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An equivalence between critical points for rank

constraints versus low-rank factorizations

Wooseok Ha∗, Haoyang Liu†, Rina Foygel Barber†

Abstract

Two common approaches in low-rank optimization problems are either working
directly with a rank constraint on the matrix variable, or optimizing over a low-
rank factorization so that the rank constraint is implicitly ensured. In this paper,
we study the natural connection between the rank-constrained and factorized ap-
proaches. We show that all second-order stationary points of the factorized objective
function correspond to fixed points of projected gradient descent run on the original
problem (where the projection step enforces the rank constraint). This result allows
us to unify many existing optimization guarantees that have been proved specifically
in either the rank-constrained or the factorized setting, and leads to new results for
certain settings of the problem. We demonstrate application of our results to several
concrete low-rank optimization problems arising in matrix inverse problems.

1 Introduction

We consider the following low rank optimization problem

min
X∈Rm×n

{
f(X) : rank(X) ≤ r

}
, (1)

for a differentiable function f : Rm×n → R. Due to a wide range of applications, this type
of optimization problem has been studied extensively in the past decade.

In some special cases, the unconstrained minimizer of f(X) may already be low-rank,
i.e.

X̂ ∈ argmin
X∈Rm×n

{
f(X) : rank(X) ≤ r

}
⊆ argmin

X∈Rm×n

f(X).

This setting arises naturally in the matrix inverse problems, such as matrix sensing
[Recht et al., 2010] and matrix completion [Candès and Recht, 2009], where the low-rank
solution typically represents a matrix signal to recover from a fewer number of measure-
ments. In these settings, while there may exist many full rank minimizers due to the
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nature of under-determined system, enforcing the constraint over the course of an itera-
tive algorithm allows to accurately find the one with low rank [Oymak et al., 2018]. A
low-rank solution to the unconstrained minimization problem can also arise in the study
of semidefinite programs (SDP)—a wide class of SDP problems1 admit low rank solution
that are global optimal (e.g., Bhojanapalli et al. [2018]). While SDP problems are convex
and can be solved by convex optimization algorithms, restricting the search space via rank
constraint may still be useful in speeding up the algorithm [Burer and Monteiro, 2003].

In other settings, the rank constraint rank(X) ≤ r will be active in the solution to
the minimization problem (1), meaning that the unconstrained minimizer will no longer
be low rank and we must necessarily work with the rank constraint in the optimization.
In this case, two of the most common optimization strategies in the literature are: ei-
ther working with the full variable X ∈ R

m×n while enforcing rank(X) ≤ r (e.g., by
projecting to this constraint after each iteration), or reformulating the problem in terms
of a factorization X = AB⊤ with A ∈ R

m×r and B ∈ R
n×r, so that the factorization

ensures the rank constraint. (Riemannian optimization [Absil et al., 2009, Vandereycken,
2013, Mishra et al., 2013] is another well-studied approach to optimizaiton under rank
constraints which we do not consider in this work. There is also extensive literature
on relaxing rank constraint to a convex penalty or constraint, such as the nuclear norm
[Recht et al., 2010], but here we will focus on optimization techniques that work with the
original rank constraint rather than a relaxation.)

Working either with X or with a factorization, we can implement various optimization
methods to attempt to find the solution to (1). When working with the full variable, a
standard approach is to treat the rank-constrained set as a subset of the Euclidean space
R

m×n, and apply constrained optimization algorithms. As our central example of this
work, we consider the projected gradient descent method (also known as iterative hard
thresholding, see Jain et al. [2014]):

X ← Pr

(
X − η∇f(X)

)
, (2)

where Pr(·) denotes projection to the rank-r constraint (calculated by taking the top r
components of a singular value decomposition). On the other hand, if we work instead in
the factorized setting, we would aim to solve

min
A∈Rm×r ,B∈Rn×r

f(AB⊤). (3)

For instance, we might apply any unconstrained optimization techniques to this min-
imization, which attempt to update each of the two factors A,B. In contrast to the
full-dimensional approach, these methods implicitly explore the space of low rank matrix
manifold embedded in R

m×n.
Comparing these options naturally raises the following question: is there a connection

between the output of full-dimensional approaches such as PGD (2) versus factorized

1While canonical forms of SDPs involve linear constraints and do not fall within the framework of (1),
here we mainly focus on the penalized formulation of SDPs, as proposed in [Bhojanapalli et al., 2018],
i.e., the linear constraints are replaced by a quadratic penalty in the objective function—see Section 2.4.
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approaches aiming to solve (3)? Our work is intended to partially answer this question,
and further highlighting the implication of this result to a range of low rank estimation
problems.

1.1 Comparing full-dimensional vs factorized approaches

In this work we strengthen the connection between solving the rank-constrained opti-
mization problem via its factorized representation (3) versus projecting directly to the
constraint (2). Our key finding is that these two approaches, treated more or less sep-
arately in the literature, can in fact be considered to be equivalent for a wide class of
low-rank optimization problems, and thus lead to the same guarantees in a range of set-
tings. Specifically we can state our main result as follows:

Any second-order stationary point (SOSP) of the factorized objective function
g(A,B) = f(AB⊤), must also be a fixed point of projected gradient descent
on the original objective function f(X).

Based on this finding, we further verify the following results:

• In Section 3, under conditions of restricted strong convexity/smoothness on f, we
give a range of different optimality guarantees for SOSPs of the factorized objective
function. Here the strength of the guarantee (e.g., global or local optimality) varies
depending on the strength of our assumptions on problem.

• In Section 4, we specialize these optimality guarantees to several concrete matrix
inverse problems arising in low-rank signal recovery, such as matrix sensing, matrix
completion, and robust PCA.

As we will see, these results directly follow from our main equivalence result, in combi-
nation with some properties of fixed points of PGD (2). It is not the aim of this work to
provide novel guarantees for estimation and convergence of these various problems—and
indeed, some of these guarantees are already known in the literature, although in other
cases new guarantees arise as a byproduct of our main results. Rather, we aim to bring in
a new perspective and broaden our understanding on the landscape of nonconvex low-rank
minimization problems through our equivalence result.

1.2 Notation

Throughout the paper, f : Rm×n → R is a twice-differentiable objective function. Its
gradient ∇f(X) is represented as a matrix in R

m×n while its second derivative ∇2f(X) :
R

m×n × R
m×n → R will be written as a quadratic form, i.e., ∇2f(X)

(
X1, X2

)
.

We will work also with g(A,B) = f(AB⊤), the function defining the factorized prob-
lem. Writing g : Rm×r×Rn×r → R, the first derivative∇g(A,B) =

(
∇A g(A,B),∇B g(A,B)

)

lies in R
m×r × R

n×r, while the second derivative ∇2g(A,B) is a quadratic form mapping
from

(
R

m×r × R
n×r

)
×

(
R

m×r × R
n×r

)
to R.
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For a matrix X , we write, respectively, ‖X‖F and ‖X‖ to denote the Frobenius norm
and the spectral norm, while ‖X‖2,∞ will be denoted as the largest ℓ2 norm of any row.
The ℓ0 norm, ‖ · ‖0, will denote the number of nonzero entries in a vector. If rank(X) ≤ r,
we will write X = UX · diag{σ1, . . . , σr} · V ⊤

X to denote a (possibly non-unique) singular
value decomposition of X , with σ1 ≥ · · · ≥ σr.

2 Main result

We now turn to our main result, relating critical points of factorized optimization of
g(A,B) = f(AB⊤) to the fixed points of PGD on the full-dimensional problem f(X).
Before proceeding, we need one additional piece of notation that allow us to quantify the
smoothness of f on the space of low-rank matrices:

βlocal(X) = lim
ǫ→0





sup
0<‖Y−X‖F≤ǫ
rank(Y )≤r

f(Y )− f(X)− 〈∇f(X), Y −X〉
1
2
‖X − Y ‖2F





. (4)

Note that, if f is twice differentiable, then βlocal(X) ≤ ‖∇2f(X)‖.
This local curvature measure will relate to the step size of PGD, since the step size for

PGD is typically chosen with respect to the curvature of f—in particular, if the second
derivative of f is globally bounded by some β, then a constant step size η ≤ 1/β ensures
that each step of PGD will make progress towards minimizing f.

2.1 Preliminaries: characterizing critical points

We begin by characterizing a critical point (CP) or fixed point for each of the relevant
representations and algorithms.

2.1.1 Critical points, fixed points, and local minima of rank-constrained min-
imization

First consider the rank-constrained minimization problem (1) over the full-dimensional
matrix variable X . For a matrix X with rank(X) ≤ r,

X is a CP of (1) iff

{
rank(X) = r, ∇f(X)⊤UX = 0, and ∇f(X)VX = 0, or

rank(X) < r and ∇f(X) = 0.
(5)

These conditions are necessary for local optimality Rockafellar and Wets [2009, Theorem
6.12]—that is, any local minimum X for the function f(X) must satisfy (5)—but in general
are not sufficient. In particular, we can verify the following stronger property necessary
for local optimality:
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Lemma 1. Suppose that X is a local minimum of the rank-constrained optimization
problem (1). Then, in addition to the first-order conditions (5), the gradient ∇f(X)
satisfies

‖∇f(X)‖ ≤ βlocal(X) · σr, (6)

where σr is the r-th singular value of X.

Next we turn to the PGD algorithm in particular, and characterize its fixed points.
Recall that the PGD algorithm has update steps of the form

Xt+1 ← Pr

(
Xt − η∇f(Xt)

)
,

where η > 0 is the step size, while Pr denotes (possibly non-unique) projection to the
rank constraint, i.e., Pr(X) ∈ argminrank(X′)≤r ‖X ′ −X‖F.

A matrix X ∈ R
m×n is therefore a fixed point of PGD at step size η > 0 if it satisfies2

X = Pr

(
X − η∇f(X)

)
.

By examining this condition, we can easily determine that X is a fixed point of PGD if
and only if

∇f(X)⊤UX = 0 and ∇f(X)VX = 0 and η‖∇f(X)‖ ≤ σr. (7)

Comparing to the result of Lemma 1 and the critical point conditions (5), we see that
this implies

{
Local minima
of min
rank(X)≤r

f(X)

}
⊆





Fixed pts. of PGD
on min

rank(X)≤r

f(X)

with η ≤ 1/βlocal




⊆

{
Critical pts.

of min
rank(X)≤r

f(X)

}
.

2.1.2 Critical points of factorized minimization

Next, we will consider the critical points of the factorized objective function g(A,B),
defined over the variables A ∈ R

m×r and B ∈ R
n×r (with no constraints on these vari-

ables). A first-order stationary point (FOSP), or critical point, of g is any pair (A,B)
with ∇g(A,B) = (∇Ag(A,B),∇Bg(A,B)) = 0. By definition of g, we can calculate

∇A g(A,B) = ∇f(AB⊤)B and ∇B g(A,B) = ∇f(AB⊤)⊤A,

and therefore,

The pair (A,B) is a FOSP of g iff ∇g(A,B) = 0,

or equivalently, ∇f(AB⊤)⊤A = 0 and ∇f(AB⊤)B = 0. (8)

Comparing to the first-order optimality conditions for the original (full-dimensional) ob-
jective function f(X), given in (5), we obtain the following result (which requires no
proof):

2If the projection step is not unique, we need to be more precise with our definition. We say that X
is a fixed point of PGD at step size η if X is equal to a (possibly non-unique) solution of the projection
step, i.e., X ∈ argminrank(X′)≤r ‖X ′ −

(
X − η∇f(X)

)
‖F.
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Lemma 2. Let (A,B) ∈ R
m×r×Rn×r. IfX = AB⊤ is a critical point ofminrank(X)≤r f(X),

then the pair (A,B) is a FOSP of the factorized objective function g(A,B).

However, we cannot hope for the converse to be true, since FOSPs of g can exhibit
some counterintuitive behavior that does not arise in the full-dimensional problem. A
well-known example is the pair (A,B) = (0m×r, 0n×r). This point is always a FOSP
of the factorized problem, but in general X = 0m×n does not correspond to a critical
point of f(X) (and indeed, will be far from optimal). From this trivial example, we
see that considering only the first-order conditions of g is not sufficient to understand the
correspondence between the full-dimensional and the factorized forms of the problem. We
will therefore next consider second-order stationary points (SOSPs), or critical points, of
the factorized problem, which are characterized by the conditions

∇g(A,B) = 0 and ∇2g(A,B) � 0. (9)

2.2 Characterization of SOSP for factorized problem

From the discussion above, we see clearly that any fixed point of the PGD is first-order
stationary point (FOSP) of the factorized objective function. Our main theoretical result
establishes a partial converse to this, proving that any second-order stationary point
(SOSP) of the factorized objective function g(A,B) must also be a fixed point of projected
gradient descent on the original function f(X).

Theorem 1. Assume that f is twice differentiable, and let (A,B) ∈ R
m×r × R

n×r.

(a) If (A,B) is a SOSP of the factorized objective function g(A,B), then X = AB⊤ is
a fixed point of the projected gradient descent algorithm on minrank(X)≤r f(X) with
any step size η ≤ 1/βlocal(X).

(b) Conversely, if (A,B) is not a SOSP of g, then X = AB⊤ is not a local minimum
of minrank(X)≤r f(X).

To summarize, our main result (combined with the discussion of Section 2.1) shows that,
for the case of a twice-differentiable function f, we have:

{
Local minima
of min
rank(X)≤r

f(X)

}
⊆

{
AB⊤ for SOSPs
(A,B) of g(A,B)

}
⊆





Fixed pts. of PGD
on min

rank(X)≤r

f(X)

with η ≤ 1/βlocal




⊆

{
Critical pts.

of min
rank(X)≤r

f(X)

}
⊆

{
AB⊤ for FOSPs
(A,B) of g(A,B)

}
.

2.2.1 Regularized factored optimization

The factors A and B are not identifiable in the factored optimization problem—in partic-
ular, g(A,B) = g(AC,BC−1) for any invertible C ∈ R

r×r. While the product X = AB⊤

is in principle not affected by the nonidentifiability of the individual factors, it is known
that this issue may lead to instability and numerical issues when solving the factorized
minimization problem (3). To alleviate this, it is common to add a regularizer on A and
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B to align the two factors on the same scale (e.g., Tu et al. [2015], Zheng and Lafferty
[2016], Zhu et al. [2018]). The regularized objective function is

greg(A,B) = g(A,B) +
λ

2
‖A⊤A− B⊤B‖2F, (10)

for a regularization parameter λ > 0. In fact, we can verify that our main result, Theo-
rem 1, applies in this setting as well.

Lemma 3. For any λ > 0, the result of Theorem 1(a) holds with greg in place of
g. Furthermore, a modification of Theorem 1(b) holds: if X is a local minimum of
minrank(X)≤r f(X), then there exists a factorization X = AB⊤ such that (A,B) is a SOSP
of greg.

2.3 Proof of Theorem 1

By definition of g, some simple calculations show that ∇2g(A,B) maps (A1, B1)×(A1, B1)
to

2〈∇f(X), A1B1〉+∇2f(X)
(
AB⊤

1 + A1B
⊤, AB⊤

1 + A1B
⊤
)
. (11)

2.3.1 Claim (a): a SOSP is a fixed point of PGD

Since we assume that ∇2g(A,B) � 0 by definition of a SOSP, the calculation in (11)
implies that

2〈∇f(X), A1B
⊤
1 〉+∇2f(X)

(
AB⊤

1 + A1B
⊤, AB⊤

1 + A1B
⊤
)
≥ 0 for all (A1, B1). (12)

By first-order optimality conditions at (A,B) we additionally know that

∇f(X)⊤A = 0 and ∇f(X)B = 0. (13)

Next, let X = UX · diag{σ1, . . . , σr} ·V ⊤
X be a singular value decomposition of X , with

σ1 ≥ · · · ≥ σr. Let u⋆ ∈ R
m and v⋆ ∈ R

n be the top singular vectors of the gradient
∇f(X) ∈ R

m×n, so that ‖∇f(X)‖ = u⊤
⋆∇f(X)v⋆. We will now split into two cases,

rank(X) = r and rank(X) < r.

Case 1: full rank First suppose rank(X) = r. Let ur and vr be the last left and right
singular vectors of X , respectively. Since X = AB⊤ has rank r, this means that UX and
A span the same column space, and similarly VX and B span the same column space.
Together with the first-order optimality conditions in (13), this implies that∇f(X)VX = 0
and ∇f(X)⊤UX = 0. By our earlier characterization (7) of the fixed points of PGD, we
therefore only need to check that η‖∇f(X)‖ ≤ σr(X) in order to verify that X is a fixed
point of PGD at step size η.

Next, if ∇f(X) = 0 then X is obviously a fixed point, so from this point on we will
consider the case that ∇f(X) 6= 0. Since we know that ∇f(X)⊤UX = 0 while u⋆ is the first
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left singular vector of ∇f(X), this implies that u⊤
r u⋆ = 0. Similarly v⊤r v⋆ = 0. We will

consider the curvature of the factorized objective function g(A,B) in the direction given
by (A1, B1) =

(
− u⋆u

⊤
r A, v⋆v

⊤
r B

)
. Plugging this choice into our earlier calculation (12)

we see that

∇2f(X)
(
AB⊤

1 + A1B
⊤, AB⊤

1 + A1B
⊤
)
≥ −2〈∇f(X), A1B

⊤
1 〉

= 2〈∇f(X), u⋆u
⊤
r AB

⊤vrv
⊤
⋆ 〉 = 2σr‖∇f(X)‖,

where the last step holds since ur, vr are the rth singular vectors of X = AB⊤.
Next, we will use the following lemma (proved in Appendix A):

Lemma 4. Let f : Rm×n → R be twice-differentiable at X = AB⊤, where A ∈ R
m×r and

B ∈ R
n×r. Then, for any matrices A1 ∈ R

m×r, B1 ∈ R
n×r,

∇2f(X)
(
AB⊤

1 + A1B
⊤, AB⊤

1 + A1B
⊤) ≤ βlocal(X) · ‖AB⊤

1 + A1B
⊤‖2F.

Now fix any step size η > 0 with η ≤ 1/βlocal(X). Then by Lemma 4, along with the
definitions of A1 and B1, we can bound

∇2f(X)
(
AB⊤

1 + A1B
⊤, AB⊤

1 + A1B
⊤) ≤ η−1 · ‖AB⊤

1 + A1B
⊤‖2F

= η−1 · ‖AB⊤vrv
⊤
⋆ − u⋆u

⊤
r AB

⊤‖2F = η−1 · σr(X)2‖urv
⊤
⋆ − u⋆v

⊤
r ‖2F = 2η−1σ2

r ,

where the next-to-last step holds since ur, vr are the rth singular vectors of X = AB⊤,
while the last step holds since ur, u⋆ and vr, v⋆ are pairs of orthogonal unit vectors. Com-
bining everything, and using the fact that σr > 0 since rank(X) = r, we have proved
that

η‖∇f(X)‖ ≤ σr.

Applying (7), this verifies thatX is a fixed point of PGD with step size η, which completes
the proof for the rank-r case.

Case 2: rank deficient For the case that rank(X) < r, our proof closely follows that
of Bhojanapalli et al. [2018, Lemma1], extending their result to the asymmetric case (their
work assumes X � 0 and works with the symmetric factorization X = AA⊤).

First, since A ∈ R
m×r and B ∈ R

n×r, if the product X = AB⊤ has rank < r then it
cannot be the case that both A and B are full rank. Without loss of generality suppose
rank(A) < r. This means that there is some unit vector w ∈ R

r with Aw = 0. Now
consider (A1, B1) = (−u⋆w

⊤, c · v⋆w⊤) for any c > 0. Since (A,B) is a SOSP of the
factorized problem, our earlier calculation (12) yields

2〈∇f(X),−c · u⋆w
⊤wv⊤⋆ 〉+∇2f(X)

(
c · Awv⊤⋆ + u⋆w

⊤B⊤, c ·Awv⊤⋆ + u⋆w
⊤B⊤

)
≥ 0.

Since ‖w‖2 = 1 while u⊤
⋆∇f(X)v⋆ = ‖∇f(X)‖, and Aw = 0 by definition of w, we can

simplify this to

∇2f(X)
(
u⋆w

⊤B⊤, u⋆w
⊤B⊤

)
≥ 2c‖∇f(X)‖.

8



Now, c > 0 is arbitrary, and so this holds for any c > 0. On the other hand, since f is
twice-differentiable, the left-hand side must be finite. This implies that ‖∇f(X)‖ = 0,
i.e., ∇f(X) = 0. Therefore clearly X is a fixed point of projected gradient descent at any
step size η.

2.3.2 Claim (b): a local minimum is a SOSP

The second claim follows from a simple Taylor series argument. Suppose that X = AB⊤

is a local minimum of minrank(X)≤r f(X). The work in Section 2.1 implies that (A,B) is
therefore a FOSP of g(A,B), that is, ∇g(A,B) = 0. We therefore only need to verify
that ∇2g(A,B) � 0 to prove that (A,B) is a SOSP. Fix any (A1, B1) ∈ R

m×r×R
n×r and

let δ > 0. Define
Xδ = (A+ δA1)(B + δB1)

⊤.

Since X is a local minimum, this implies that f(Xδ) ≥ f(X) for all sufficiently small δ > 0.
Next, taking a Taylor expansion,

0 ≤ f(Xδ)− f(X)

δ2
=
〈∇f(X), Xδ −X〉

δ2
+

1

2δ2
∇2f(X)

(
Xδ −X,Xδ −X

)
+O(δ)

= 〈∇f(X),
AB⊤

1 + A1B
⊤

δ
+ A1B

⊤
1 〉+

1

2
∇2f(X)

(
AB⊤

1 + A1B
⊤, AB⊤

1 + A1B
⊤)+O(δ)

= 〈∇f(X), A1B
⊤
1 〉+

1

2
∇2f(X)

(
AB⊤

1 + A1B
⊤, AB⊤

1 + A1B
⊤)+O(δ)

= ∇2g(A,B)
(
(A1, B1), (A1, B1)

)
+O(δ),

where the last step applies (11), while the next-to-last step holds since ∇f(X)⊤A = 0 and
∇f(X)B = 0 due to the fact that (A,B) is a FOSP (8). Since this bound holds for all
sufficiently small δ > 0, taking a limit we see that (A,B) is a SOSP.

2.4 Comparison to related work: penalized SDPs

The comparison of full-dimensional approaches versus factorized approaches has been
studied in the context of semidefinite programs. The existing work closest to the results
of our paper is the “penalized” form of SDPs [Bhojanapalli et al., 2018]

X̂ ∈ argmin
X∈Rn×n,X�0

{
f0(X) + µ

k∑

i=1

(fi(X)− ai)
2
}
,

where f0, f1, . . . , fk are all linear functions. The factorized form of this problem is given by
writing X = AA⊤, and solving

min
A∈Rn×r

{
f0(AA

⊤) + µ
k∑

i=1

(fi(AA
⊤)− ai)

2
}
.

If we take r = n, then the global minimizer of this problem coincides with that of the full
SDP—and in fact, this holds as long as r ≥ rank(X̂). On the other hand, the factorized
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problem is nonconvex so finding the global minimum may be challenging. Remarkably,
Bhojanapalli et al. [2018] (building on the earlier work of Burer and Monteiro [2003])
show that taking r ∼

√
k is sufficient to ensure that any second-order stationary point

(SOSP) of the factorized problem is a global minimizer of the full SDP (if one exists); it
is also shown that approximate SOSPs are approximately globally optimal. Of course, for
A ∈ R

n×r to achieve the global minimum at r ∼
√
k, this means that the global minimizer

X̂ itself must have rank on the order of
√
k.

Summarizing, the results mentioned above apply in the setting where:

• The optimization problem is a (penalized) SDP, meaning that the functions f0, f1, . . . , fk
are linear and the factorized form is given by X = AA⊤,

• The unconstrained global minimizer X̂ is rank-deficient (without imposing a rank
constraint),

• Results apply to finding the global minimum.

In contrast, in our work, we will allow:

• The objective function is any twice-differentiable function f(X), and X is not nec-
essarily symmetric, i.e., the factorized form is given by X = AB⊤,

• The unconstrained global minimizer, argminX f(X), may be full rank in general—

in the rank-constrained problem, X̂ ∈ argminX{f(X) : rank(X) ≤ r}, the rank
constraint may be active,

• Results no longer apply to finding the global minimum (since this is NP-hard), but
instead we study fixed points.

In particular, if a fixed point of the rank-constrained approach is itself a global minimizer,
our main result can be made globally, i.e., any SOSP of (3) is also global optimal. In
the special case that the problem is a SDP and the SOSP is rank-deficient, i.e., rank
strictly less than r, this result reduces to the known global optimality result proved
by Bhojanapalli et al. [2018].3

3 Convergence guarantees

In this section, we investigate the implications of our main result Theorem 1 on the land-
scape of the factorized problem (3). We are interested in determining settings where
factorized optimization methods can be expected to achieve optimality guarantees. De-
pending on the structure of the objective function f and other assumptions in the problem,
we will see wide variation in the types of guarantees that can be obtained for the output X̂
of a particular algorithm. From strongest to weakest, the three main styles of guarantees
that appear in the literature are:

3More precisely, the global solution to the full SDP may not exist in general and [Bhojanapalli et al.,
2018] proves the result when it exists. To ensure existence of the solution, additional conditions on the
linear functions f0, f1, . . . , fk are required; see [Bhojanapalli et al., 2018] for further details.
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• Global optimality: the algorithm converges to a global minimizer.

• Local optimality, or basin of attraction: if initialized near a global minimizer, then
the algorithm converges to that global minimizer.

• Restricted optimality: the algorithm converges to a matrix X that satisfies f(X) ≤
f(X ′) for any rank-r′ matrix X ′, where r′ < r is a strictly lower rank constraint.

To simplify our comparison of these three styles of guarantees, we will consider the setting
where the original objective function f satisfies α-restricted strong convexity (abbreviated
as α-RSC) with respect to the rank constraint r (Negahban et al. [2012], Agarwal et al.
[2010]), meaning that for all X, Y ∈ R

m×n with rank(X), rank(Y ) ≤ r,

f(Y ) ≥ f(X) + 〈∇f(X), Y −X〉+ α

2
‖X − Y ‖2F. (14)

Similarly, we assume that f satisfies β-restricted smoothness with parameter β (abbrevi-
ated as β-RSM) with respect to the rank constraint r, meaning that for all X, Y with
rank(X), rank(Y ) ≤ r,

f(Y ) ≤ f(X) + 〈∇f(X), Y −X〉+ β

2
‖X − Y ‖2F. (15)

Throughout this section, we will always write κ = β/α to denote the rank-restricted
condition number of f. Note that κ ≥ 1 always. We will consider two different regimes
for the condition number κ:

Near-isometry (κ ≈ 1) vs. Arbitrary conditioning (κ≫ 1).

We can expect to see κ ≈ 1 in certain well-behaved problems, for instance the matrix
sensing problem, where f(X) represents matching X with random linear measurements of
the form 〈Ai, X〉, where e.g., the measurement matrices Ai have i.i.d. entries. In general,
however, most problems do not have κ ≈ 1.

In some cases, the restricted strong convexity and/or restricted smoothness conditions
might not be satisfied globally (i.e., for all rank-r matrices), but is satisfied for a more
restricted subset of matrices X, Y ; in these settings we may write, for instance, that f

satisfies α-RSC over a particular subset.
We also need to consider a second important distinction between different classes

of problems. In many statistical settings, we may have an objective function f(X) that
comes from a data likelihood, where E[f(X)] is minimized at some true low-rank parameter
matrix X⋆. When this is the case, it is common to see ‖∇f(X⋆)‖ ≈ 0. In other settings,
though, there might not be any natural underlying low-rank structure, and the gradient
∇f(X) is large at any low-rank X . We will therefore distinguish between two scenarios:

Vanishing gradient ( min
rank(X)≤r

‖∇f(X)‖ ≈ 0) vs. Arbitrary gradient ( min
rank(X)≤r

‖∇f(X)‖ ≫ 0).

11



3.1 Existing results

We now summarize the existing results as well as our own findings, for the different types
of assumptions and different styles of guarantees outlined above:

• Near-isometry + Vanishing gradient ⇒ Global optimality.
For the most well-behaved problems, where the objective function f(X) exhibits
both near-isometry and a vanishing gradient, it is possible to prove convergence
to an (approximate) globally optimal estimate X̂ . For full-dimensional projected
gradient descent algorithm, this has been established in the case of a least squares
objective [Oymak et al., 2018]; for factorized algorithms, an analogous result (no
spurious local minima) has been established for certain least squares objectives
[Bhojanapalli et al., 2016b, Ge et al., 2016, 2017, Park et al., 2016] and more gen-
erally for functions f with a near-isometry property [Zhu et al., 2018]. (We will
show in the present work that under near-isometry + vanishing gradient, both full-
dimensional and factorized approaches contain no spurious local minima.)

• Arbitrary conditioning + Vanishing gradient ⇒ Local optimality.
With a non-ideal condition number κ > 1, assuming a vanishing gradient condition
is sufficient to prove a local optimality result, or the existence of basin of attraction,
both for full-dimensional PGD [Barber and Ha, 2018] and for factorized approaches
[Chen and Wainwright, 2015]; in the stronger setting of a near-isometry and a van-
ishing gradient, the local optimality result for factorized approaches has been also es-
tablished by many works, including Candes et al. [2015], Zheng and Lafferty [2015,
2016], Tu et al. [2015], Bhojanapalli et al. [2016a], Jain et al. [2013]. Note that all
of the previous local optimality results for factorized problems are built upon iden-
tifying local region of attraction for globally optimal solution X̂ in the factorized
space (A,B). (We will give in the present work the local region of attraction in the
full-dimensional representations X = AB⊤.)

• Arbitrary conditioning + Arbitrary gradient ⇒ Restricted optimality.
In the most challenging setting, where we allow both arbitrary condition number κ
and an arbitrarily large gradient, restricted optimality guarantees can still be ob-
tained. This is established for the full-dimensional PGD algorithm [Jain et al., 2014,
Liu and Barber, 2018], as well as its variants, such as approximate low-rank projec-
tion [Becker et al., 2013, Soltani and Hegde, 2017], and projection with debiasing
step [Yuan et al., 2018]; for sparse problems specifically, the analogous restricted op-
timality result has been established [Shen and Li, 2017]. On the other hand, there is
no known result for restricted optimality guarantees within the factorized approach.
(We will show in the present work that it holds also for the factorized approach.)

This extensive literature has enabled us to understand the landscape of the nonconvex
low-rank optimization problem, but the various results have been proved somewhat dis-
jointly, using very different techniques for analyzing full-dimensional PGD type algorithms
versus factorized algorithms. It is natural to ask whether this collection of results can
be unified into a single framework. Our main result, Theorem 1, allows us to connect
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established results between PGD algorithms and factorized algorithms, allowing us to es-
tablish simpler proofs of some existing results, and provide new results in certain settings.
Overall, it is the goal of this section to provide a broader view of the landscape of results
known for low-rank optimization problems through the lens of the equivalence between
PGD and factorized algorithms established in Theorem 1.

3.2 Results for global and local optimality

In the special case of least squares objective, i.e., f(X) = 1
2
‖A(X) − b‖2F for a linear

operator A : Rm×n → R
p, Oymak et al. [2018] show that, in the near-isometry setting

(κ ≈ 1), projected gradient descent offers a global convergence guarantee starting from
any initialization point. Here we extend some of their technical tools to general functions
f(X). We will write R

m×n
rank(r) to denote the set of m× n matrices with rank ≤ r.

Lemma 5. Suppose that f : Rm×n → R satisfies α-RSC (14) over a subset X ⊆ R
m×n
rank(r),

where α > 0. If X0, X1 ∈ X are both fixed points of PGD run with step size η0 > 0 or
η1 > 0, respectively, then one of the following must hold:

• X0 = X1, or

• rank(X0) = r and rank(X1) < r and ‖∇f(X0)‖
σr(X0)

≥ 2α, or

• rank(X1) = r and rank(X0) < r and ‖∇f(X1)‖
σr(X1)

≥ 2α, or

• rank(X0) = rank(X1) = r and

‖∇f(X0)‖
σr(X0)

+
‖∇f(X1)‖
σr(X1)

≥ 2α.

The proof of this lemma is given in Appendix A. We also verify a simple result:

Lemma 6. Suppose that f : Rm×n → R satisfies β-RSM (15) over an open subset X ⊆
R

m×n
rank(r). If X̂ is a global minimizer (i.e., f(X̂) = minrank(X)≤r f(X)) and X̂ ∈ X , then X̂

is a fixed point of projected gradient descent run with rank constraint r and any step size
η ≤ 1/β.

These lemmas will allow us to easily prove global optimality and local optimality
results under the appropriate assumptions. We now turn to the question of obtaining
global and local optimality results for PGD and factorized algorithms. While results
of this flavor are already known in the literature (see Section 3.1 for some references),
our goal here is to give extremely short and clean proofs that illuminate the connection
between the full-dimensional and factorized representations of the optimization problem,
and thereby also highlight the utility of our main result, Theorem 1. In some cases, our
work also establishes guarantees in a broader setting than previous results.
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3.2.1 Global optimality

In the setting where f(X) satisfies the near-isometry property, with condition number
κ < 2, we can obtain global optimality guarantees for both PGD and factorized meth-
ods whenever ‖∇f(X)‖ is sufficiently small, i.e., the vanishing gradient condition. (See
Section 3.1 for related existing results in the literature.)

Theorem 2. Assume that f(X) satisfies α-RSC (14) and β-RSM (15) over an open

subset X ⊆ R
m×n
rank(r), and that β < 2α. Suppose X̂ is a global minimizer, i.e., f(X̂) =

minrank(X)≤r f(X). If X̂ ∈ X and X̂ satisfies

Either rank(X̂) < r, or rank(X̂) = r and ‖∇f(X̂)‖ < (2α− β) · σr(X̂) ,

then

• X̂ is the unique fixed point of PGD in X for any step size 1/(2α) < η ≤ 1/β in the

case that rank(X̂) < r, or in the case rank(X̂) = r, for any step size satisfying

1

2α− ‖∇f(X̂)‖
σr(X̂)

< η ≤ 1

β
. (16)

• If X = AB⊤ ∈ X where (A,B) is a SOSP of g(A,B), then X = X̂.

Note that, in the case that rank(X̂) = r, due to the condition ‖∇f(X̂)‖ < (2α−β) ·σr(X̂)
the interval (16) given for step size η is always non-empty.

Remark 1. In some examples, such as the matrix sensing problem discussed later in
Section 4.1, the RSC/RSM conditions will hold globally, i.e., for X = R

m×n
rank(r); this is

why we use the term “global optimality” to describe this result. In other settings, the
RSC/RSM conditions may not hold universally over all rank-r matrices but hold for a
subset of matrices, e.g., all matrices satisfying an incoherence condition such as in the
robust PCA problem (Section 4.2); the above theorem is formulated to cover this type of
scenario as well even though the term “global optimality” may no longer apply.

Theorem 2 proves that global optimality guarantees can be achieved as long as κ < 2,
i.e., the map f is a near-isometry. This type of assumption on κ is crucial to achieving
global optimality guarantees. For instance, Zhang et al. [2018, Example 3] construct an
example of objective function f(X) with β = 3α, i.e., κ = 3, where there exists a fixed
point X that is not globally optimal. This proves that κ < 3 is necessary for achieving a
global optimality guarantee, while our work shows κ < 2 is sufficient. While it is not the
goal of the present work, an interesting open question is to close the gap between these
necessary and sufficient conditions to identify an exact correspondence between condition
number and the global optimality guarantee; see also Zhang et al. [2019] for the sufficient
and necessary conditions when rank r = 1.

We now compare this result with some recent works in the literature. The first part
of Theorem 2, i.e., the result for fixed points of PGD on X ∈ R

m×n, is an extension of
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global optimality results established in Oymak et al. [2018]—their work is specific to a
least-squares objective function, i.e., f is quadratic.4 On the other hand, the second part
of the theorem, i.e., the result on SOSPs of the factorized problem, is already known for
various types of problems, such as the matrix sensing and the matrix completion prob-
lems [Bhojanapalli et al., 2016b, Ge et al., 2016, 2017]. Similarly, Zhu et al. [2018] also
establish “no spurious local minima” under conditions similar to Theorem 2, i.e., when
f(X) satisfies α-RSC and β-RSM with α ≈ β. While these results typically require more
involved analysis than our framework presented here, they further prove strict saddle prop-
erty (see, for instance, Jin et al. [2017, Assumption A2]) of the factorized problems under
which polynomial time convergence is ensured for finding approximate SOSPs (hence ap-
proximate globally optimal solution). Such guarantee on the rate of convergence is not
provided in Theorem 2, and we leave the study of approximate SOSPs in the future work.

Proof of Theorem 2. First we consider PGD. By Lemma 6, we know that X̂ is a fixed
point for any η ≤ 1/β.

We first consider the case that rank(X̂) < r. Let X ∈ X be another fixed point

of PGD for any step size 1/2α < η ≤ 1/β. Suppose that X 6= X̂ . Then applying

Lemma 5, we must have rank(X) = r with ‖∇f(X)‖
σr(X)

≥ 2α. However, by (7), we have

‖∇f(X)‖ ≤ η−1σr(X) < 2ασr(X), which is a contradiction.

Next, consider the case that rank(X̂) = r, and let X ∈ X be another fixed point of

PGD for any step size η satisfying (16). Suppose X 6= X̂ . By Lemma 5, we either have

rank(X) < r and ‖∇f(X̂)‖
σr(X̂)

≥ 2α, or alternatively rank(X) = r and

2α ≤ ‖∇f(X̂)‖
σr(X̂)

+
‖∇f(X)‖
σr(X)

≤ ‖∇f(X̂)‖
σr(X̂)

+
1

η

by applying (7). In either case, this contradicts our assumption (16) on η.
Next we turn to the factorized setting. Let X = AB⊤ ∈ X where (A,B) is a SOSP

of g(A,B). Comparing the definition of β-RSM over X with that of the local smoothness
parameter βlocal(X) defined in (4), we can see that since X ⊆ R

m×n
rank(r) is an open subset,

βlocal(X) ≤ β by definition, and therefore η ≤ 1/βlocal(X). Therefore, applying our main
result, Theorem 1, we see that X must be a fixed point of PGD at step size η = 1/β,

which proves that X = X̂ by our work above.

3.2.2 Local optimality

Next we turn to the local optimality guarantees, i.e., the existence of local region of
attraction, that can be obtained when f exhibits a vanishing gradient, but may have an
arbitrarily large condition number κ. (See Section 3.1 for related existing results in the
literature.)

4In Oymak et al. [2018], the authors mention that their results are more broadly applicable than least
squares objective functions, but we are not aware of any such results that have appeared in the follow-up
papers.

15



Theorem 3. Assume that f(X) satisfies α-RSC (14) over a subset X ⊆ R
m×n
rank(r). Assume

that X̂ is a global minimizer, i.e., f(X̂) = minrank(X)≤r f(X), that X̂ ∈ X , and that X̂
satisfies

Either rank(X̂) < r, or rank(X̂) = r and ‖∇f(X̂)‖ < α · σr(X̂) .

Let

N =

{
X ∈ X : rank(X) < r or

‖∇f(X)‖
σr(X)

< 2α

}

in the case that rank(X̂) < r, or

N =

{
X ∈ X : rank(X) < r or

‖∇f(X̂)‖
σr(X̂)

+
‖∇f(X)‖
σr(X)

< 2α

}

in the case that rank(X̂) = r. Then:

• For any fixed point X of PGD with any step size η > 0, if X ∈ N , then X = X̂.

• If X = AB⊤ ∈ N where (A,B) is a SOSP of g(A,B), then X = X̂.

We note that X̂ ∈ N by the assumptions of the theorem. In this setting where κmay be ar-
bitrarily large, global optimality does not hold in general (as shown by Zhang et al. [2018]’s
counterexample, discussed in Section 3.2.1 above). Nonetheless, the results in Theorem 3

still ensure the existence of regions of attraction N within which the global minimum X̂
will be discovered, for both the full-dimensional and factorized methods.

To compare with the existing results, the first part of Theorem 3 (for fixed points of
PGD) is an immediate result given the work in Barber and Ha [2018]. Next, turning to the
second part of the result, on the SOSPs of the factorized approach, some related results
in the existing literature have shown that certain rank-constrained problems exhibit local
region of attraction near the global minimum X̂ [Candes et al., 2015, Zheng and Lafferty,
2015, 2016, Tu et al., 2015, Bhojanapalli et al., 2016a, Jain et al., 2013]. While these
problems satisfy the near-isometry property with κ ≈ 1, our result in Theorem 3 extends
to a broader setting with an arbitrarily large condition number κ. Chen and Wainwright
[2015] have also established local convergence guarantees under conditions similar to re-
stricted strong convexity and smoothness, but the difference is that they work with RSC
and RSM type conditions defined directly on the factorized variable pair (A,B). In ad-
dition, many of these works address the positive semidefinite setting, X = AA⊤, rather
than the generic setting X = AB⊤ considered here.

Proof of Theorem 3. By Lemma 1, we know that X̂ is a fixed point for PGD with step
size η ≤ 1/βlocal(X̂). (Note that βlocal may be arbitrarily large, but must be finite since f

is twice differentiable.) Suppose that X ∈ N is another fixed point at some (potentially

different) step size η > 0, with X 6= X̂ . Applying Lemma 5 with X0 = X̂ and X1 = X

yields a contradiction to the definition of N , either for rank(X̂) < r or rank(X̂) = r,

unless X = X̂ .
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Next we turn to factorized setting. By Theorem 1 we know that any X = AB⊤ ∈ X
for a SOSP (A,B) must be a fixed point of PGD at any step size η ≤ 1/βlocal(X) (again

βlocal(X) can be extremely large). If also X ∈ N then this proves that X = X̂ by our
work above.

3.3 A restricted optimality guarantee

In this last setting, we will make no assumptions on either the gradient or the condition
number, i.e., it may be possible that ‖∇f(X̂)‖ is large and the condition κ is large as well.
(See Section 3.1 for related existing results in the literature.)

Under such assumptions, to the best of our knowledge, there is no guaranteed result to
solve the low-rank minimization problem either locally or globally—identifying a region
of attraction in a deterministic way is a nontrivial task. Therefore, we may wish to
instead establish a weaker restricted optimality guarantee, which entails proving that the
algorithm converges to some matrix X satisfying

f(X) ≤ min
rank(Y )≤r′

f(Y ),

where the rank r′ < r proves a more restrictive constraint. In a statistical setting where
we are aiming to recover some true low-rank parameter, we might think of r′ as the true
underlying rank, while r ≥ r′ is a relaxed rank constraint that we place on our optimization
scheme. More generally, we are simply aiming to show that optimizing over rank r, while
not ensuring the best rank-r solution, is competitive with the best lower-rank solution.

Under these conditions, Liu and Barber [2018] prove that any fixed point X of PGD
with step size η = 1/β satisfies restricted optimality with respect to any rank r′ < r/κ2.
Based on our main result, Theorem 1, the same guarantee also holds for any SOSP of the
factorized problem. For completeness, we restate their result along with the new extension
to the factorized problem:

Theorem 4. Assume that f(X) satisfies α-RSC (14) and β-RSM (15) over an open
subset X ⊆ R

m×n
rank(r). Let κ = β/α. Then:

• [Liu and Barber, 2018] For any fixed point X ∈ X of PGD with step size η = 1/β,

f(X) ≤ min
rank(Y )<r/κ2,Y ∈X

f(Y ), (17)

i.e., X satisfies restricted optimality with respect to any rank r′ < r/κ2 within X .

• For any X = AB⊤ ∈ X where (A,B) is a SOSP of the factorized problem g(A,B),

f(AB⊤) ≤ min
rank(Y )<r/κ2,Y ∈X

f(Y ),

i.e., X = AB⊤ satisfies restricted optimality with respect to any rank r′ < r/κ2

within X .
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Proof of Theorem 4. The first claim follows by the definition of α-RSC used on the two
points X, Y together with Lemma 1 in Liu and Barber [2018], which bounds the restricted
concavity of hard thresholding. The second claim follows immediately by combining the
first claim with Theorem 1, as in the proof of Theorem 2.

Conversely, Liu and Barber [2018] also establish that this factor of κ2 is sharp in
general (on all low-rank matrices), i.e., restricted optimality cannot be guaranteed relative
to rank r′ > r/κ2. Here we establish the analogous result for the factorized problem. For
completeness, we state the two results together.

Theorem 5. For any parameters β ≥ α > 0 and any rank r′ > r/κ2, there exists a
function f : Rm×n → R satisfying α-RSC (14) and β-RSM (15) over R

m×n
rank(r), such that:

• [Liu and Barber, 2018] There exists a fixed point X of PGD with step size η = 1/β,
such that

f(X) > min
rank(Y )≤r′

f(Y ).

• There exists a second-order stationary point (A,B) of the factorized problem, such
that

f(AB⊤) > min
rank(Y )≤r′

f(Y ).

This result is proved in Appendix A. Unlike the restricted optimality guarantee above
(Theorem 4), this converse result does not follow directly from Liu and Barber [2018]’s
work, and instead requires a new construction.

4 Applications

In this section we apply our framework developed in Section 2 and/or Section 3 to several
concrete low-rank optimization problems, including matrix sensing, matrix completion,
and robust PCA. These problems typically involve an unknown ground truth matrix
X⋆ ∈ R

m×n that is low-rank and the goal is to accurately recover it from a few or sparse
or corrupted measurements. In many cases, X⋆ itself becomes a global minimizer of the
rank-constrained minimization problem (1) in which case we also denote by X⋆ (instead

of X̂) to represent a global minimizer.

4.1 Matrix sensing

In the matrix sensing problem [Recht et al., 2010], we aim to recover a low rank matrix
X⋆ ∈ R

m×n given k linear observations b1 = 〈L1, X⋆〉, . . . , bk = 〈Lk, X⋆〉. Therefore, the
least square objective function f : Rm×n → R for the matrix sensing problem takes the
form

f(X) =
1

2k

k∑

i=1

(〈Li, X〉 − bi)
2 . (18)
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The corresponding rank-r factorized objective function g : Rm×r × R
n×r → R is defined

as
g(A,B) = f(AB⊤)

To conform with our notion of condition number, we define the following set of sensing
matrices:

L(α, β, r) = {(L1, . . . , Lk) : the map X 7→
∑k

i=1〈Li, X〉2
2k

is α-RSC and β-RSM

with respect to the rank constraint r}.

Then direct application of our results in Section 3 gives the following lemma (without
proof).

Lemma 7. Consider a matrix sensing model with a rank-r matrix X⋆. Define the objective
function f(X) as in equation (18). Then

• If the sensing matrices satisfy (L1, . . . , Lk) ∈ L(α, β, r) with β < 2α, then for any
second-order stationary point (A,B) of the factorized objective g, AB⊤ = X⋆.

• Define the following neighborhood of X⋆,

N (X⋆) = {X ∈ R
m×n
rank(r) : rank(X) < r or ‖∇f(X)‖ < 2α · σr(X)}.

If the sensing matrices satisfy (L1, . . . , Lk) ∈ L(α, β, r), then for any second-order
stationary point (A,B) of the factorized objective g, if X = AB⊤ ∈ N (X⋆) then
X = X⋆.

• If the sensing matrices satisfy (L1, . . . , Lk) ∈ L(α′, β ′, r′) with r′ > (β
′

α′ )
2r, then for

any second-order stationary point (A,B) of the rank-r′ factorized objective function
gr′, gr′(A,B) = 0.5 Since f satisfies α′-RSC over R

m×n
rank(r′) and f(X⋆) = 0 while

∇f(X⋆) = 0, this further implies that AB⊤ = X⋆.

In the simplest setting, the sensing matrices (L1, . . . , Lk) are drawn i.i.d. from standard
normal distribution N (0, 1), then, with high probability, (L1, . . . , Lk) ∈ L(α, β, r) with
β < 2α (e.g., Recht et al. [2010]). In this case global optimality of SOSPs of g follows
from Lemma 7 in a straightforward manner. In the more general setting where the
sensing matrices (L1, . . . , Lk) are drawn i.i.d. from normal distribution N (0,Σ) with
covariance matrix Σ ∈ R

mn×mn, Agarwal et al. [2010, Lemma 7] proves that with high
probability (L1, . . . , Lk) ∈ L(α, β, r) with α = c1λmin(Σ) and β = c2λmax(Σ) for some
c1, c2 > 0. In this case, Lemma 7 provides respectively local and restricted optimality
guarantees for SOSPs of the factorized problem. In particular, we observe that any SOSPs
(A,B) of the factorized problem still achieve the global minimizer, i.e. AB⊤ = X⋆, if we
over-parametrize f with rank r′ ≈ λ2

max(Σ)/λ
2
min(Σ) · r. This result has not been known

previously in the literature of matrix sensing but somewhat follows directly from our main
correspondence result Theorem 1.

5The rank-r′ objective gr′ is defined as the function gr′(A,B) = f(AB⊤) where the factorization
X = AB⊤ is over-parametrized by rank r′ > r, i.e. A ∈ R

m×r
′

and B ∈ R
n×r

′

.
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4.2 Robust PCA

Robust PCA [Candès et al., 2011, Chandrasekaran et al., 2011] refers to the decomposi-
tion of the data matrix D⋆ into a low-rank component X⋆ and a sparse component S⋆,
so that the sum of two components recover the original matrix. One can view the sparse
component to be some outliers which we wish to separate from the low-rank signal. Con-
cretely, suppose that we are given D⋆ = X⋆ + S⋆ ∈ R

m×n with rank(X⋆) ≤ r and where
S⋆ is s-sparse in each column, then we consider the following minimization problem

min
X

{
f(X) =

1

2
min
S∈S
‖D⋆ − (X + S)‖2F : rank(X) ≤ r

}
. (19)

Here to specify the sparsity of the sparse component S, we set

S = {S ∈ R
m×n : ‖Sj‖0 ≤ ‖S⋆j‖0 = s for j = 1, . . . , n},

where Sj and S⋆j denote j-th columns of S and S⋆ respectively.
Before we apply our results to the above problem, note that the factorized objective

function g(A,B) = f(AB⊤) in (19) is not twice-differentiable with respect to (A,B). To
extend our discussion on this setting, at any point X with rank ≤ r, we consider the
following majorization function of f:

fX(X̃) =
1

2
‖D⋆ − (X̃ + S(X))‖2F,

where we define S(X) ∈ argminS∈S ‖D⋆ − (X + S)‖2F. Then it is easy to see that fX(X̃)
majorizes the original function f while matches at X up to the first-order term, i.e.
fX(X̃) ≥ f(X̃) and fX(X) = f(X) and ∇fX(X) = ∇f(X). Denoting gX(Ã, B̃) = fX(ÃB̃

⊤)
to be the factorized form of fX , we utilize the following version of second-order stationary
points of g, which is defined as (see also Ge et al. [2017, Definition 5])

∇g(A,B) = 0 and ∇2gX(A,B) � 0. (20)

That is, we say (A,B) is a second-order stationary point of g if it satisfies the condi-
tions (20) with X = AB⊤.

Next suppose that X⋆ = A⋆B
⊤
⋆ , where A⋆ = U⋆

√
Σ⋆ and B⋆ = V⋆

√
Σ⋆, and X⋆ =

U⋆Σ⋆V
⊤
⋆ be the rank-r SVD of X⋆. It is well-known that the robust PCA model suffers

from non-identifiability issue and in particular we cannot recover the true matrix X⋆ if
X⋆ is itself both low-rank and sparse. To prevent this, we assume that X⋆ is incoherent
relative to the sparse matrices [Candès et al., 2011], i.e.,

‖A⋆‖2,∞ ≤
√

σ1(X⋆)
µr

m
, ‖B⋆‖2,∞ ≤

√
σ1(X⋆)

µr

n
. (21)

With this definition in place, now suppose that (A,B) is a SOSP of g with X = AB⊤.
Since fX(·) trivially satisfies RSC (14) and RSM (15) with α = β = 1 (over the entire space
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of matrices Rm×n), and at a global minimum X̃global, i.e., f(X̃global) = minrank(X̃)≤r fX(X̃),

‖∇fX(X̃global)‖ = σr+1(D⋆ − S(X)) < σr(D⋆ − S(X)) = (2α− β)σr(X̃global),
6

our result Theorem 2 applies to show that AB⊤ = X̃global is the unique fixed point of
PGD run on fX(·) at step size η = 1/β = 1. In other words, X = Pr

(
D⋆ − S(X)

)
.

Furthermore, by definition of S(X), this means that (X,S(X)) is together a joint fixed
point of PGD with step sizes ηX = ηS = 1 run on the joint problem

min
X,S∈Rm×n

{fjoint(X,S) =
1

2
‖D⋆ − (X + S)‖2F : rank(X) ≤ r, S ∈ S}. (22)

Under the assumption that X⋆ is µ-incoherent and each column of S⋆ is s-sparse, we
can then prove that the joint objective function fjoint exhibits joint restricted strong con-
vexity and restricted smoothness over the pairs

(
(X,S), (X⋆, S⋆)

)
, with 2α > β, when-

ever (X,S) ∈ R
m×n
rank(r) × S and X is incoherent. This allows simple extension of (first

part of) Theorem 2 to the joint minimization problem (22) to guarantee that (X,S(X))
is the unique fixed point of PGD for joint minimization, as long as X is incoherent
relative to sparse matrices. Since (X⋆, S⋆) is trivially a fixed point, this means that
(X,S(X)) = (X⋆, S⋆), and in particular we get AB⊤ = X⋆. We state this result in the
following lemma, whose proof is given in Appendix A.

Lemma 8. Consider the robust PCA problem (19). Suppose that the rank-r matrix X⋆

is µ-incoherent (21), and the sparse matrix S⋆ is s-sparse in each column. Let κ(X⋆) =
σ1(X⋆)/σr(X⋆). Then there exists a constant c1 > 0 such that the following holds: for any
second-order stationary point (A,B) of the factorized objective g, as in equation (20), if
(A,B) satisfies the following conditions,

A⊤A = B⊤B7 and ‖A‖2,∞ ≤ c2

√
σ1(X⋆)

µr

m
and ‖B‖2,∞ ≤ c2

√
σ1(X⋆)

µr

n
, (23)

for some constant c2 > 0 such that 4c2

√
κ(X⋆)µrs
min{m,n} ≤ c1, then AB⊤ = X⋆. In other words,

X⋆ = A⋆B
⊤
⋆ is the unique “incoherent” second-order stationary point of g.

The result of the lemma requires the stationary point (A,B) to be µ-incoherent (23). To
enforce the incoherence on the factored matrices (A,B), some works are focused on putting
explicit incoherence penalty/constraint at each iterate (e.g., Chen and Wainwright [2015],
Zheng and Lafferty [2016], Ge et al. [2017]); while other works have proved that each
update of the factorized function g stays incoherent near the true matrix X⋆ without

6It can be shown that the pathological case, σr(D⋆−S(X)) = σr+1(D⋆−S(X)), does not occur under
an additional assumption on the magnitude of the true sparse matrix S⋆, see Appendix B for further
details; see also Ge et al. [2017]. To simplify the presentation, here we assume this is the case.

7Note that this condition can be easily imposed on the factors A and B if we add a regularizer to the
factorized objective function. In particular, by Zhu et al. [2018, Theorem 3], any critical point (A,B) of
greg satisfies A⊤A = B⊤B and the correspondence result still holds by Lemma 3. See Section 2.2.1.
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explicit incoherence regularization (e.g., Ma et al. [2017], Chen et al. [2019]). In practice
simple algorithms such as gradient descent are observed to work well without incoherence
regularizaiton, even globally. Examining the incoherence property of any second-order
stationary point of g, or a fixed point of PGD in the full-dimensional space, is therefore
an interesting direction which we leave for future study.

4.3 Matrix completion

Next consider the matrix completion minimization problem ([Candès and Recht, 2009,
Negahban and Wainwright, 2012]) where we are given an unknown low-rank matrix X⋆ ∈
R

m×n while only a subset Ω ⊂ [m] × [n] of entries are observed. Here we assume each
entry (i, j) ∈ Ω of X⋆ is observed independently with probability p. Writing PΩ (X) to
denote the matrix whose entries are set to 0 on Ωc, i.e., (PΩ (X))ij = Xij · 1(i,j)∈Ω, we
solve the following minimization problem

min
X

{
f(X) =

1

2p
‖PΩ (X −X⋆) ‖2F : rank(X) ≤ r

}
. (24)

As in the case of robust PCA, the matrix completion problem is ill-posed without any
incoherence type of conditions on the true matrix—indeed, if X⋆ is sparse, PΩ (X⋆) is
likely to be a zero matrix and the optimization probem (24) owns a trivial solution which
will be far from X⋆. To prevent this pathological case and allow reliable estimation, we
therefore focus on recovering the incoherent matrix, as defined in (21) [Candès and Recht,
2009].

Recent results have verified that the matrix completion objective function is locally
well-behaved near the true matrix if it satisfies the incoherence condition. Specifically, if
the matrix is initialized within O(σr(X⋆))-neighborhood of X⋆, then with high probabil-
ity the factorized objective g(A,B) = f(AB⊤) satisfies restricted strong convexity and re-
stricted smoothness type of conditions on the space of factored matrices (A,B) [Chen and Wainwright,
2015, Zheng and Lafferty, 2016, Ge et al., 2017, Ma et al., 2017] (here randomness arises
from the sampling operator Ω). Adapting this result to the original function f, and com-
bining with Theorem 3, we can characterize the basin of attraction for matrix completion
model.

Lemma 9. Consider the matrix completion problem (24). Suppose that the rank-r matrix
X⋆ is µ-incoherent (21). Let κ(X⋆) = σ1(X⋆)/σr(X⋆), and suppose the sampling proba-

bility p ≥ c1
µ2r2κ4(X⋆)(m+n) log(m+n)

mn
for c1 > 0. Define the local region around X⋆ given

by

N (X⋆) =
{
X ∈ R

m×n
rank(r) : ‖X −X⋆‖F ≤ 0.1κ−1(X⋆)σr(X⋆), and

X = AB⊤ where (A,B) satisfies (23)
}
.

Then the following holds with probability larger than 1−O(min{m,n}−3): for any second-
order stationary point (A,B) of the factorized objective g, if X = AB⊤ ∈ N (X⋆), then
X = X⋆. In other words, X⋆ = A⋆B

⊤
⋆ is the unique “incoherent” second-order stationary

point of g in the region N (X⋆).
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The proof is given in Appendix A.
The initialization condition, i.e. the condition ‖X − X⋆‖F ≤ 0.1κ−1(X⋆)σr(X⋆) in

N (X⋆), can typically be achieved via spectral initialization, or relaxing the rank constraint
to a convex constraint (such as nuclear-norm penalty) and solving the corresponding
convex problem. Similarly to the case of robust PCA, the incoherence of the factored
matrices (A,B) can be achieved via explicit constraint/penalty, or in certain settings the
incoherence is implicitly imposed via an iterative algorithm such as gradient descent on
the factorized space.

5 Discussion

In this paper, we establish a connection between the full-dimensional approach and the
factorized approach for solving nonconvex low-rank optimization problems. Our main re-
sult shows that any SOSP of the factorized problem must also be a fixed point of projected
gradient descent algorithms on the original function, connecting naturally the optimiza-
tion landscape of the unconstrained factorized approaches with the full-dimensional rank-
constrained approaches. In particular, this allows us to obtain various types of established
optimality results for PGD algorithms and factorized algorithms in a single framework.
We also illustrate applications of our framework to certain low-rank estimation problems
arising in matrix signal recovery, such as matrix sensing, matrix completion, and robust
PCA. Overall, our result provides a new perspective on understanding the optimization
landscape of the factorized approaches.

While the present work only considers exact fixed points of PGD and exact SOSPs of
the factorized problems, finding such points is practically challenging. Standard optimiza-
tion techniques such as stochastic or perturbed gradient descent are known to converge
to an approximate SOSP [Ge et al., 2015, Jin et al., 2017]. Characterizing equivalence
between approximate fixed points for full-dimensional PGD versus factorized approaches
is therefore of practical interest. Another interesting direction would be to establish sim-
ilar results under additional constraints on the full matrix X = AB⊤ or on the factorized
matrices A and B.
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A Additional proofs

Proof of Theorem 5. Without loss of generality, take m ≤ n. Define the matrices

X0 =
r∑

i=1

eie
⊤
i and X1 =

r+r′∑

i=r+1

eie
⊤
i ,

and

M =

(
0r×r 1r×(n−r)

1(m−r)×r 0(m−r)×(n−r)

)
.

Writing ◦ to denote the elementwise product, we will consider the objective function

f(X) = −β · 〈X1, X −X0〉+
α

2
· ‖X −X0‖2F +

β − α

2
· ‖M ◦ (X −X0)‖2F,

which clearly is α-strongly convex and β-smooth (and therefore trivially satisfies α-RSC
and β-RSM). Define

A0 =

(
Ir

0(m−r)×r

)
and B0 =

(
Ir

0(m−r)×r

)
.

Then A0B
⊤
0 = X0, and a trivial calculation verifies that

f(A0B
⊤
0 ) = f(X0) = 0 > f

(
κ ·X1

)
≥ min

rank(Y )≤r′
f(Y ).

Therefore, A0B
⊤
0 does not satisfy restricted optimality relative to the rank r′.

Now it remains to be shown that the pair (A0, B0) is a second-order stationary point
of the factorized objective function g(A,B). We can trivially see that ∇f(X0) = βX1,
and so ∇f(X0)

⊤A0 = 0 and ∇f(X0)B0 = 0, verifying that (A0, B0) satisfies the first-
order conditions. Now we examine the second-order conditions. We need to prove that,
for any pair of matrices (A1, B1), the operator ∇2g(A0, B0) maps (A1, B1) × (A1, B1)
to a nonnegative value. Using our earlier calculation (12) to derive ∇2g(A,B), we can
calculate

∇2g(A0, B0)
(
(A1, B1), (A1, B1)

)

= 2〈∇f(X0), A1B
⊤
1 〉+∇2f(X0)

(
A0B

⊤
1 + A1B

⊤
0 , A0B

⊤
1 + A1B

⊤
0

)

= 2β · 〈X1, A1B
⊤
1 〉+ α · ‖A0B

⊤
1 + A1B

⊤
0 ‖2F + (β − α) · ‖M ◦ (A0B

⊤
1 + A1B

⊤
0 )‖2F, (25)
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where the last step holds by definition of f. Now we split the matrices A1 and B1 into
block form, writing

A1 =

(
A′

1

A′′
1

)
, B1 =

(
B′

1

B′′
1

)
,

where A′
1 and B′

1 contain the first r rows of A1 and of B1, respectively. Then, plugging
in the definitions of X1, A0, B0, and M , the expression in (25) can be rewritten as

2β·trace
(
A′′

1B
′′
1
⊤)+α·

∥∥∥∥
(

A′
1 +B′

1
⊤ B′′

1
⊤

A′′
1 0(m−r)×(n−r)

)∥∥∥∥
2

F

+(β−α)·
∥∥∥∥
(

0r×r B′′
1
⊤

A′′
1 0(m−r)×(n−r)

)∥∥∥∥
2

F

.

This is trivially lower-bounded by

2β · trace
(
A′′

1B
′′
1
⊤)+ β · ‖A′′

1‖2F + β · ‖B′′
1‖2F.

Using the fact that
∣∣trace(Y Z)

∣∣ ≤ ‖Y ‖F‖Z‖F for all matrices Y, Z, this expression is
clearly nonnegative. We have therefore proved that ∇2g(A0, B0) � 0, thus verifying that
(A0, B0) is a SOSP and proving the desired result.

Proof of Lemma 1. First, we must have ∇f(X)⊤UX = 0 and ∇f(X)VX = 0 since X
is a critical point of the rank-constrained minimization problem. Next, let X = UX ·
diag{σ1, . . . , σr}·V ⊤

X be a SVD of X and u⋆ ∈ R
m and v⋆ ∈ R

n be the top singular vectors
of the gradient ∇f(X). For t ∈ [0, 1], define

Xt =

r−1∑

i=1

σiuX,iv
⊤
X,i + σr

[√
1− t2 · uX,r + tu⋆

] [√
1− t2 · vX,r − tv⋆

]⊤
.

Since ∇f(X)⊤UX = 0 and ∇f(X)VX = 0, some calculations yield

〈∇f(X), Xt −X〉 = 〈∇f(X),−t2σru⋆v⋆〉 = −t2σr‖∇f(X)‖ = − 1

2σr
‖∇f(X)‖‖Xt −X‖2F.

Now, if ‖∇f(X)‖ > βlocal · σr, then we can find some small δ > 0 such that

〈∇f(X), Xt −X〉 < −βlocal + δ

2
‖Xt −X‖2F

for all t ∈ (0, 1] (note that this step uses the fact that ‖Xt −X‖F > 0 for all t 6= 0).
On the other hand, by definition of βlocal (4), for sufficiently small t0 > 0 we have

f(Xt) ≤ f(X) + 〈∇f(X), Xt −X〉+ βlocal(X) + δ

2
‖Xt −X‖2F

for all 0 ≤ t ≤ t0. Combining these calculations, for all t ∈ (0, t0] we have

f(Xt) < f(X),

which contradicts the assumption that X is a local minimum.
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Proof of Lemma 3. In order for the proof of Theorem 1 to hold for this new setting, we
need to verify that the equations (13) and (12) both hold.

By Zhu et al. [2018, Theorem 3, (16)–(18), and Remark 8], for any pair (A,B) for
which A⊤A = B⊤B, the first derivative satisfies

∇greg(A,B) = ∇g(A,B) (26)

while the second derivative ∇2greg(A,B) maps (A1, B1)× (A1, B1) to

∇2g(A,B)
(
(A1, B1), (A1, B1)

)
+ 4λ‖A⊤A1 + A⊤

1 A− B⊤B1 − B⊤
1 B‖2F, (27)

and furthermore A⊤A = B⊤B holds for any critical point (A,B) of greg. Comparing to
the proof of Theorem 1, the first-derivative property therefore verify that (13) holds, while
the second-derivative property verifies that (12) holds for any (A1, B1) with A⊤A1 = 0
and B⊤B1 = 0. Now, following the proof of Theorem 1, for both the full-rank case and
the rank-deficient case, we set (A1, B1) = (−u⋆z

⊤, v⋆z
′⊤) for some vectors z, z′, where

u⋆, v⋆ are the top singular vectors of ∇f(AB⊤) and, therefore, satisfy u⋆ ⊥ A and v⋆ ⊥ B
by (13). This means that we indeed have A⊤A1 = 0 and B⊤B1 = 0, and so (12) holds
for the relevant choice of (A1, B1). This is sufficient for the proof of Theorem 1(a) to
yield the desired result for the regularized setting. To verify that Theorem 1(b) holds
in this setting, consider any X that is a local minimum of minrank(X)≤r f(X). Define
A = UX ·diag{σ1, . . . , σr}1/2 and B = VX ·diag{σ1, . . . , σr}1/2. Then clearly A⊤A = B⊤B.
Since Theorem 1(a) implies that (A,B) is a SOSP of g, we know that ∇g(A,B) = 0 and
∇2g(A,B) � 0. Combined with (26) and (27), this proves that (A,B) is a SOSP of greg.

Proof of Lemma 4. Define Yt = (A+ tA1)(B+ tB1)
⊤ for t > 0. Note that ‖X −Yt‖F → 0

as t→ 0. By definition of βlocal(X),

lim sup
t→0

f(Yt)− f(X)− 〈∇f(X), Yt −X〉
1
2
‖X − Yt‖2F

≤ βlocal(X).

Since f is twice-differentiable at X , we can also take a Taylor expansion to see that

lim inf
t→0

f(Yt)− f(X)− 〈∇f(X), Yt −X〉 − 1
2
∇2f(X)

(
Yt −X, Yt −X)

1
2
‖X − Yt‖2F

= 0.

Combining these two, we see that

lim sup
t→0

∇2f(X)
(
Yt −X, Yt −X)

‖X − Yt‖2F
≤ βlocal(X).

Now we calculate this fraction. Since Yt −X = t · (AB⊤
1 + A1B

⊤) + t2 · A1B
⊤
1 , we have

‖X − Yt‖2F = t2‖AB⊤
1 + A1B

⊤‖2F +O(t3)
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and

∇2f(X)
(
Yt −X, Yt −X) = t2∇2f(X)

(
AB⊤

1 + A1B
⊤, AB⊤

1 + A1B
⊤)+O(t3),

and therefore,

lim sup
t→0

∇2f(X)
(
Yt −X, Yt −X)

‖X − Yt‖2F
=
∇2f(X)

(
AB⊤

1 + A1B
⊤, AB⊤

1 + A1B
⊤)

‖AB⊤
1 + A1B⊤‖2F

,

(as long as we are not in the degenerate case that ‖AB⊤
1 +A1B

⊤‖F = 0—but if this were
the case, then the result would hold trivially). Combining everything, we have proved the
desired bound.

Proof of Lemma 5. By assumption, X0 is a fixed point of PGD for some step size η0 > 0,
meaning that

X0 = Pr

(
X0 − η0∇f(X0)

)
.

For the case rank(X0) = r, then X0 is a solution to the quadratic problem with rank
constraint (by definition of projection), i.e.

X0 = argmin
rank(X)≤r

‖X0 − η0∇f(X0)−X‖2F,

Then, in the case that rank(X0) = r, [Barber and Ha, 2018, Lemma 7] proves a first-order
optimality condition for rank-constrained optimization:

〈X1 −X0,∇f(X0)〉 ≥ −
1

2σr(X0)
‖∇f(X0)‖‖X0 −X1‖2F.

Combined with the α-RSC assumption over X , we see that

f(X1) ≥ f(X0) + 〈X1 −X0,∇f(X0)〉+
α

2
‖X0 −X1‖2F

≥ f(X0) +
1

2

(
α− ‖∇f(X0)‖

σr(X0)

)
‖X0 −X1‖2F. (28)

If instead rank(X0) < r then ∇f(X0) = 0 by the conditions of a fixed point (7), and so

f(X1) ≥ f(X0) + 〈X1 −X0,∇f(X0)〉+
α

2
‖X0 −X1‖2F = f(X0) +

1

2
α‖X0 −X1‖2F. (29)

Applying the same arguments with the roles of X0 and X1 reversed yields

f(X0) ≥ f(X1) +
1

2

(
α− ‖∇f(X1)‖

σr(X1)

)
‖X0 −X1‖2F (30)

if rank(X1) = r, or

f(X0) ≥ f(X1) +
1

2
α‖X0 −X1‖2F (31)
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if rank(X1) < r.
Now suppose rank(X0) = rank(X1) = r. Adding the two inequalities (28) and (30)

yields

0 ≥ 1

2

(
2α− ‖∇f(X0)‖

σr(X0)
− ‖∇f(X1)‖

σr(X1)

)
‖X0 −X1‖2F.

This implies that either X0 = X1, or

‖∇f(X0)‖
σr(X0)

+
‖∇f(X1)‖
σr(X1)

≥ 2α,

as desired. If instead rank(X0) = r and rank(X1) < r, then adding (28) and (31) yields

0 ≥ 1

2

(
2α− ‖∇f(X0)‖

σr(X0)

)
‖X0 −X1‖2F

and therefore since X0 6= X1 we have

‖∇f(X0)‖
σr(X0)

≥ 2α.

If instead rank(X0) < r and rank(X1) = r, this case is symmetric to the one above.
Finally if rank(X0) < r and rank(X1) < r, then adding (29) and (31) proves that we must
have X0 = X1 since α > 0.

Proof of Lemma 6. This lemma is an easy consequence of Lemma 1. First, since X̂ is a
global minimum, it is also a local minimum and so X̂ satisfies the conditions (7) with

η = 1/βlocal(X̂). Since the set X is open relative to the set of low-rank matrices, it contains

an intersection of a neighborhood of X̂ and the set of low-rank matrices. Then comparing
the definition of β-RSM with that of βlocal(X̂) (4), it follows that βlocal(X̂) ≤ β, and in

particular, X̂ also satisfies the conditions (7) with η = 1/β. This proves that X̂ is a fixed
point of PGD at step size η ≤ 1/β.

Proof of Lemma 8. First we prove that the joint objective function fjoint(X,S), defined in
equation (22), satisfies joint α-RSC/β-RSM, that is

1

2
‖D⋆ − (X + S)‖2F ≥

α

2
‖X −X⋆‖2F +

α

2
‖S − S⋆‖2F,

and similarly for β-RSM, over the set

{(X,S) ∈ R
m×n
rank(r) × S : X = AB⊤ where (A,B) satisfies (23)}. (32)

Given the data matrix D⋆ = X⋆ + S⋆, we have

1

2
‖D⋆ − (X + S)‖2F =

1

2
‖X −X⋆‖2F +

1

2
‖S − S⋆‖2F + 2〈X −X⋆, S − S⋆〉. (33)

To bound the term 〈X − X⋆, S − S⋆〉, we closely follow Chen and Wainwright [2015,
Corollary 6] and extend their result to the asymmetric and global case (their work assumes
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X = AA⊤ and verifies RSC locally on the factorized space). Note that since X = AB⊤

for some (A,B) satisfying A⊤A = B⊤B (23), it follows that A = U
√
ΣR and B = V

√
ΣR

for some R, where X = UΣV ⊤ is a SVD of X and R is a rotation matrix, i.e. R⊤R =
Ir. Without loss of generality, we assume R is chosen to be the best transformation to
(A⋆, B⋆), i.e.

R ∈ argmin
R̃∈Rr×r

{‖(Ã⊤, B̃⊤)⊤R̃− (A⊤
⋆ , B

⊤
⋆ )

⊤‖F : Ã = U
√
Σ, B̃ = V

√
Σ, R̃⊤R̃ = Ir}.

Writing X −X⋆ = A(B − B⋆)
⊤ + (A−A⋆)B

⊤
⋆ , then:

|〈X −X⋆, S − S⋆〉| = |〈B⊤ −B⊤
⋆ , A

⊤(S − S⋆)〉|+ |〈A⊤ −A⊤
⋆ , B

⊤
⋆ (S − S⋆)〉|

≤ ‖B − B⋆‖F‖A⊤(S − S⋆)‖F + ‖A− A⋆‖F‖B⊤
⋆ (S − S⋆)‖F

≤ ‖B − B⋆‖F

√√√√
n∑

j=1

‖A⊤(S − S⋆)ej‖22 + ‖A− A⋆‖F

√√√√
n∑

j=1

‖B⊤
⋆ (S − S⋆)ej‖22

≤ ‖B − B⋆‖F

√√√√
n∑

j=1

‖A‖22,∞‖(S − S⋆)ej‖21 + ‖A− A⋆‖F

√√√√
n∑

j=1

‖B⋆‖22,∞‖(S − S⋆)ej‖21,

where ej denotes the j-th standard basis vector. SinceX andX⋆ are both µ-incoherent (23),

we further have ‖A‖2,∞ ≤ c2

√
σ1(X⋆)µr

m
and ‖B⋆‖2,∞ ≤ c2

√
σ1(X⋆)µr

n
, while for each column

of S, we have ‖Sej‖0 ≤ ‖S⋆ej‖0 = s and thus ‖(S−S⋆)ej‖1 ≤
√
2s‖(S−S⋆)ej‖2. Putting

these bounds together, we have

|〈X −X⋆, S − S⋆〉| ≤ c2

√
2σ1(X⋆)µrs

min{m,n} ‖S − S⋆‖F(‖A−A⋆‖F + ‖B − B⋆‖F).

From Tu et al. [2015, Lemma 5.4] and Zheng and Lafferty [2016, Lemma 4], we know that√
σr(X⋆)(‖A− A⋆‖F + ‖B −B⋆‖F) ≤ 2‖X −X⋆‖F. Plugging into the inequality above,

|〈X −X⋆, S − S⋆〉| ≤ 2c2

√
2κ(X⋆)µrs

min{m,n}‖S − S⋆‖F‖X −X⋆‖F

≤ c1
2
‖X −X⋆‖2F +

c1
2
‖S − S⋆‖2F,

where the second step uses the assumption 2c2

√
2κ(X⋆)µrs
min{m,n} ≤ c1, together with the identity

ab ≤ a2+b2

2
. Combining with (33), we have proved the joint restricted strong convexity

and restricted smoothness conditions over the set (32), with α = 1− c1, β = 1 + c1.
Next we give a brief outline on extending the result of first part of Theorem 2 to ensure

the uniqueness of the fixed point (X,S(X)) of PGD on the joint problem (22). Note that,
by definition of the fixed point, we have (with step sizes η = 1)

{
X = Pr

(
X −∇X fjoint(X,S(X))

)
,

S(X) = PS
(
S(X)−∇Sfjoint(X,S(X))

)
.
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Since ‖S⋆j‖0 ≤ s for each column of S⋆, by definition of projection operator this implies
that

‖S(X)j − (S(X)j −∇Sj
fjoint(X,S(X)))‖2F ≤ ‖S⋆j − (S(X)j −∇Sj

fjoint(X,S(X)))‖2F.

Rearranging terms, and combining across columns j = 1, . . . , n, we obtain

〈S⋆ − S(X),∇Sfjoint(X,S(X))〉 ≥ −1
2
‖S⋆ − S(X)‖2F.

Turning to X , in the case that rank(X) = r, by Barber and Ha [2018, Lemma 7], we
know that

〈X⋆ −X,∇X fjoint(X,S(X))〉 ≥ − 1

2σr(X)
‖∇X fjoint(X,S(X))‖‖X⋆ −X‖2F.

Instead, if rank(X) < r, by condition (7), ∇X fjoint(X,S(X)) = 0. Following the same
arguement as in the proof of Lemma 5, then (with α = 1− c1 and ∇fjoint(X⋆, S⋆) = 0),

0 ≥ 1

2

(
2(1− c1)−

‖∇X fjoint(X,S(X))‖
σr(X)

)
‖X −X⋆‖2F +

(
1− 2c1

2

)
‖S(X)− S⋆‖2F, (34)

if rank(X) = r, or

0 ≥ (1− c1)‖X −X⋆‖2F +

(
1− 2c1

2

)
‖S(X)− S⋆‖2F, (35)

if rank(X) < r.
Now suppose that rank(X) = r. For c1 > 0 sufficiently small, the second term on the

right-hand side of (34) is non-negative. This implies that either X = X⋆ and S(X) = S⋆,
or

2(1− c1) ≤
‖∇X fjoint(X,S(X))‖

σr(X)
≤ 1

η
= 1,

where the last step is by condition (7)— but this cannot hold for c1 > 0 sufficiently
small. If instead rank(X) < r, then since c1 is small the inequality (35) yields X = X⋆

and S(X) = S⋆ which is a contradiction since X⋆ is full-rank. Therefore it follows that
rank(X) = r and X = X⋆ and S(X) = S⋆, proving the lemma.

Proof of Lemma 9. Let (A,B) be a SOSP of g with X = AB⊤ ∈ N (X⋆) and let X⋆ =
A⋆B

⊤
⋆ with A⋆ = U⋆

√
Σ⋆ and B⋆ = V⋆

√
Σ⋆ where X⋆ = U⋆Σ⋆V

⊤
⋆ is a SVD of X⋆. For

(A,B), let R ∈ R
r×r be the best orthogonal rotation matrix to (A⋆, B⋆), i.e. R is the

solution to minR⊤R=Ir
‖(A⊤, B⊤)⊤R− (A⊤

⋆ , B
⊤
⋆ )

⊤‖F.
Let X = {X,X⋆}. Now to apply our Theorem 3 to this setting, we need to verify that

f satisfies α-RSC over X , and that ‖∇f(X)‖ < 2α · σr(X) (note ∇f(X⋆) = 0 in our case;
X cannot be rank-deficient since X⋆ is full-rank and ‖X −X⋆‖F ≤ 0.1κ−1(X⋆)σr(X⋆), see
equation (37) below). First, writing ∆A = AR − A⋆ and ∆B = BR − B⋆, we have the
decomposition X −X⋆ = A⋆∆

⊤
B +∆AB

⊤
⋆ +∆A∆

⊤
B. Then, by the work of Ge et al. [2017,
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Proof of Lemma 21], if ‖∆A‖2F + ‖∆B‖2F ≤ σr(X⋆)/40, then by our choice of p, we have
with high probability

1

2p
‖PΩ (X −X⋆) ‖2F =

1

2p
‖PΩ

(
A⋆∆

⊤
B +∆AB

⊤
⋆ +∆A∆

⊤
B

)
‖2F

≥ 1

4
σr(X⋆)(‖∆A‖2F + ‖∆B‖2F).

Similarly, we can prove that with high probability

1

2p
‖PΩ (X −X⋆) ‖2F ≤

3

2
σ1(X⋆)(‖∆A‖2F + ‖∆B‖2F).

Furthermore, by Tu et al. [2015, Lemma 5.3], we can deduce that 0.35σ−1
1 (X⋆)‖X −

X⋆‖2F ≤ ‖∆A‖2F + ‖∆B‖2F while by Tu et al. [2015, Lemma 5.4] and Zheng and Lafferty
[2016, Lemma 4], together with (23) that A⊤A = B⊤B, we have ‖∆A‖2F + ‖∆B‖2F ≤
2.5σ−1

r (X⋆)‖X −X⋆‖2F. Putting everything together, it follows that

0.08κ−1(X⋆)‖X −X⋆‖2F ≤
1

2p
‖PΩ (X −X⋆) ‖2F ≤ 3.75κ(X⋆)‖X −X⋆‖2F,

whenever ‖X −X⋆‖2F ≤ 0.01σ2
r(X⋆). In particular this proves restricted strong convexity

over X = {X,X⋆}, with α = 0.08κ−1(X⋆).
Next, to show ‖∇f(X)‖ < 2α · σr(X), it suffices to show

1

p
‖PΩ (X −X⋆) ‖ <

0.16σr(X)

κ(X⋆)
. (36)

We denote P̃Ω (L) = 1
p
PΩ (L)− L. Then we split the left hand side of equation (36) into

two terms
1

p
‖PΩ (X −X⋆) ‖ ≤ ‖X −X⋆‖+ ‖P̃Ω (X −X⋆) ‖.

The first term is bounded by our assumption as ‖X − X⋆‖ ≤ 0.1κ−1(X⋆)σr(X⋆). The
second term is upper bounded by

‖P̃Ω (X −X⋆) ‖ ≤ ‖P̃Ω

(
∆A(BR)⊤

)
‖+ ‖P̃Ω

(
A⋆∆

⊤
B

)
‖

≤ ‖P̃Ω

(
11⊤

)
‖‖∆A‖2,∞‖BR‖2,∞ + ‖P̃Ω

(
11⊤

)
‖‖A⋆‖2,∞‖∆B‖2,∞

.

√
m+ n√

p
‖∆A‖2,∞‖BR‖2,∞ +

√
m+ n√

p
‖A⋆‖2,∞‖∆B‖2,∞

≤ c3

√
m+ n√

p

σ1(X⋆)µr√
mn

≤ 0.04κ−1(X⋆)σr(X⋆),

with high probability. Here the first step uses the identity X −X⋆ = ∆A(BR)⊤ + A⋆∆
⊤
B

together with triangle inequality; the second and the third steps are respectively due
to Chen and Li [2017, Lemma 4.5] and Keshavan et al. [2010, Lemma 3.2]; the fourth step
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uses the fact that ‖BR‖2,∞ = ‖B‖2,∞ for orthogonal matrix R, as well as the incoherence
assumption (23); and the last step holds since pmn ≥ O (µ2r2κ4(X⋆)(m+ n) log(m+ n)).
The right hand side of (36) is lower bounded as follows:

σr(X) ≥ σr(X⋆)− ‖X −X⋆‖ ≥ 0.9σr(X⋆). (37)

Combining the above bounds, it is straightforward to see that (36) holds. Finally, apply-
ing Theorem 3 proves the desired result.

B Nondegenerate case for robust PCA

Consider the robust PCA problem given in Section 4.2, and we additionally assume that
the sparse component S⋆ has bounded entries, i.e., ‖S⋆‖∞ ≤ cµrσ1(X⋆)√

mn
for some constant

c > 0. As pointed out by Ge et al. [2017], this requirement is not without loss of generality,

because any µ-incoherent matrix X⋆ has maximum entries bounded by µrσ1(X⋆)√
mn

. Here we
consider the following sparsity constraint set,

S̄ = {S ∈ R
m×n : ‖Sj‖0 ≤ ‖S⋆j‖0 = s and ‖S‖∞ ≤

cµrσ1(X⋆)√
mn

}.

Then the following statement holds: if m ≥ O(s · µ2r2κ2),

For any S ∈ S̄, σr+1(D⋆ − S) < σr(D⋆ − S).

To see why, we first bound ‖S − S⋆‖. Writing ∆S = S − S⋆, we can calculate

‖∆S‖ = sup
‖x‖2=‖y‖2=1

x⊤∆Sy = sup
‖x‖2=‖y‖2=1

n∑

j=1

yj ·∆⊤
S,jx ≤ sup

‖x‖2=‖y‖2=1

n∑

j=1

|yj|‖∆S,j‖2‖x‖2

≤ sup
‖y‖2=1

‖y‖2

√√√√
n∑

j=1

‖∆S,j‖22 ≤
√

s

m
· c2µrσ1(X⋆),

where ∆S,j denotes the j-th column of ∆S, and the last step holds since ‖∆S,j‖2 ≤√
s·c2

2
µ2r2σ2

1
(X⋆)

mn
for some c2 > 0. Then if m & s · µ2r2κ2, we can find c3 > 0 such that

‖∆S‖ ≤ c3σr(X⋆). Therefore, given the data matrix D⋆ = X⋆ + S⋆, we get

σr(D⋆ − S) ≥ σr(X⋆)− ‖S − S⋆‖ ≥ (1− c3)σr(X⋆) and σr+1(D⋆ − S) ≤ c3σ(X⋆).

Taking c3 < 1/2 then proves the desired result.
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