
ON GENERATION OF NODE DISTRIBUTIONS FOR MESHLESS PDE
DISCRETIZATIONS ∗

JURE SLAK‡† AND GREGOR KOSEC‡

Abstract. In this paper we present an algorithm that is able to generate locally regular node layouts with spatially
variable nodal density for interiors of arbitrary domains in two, three and higher dimensions. It is demonstrated that the
generated node distributions are suitable to use in the RBF-FD method, which is demonstrated by solving thermo-fluid
problem in 2D and 3D. Additionally, local minimal spacing guarantees are proven for both uniform and variable nodal
densities. The presented algorithm has time complexity O(N) to generate N nodes with constant nodal spacing and
O(N logN) to generate variably spaced nodes. Comparison with existing algorithms is performed in terms of node
quality, time complexity, execution time and PDE solution accuracy.

Key words. Node generation algorithms, Variable density discretizations, Meshless methods for PDEs, RBF-FD

AMS subject classifications. 65D99, 65N99, 65Y20, 68Q25

1. Introduction. In recent years, a number of meshless approaches have been developed to
numerically solve partial differential equations (PDEs) with the desire to circumvent the problem of
polygonization encountered in the classical mesh-based numerical methods. The major advantage of
meshless methods is the ability to solve PDEs on a set of scattered nodes, i.e. without a mesh. This
advantage was advertised even to the point that arbitrary nodes could be used (see [23, p. 14] and [31]),
making node generation seemingly trivial. Nevertheless, it soon turned out that such simplification
leads to unstable results.

Although node placing is considered much easier than mesh generation, certain care still needs to
be taken when generating node sets for meshless methods. Many methods require sufficiently regular
nodes for adequate precision and stability. Among others, this also holds for the popular Radial
Basis Function-generated Finite Differences method (RBF-FD) [12]. Despite the need for quality node
distributions, solving PDEs with strong form meshless methods utilizing radial basis functions (RBFs)
has become increasingly popular [13], with recent uses in linear elasticity [35], contact problems [36],
geosciences [12], fluid mechanics [19], dynamic thermal rating of power lines [21] and even in the
financial sector [15].

Since one of the key advantages of mesh-free methods is the ability to use highly spatially vari-
able node distributions, which can adapt to irregular geometries and allow for refinement in critical
areas, many specialized algorithms for generations of such node layouts have been developed. Most of
them can generally be categorized into either mesh-based, iterative, advancing front or sphere-packing
algorithms.

The most basic way to generate such node sets is to employ existing tools and algorithms for mesh
generation, use the generated nodes and simply discard the connectivity relations. Such approach was
reasoned by Liu [23, p. 14] as: “There are very few dedicated node generators available commercially;

∗Submitted to the editor on December 7th, 2018. Accepted August 19th, 2019. To appear in SIAM Journal on
Scientific Computing.

Funding: This work was supported by FWO grant G018916N, the ARRS research core funding no. P2-0095 and
Young Researcher program PR-08346.
†Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia (jure.slak@ijs.si,

http://e6.ijs.si/∼jslak/).
‡“Joef Stefan” Institute, Department E6, Parallel and Distributed Systems Laboratory, Jamova cesta 39, 1000 Ljubl-

jana, Slovenia (gregor.kosec@ijs.si, http://e6.ijs.si/∼gkosec/).

1

ar
X

iv
:1

81
2.

03
16

0v
3

 [
m

at
h.

N
A

]
 2

0
A

ug
 2

01
9

mailto:jure.slak@ijs.si
http://e6.ijs.si/~jslak/
mailto:gregor.kosec@ijs.si
http://e6.ijs.si/~gkosec/

2 J. SLAK AND G. KOSEC

thus, we have to use preprocessors that have been developed for FEM.”. This is problematic for
two reasons: it is computationally wasteful, and some authors have reported that such node layouts
yielded unstable operator approximations [32], making them unable to obtain a solution. Besides above
shortcomings, such approach is also conceptually flawed, since the purpose of mesh-free methods is to
remove meshing from the solution procedure altogether. To this end, other approaches were researched,
often inspired by the algorithms for mesh generation.

A common iterative approach is to position nodes by simulating free charged particles, obtaining
so-called minimal energy nodes [17]. Other iterative methods include bubble simulation [24], Voronoi
relaxation [1] or a combination of both [6]. Iterative methods are computationally expensive and
require an initial distribution. Additionally, the user is often required to consider trade-offs between the
number of iterations and node quality. Despite their expensive nature, the produced distributions are
often of high quality, which makes iterative methods useful for improving node distributions generated
by other algorithms [11].

The next category consists of advancing front methods, which usually begin at the boundary and
advance towards the domain interior, filling it in the process. Lhner and Oate [25] present a general
advancing front technique that can be used for filling space with arbitrary objects. These methods,
especially if generating a mesh, are often restricted to two dimensions [30]. Another example of a two-
dimensional advancing front approach is inspired by dropping variable-sized grains into a bucket [11],
which yields quality variable density node distributions and is computationally efficient in practice [34].

The last category are the circle or sphere packing methods [22], which generate high quality node
distributions, but are often computationally expensive. With inspiration from the graphics community,
Poisson disk sampling [7] has become of interest. It can be used to efficiently generate nodes in arbitrary
dimensions [5], and has just recently been used as a node generation algorithm [32] providing nodal
distributions of sufficient quality for the RBF-FD method.

To the best of our knowledge, algorithms presented in [11, 32] are currently among the best
available. However, they have some shortcomings, namely [11] only works in two dimensions and [32]
does not support variable nodal spacing. In this paper, we present an algorithm that overcomes
these shortcomings. The presented algorithm works in two, three and higher dimensions and supports
variable density distributions. It also has minimal spacing guarantees and is provably computationally
efficient. The main shortcoming of the presented algorithm is that it requires discretized boundary as an
input, which will be addressed in future work. For algorithms that can fill domains with varying density,
conformal mappings can be used to generate nodes on curved surfaces by appropriately modifying the
node density [11]. The paper by Shankar et al. [32] also includes an algorithm for generation of an
appropriate boundary discretization, based on RBF geometric model and super-sampling. This paper
does not deal with the task of generating a boundary discretization and focuses on discretizations
of domain interiors, assuming that the boundary discretization already exists when required. The
extension of the algorithm to curved surfaces will be addressed in future work.

The rest of the paper is organized as follows: in section 2 the requirements for node generation
algorithms are discussed, in section 3 recently introduced algorithms for generating nodal distributions,
suitable for strong form meshless methods, are presented, in section 4 a new algorithm is presented,
in section 5 the algorithms are compared, and some numerical examples are presented in section 6.

2. Node placing algorithm requirements. In this section we examine a list of properties that
an ideal node-positioning algorithm should possess and discuss the rationale behind each property.
The properties are loosely ordered by decreasing importance.

1. Local regularity. Nodal distributions produced by the algorithm should be locally regular
throughout the domain, i.e. the distances between nodes should be approximately equal. This

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 3

definition of local regularity is somewhat soft and imprecise. The requirement stems from
the fact that local strong form meshless methods are often sensitive to nodal positions and
large discrepancies in distances to the nearest neighbors or other irregularities can cause ill-
conditioned approximations, making the distribution inappropriate for solving PDEs. Thus,
this point should be read in practice as follows: “The distributions produced by the algorithm
should yield quality PDE solutions when using local strong form methods, if reasonable spacing
function h was given.”.

2. Minimal spacing guarantees. Computational nodes that are positioned too closely can severely
impact the stability of some meshless methods [23]. Thus, provable minimal spacing guarantees
are desirable. For constant spacing h, the condition

(2.1) ‖p− q‖ ≥ h

is required for any two different points p and q. For variable nodal spacing, the algorithm
should guarantee a local lower bound for internodal spacing.

3. Spatially variable densities. Many node distribution algorithms rely on a constant discretiza-
tion step h, as do some efficient implementations [5]. Spatially variable nodal distributions
are often required when dealing with irregular domains or adaptivity [36]. The algorithm
should be able to generate distributions with spatially variable nodal spacing, which can be
assumed to be given as a function h : Rd → (0,∞). The changes in variability should be grad-
ual and smooth in order to satisfy the requirement of local regularity. The algorithm should
work without any continuity assumptions for reasonable h (see remarks in subsection 4.3) and
should see a constant step h as a special case of variable step h(p), not the other way around.

4. Computational efficiency and scalability. Time complexity of the algorithm should ideally be
linear in number of generated nodes. Quasilinear time complexity (e.g. O(N logN)) is accept-
able, while time complexity that is Ω(Nα), for α > 1, is undesirable. The algorithm should
also be computationally efficient in practice, making it feasible to use as a node generation
algorithm in an adaptive setting.

5. Compatibility with boundary discretization. Assume that a boundary discretization Xb of ∂Ω
conforming to the spacing function h, already exists. More precisely, we are given a set Xb of
points such that for any two neighboring points p and q, the norm ‖p − q‖ is approximately
equal to h(p) or h(q). The generated discretization of the whole domain Ω should seamlessly
join with the boundary discretization. This helps to prevent problems often encountered when
enforcing boundary conditions (see [32, sec. 3.5] and references therein).

6. Compatibility with irregular domains. The algorithm should inherently work with any irregular
domain Ω, given its characteristic (i.e. “is element of”) function

χΩ : Rd → {0, 1},

χΩ(p) =

{
1, p ∈ Ω,

0, p /∈ Ω.
(2.2)

Any algorithms that fill axis- or otherwise oriented bounding boxes, or produce nodes in a
certain non-constant space outside Ω are seen as impaired in this aspect. Desirably, as the
volume of Ω decreases, no matter what the shape of Ω is, so should the number of operations
required by the algorithm.

7. Dimension independence. The algorithm should ideally be formulated for a general (low)
dimension d without any special cases. One-, two- and three- dimensional versions of the
algorithm should also allow a single general implementation.

4 J. SLAK AND G. KOSEC

8. Direction independence. The produced distributions and running time of the algorithm should
be independent of the orientation of the domain Ω or the coordinate system used.

9. No free parameters. The algorithm should aim to minimize the number of free or tuning
parameters and work well for all domains and density functions, without any user intervention.
The aim is to require algorithms to be robust and work “out of the box”. Any free parameters
should be explored and well understood, default values should be recommended, and varying
the parameters should not drastically change the algorithm’s behavior.

10. Simplicity. Algorithms with simpler formulations and implementations are preferred.

3. State of the art algorithms. To the best of our knowledge, recently published algorithms
by Fornberg and Flyer [11] and Shankar et al. [32] best satisfy the requirements described in section 2
and are hence used as a base for further development. Both algorithms are first briefly described in
the following sections.

3.1. Algorithm by Fornberg and Flyer. The node positioning algorithm by Fornberg and
Flyer [11] was published in 2015 in a paper titled “Fast generation of 2-D node distributions for mesh-
free PDE discretizations”. The algorithm in its base form constructs discretizations for two dimensional
axis-aligned rectangles and is presented as Algorithm 3.1. In the following discussion, the first letters
of the authors’ surnames (FF) will be used to refer to the algorithm.

Algorithm 3.1 Node positioning algorithm by Fornberg and Flyer.

Input: Box [xmin, xmax]× [ymin, ymax], a function h : [xmin, xmax]× [ymin, ymax]→ (0,∞) and n ∈ N.
Output: An array of points in [xmin, xmax]× [ymin, ymax] distributed according to h.

1: function FF(xmin, xmax, ymin, ymax, h, n)
2: pts← an empty array of points . This is the final array of points.
3: candidates← points spaced according to h from xmin to xmax at y coordinate ymin . This variable

represents potential point locations, candidates for actual points that will be in the final result.
4: (ymin, imin)← findMinimum(candidates) . Find minimal point with respect to y
5: while ymin ≤ ymax do coordinate and return its value and index.
6: p← candidates[imin]
7: append p to pts
8: remove points closer than h(p) from candidates
9: find nearest remaining points in candidates to the left and to the right of p

10: add n new points to candidates, equispaced on the circular sector with center p, spanning from the
nearest left to the nearest right point

11: (ymin, imin)← findMinimum(candidates)
12: end while
13: return pts
14: end function

Initially, the lower side of the rectangle is filled with nodes, spaced according to the given spacing
function h. The algorithm works as an advancing front algorithm, starting from y = ymin and advancing
towards y = ymax. In each iteration the lowest (min(y)) candidate p from the current list of potential
node locations is found, removed from potential candidates and added to the final list. New candidates
are spaced accordingly away from p and are inserted into the list of potential node locations. The
iteration continues until y = ymax limit is reached.

For irregular domains Ω the authors recommend to run the above algorithm for the bounding box
of Ω, denoted bb(Ω), and later discard the nodes outside Ω. If present, the boundary discretization is

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 5

superimposed onto the discretization generated by Algorithm 3.1. Additionally, internal nodes whose
closest boundary node p is less than h(p)/2 away are discarded as well.

A few local “repel algorithm” iterations are recommended in the vicinity of the boundary to im-
prove the quality. This part will be omitted from consideration, as it is an iterative improvement
scheme that can be performed equivalently on any node distribution generated by any other algo-
rithm [19]. The behavior of FF near the boundaries is thus excluded from analysis, as it is designed
to work with the “repel algorithm”.

3.1.1. Time complexity analysis. The complexity of the Algorithm 3.1 is not given by the
authors and is hence derived in this section. Denote the number of generated nodes with N and the
size of array candidates at the start of iteration i with si. Everything up to while loop on line 5 is
negligible compared to the main loop and takes O(1) time for creation of lists and O(s0) for candidate
generation and minimum extraction. In the main loop, lines 6–7 consume (amortized) constant time
and lines 8–11 take time proportional to the size of candidates array, i.e. O(si) time. Total time
complexity is therefore

(3.1) TFFbox = O(1) +O(s0) +

N∑
i=1

(O(1) +O(si)) = O(N max
1≤i≤N

si) := O(NS),

where S is defined as S = max1≤i≤N si.
Precisely analyzing si and S is difficult for general function h. However, for a fixed square box

and constant spacing h it holds that N = Θ(1
h2) and si = Θ(n 1

h) = Θ(n
√
N). The time complexity in

this case is hence O(nN
√
N).

For irregular domains Ω additional work is required. If N denotes the final number of nodes, the

algorithm will generate approximately | bb Ω|
|Ω| N nodes in case of constant h. Superimposing the bound-

ary discretization with Nb nodes and testing all generated nodes for proximity takes O(Nb logNb +
| bb Ω|
|Ω| N logNb) time, for building and querying the k-d tree of boundary nodes. These terms are dom-

inated by the node generation in the interior and the time complexity of the algorithm by Fornberg
and Flyer for generating node distributions for irregular domains for constant spacing h is

(3.2) TFF = O

(
n

(
|bb Ω|
|Ω|

N

)1.5
)
.

For variable spacing, the overhead of generated nodes due to the irregularity of Ω and the advancing
front size have to be evaluated using integrals, making the time complexity expression somewhat more
complicated and less illustrative.

3.1.2. Implementation notes. Authors provided a Matlab implementation of Algorithm 4.1 in
the Appendix ot their article [11]. This implementation has been translated to C++ using the Eigen
matrix library [16] and the nanoflann library for k-d trees, provided by Blanco and Rai [4]. The
translation is mostly faithful to the original with a few inefficiencies removed. The C++ implemen-
tation is approximately 6 times faster than the original Matlab implementation (both tested on the
same computer).

3.2. Algorithm by Shankar, Kirby and Fogelson. In 2018, Shankar, Kirby and Fogelson
published a node generation algorithm in a paper titled “Robust node generation for meshfree dis-
cretizations on irregular domains and surfaces” [32]. Their node generation algorithm is designed to

6 J. SLAK AND G. KOSEC

work on surfaces and in 3-D, however it does not support variable nodal spacing. We will focus our
attention on the part that generates discretizations of the domain interior, when boundary discretiza-
tion has already been constructed. The main part of the node generation for the interior is based
on Poisson disk sampling of the oriented bounding box obb(Ω) of domain Ω, described in a paper by
Bridson [5]. The relevant part of the node generation algorithm is presented as Algorithm 3.2. In
the following discussion the first letters of the authors’ surnames (SKF) will be used to refer to the
algorithm.

Algorithm 3.2 Node positioning algorithm by Shankar, Kirby and Fogelson.

Input: Domain Ω and its dimension d.
Input: A nodal spacing step h > 0.
Input: A list of boundary points X of size Nb, moved h towards domain interior.
Output: A list of points in Ω distributed according to spacing function h.

1: function SKF(Ω, h, X , n)
2: obb← OBB(X) . Generate an oriented bounding box of X using PCA.
3: G← d-dimensional grid of size h/

√
d of −1. . Maps points to their indices.

4: p← uniform random node inside obb
5: G[index(p)]← 0 . index returns d-d index of p, and its sequential index is 0.
6: S ← [p] . Resulting list of accepted samples.
7: A← {0} . Set of active indices.
8: while A 6= ∅ do
9: i← randomElement(A) . Get a uniform random element of A.

10: b← false . Indicates if any valid points were generated.
11: for j ← 1 to n do
12: p← uniform random point in annulus with center S[i] and radii h and 2h
13: if not outside(p, obb) and not tooClose(p, h,G, S) then
14: Add(A, size(S)) . Add sequential index of p to active set A.
15: G[index(p)]← size(S) . Mark grid cell taken by p as occupied.
16: Append(S, p) . Append p to the list of accepted samples.
17: b← true . Flag that an accepted sample was generated.
18: break for
19: end if
20: end for
21: if b = false then . Point S[i] failed to generate any accepted samples.
22: remove(A, i) . Point with index i is removed from the active set.
23: end if
24: end while
25: T ← kdtreeInit(X) . Initialize spatial search structure on points X .
26: S ← Filter(T, S) . Discard points outside the region, bounded by X .
27: return S
28: end function

The algorithm starts by taking points on the boundary and their corresponding outward unit
normals and shifting them towards the domain’s interior by h. An oriented bounding box (OBB) of
the shifted boundary points is then constructed using Principal Component Analysis (PCA) [18] as
described by Dimitrov et al. [10]. The main part of the algorithm, spanning lines 3 to 24, is the Poisson
disk sampling algorithm, which generates the internal discretization of the oriented bounding box using
a background grid G as a spatial search structure. Finally, points outside the domain, bounded by

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 7

X , are discarded. Here, a k-d tree is used to test all candidates for inclusion by testing against
the outward normal of their closest boundary point. The remaining points along with the original
boundary discretization constitute the final discretization. As an inward-shifted array of points was
used to construct the internal discretization, spacing of at least h is guaranteed.

3.2.1. Time complexity analysis. Authors themselves provide the time complexity analysis of
the algorithm. Translated to our notation, the running time of the interior fill algorithm is

(3.3) TSKF = O

(
n
| obb(Ω)|
|Ω|

N

)
.

This represents the running time of the Poisson disk sampling. The PCA analysis and tree construction
are linear or log-linear in Nb and are thus dominated by the Poisson disk sampling.

3.2.2. Implementation notes. There is a small difference between the algorithm as described
by Shankar et al. [32] and Bridson [5]. The Bridson version generates up to n candidates for each
point and stops as soon as one candidate is accepted. The version in the SKF algorithm generates
all n points and adds all accepted candidates. Algorithm 3.2 uses the original, Bridson version and
to obtain the SKF version, one needs to remove the break statement on line 18. Since the authors of
SKF algorithm claim to use a faithful implementation of algorithm as presented by Bridson and only
list the algorithm for completeness, we decided to use the Bridson version in our tests. All matrix and
tensor operations were again implemented using the Eigen matrix library and the k-d tree operations
were implemented using nanoflann.

4. New node placing algorithm. From the discussion presented in section 3 it is clear that
although state of the art placing algorithms provide a solid spatial discretization methodology for
strong form meshless methods, there is still room for improvements, especially in the generalization
to higher dimensions, flexibility regarding variable nodal density, and treatment of irregular domains.
Improving upon the work of Fornberg and Flyer [11] and Shankar et al. [32], we propose a new algorithm
that overcomes some of limitations of FF and SKF algorithms. We will refer to the proposed node
placing algorithm as PNP in the rest of the paper.

The PNP algorithm is, similarly to SKF, based on Poisson disk sampling. Poisson disk sampling
has certain stochastic properties, such as the fact that it produces a “blue noise distribution” that is
an excellent fit for graphical applications like dithering [5, 7]. In context of PDE solution procedure
a slightly different distribution is required that primarily follows appropriate spacing and regularity
criteria. Therefore, the PNP algorithm deviates from the original Poisson disk sampling in order to
effectively produce tightly packed regular distributions needed in solution of PDEs.

The PNP algorithm begins either with a given non-empty set of “seed nodes” or with an empty
domain. In the context of PDE discretizations, some nodes on the boundary are usually already known
and can be used as seed nodes, possibly along with additional nodes in the interior. If algorithm starts
with no nodes, it adds a seed node randomly within the domain. Before the main iteration loop, seed
nodes are put in a queue, waiting to be processed. In each iteration i, a node pi is dequeued and
expanded, by generating a set of candidates Ci, which are positioned on a sphere with center pi and
radius ri, where ri is obtained from the function h, ri = h(pi). Candidates that lie outside of the
domain or are too close to already existing nodes are rejected and remaining candidates are enqueued
for expansion. Node pi is accepted as a domain node and will not be touched any more. The iteration
continues until the queue is empty. Figure 1 demonstrates a core operation of the algorithm, i.e. the
expansion, with possible selection of new candidates and the rejection process.

8 J. SLAK AND G. KOSEC

Fig. 1. Generation and selection of new candidates in the proposed algorithm.

Figure 2 illustrates the execution of the algorithm. The first panel shows an initial setup on a
unit square. For demonstration purposes, the nodes in the initial boundary discretization along with a
single node in the interior were chosen as the seed nodes. The subsequent panels in Figure 2 illustrate
the progression of the algorithm. The discretization grows from the initial nodes inwards towards the
empty interior, until no more acceptable candidates can be found due to already existing nodes. The
advancing front nature of the algorithm can be seen, however the front itself is not a straight line as
in FF.

Fig. 2. Run-time progress of the proposed algorithm (left to right). Unit square [0, 1]2 was sampled with nodal
spacing function h(x, y) = 0.015 (1 + x+ y).

An efficient implementation with an implicit queue contained in the array of final points and the
k-d tree spatial structure [29] is presented as Algorithm 4.1. In practice, the comparison on line 10
should be done with some tolerance, due to inexactness of the floating point arithmetic, i.e. the line
should in practice read ‖ci,j − ni,j‖ ≥ (1− ε)ri for e.g. ε = 10−10.

The algorithm includes generation of new candidates in line 7 that needs to be further defined.
Three options are proposed and evaluated below:

1. Random candidates: The candidate set Ci in each iteration consists of n random points chosen
on a d-dimensional sphere with center pi and radius ri, reminiscing the original Poisson disk
sampling.

2. Fixed pattern candidates: The candidate set Ci in each iteration consists of a fixed discretiza-
tion of a unit ball, translated to pi and scaled by ri. The discretization of a unit ball in 2-D
is obtained simply by Cunit(k) = {(cosϕ, sinϕ); ϕ ∈ {0, ϕ0, 2ϕ0, . . . , (k − 1)ϕ0}, ϕ0 = 2π

k }.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 9

Algorithm 4.1 Proposed node positioning algorithm.

Input: Domain Ω and its dimension d.
Input: A nodal spacing function h : Ω ⊂ Rd → (0,∞).
Input: A list of starting points X , this includes the possible boundary discretization and seed nodes.
Output: A list of points in Ω distributed according to spacing function h.

1: function PNP(Ω, h, X)
2: T ← kdtreeInit(X) . Initialize spatial search structure on points X .
3: i← 0 . Current node index.
4: while i < |X | do . Until the queue is not empty.
5: pi ← X [i] . Dequeue current point.
6: ri ← h(pi) . Compute its nodal spacing.
7: for each ci,j in candidates(pi, ri) do . Loop through candidates.
8: if ci,j ∈ Ω then . Discard candidates outside the domain.
9: ni,j ← kdtreeClosest(T, ci,j) . Find nearest node for proximity test.

10: if ‖ci,j − ni,j‖ ≥ ri then . Test that ci,j is not too close to other nodes.
11: append(X , ci,j) . Enqueue ci,j as the last element of X .
12: kdtreeInsert(T, ci,j) . Insert ci,j into the spatial search structure.
13: end if
14: end if
15: end for
16: i← i + 1 . Move to the next non-expanded node.
17: end while
18: return X
19: end function

In d-dimensions, the discretization of a ball with radius r is obtained using d-dimensional
spherical coordinates and recursively discretizing a d− 1 dimensional ball.
Using e.g. k = 6 results in 14 candidates in 3-D, and using k = 12 results in 48. In 3-D, the
parameter k represents the number of points lying on the great circle.

3. Randomized pattern candidates: The candidate set Ci is obtained from the fixed set in point 2,
by applying a random rotation to all the points.

The three ways of candidate generation were used to produce node distributions on a unit square,
shown in Figure 3. Different types of candidate generation are abbreviated as PNP-R, PNP-F and
PNP-RF for random, fixed pattern, and randomized fixed pattern variants, respectively.

Fig. 3. Comparison of different types of candidate generation when filling the unit square [0, 1]2 with h = 0.025.

10 J. SLAK AND G. KOSEC

The fixed pattern candidate generation algorithm stands out, as the gaps where the advancing
fronts of nodes joined are clearly visible. Due to reproduction of space-efficient hex-packing it also
has the most nodes. Other two algorithms generate visually similar distributions, but a higher value
of n needed to be used for the randomized version to produce similar results. We decided to use
the randomized fixed pattern for candidate distribution, as it produces results similar to the random
version with lower time complexity.

The presented algorithm has a few differences compared to the original Poisson disk sampling. First
and foremost, the algorithm works with variable nodal spacing and is able to generate distributions with
spatially variable densities. Each node is used only once to generate the new candidates. Third, the
candidates are generated uniformly on the sphere with random offsets, as opposed to being generated at
random on an annulus. This packs the candidates more tightly and reduces the gaps. It also improves
running time, as candidates better cover the unoccupied space at the cost of removing the stochastic
properties of the sampling, which are not relevant to the PDE solutions. Fourth, the candidates
that are outside Ω are immediately discarded, only continuing the generation of candidates actually
inside Ω, once again improving execution time. More details about impact of above differences are
investigated in section 5 and can be observed in Figure 4 and Figure 11.

PNP algorithm exhibits gaps between nodes where the advancing fronts meet in Figure 3, however
the gaps are never large enough that another node could be placed inside and are even emphasized
visually is the marker size is comparable to nodal spacing (see Figure 4). The exact place where the
advancing fronts meet is dependent on the position of the seed nodes. If the algorithm is run from
a seed node in the domain interior instead of from the boundary nodes, these types of front do not
appear throughout the domain, but gaps form at the boundary instead. With PDE discretization in
mind it is less problematic to have them appear in the domain interior, and this is how the algorithm
is run for the rest of the paper.

Additionally, the algorithm can be easily modified to return the indices of the nodes where the
fronts meet. For each node i, we can check if any candidates generated from it are accepted and added
on line 11. If that is not the case, index i can be added to the list of terminal nodes, which is returned
after the algorithm finishes. Regularization can then be performed on those or neighboring nodes, if
necessary.

4.1. Time complexity analysis. Output sensitive time complexity is straightforward to ana-
lyze. Let us denote the number of given starting points in X with Nb = |X |. Is is assumed that Nb
is significantly less than N , e.g. Nb = O(N

d−1
d) as is the case when X represents the boundary dis-

cretization. The initial construction of the spatial index costs O(Nb logNb) and initialization of other
variables costs O(1). The number of iterations of the main loop is equal to the number of generated
points, denoted by N . A total of n candidates are generated in i-th iteration and, in the worst case,
two k-d tree operation on the tree with at most i+Nb nodes are performed, taking O(log(i+Nb)) time
for each candidate. All other operations are (amortized) constant. Thus the total time complexity of
the algorithm is equal to

(4.1) TPNP = O(Nb logNb) +O(1) +

N∑
i=1

[nO(log(i+Nb)) +O(1)] = O(nN logN).

The above analysis shows that the time complexity of the algorithm is dominated by the spatial
search structure used, which adds an undesired factor logN . If h is assumed to be constant, the
algorithm could be sped up by using a uniform-grid based spatial search structure, similar to one used
in Algorithm 3.2. Using such a search structure requires a rectangular grid, usually with spacing h/

√
d,

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 11

such that there is at most one point per grid cell. When constructed on the rectangle obb(Ω), the
time complexity of its allocation and initialization is proportional to the number of cells, which leads
to time complexity

(4.2) O

(
| obb Ω|
(h/
√
d)d

)
= O

(
| obb Ω|
|Ω|

N

)
,

using the fact that for constant h the number of nodes is N = Θ(|Ω|/hd).
The subsequent insertions and queries in the grid are all O(1), thus improving the time complexity

of the algorithm for constant h to

(4.3) TPNP-grid = O

(
| obb Ω|
|Ω|

N + nN

)
.

Furthermore, the factor | obb Ω|
|Ω| can be eliminated by using a hash map of cells instead of a grid;

however, the practical benefit of that approach shows only with very irregular domains.
Using the background grid for a spatial structure is feasible even with moderately spatially variable

h, by allowing more than one point per cell. For even higher variability, hierarchical grids could be
used, but a k-d tree-like search structure covers all cases. For a specific use case, k-d tree can be
replaced with any spatial search structure, as desired by the user, obtaining time complexity

(4.4) TPNP-general = O(P (N) +Nn(Q(N) + I(N))),

where P is the precomputation/initialization time used by the data structure on N nodes, Q(N) is
the time spent on a radius query and I(N) is the time spent for new element insertion.

4.2. Implementation notes. As in the previous two algorithms, all matrix and tensor operations
were implemented using the Eigen matrix library and the k-d tree operations were implemented using
nanoflann.

4.3. Remarks. Algorithm 3.1 and Algorithm 4.1 do not necessarily terminate, depending on the
nodal spacing function used. The integral

(4.5) N(h) :=

∫
Ω

dΩ

h(p)d
,

approximately measures the number of points required and can be infinite even if function h is smooth
and positive on Ω. Simply taking a one dimensional example Ω = (0, 1) and h(x) = 0.1

x is enough
to trick the algorithm into sampling indefinitely. As a precaution to that and more practically, as a
memory limit, the maximal number of points Nmax can be specified by the user and the algorithm can
be terminated prematurely.

5. Satisfaction of the requirements. This section compares all three node placing algorithms,
namely FF (Algorithm 3.1), SKF (Algorithm 3.2) and PNP (Algorithm 4.1). The results of the
comparison presented in this section are summarized at the end in Table 3. The following subsections
roughly follow the requirements postulated in section 2.

5.1. Local regularity. The most important feature that an algorithm should possess is regularity
of the distributions. This property is initially tested visually, by observing plots of nodal distributions,
which is feasible only in 2-D. Among other things, local regularity states also that large discrepancies

12 J. SLAK AND G. KOSEC

in distances to nearest neighbors are not desired. This can be tested in arbitrary dimensions, by
observing distances to nearest neighbors, using various statistics and histogram plots to determine
their properties. Finally, accuracy and stability of solutions of PDEs on generated node distributions
can be compared to fully determine the quality of distributions generated by the three algorithms.

We begin our analyses by comparing the three algorithms on the unit square [0, 1] × [0, 1]. Node
distributions were generated using constant density h = 0.025 and the expected number of nodes is
N(h) = 1600. Node distribution for all three algorithms are shown in Figure 4. Parameters n for
various algorithms were chosen as recommended in their respective papers (n = 5 for FF and n = 15
for SKF), with n = 15 also being used for the algorithm presented in this paper.

Fig. 4. Node distributions on the unit square [0, 1]2 with h = 0.025 generated with different algorithms. Rightmost
figure shows the enlarged PNP distribution in the center where the advancing fronts meet.

SKF algorithm generated substantially less nodes than the other two. It also has significant gaps
between the boundary and internal nodes as well as visually more irregular distributions. FF algorithm
generates a smooth distribution without any significant defects in the interior. PNP algorithm exhibits
gaps on diagonals, where advancing fronts from the sides have merged, but behaves better near the
boundaries. The part of the distribution where the advancing fronts meet is shown in rightmost panel
in Figure 4 to give a better perspective on the size of the gaps.

In terms of the number of nodes, FF gives the best result, since it produced only 45 nodes less
than expected, followed by PNP that produces 128 less nodes. The worst performance is demonstrated
by SKF with deficiency of 573 nodes.

To analyze local regularity, distances to nearest neighbors are observed in the interior of the
domain. For each node pi at least 2h away from the boundary, its c closest neighbors (excluding i
itself) are found and denoted by pi,j for j = 1, . . . , c with distances to these neighbors computed as
di,j = ‖pi − pi,j‖. Figure 5 shows average distances of each node to its three closest neighbors, i.e.

the plot of d̄i = 1
3

∑3
j=1 di,j for each considered node pi. Along with the average distance, the interval

[dmin
i , dmax

i] is shown, where

dmin
i = min

j=1,2,3
di,j , dmax

i = max
j=1,2,3

di,j .

FF and PNP algorithms show similar behavior, with average distance being close to h with little
variability between distances to closest neighbors. FF algorithm has a few nodes a bit closer than h
together, but keeps the internodal distance closer to h and with less spread than PNP. SKF algorithm
performs worse with most of its distances to c nearest neighbors being on average closer to 0.03 and with
a significantly larger spread. The numerical results representing these quantities are shown in Table 1.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 13

Fig. 5. Average distances to the nearest neighbors for internal nodes. Error bars show minimal and maximal
distances to three nearest neighbors.

The first two columns of the table demonstrate that the prescribed nodal spacing h is much better
obeyed in PNP and FF algorithms, and the last column shows that the average spread of the internodal
distances in SKF algorithm is more than two times greater than in FF and PNP.

Besides distances to the nearest neighbors, we can also take a look at the empty space between the
generated nodes. This can be done by computing the Voronoi diagram vertices vj that lie inside the
domain and observing the diameters sj of the largest circles centered at vj not containing any nodes.
Formally, sj are given as

(5.1) sj = 2 min
i
‖vj − pi‖.

Note that the largest value of sj is the diameter of the largest empty circle. The basic statistics os sj
for the three considered algorithms are presented in Table 1.

Table 1
Numerical quantities related to internodal distance and hole regularity.

alg. mean d̄i std d̄i mean(dmax
i − dmin

i) min sj mean sj max sj

FF 0.02575 0.00065 0.00208 0.028071 0.03438 0.04352

SKF 0.03042 0.00275 0.02894 0.029737 0.04470 0.07008

PNP 0.02604 0.00086 0.00276 0.028949 0.03568 0.05164

Additional insight is offered with histograms of distances to three nearest neighbors (Figure 6).
As expected, the largest count is in the bin around h. PNP and SKF algorithms have no distances
in bins below h, however the FF algorithm does put a small number of nodes at a distance less than
h (see subsection 5.2). The irregularities visible in the SKF algorithm distribution in Figure 4 are
reflected in the histogram. The histogram has a much heavier tail than PNP and FF histograms, with
far less nodes exactly at distance h. PNP and FF histograms show more tightly packed distributions
with slimmer tails, however the tail of PNP histogram is a bit longer and more spread out.

Next, the PNP and SKF algorithms are compared in three dimensions. The unit cube [0, 1] ×
[0, 1] × [0, 1] is filled with a constant density h = 0.05, starting from the boundary in the PNP case.
The expected number of nodes is N(h) = 8000. Histograms of distances to the closest c = 6 nodes for
internal nodes are shown in Figure 7 for PNP and SKF algorithms.

The histograms behave similarly to their 2-D counterparts. SKF algorithm again generated sig-
nificantly less nodes than the PNP algorithm. PNP has a large number of neighbors at distance h and
a lighter tail, while the distances in SKF case are more spread out.

Further visual confirmation of regularity for variable density cases is demonstrated in subsection 5.3
(see Figure 9, Figure 10 and Figure 8), and more importantly, by the solutions of PDEs on generated

14 J. SLAK AND G. KOSEC

Fig. 6. Histogram of distances to three nearest neighbors for node distributions on unit square [0, 1]2 with h = 0.025.

Fig. 7. Histogram of distances to six nearest neighbors for internal nodes of distributions on unit cube [0, 1]3 with
h = 0.05.

node sets [13, 32, 35], thus confirming sufficient local regularity. Additionally, section 6 considers sample
solutions to PDE examples and discusses accuracy, eigenvalue stability and convergence properties.
Our experiments have shown that SKF distributions cause stability problems when using small stencils,
such as e.g. closest 7 nodes. The likely cause of this instability is higher node irregularity in SKF node
distributions. PNP and FF distributions had no problems with small stencils.

5.2. Minimal spacing requirements. Point 2 discusses minimal spacing guarantees. Provable
minimal spacing guarantees are very desirable, since nodes that are positioned too closely can effect
the stability of strong form methods. FF algorithm does not strictly respect the spacing h. When
running the algorithm with h = 0.005 on a unit square [0, 1]2, some pairs of points in the domain
interior were closer than 0.95h. Although the violations do not appear to be significant and do not
affect the quality in practice, no bound of form ‖pj − pi‖ ≥ αh, for α > 0 and i 6= j is known.

SKF algorithm enforces the spacing between nodes to be greater than or equal to h in the interior
and on the boundary, both times leveraging specialized spatial search structures. The algorithm thus
has the usual minimal spacing guarantee for constant nodal spacing:

(5.2) ‖p− q‖ ≥ h

for p 6= q.
Similar argument can be made for PNP algorithm: each new candidate is checked using a k-d tree

against all previous ones, proving the minimal spacing guarantee for constant h. For variable h, the
above argument yields the bound

(5.3) ‖pi − pj‖ ≥ min
p∈Ω

h(p)

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 15

for i 6= j. This bound is dependent on a global property of h and can be very coarse. More precise,
local bounds when considering spatially variable distributions are defined by Mitchell et al. [28]. If an
ordered list of points, numbered 1 to N , is considered, then the minimal spacing guarantee, called the
empty disk property, is satisfied if

(5.4) ‖pi − pj‖ ≥ f(pi, pj),

for 1 ≤ i < j ≤ N , where f is a function evaluated at previously accepted node pi and new candidate
pj . Four basic variations were proposed, based on which point’s spacing is taken into account when
positioning new candidates:

• Prior-disks: f(pi, pj) = h(pi),
• Current-disks: f(pi, pj) = h(pj),
• Bigger-disks: f(pi, pj) = max{h(pi), h(pj)},
• Smaller-disks: f(pi, pj) = min{h(pi), h(pj)}.

The PNP procedure satisfies neither of this variations. The following proposition establishes a
version of the empty disk property (5.4) of PNP.

Preposition 5.1. Let the points pi, i = 1, . . . , N, be a list of nodes generated by Algorithm 4.1,
where first Nb nodes were given as initial nodes. The minimal spacing inequality

(5.5) ‖pk − pj‖ ≥ h(pβ(j))

holds for all Nb ≤ k < j < N . The function β represents the predecessor function.

Proof. Algorithm 4.1 begins with Nb initial nodes. Each candidate is generated from a unique
existing node, thus giving rise to a predecessor-successor relation. Predecessor function β : {Nb +
1, . . . , N} → {1, . . . N} for an accepted candidate pj that was generated from pi is defined as β(j) = i.
Note that predecessors for the first Nb initially given points are not defined.

Consider an accepted candidate pj , generated from a node pi. The candidate was generated at a
distance h(pi) from pi, thus satisfying the equality

(5.6) ‖pi − pj‖ = h(pi) = h(pβ(j)).

In particular, this means that Algorithm 4.1 satisfies the prior-disks property for predecessor-successor
pairs. The distance d to the nearest neighbor of pj among already accepted nodes is then found and
if d ≥ h(pi), the candidate is accepted. This means that the following inequality holds for all k < j:

(5.7) ‖pk − pj‖ ≥ d ≥ h(pi) = h(pβ(j)),

establishing the desired property.

5.3. Spatial variability. An important feature of FF and PNP algorithms is the ability to
generate node sets with variable nodal spacing on irregular domains. SKF algorithm does not support
variable nodal spacing and is excluded from this analysis. As an example, the image shown in top left
corner of Figure 8 is chosen as a source for the nodal spacing function h. The image is a modified
version of an image showing stress distribution in a plastic spoon under a photoelasticity experiment [2].
It features an irregular domain and rapidly varying dark and light regions, which presents a more
challenging case usually found in PDE discretizations. The conversion from gray levels to the nodal
spacing function is the same as used by Fornberg and Flyer [11]. Normalization factor h0 = 1.5 was

16 J. SLAK AND G. KOSEC

used to adjust the number of nodes for maximal visibility. The nodal spacing function h is thus
constructed from the image as

(5.8) h(x, y) = h0 s

(
Ibwxc,bwyc

255

)
, s(g) = 0.002 + 0.006 g + 0.012 g8,

where Iij represents the grey level, ranging from 0 to 255, of the pixel in the i-th row and the j-th
column of the image and w is the width of the image. The node distributions obtained by filling
the spoon shape with aforementioned density using PNP and FF algorithms are shown in the first
row of Figure 8. The bottom row shows an enlarged portion of the image and the corresponding
distributions, so that individual nodes are visible for easier visual assessment.

Fig. 8. Illustration of variable density node sampling, with the nodal spacing function h obtained from the image
on the left using (5.8). Enlarged variants are present to better asses the node quality.

Both generated node sets conform to the supplied nodal spacing function. The total number of
nodes is similar in both cases, with PNP having fewer nodes than FF. Enlarged portions show that
PNP and FF distributions are locally regular, visually similar and respect the variable nodal spacing
function h.

Further examples of 2D and 3D spatially variable distributions are shown in Figure 9. The 2D
domain is a non-convex polygon with a hole and the 3D domain is a spherical shell with one of the
octants cut out. Figure 10 displays successive enlargement of a nodal distribution used to solve a
contact problem [36], which illustrates the graded nature of the refinement and its local regularity in

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 17

the most zoomed panel.

Fig. 9. Example of generated variable density distributions for non-convex domain with non-trivial boundaries.

Fig. 10. Discretisation of a contact region and successive enlargements.

5.4. Computational efficiency and scalability. Point 4 concerns computational efficiency in
two aspects: theoretical time complexity and execution time.

The time complexity of the FF algorithm is proven in subsection 3.1.1 and given by (3.2)

(5.9) TFF = O

(
n

(
|bb Ω|
|Ω|

N

)1.5
)

18 J. SLAK AND G. KOSEC

for constant spacing h and is similar for variable spacing. There are no immediate benefits if h is
assumed to be constant. The SKF algorithm benefits from the assumption of constant h and has time
complexity given by (3.3) in subsection 3.2.1:

(5.10) TSKF = O

(
obb(Ω)|
|Ω|

nN

)
.

PNP algorithm has time complexity

(5.11) TPNP = O(nN logN),

as analyzed in subsection 4.1. If h is assumed constant, the time complexity is further reduced to

O(|obb(Ω)|
|Ω| N + nN) using grid spatial search structure and even to O(Nn) using hashing for irregular

domains.
PNP algorithm is better for a domain irregularity factor compared to both SKF and FF algorithms.

In case of constant h it shares the same remaining factor Nn with SKF and for variable densities it is
strictly better than FF.

Next, we compare the running time and scalability of proposed algorithms. All time measurements
were done on a laptop computer with an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz processor
and 16 GB DDR4 RAM. Code was compiled using g++ (GCC) 8.1.1 for Linux with -std=c++11 -O3

-DNDEBUG flags.
Note that we implemented all three algorithms in the same manner with great emphasis on opti-

mization of the code in order to provide a fair comparison.
All algorithms were run on a unit square [0, 1]2 with the same parameters as in subsection 5.1. The

nodal spacing function h was varied as h = 1
n , for such n that the total number of nodes N reached

approximately N = 106. Each run was executed 10 times and the median time was taken. The results
are shown in Figure 11.

Fig. 11. Execution times for the considered algorithms when filling [0, 1]2 with successively smaller densities. Each
data point represents a median of 10 runs. Standard deviation of run times from the median was below 3% in all cases.
Value k in the legend indicates slope of the line.

In 2-D the FF algorithm performs better than the others for small N . This is also expected, as the
algorithm generates nodes in a much simpler (and deterministic) way than the other two approaches.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 19

SKF algorithm is next in terms of performance, with its grid-based search structure. PNP algorithm
is the slowest, due to the k-d tree search structure. Nonetheless, 106 nodes are generated in 5 to 10
seconds, which is significantly less than the time that would be spent on solving the PDE on these
nodes.

The trends for large N coincide with the theoretical time complexities with SKF being an O(N)
algorithm, PNP being an O(N logN), and FF being O(N

√
N).

PNP was also run using the same grid search structure as SKF, denoted in Figure 11 by “PNP-
grid”. It shows a significant improvement over the use of k-d tree spatial search structure and agrees
with the predicted linear time complexity. This also shows that PNP algorithm itself is about three
times faster than SKF, when compared using the same search structure and the same number of
candidates. PNP with a gird-based structure also comes close to FF for smaller N and constant h.
Execution time of PNP and SKF algorithms was tested also in 3-D and the results are equivalent.

Additionally, we analyze the execution time of the three algorithms when dealing with irregular
domains. Both FF and SKF algorithms do no have time complexity proportionate to |Ω|, but rather
to the volume of its (oriented) bounding box, which can be arbitrarily larger. In practice this means

that PNP algorithm inherently benefits in execution time by a factor of | bb(Ω)|
|Ω| .

This is illustrated in Figure 12, which shows the execution time of the considered algorithms when
filling increasingly “emptier” domains

(5.12) Ω(α) = [0, 1]2 \
(1

2
− α, 1

2
+ α

)2

.

Domains Ω(α) are chosen in such a way that the bounding box is equal to [0, 1]2 for all α and that
the limit of the ratio between the bounding box and domain volume approaches zero as α approaches
1/2.

Fig. 12. Execution time when filling domains Ω(α) which have decreasing area.

The difference in the behavior of execution time is substantial and shows that both versions of
PNP really scale with volume of Ω, while the execution time of FF and SKF remains almost constant,
as predicted by time complexity analysis. This means that around 30 000 nodes can be generated, for
less than 8 000 to remain in the final set.

5.5. Compatibility with boundary discretizations. The next point discusses the compatibil-
ity between interior and boundary discretizations. All three algorithms treat boundary discretizations
separately from discretizing the interior of Ω. Due to box-fill nature of FF, the generated discretization

20 J. SLAK AND G. KOSEC

of the interior is chopped off at the boundary of Ω when the boundary discretization is superimposed.
Nodes that are closer to the boundary nodes than a given threshold are discarded. If the threshold is
strictly h, gaps between the boundary and the interior discretization can occur. The authors recom-
mend setting the threshold to h/2 and preforming a few iterations of a repel-type algorithm that is
executed locally on the nodes near the boundary to smooth the transition between both discretizations.
SKF algorithm possesses a similar problem, but deals with it differently. It generates internal nodes in
a slightly reduced oriented bounding box, which is computed from boundary nodes that were shifted
by h to the interior. This prevents the generation of internal nodes too close to the boundary of the
box; however, the nodes still need to be tested for inclusion, which is done using the shifted nodes and
their normals. This causes gaps near the boundary, which can be observed in the sample distribution
in Figure 4 (second panel).

PNP algorithm bypasses the aforementioned problems altogether, by offering the option to use
the boundary discretization as a starting point of the interior discretization and thus allowing for a
smooth transition near the boundary. Similar irregularities to those present near the boundary in SKF
algorithm are formed when the advancing fronts from the opposite sides meet, but they appear in
the interior of Ω (see Figure 4, rightmost panel), where they have less impact on the stability of the
solution. Consequently no need to smooth the irregularities with expensive iterative repel techniques
arose.

5.6. Compatibility with irregular domains. Another requirement deals with irregular do-
mains. FF algorithm has a disadvantage of being only able to fill axis-aligned boxes, which results
in potentially a lot of unnecessarily generated nodes. This approach is somewhat improved in the
SKF algorithm, where oriented bounding boxes are used, in general reducing the number of generated
nodes compared to FF. The number of unnecessarily generated nodes could be reduced even further
by decomposing an unfavorably shaped domain into smaller domains, which can be better bounded
by cuboids. The smaller domains can then be filled separately and combined together, provided that
the node generation algorithm behaves well near boundaries. An appropriate domain decomposition
would also enable immediate parallel execution of the algorithm.

Of the three discussed algorithms only PNP never generates any unnecessary nodes in the exterior
of the given domain Ω, never evaluates nodal spacing function h outside of Ω and has the property
that the number total number of generated nodes and the time complexity scale directly with |Ω|. The
impact of unnecessary node generation outside Ω on the execution time is illustrated in subsection 5.4;
however, the slowdown introduced by bounding boxes is in practice often acceptable.

The strength of the PNP algorithm which allows it to generate nodes only inside Ω can also become
its disadvantage. If seed nodes are supplied only in one part of Ω and the domain has a bottleneck
in the middle (such as an hourglass shape) of girth approximately equal to nodal spacing h in that
area, the algorithm might fail to advance through such bottleneck and would not generate any nodes
in the other part. The FF and SKF algorithms do not suffer from this problem, and it can also be
circumvented in PNP by supplying at least one seed node in each problematic part of the domain.

5.7. Direction and dimension independence. Points 7 and 8 deal with direction and dimen-
sion independence. FF algorithm is only two-dimensional and directionally dependent, because the
advancing front progresses with respect to the increasing y coordinate. For inconveniently rotated or
badly shaped domains, filling via increasing last coordinate might perform badly. Choosing a filling
direction is the first step of the algorithm, and it can have significant effect on the running time and the
generated node distribution. The algorithm is also not easily generalizable to higher dimensions, as it
is not immediately obvious how to extend the concept of the “closest left” point to higher dimensional

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 21

spaces.
The SKF algorithm is better in this aspect. Using PCA it computes oriented bounded boxes,

which provides independence from rotations. The main parts of the SKF algorithm, i.e. PCA and
Poisson Disk Sampling, all work in arbitrary dimensions. Similarly, all parts of the PNP algorithm are
formulated for a general dimension d and the formulation of the fill procedure is independent of the
coordinate system. The same is true for the implementation: there is a single implementation for all
values of d and the space dimension can truly be a run-time parameter. The coordinates of points are
only accessed in the internals of the k-d tree operations; all other expressions are coordinate-free.

5.8. Free parameters. Point 9 states that the developed algorithm should aim to minimize the
number of free or tuning parameters. All three algorithms have a parameter influencing the number of
candidates, which represents a time-quality trade-off. Authors of FF set n = 5 and anything above has
similar distributions with a higher execution time. Authors of SKF analyze the effect of the number of
candidates more precisely and recommend n = 15 in 2-D and 3-D, with a higher number of candidates
corresponding to lower errors. For PNP algorithm we similarly recommend n = 15 in 2-D, and n = 30
in 3-D with increasing n for higher dimensions. Anything above n = 30 in 2-D gives very similar
results and is computationally wasteful.

6. Solution of PDEs on generated nodes.

6.1. Poisson’s equation. The decisive factor of node distribution quality for strong form meth-
ods is its ability to support construction of a good approximations of differential operators. A basic
test of this ability is to solve the Poisson’s equation on nodes generated by all three algorithms and
compare the accuracy of the solutions.

A d-dimensional boundary value problem

∇2u = f in Ω = [0, 1]d,

u = 0 on ∂Ω(6.1)

with u(x1, . . . , xd) =
∏d
i=1 sin(πxi) and f(x1, . . . , xd) = −dπ2

∏d
i=1 sin(πxi) is considered in d = 2 and

d = 3 dimensions.
The solution is obtained using the popular strong form RBF-FD method [13, 26, 35]. Polyharmonic

radial basis functions (PHS)

(6.2) ϕ(r) =

{
rk k odd

rk log r k even

with k = 3 augmented with monomials up to order 2 are used to construct the approximations on a
stencil of 15 closest nodes in 2-D and 42 closest in 3-D. The final system is solved using BiCGSTAB
iterative algorithm with tolerance 10−15 and 100 iterations with ILUT preconditioner with fill factor
20 and drop tolerance 10−5.

The L1 error between the correct solution u and obtained solution uh is evaluated on an indepen-
dent uniform grid of points G, three times denser than the densest discretization used in solution of
the problem, and computed as

(6.3) L1 = ‖uh − u‖1 ≈
1

|G|
∑
p∈G
|u(p)− uh(p)|.

22 J. SLAK AND G. KOSEC

Node distributions generated by the three considered algorithms are tested using the same param-
eters as in subsection 5.1 and subsection 5.4. The nodal spacing function h varies as h = 1

n , for such n
that the total number of nodes N reached approximately N = 105. The results are shown in Figure 13.

Fig. 13. Accuracy of the numerical solution of (6.1) for considered algorithms when filling [0, 1]d with successively
smaller densities in 2D (left) and 3D (right).

In both 2D and 3D case we observe convergence with expected rates for large N . All node sets
give well-behaved solutions with very similar accuracy. Similar results are obtained in 3D.

6.2. Eigenvalue stability. An often observed property of numerical discretization methods is
the spectrum of discretized partial differential operator. For example, the spectrum of discretized
Laplace operator should have only eigenvalues with negative real part, and a relatively small spread
along the imaginary axis [32]. Figure 14 shows the spectrum of Laplace operator discretized with 2nd
order RBF-FD PHS on PNP nodes shown in Figure 9. There are no eigenvalues with positive real
part and also imaginary spread is relatively small, which additionally confirms the stability of RBF-FD
PHS differentiation on scattered nodes.

Fig. 14. Spectra of the Laplacian operator discretized with RBF-FD PHS r3, augmented with monomials or order 2
on PNP nodes. Note the different scales on the axes of both plots. Variable nn denotes the number of nearest neighbors
used to construct the stencil. The 5 eigenvalues with the largest real parts are given in the top left corner of each plot.

Additionally, we tested several different setups with different stencil sizes and approximation orders

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 23

on nodes distributed with all three positioning algorithms with minimal differences observed in the
spectrum.

6.3. Thermo-fluid problem. Finally, the PNP algorithm is tested on a more complex problem.
The goal is to demonstrate the capability of meshless solution procedure on PNP nodes solving a
transient non-linear convection dominated problem in 2D and 3D irregular domain with mixed Dirichlet
and Neumann boundary conditions. The natural convection problem governed by coupled Navier-
Stokes, mass continuity and heat transfer equations is chosen for a test case. First, a well-known de
Vahl Davis benchmark test [9] is solved to demonstrate correctness of the solution procedure, both
in 2D and 3D. Once we attain confidence in the solution procedure we extend the demonstration to
irregular domains.

The natural convection benchmark problem is governed by the following equations:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+

µ

ρ
∇2v +

1

ρ
b,(6.4)

∇ · v = 0,(6.5)

b = ρ(1− β(T − Tref))g,(6.6)

∂T

∂t
+ v · ∇T =

λ

ρcp
∇2T,(6.7)

where v(u, v, w), p, T , µ, λ, cp, ρ, g, β, Tref and b stand for velocity, pressure, temperature, viscosity,
thermal conductivity, specific heat, density, gravitational acceleration, coefficient of thermal expansion,
reference temperature for Boussinesq approximation, and body force, respectively. The de Vahl Davis
test is defined on a unit square domain Ω, where vertical walls are kept at constant temperatures with
∆T difference between cold and hot side, while horizontal walls are adiabatic. In generalization to
3D we assume also front and back walls to be adiabatic [37]. No-slip velocity boundary conditions
are assumed on all walls. The problem is characterized by Rayleigh (Ra) and Prandtl (Pr) numbers,
defined as

(6.8) Pr =
µcp
λ
,Ra =

gβρcp∆Th
3

λµ
,

with h standing for characteristic length, in our case set to 1. All cases considered in this paper are
computed at Pr = 0.71.

The problem is solved with implicit time stepping, where each time step begins with a computation
of intermediate velocity (ṽ2)

(6.9) ṽ2 = v1 + ∆t

[
−(v1 · ∇)ṽ2 +

µ

ρ
∇2ṽ2 +

1

ρ
b(T1)

]
.

The computed velocity is coupled with mass continuity by an iterative velocity-correction scheme,
where it is assumed that the correction depends only on the pressure term

(6.10) v2 = ṽ2 −
∆t

ρ
∇p.

Applying divergence on (6.10) yields a pressure Poisson equation

(6.11) ∇2p =
ρ

∆t
∇ · ṽ2 in Ω,

∂p

∂n
=

ρ

∆t
ṽ2 · n on ∂Ω, subjected to

∫
Ω

p = 0,

24 J. SLAK AND G. KOSEC

which is solved first to get the pressure field. With computed pressure the velocity is corrected following
the (6.10). Steps (6.11) and (6.10) are repeated until the convergence criterion is not met. Once the
velocity is satisfactorily divergence free, the temperature field, coupled with momentum equation
through Boussinesq approximation, is updated as

(6.12) T2 = T1 + ∆t

[
−v2 · ∇T2 +

λ

ρcp
∇2T2

]
.

All spatial operators are discretized using RBF-FD with r3 PHS radial basis functions, augmented
with monomials up to order 2, with the closest 25 nodes used as a stencil. For the time discretization
time step ∆t = 10−3 was used for all cases. Nodal distance h = 0.01 is used for simulations in 2D
and h = 0.25 for simulations in 3D. Boundaries with Neumann boundary conditions are additionally
treated with ghost nodes [3].

In Figure 15 steady state temperature contour and velocity quiver plots for Ra = 108 case in
2D and Ra = 106 case in 3D are presented. A more quantitative analysis is done by comparing
characteristic values, i.e. peak positions and values of cross section velocities, with data available
in literature [8, 20, 37, 14]. We analyze six different cases, namely Ra = 106, 107, 108 in 2D, and
Ra = 104, 105, 106 in 3D. The comparison in presented in Table 2.

Fig. 15. Temperature contour and velocity quiver plots for Ra = 108 case in 2D (left) and Ra = 106 case in 3D
(right).

Finally, in Figure 16 we demonstrate the solution of transient convection dominated problem in an
irregular 2D and 3D domain with mixed Dirichlet-Neumann boundary conditions on nodes positioned
with the proposed algorithm. Note that this case, a solution of natural convection in an irregular
domain, includes several potential complications, such as Neumann boundary conditions on curved
boundaries, concavities, convection dominated transport and non-linearities.

7. Conclusions. A new algorithm for generating variable density node distributions in interiors
of arbitrary dimensions is proposed. The algorithm has many desirable properties, such as direction

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 25

Table 2
Comparison of results computed with RBF-FD on FF nodes and reference data.

Ra
vmax(x, 0.5) x umax(0.5, y) y

present [8] [20] present [8] [20] present [8] [20] present [8] [20]

2D

106 0.2628 0.2604 0.2627 0.037 0.038 0.039 0.0781 0.0765 0.0782 0.847 0.851 0.861

107 0.2633 0.2580 0.2579 0.022 0.023 0.021 0.0588 0.0547 0.0561 0.870 0.888 0.900

108 0.2557 0.2587 0.2487 0.010 0.011 0.009 0.0314 0.0379 0.0331 0.918 0.943 0.930

Ra
wmax(x, 0.5, 0.5) x umax(0.5, 0.5, z) z

present [37] [14] present [37] [14] present [37] [14] present [37] [14]

3D

104 0.2295 0.2218 0.2252 0.850 0.887 0.883 0.2135 0.1968 0.2013 0.168 0.179 0.183

105 0.2545 0.2442 0.2471 0.940 0.931 0.935 0.1564 0.1426 0.1468 0.144 0.149 0.145

106 0.2564 0.2556 0.2588 0.961 0.965 0.966 0.0841 0.0816 0.0841 0.143 0.140 0.144

Fig. 16. Temperature contour and velocity quiver plots of solutions in irregular 2D domain (left) and irregular 3D
domain (right).

independence, support for irregular domains by only discretizing the area actually contained in the
domain interior, good compatibility with boundary discretizations and good scaling behavior. We prove
that the time complexity of the proposed algorithm scales as O(N) for constant spacing and O(N logN)
for variable spacing. A minimal nodal spacing guarantee for constant and variable nodal spacing
functions is also proven. With examples it is shown that the proposed algorithm produces locally
smooth distributions that are suitable for RBF-FD method for solving partial differential equations.
The algorithm is compared against two other state-of-the-art algorithms, and the summary of the
findings is presented in Table 3.

The algorithm is also included in the Medusa library [27] for solving PDEs with strong form
meshless methods, but a standalone implementation of the algorithm is available from the library’s
website as well [33].

At least three directions are open for future research. The first one deals with effective adaptive
modification of parts of generated distributions with target complexity O(Nold + Nnew), where Nold

26 J. SLAK AND G. KOSEC

Table 3
Comparison of FF, SKF and PNP algorithms.

property / algorithm FF SKF PNP

supports variable density yes no yes

supports 3-D distributions no yes yes

supports irregular domains yes, using BB yes, using OBB yes, natively

compatibility with
boundary nodes

n/a no yes

dimension independence no yes yes

direction independence no yes yes

randomized
minimal
(only starting line)

yes (fully) yes (controlled)

minimal spacing guarantees no yes (constant h)
yes (constant
and variable h)

time complexity O
(
n
(| bb(Ω)|
|Ω| N

)1.5)
O
(
n | obb(Ω)|

|Ω| N
)

O(nN logN)
(O(nN) if h constant)

computational time
best for smaller N ,
5 s for 106 nodes

6 s for 106 nodes
10 s for 106 nodes,
2 s if h constant

PDE accuracy satisfactory
satisfactory with
larger support sizes

satisfactory

number of free parameters 1 (no. of cand. n) 1 (no. of cand. n) 1 (no. of cand. n)

and Nnew stand for the number of removed old nodes and the number of added new nodes. The
second direction is to generalize the algorithm to (parametric) surfaces, again with desired O(N) time
complexity irrespective of the surface. The third direction is to investigate parallelization opportu-
nities on different parallel architectures ranging from shared memory multi-core central processing
units (CPUs) and general purpose graphics processing units (GPGPUs) to distributed computing.
A potential approach, suitable for shared memory, is to independently build the discretization from
several seed nodes. The bottleneck in such an approach is the manipulation of global kd-tree search
structure, especially on GPGPUS. Alternative simpler search structures, such as spatial grids, could
be used instead, as is common practice in computer graphics community. Second option, also suitable
for distributed computing, is via domain decomposition, where main problems arise in load balancing
and appropriate partitioning of the complex higher dimensional domains.

Acknowledgments. The authors would like to acknowledge the financial support of the Research
Foundation Flanders (FWO), The Luxembourg National Research Fund (FNR) and Slovenian Research
Agency (ARRS) in the framework of the FWO Lead Agency project: G018916N Multi-analysis of
fretting fatigue using physical and virtual experiments, the ARRS research core funding No. P2-0095
and the Young Researcher program PR-08346.

REFERENCES

[1] M. Balzer, T. Schlmer, and O. Deussen, Capacity-constrained point distributions: a variant of Lloyds method,
ACM Transactions on Graphics, 28 (2009), https://doi.org/10.1145/1531326.1531392.

[2] S. Bauer, Image Number K7245-1. United States Department of Agriculture, https://www.ars.usda.gov/oc/
images/photos/k7245-1/.

[3] V. Bayona, N. Flyer, B. Fornberg, and G. A. Barnett, On the role of polynomials in RBF-FD approximations:
II. Numerical solution of elliptic PDEs, J. Comput. Phys., 332 (2017), pp. 257–273, https://doi.org/10.1016/

https://doi.org/10.1145/1531326.1531392
https://www.ars.usda.gov/oc/images/photos/k7245-1/
https://www.ars.usda.gov/oc/images/photos/k7245-1/
https://doi.org/10.1016/j.jcp.2016.12.008
https://doi.org/10.1016/j.jcp.2016.12.008

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 27

j.jcp.2016.12.008.
[4] J. L. Blanco and P. K. Rai, nanoflann: a C++ header-only fork of FLANN, a library for nearest neighbor (NN)

with KD-trees, 2014, https://github.com/jlblancoc/nanoflann.
[5] R. Bridson, Fast Poisson disk sampling in arbitrary dimensions, in SIGGRAPH sketches, 2007, p. 22, https:

//doi.org/10.1145/1278780.1278807.
[6] Y. Choi and S. Kim, Node generation scheme for meshfree method by Voronoi diagram and weighted bubble

packing, in Fifth us national congress on computational mechanics, Boulder, CO, 1999.
[7] R. L. Cook, Stochastic sampling in computer graphics, ACM Trans. Graphics, 5 (1986), pp. 51–72, https://doi.

org/10.1145/7529.8927.
[8] H. Couturier and S. Sadat, Performance and accuracy of a meshless method for laminar natural convec-

tion, Numerical Heat Transfer: Part B: Fundamentals, 37 (2000), pp. 455–467, https://doi.org/10.1080/
10407790050051146.

[9] G. de Vahl Davis, Natural convection of air in a square cavity: A bench mark numerical solution, Int. J. Numer.
Methods Fluids, 3 (1983), pp. 249–264, https://doi.org/10.1002/fld.1650030305.

[10] D. Dimitrov, C. Knauer, K. Kriegel, and G. Rote, On the bounding boxes obtained by principal component
analysis, in 22nd European Workshop on Computational Geometry, 2006, pp. 193–196.

[11] B. Fornberg and N. Flyer, Fast generation of 2-D node distributions for mesh-free PDE discretizations, Com-
puters & Mathematics with Applications, 69 (2015), p. 531544, https://doi.org/10.1016/j.camwa.2015.01.009.

[12] B. Fornberg and N. Flyer, A primer on radial basis functions with applications to the geosciences, SIAM, 2015,
https://doi.org/10.1137/1.9781611974041.

[13] B. Fornberg and N. Flyer, Solving PDEs with radial basis functions, Acta Numerica, 24 (2015), p. 215258,
https://doi.org/10.1017/S0962492914000130.

[14] T. Fusegi, J. M. Hyun, K. Kuwahara, and B. Farouk, A numerical study of three-dimensional natural con-
vection in a differentially heated cubical enclosure, Int. J. Heat Mass Transfer, 34 (1991), pp. 1543–1557,
https://doi.org/10.1016/0017-9310(91)90295-p.

[15] A. Golbabai and E. Mohebianfar, A new method for evaluating options based on multiquadric RBF-FD method,
Appl. Math. Comput., 308 (2017), pp. 130–141, https://doi.org/10.1016/j.amc.2017.03.019.

[16] G. Guennebaud, B. Jacob, et al., Eigen v3, 2010, http://eigen.tuxfamily.org.
[17] D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Notices of the AMS, 51 (2004),

pp. 1186–1194.
[18] I. Jolliffe, Principal component analysis, Springer Series in Statistics, Springer, 2nd ed., 2011, https://doi.org/

10.1007/978-3-642-04898-2 455.
[19] G. Kosec, A local numerical solution of a fluid-flow problem on an irregular domain, Adv. Eng. Software, 120

(2018), pp. 36–44, https://doi.org/10.1016/j.advengsoft.2016.05.010.
[20] G. Kosec and B. Šarler, Solution of thermo-fluid problems by collocation with local pressure correction, Interna-

tional Journal of Numerical Methods for Heat & Fluid Flow, 18 (2008), pp. 868–882, https://doi.org/10.1108/
09615530810898999.

[21] G. Kosec and J. Slak, RBF-FD based dynamic thermal rating of overhead power lines, in Advances in Fluid
Mechanics XII, vol. 120 of WIT transactions on engineering sciences, Wessex institute, WIT press, 2018,
pp. 255–262, https://doi.org/10.2495/afm180261.

[22] X.-Y. Li, S.-H. Teng, and A. Ungor, Point placement for meshless methods using sphere packing and advancing
front methods, in ICCES’00, Los Angeles, CA, Citeseer, 2000.

[23] G.-R. Liu, Mesh free methods: moving beyond the finite element method, CRC press, 2002, https://doi.org/10.
1201/9781420040586.

[24] Y. Liu, Y. Nie, W. Zhang, and L. Wang, Node placement method by bubble simulation and its application,
Computer Modeling in Engineering and Sciences(CMES), 55 (2010), p. 89, https://doi.org/10.3970/cmes.
2010.055.089.

[25] R. Löhner and E. Oñate, A general advancing front technique for filling space with arbitrary objects, Int. J.
Numer. Methods Eng., 61 (2004), pp. 1977–1991, https://doi.org/10.1002/nme.1068.

[26] B. Mavri and B. arler, Local radial basis function collocation method for linear thermoelasticity in two di-
mensions, Int. J. Numer. Methods Heat Fluid Flow, 25 (2015), pp. 1488–1510, https://doi.org/10.1108/
hff-11-2014-0359.

[27] Medusa library, http://e6.ijs.si/medusa/.
[28] S. A. Mitchell, A. Rand, M. S. Ebeida, and C. Bajaj, Variable radii Poisson-disk sampling, extended version,

in Proceedings of the 24th canadian conference on computational geometry, vol. 5, 2012.
[29] A. W. Moore, An introductory tutorial on kd-trees, 1991, https://doi.org/10.1.1.28.6468.
[30] P.-O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM Rev., 46 (2004), pp. 329–345,

https://doi.org/10.1137/s0036144503429121.

https://doi.org/10.1016/j.jcp.2016.12.008
https://doi.org/10.1016/j.jcp.2016.12.008
https://github.com/jlblancoc/nanoflann
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1080/10407790050051146
https://doi.org/10.1080/10407790050051146
https://doi.org/10.1002/fld.1650030305
https://doi.org/10.1016/j.camwa.2015.01.009
https://doi.org/10.1137/1.9781611974041
https://doi.org/10.1017/S0962492914000130
https://doi.org/10.1016/0017-9310(91)90295-p
https://doi.org/10.1016/j.amc.2017.03.019
http://eigen.tuxfamily.org
https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.1016/j.advengsoft.2016.05.010
https://doi.org/10.1108/09615530810898999
https://doi.org/10.1108/09615530810898999
https://doi.org/10.2495/afm180261
https://doi.org/10.1201/9781420040586
https://doi.org/10.1201/9781420040586
https://doi.org/10.3970/cmes.2010.055.089
https://doi.org/10.3970/cmes.2010.055.089
https://doi.org/10.1002/nme.1068
https://doi.org/10.1108/hff-11-2014-0359
https://doi.org/10.1108/hff-11-2014-0359
http://e6.ijs.si/medusa/
https://doi.org/10.1.1.28.6468
https://doi.org/10.1137/s0036144503429121

28 J. SLAK AND G. KOSEC

[31] K. Reuther, B. Sarler, and M. Rettenmayr, Solving diffusion problems on an unstructured, amorphous grid
by a meshless method, Int. J. Therm. Sci., 51 (2012), pp. 16–22, https://doi.org/10.1016/j.ijthermalsci.2011.
08.017.

[32] V. Shankar, R. M. Kirby, and A. L. Fogelson, Robust node generation for meshfree discretizations on irregular
domains and surfaces, SIAM J. Sci. Comput., 40 (2018), pp. 2584–2608, https://doi.org/10.1137/17m114090x.

[33] J. Slak and G. Kosec, Standalone implementation of the proposed node placing algorithm. http://e6.ijs.si/
medusa/static/PNP.zip.

[34] J. Slak and G. Kosec, Fast generation of variable density node distributions for mesh-free methods, in WIT
Transactions on Engineering Sciences, vol. 122, 2018, https://doi.org/10.2495/be410151.

[35] J. Slak and G. Kosec, Refined meshless local strong form solution of Cauchy–Navier equation on an irregular
domain, Eng. Anal. Boundary Elem., (2018), https://doi.org/10.1016/j.enganabound.2018.01.001.

[36] J. Slak and G. Kosec, Adaptive radial basis function-generated finite differences method for contact problems,
Int. J. Numer. Methods Eng., (2019), https://doi.org/10.1002/nme.6067.

[37] P. Wang, Y. Zhang, and Z. Guo, Numerical study of three-dimensional natural convection in a cubical cavity
at high Rayleigh numbers, Int. J. Heat Mass Transfer, 113 (2017), pp. 217–228, https://doi.org/10.1016/j.
ijheatmasstransfer.2017.05.057.

https://doi.org/10.1016/j.ijthermalsci.2011.08.017
https://doi.org/10.1016/j.ijthermalsci.2011.08.017
https://doi.org/10.1137/17m114090x
http://e6.ijs.si/medusa/static/PNP.zip
http://e6.ijs.si/medusa/static/PNP.zip
https://doi.org/10.2495/be410151
https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1002/nme.6067
https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057
https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057

	1 Introduction
	2 Node placing algorithm requirements
	3 State of the art algorithms
	3.1 Algorithm by Fornberg and Flyer
	3.1.1 Time complexity analysis
	3.1.2 Implementation notes

	3.2 Algorithm by Shankar, Kirby and Fogelson
	3.2.1 Time complexity analysis
	3.2.2 Implementation notes

	4 New node placing algorithm
	4.1 Time complexity analysis
	4.2 Implementation notes
	4.3 Remarks

	5 Satisfaction of the requirements
	5.1 Local regularity
	5.2 Minimal spacing requirements
	5.3 Spatial variability
	5.4 Computational efficiency and scalability
	5.5 Compatibility with boundary discretizations
	5.6 Compatibility with irregular domains
	5.7 Direction and dimension independence
	5.8 Free parameters

	6 Solution of PDEs on generated nodes
	6.1 Poisson's equation
	6.2 Eigenvalue stability
	6.3 Thermo-fluid problem

	7 Conclusions
	References

