. Then, we can make a new prediction ŷ(x) for x ∈ D and compute a new
ŝ2(x) to select the next location for additional observation (see Algorithm 3). This selection criterion
is based on the statistical interpretation of the interpolation. More sophisticated sensor placement
algorithms can be found in literature, e.g., [16, 20, 9], and PhIK/BiPhIK or CoPhIK/CoBiPhIK are
complementary to these methods.

Algorithm 3 Active learning based on GPR

1: Specify the locations X, corresponding observations y, and the maximum number of observations
Nmax affordable. The number of available observations is denoted as N .

2: while Nmax > N do
3: Compute the MSE ŝ2(x) of prediction ŷ(x) for x ∈ D.
4: Locate the location xm for the maximum of ŝ2(x) for x ∈ D.
5: Obtain observation ym at xm, and set X = {X,xm},y = (y>, ym)>, N = N + 1.
6: end while
7: Construct the prediction of ŷ(x) on D using X and y.

B Proofs of Theorems 2.1 and 2.2

We present the following three lemmas.

Lemma B.1. For 1 ≤ n ≤ N ,

‖kH(x,x(n))‖ ≤ σH(Γ)σH(x(n)),

‖kB(x,x(n))‖ ≤ σB(Γ)σB(x(n)).
(B.1)

Proof. According to Eq. (2.19), we have

‖kH(x,x(n))‖ =

∥∥∥∥∥ 1

M − 1

M∑
m=1

(umH(x)− µH(x))
(
umH(x(n))− µH(x(n))

)∥∥∥∥∥
≤ 1

M − 1

M∑
m=1

‖umH(x)− µH(x)‖
∣∣∣umH(x(n))− µH(x(n))

∣∣∣
≤ 1

M − 1

(
M∑
m=1

‖umH(x)− µH(x)‖2
) 1

2
(

M∑
m=1

∣∣∣umH(x(n))− µH(x(n))
∣∣∣2)

1
2

=

(
1

M − 1

M∑
m=1

‖umH(x)− µH(x)‖2
) 1

2
(

1

M − 1

M∑
m=1

∣∣∣umH(x(n))− µH(x(n))
∣∣∣2)

1
2

=σH(Γ)σH(x(n)).

Similarly, ‖kB(x,x(n))‖ ≤ σB(Γ)σB(x(n)).

Lemma B.2. For 1 ≤ n ≤ N ,∥∥∥kH(x,x(n))− kB(x,x(n))
∥∥∥ ≤ 2

M − 1

M∑
m=1

(
δ1

∣∣∣umB (x(n))− µmB (x(n))
∣∣∣+ δ2 ‖umH(x)− µH(x)‖

)
. (B.2)
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Proof. For any x ∈ D,

‖µH(x)− µB(x)‖ =

∥∥∥∥∥ 1

M

M∑
m=1

umH(x)− 1

M

M∑
m=1

umB (x)

∥∥∥∥∥ ≤ 1

M

M∑
m=1

‖umH(x)− umB (x)‖ ≤ δ1, (B.3)

and

|µH(x)− µB(x)| =

∣∣∣∣∣ 1

M

M∑
m=1

umH(x)− 1

M

M∑
m=1

umB (x)

∣∣∣∣∣ ≤ 1

M

M∑
m=1

|umH(x)− umB (x)| ≤ δ2. (B.4)

Therefore,∥∥∥kH(x,x(n))− kB(x,x(n))
∥∥∥

=
1

M − 1

∥∥∥∥ M∑
m=1

(umH(x)− µH(x))
(
umH(x(n))− µH(x(n))

)
−

M∑
m=1

(umB (x)− µB(x))
(
umB (x(n))− µB(x(n))

)∥∥∥∥
≤ 1

M − 1

M∑
m=1

{∥∥∥∥ (umH(x)− µH(x))
(
umH(x(n))− µH(x(n))

)
− (umH(x)− µH(x))

(
umB (x(n))− µB(x(n))

)∥∥∥∥
+

∥∥∥∥ (umH(x)− µH(x))
(
umB (x(n))− µB(x(n))

)
− (umB (x)− µB(x))

(
umB (x(n))− µB(x(n))

)∥∥∥∥}
≤ 1

M − 1

M∑
m=1

{
‖umH(x)− µH(x)‖

∣∣∣umH(x(n))− µH(x(n))− umB (x(n)) + µB(x(n))
∣∣∣

+
∣∣∣umB (x(n))− µB(x(n))

∣∣∣ ‖umH(x)− µH(x)− umB (x) + µB(x)‖
}

≤ 1

M − 1

M∑
m=1

{
2δ2 ‖umH(x)− µH(x)‖+ 2δ1

∣∣∣umB (x(n))− µB(x(n))
∣∣∣ }.

Lemma B.3. For 1 ≤ i, j ≤ N ,∣∣∣kH(x(i),x(j))− kB(x(i),x(j))
∣∣∣ ≤ 2δ2

√
M

M − 1

[
σH(x(i)) + σB(x(j))

]
. (B.5)

Proof. ∣∣∣kH(x(i),x(j))− kB(x(i),x(j))
∣∣∣

=
1

M − 1

∣∣∣∣ M∑
m=1

(
umH(x(i))− µH(x(i))

)(
umH(x(j))− µH(x(j))

)
−

M∑
m=1

(
umB (x(i))− µB(x(i))

)(
umB (x(j))− µB(x(j))

) ∣∣∣∣
≤ 1

M − 1

M∑
m=1

{∣∣∣∣ (umH(x(i))− µH(x(i))
)(

umH(x(j))− µH(x(j))
)

−
(
umH(x(i))− µH(x(i))

)(
umB (x(j))− µB(x(j))

) ∣∣∣∣
+

∣∣∣∣ (umH(x(i))− µH(x(i))
)(

umB (x(j))− µB(x(j))
)

−
(
umB (x(i))− µB(x(i))

)(
umB (x(j))− µB(x(j))

) ∣∣∣∣}
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≤ 1

M − 1

M∑
m=1

{ ∣∣∣umH(x(i))− µH(x(i))
∣∣∣ ∣∣∣umH(x(j))− µH(x(j))− umB (x(j)) + µB(x(j))

∣∣∣
+
∣∣∣umB (x(j))− µB(x(j))

∣∣∣ ∣∣∣umH(x(i))− µH(x(i))− umB (x(i)) + µB(x(i))
∣∣∣ }

≤ 2δ2
M − 1

M∑
m=1

{ ∣∣∣umH(x(i))− µH(x(i))
∣∣∣+
∣∣∣umB (x(j))− µB(x(j))

∣∣∣ }

≤2δ2
√
M

M − 1


(

M∑
m=1

∣∣∣umH(x(i))− µH(x(i))
∣∣∣2)

1
2

+

(
M∑
m=1

∣∣∣umB (x(j))− µB(x(j))
∣∣∣2)

1
2


=2δ2

√
M

M − 1

[
σH(x(i)) + σB(x(j))

]
.

Now we prove Theorem 2.1 as follows.

Proof. Rewriting Eq. (2.21) in the functional form, we have

ŷH(x) = µH(x) +

N∑
n=1

aHn kH(x,x(n)), (B.6)

where aHn is the n-th entry of the vector C−1
H (y − µH), (CH)ij = kH(x(i),x(j)) and (µH)i = µH(x(i)).

Similarly, we have

ŷB(x) = µB(x) +

N∑
n=1

aBn kB(x,x(n)), (B.7)

where aBn is the n-th entry of the vector C−1
B (y − µB), (CB)ij = kB(x(i),x(j)) and (µB)i = µB(x(i)).

In Eq. (B.3), we show that
‖µH(x)− µB(x)‖ ≤ δ1.

Next, ∥∥∥aHn kH(x,x(n))− aBn kB(x,x(n))
∥∥∥

≤
∥∥∥aHn kH(x,x(n))− aBn kH(x,x(n))

∥∥∥+
∥∥∥aBn kH(x,x(n))− aBn kB(x,x(n))

∥∥∥
≤
∣∣aHn − aBn ∣∣ ∥∥∥kH(x,x(n))

∥∥∥+
∣∣aBn ∣∣ ∥∥∥kH(x,x(n))− kB(x,x(n))

∥∥∥
≤
∣∣aHn − aBn ∣∣σH(Γ)σH(x(n)) +

2
∣∣aBn ∣∣

M − 1

M∑
m=1

(
δ1

∣∣∣umB (x(n))− µmB (x(n))
∣∣∣+ δ2 ‖umH(x)− µH(x)‖

)
,

where the last inequality utilizes Lemmas B.1 and B.2. Therefore,∥∥∥∥∥
N∑
n=1

aHn kH(x,x(n))−
N∑
n=1

aBn kB(x,x(n))

∥∥∥∥∥
≤

N∑
n=1

∣∣aHn − aBn ∣∣σH(Γ)σH(x(n))︸ ︷︷ ︸
J1

+
2δ1

M − 1

N∑
n=1

∣∣aBn ∣∣ M∑
m=1

∣∣∣umB (x(n))− µmB (x(n))
∣∣∣︸ ︷︷ ︸

J2

+
2δ2

M − 1

N∑
n=1

∣∣aBn ∣∣ M∑
m=1

‖umH(x)− µmH(x)‖︸ ︷︷ ︸
J3

.
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Here,

J1 = σH(Γ)

N∑
n=1

∣∣aHn − aBn ∣∣σH(x(n))

≤ σH(Γ)

(
N∑
n=1

σ2
H(x(n)))

) 1
2
(

N∑
n=1

∣∣aHn − aBn ∣∣2
) 1

2

= SHσH(Γ)
∥∥C−1

H (y − µH)−C−1
B (y − µB)

∥∥
2

= SHσH(Γ)
∥∥C−1

H (y − µH)−C−1
H (y − µB) + C−1

H (y − µB)−C−1
B (y − µB)

∥∥
2

≤ SHσH(Γ)
(∥∥C−1

H

∥∥
2
‖µH − µB‖2 +

∥∥C−1
H −C−1

B

∥∥
2
‖y − µB‖2

)
≤ SHσH(Γ)

{∥∥C−1
H

∥∥
2

√
Nδ2 +

∥∥C−1
H

∥∥2

2
‖CH −CB‖2 ‖y − µB‖2

}
≤ SHσH(Γ)

{∥∥C−1
H

∥∥
2

√
Nδ2 +

∥∥C−1
H

∥∥2

2
‖CH −CB‖F ‖y − µB‖2

}
,

where we uses the well-known matrix perturbation conclusion (e.g., [3]):∥∥(A + ∆A)−1 −A−1
∥∥ ≤ ∥∥A−1

∥∥2 ‖∆A‖ (B.8)

for invertible matrices A and A + ∆A, and a well-defined matrix norm ‖ · ‖. Further, using Lemma B.3,
we have

‖CH −CB‖2F =

N∑
i=1

N∑
j=1

∣∣∣kH(x(i),x(j))− kB(x(i),x(j))
∣∣∣2

≤
N∑
i=1

N∑
j=1

4δ2
2M

M − 1

[
σ(umH(x(i))) + σ(umB (x(j)))

]2
≤ 8δ2

2M

M − 1

N∑
i=1

N∑
j=1

[
σ2(umH(x(i))) + σ2(umB (x(j)))

]

=
8δ2

2MN

M − 1

N∑
n=1

[
σ2(umH(x(n))) + σ2(umB (x(n)))

]
=

8δ2
2MN

M − 1
(S2
H + S2

B)

(B.9)

which yields

J1 ≤
√
NSHδ2σH(Γ)

∥∥C−1
H

∥∥
2

{
2

√
2M

M − 1

(
S2
H + S2

B

) 1
2
∥∥C−1

H

∥∥
2
‖y − µB‖2 + 1

}
.

Also,

J2 ≤2δ1

√
M

M − 1

N∑
n=1

∣∣aBn ∣∣σ(umB (x(n)))

≤2δ1

√
MN

M − 1

∥∥C−1
B (y − µB)

∥∥
2

(
N∑
n=1

σ2(umB (x(n)))

) 1
2

≤2δ1

√
MN

M − 1

∥∥C−1
B

∥∥
2
‖y − µB‖2 SB

Similarly,

J3 ≤2δ2

√
M

M − 1

N∑
n=1

∣∣aBn ∣∣σH(Γ)

≤2δ2

√
MN

M − 1
σH(Γ)

∥∥C−1
B (y − µB)

∥∥
2

≤2δ2

√
MN

M − 1
σH(Γ)

∥∥C−1
B

∥∥
2
‖y − µB‖2 .
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Therefore, the conclusion holds.

Next, we present the proof of Theorem 2.2.

Proof. For any x∗ ∈ D, we use the following concise notations

cH =
(
kH(x(1),x∗), . . . , kH(x(N),x∗)

)>
,

cB =
(
kB(x(1),x∗), . . . , kB(x(N),x∗)

)>
.

(B.10)

Following the same procedure in the proof of Lemma B.3, we have

|kH(x∗,x∗)− kB(x∗,x∗)| ≤ 2δ2

√
M

M − 1
[σ(umH(x∗)) + σ(umB (x∗))] ≤ 2δ2

√
2M

M − 1
(∆2

H + ∆2
B)

1
2 .

According to Lemma B.3,

‖cH − cB‖2 =

(
N∑
n=1

∣∣∣kH(x(n),x∗)− kB(x(n),x∗)
∣∣∣2)

1
2

≤2δ2

√
M

M − 1

(
N∑
n=1

[
σ(umH(x(n))) + σ(umB (x∗))

]2) 1
2

≤2δ2

√
2M

M − 1

(
N∑
n=1

[
σ2(umH(x(n))) + σ2(umB (x∗))

]) 1
2

=2δ2

√
2M

M − 1

(
S2
H + S2

B

) 1
2 .

Also,

‖cH‖2 =

{
N∑
n=1

∣∣∣kH(x(n),x∗)
∣∣∣2}

1
2

≤

{
N∑
n=1

∣∣∣∣∣ 1

M − 1

M∑
m=1

(
umH(x(n))− µH(x(n))

)
(umH(x∗)− µH(x∗))

∣∣∣∣∣
2} 1

2

≤

{
N∑
n=1

(
1

M − 1

M∑
m=1

(
umH(x(n))− µH(x(n))

)2
)
·

(
1

M − 1

M∑
m=1

(umH(x∗)− µH(x∗))
2

)} 1
2

=σH(x∗)SH .
(B.11)

Similarly,
‖cB‖2 ≤ σB(x∗)SB . (B.12)

Thus, ∣∣c>HC−1
H cH − c

>
BC−1

B cB
∣∣

≤
∣∣c>HC−1

H cH − c
>
HC−1

H cB
∣∣+
∣∣c>HC−1

H cB − c
>
HC−1

B cB
∣∣+
∣∣c>HC−1

B cB − c
>
BC−1

B cB
∣∣

≤‖cH‖2‖C−1
H ‖2‖cH − cB‖2︸ ︷︷ ︸

J1

+ ‖cH‖2‖C−1
H −C−1

B ‖F ‖cB‖2︸ ︷︷ ︸
J2

+ ‖cB‖2‖C−1
B ‖2‖cH − cB‖2︸ ︷︷ ︸

J3

,
(B.13)

and

J1 ≤ 2δ2

√
2M

M − 1
σH(x∗)SH(S2

B + S2
H)

1
2 ‖C−1

H ‖2,

J2 ≤ 2δ2

√
2MN

M − 1
σH(x∗)σB(x∗)SHSB(S2

H + S2
B)

1
2 ‖C−1

H ‖
2
2,

J3 ≤ 2δ2

√
2M

M − 1
σB(x∗)SB(S2

B + S2
H)

1
2 ‖C−1

B ‖2,
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where in the inequality of J2 we use Eqs. (B.8) and (B.9). Finally, using the fact σH(x∗) ≤ ∆H and
σB(x∗) ≤ ∆B , we have

SH ≤
√
N∆H , SB ≤

√
N∆B , (B.14)

which indicates

J1 ≤ 2Nδ2

√
2M

M − 1
∆2
H(∆2

B + ∆2
H)

1
2 ‖C−1

H ‖2,

J2 ≤ 2Nδ2

√
2MN

M − 1
∆2
H∆2

B(∆2
H + ∆2

B)
1
2 ‖C−1

H ‖
2
2,

J3 ≤ 2Nδ2

√
2M

M − 1
∆2
B(∆2

B + ∆2
H)

1
2 ‖C−1

B ‖2.

Therefore, the conclusion holds.
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