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Abstract. Adaptive voter models (AVMs) are simple mechanistic systems that model the

emergence of mesoscopic structure from local networked processes driven by conflict and homophily.
AVMs display rich behavior, including a phase transition from a fully-fragmented regime of “echo-
chambers” to a regime of long-time disagreement governed by low-dimensional quasistable manifolds.
Many extant methods for approximating the behavior of AVMs are either restricted in scope, ex-
pensive in computation, or inaccurate in predicting important statistics. In this work, we develop
a novel, second-order moment closure approximation method for binary-state rewire-to-random and
rewire-to-same model variants. We incorporate a small amount of noise via a random mutation term,
which renders the system ergodic. Using ergodicity, we then approximate the voting process, which
is non-Markovian in the second moments of the system, with a Markovian term near the phase
transition. This approximation exploits an asymmetry between different classes of voting events.
The resulting scheme enables us to predict the location of the phase transition and the active edge
density in the regime of persistent disagreement, across the entire space of parameters and opinion
densities. Numerically, our results are nearly exact for the rewire-to-random model, and competitive
with extant approaches for the rewire-to-same model. Moreover, our computations display constant
scaling in the mean degree, enabling approximations for denser systems than previously possible. We
conclude with suggestions for model refinements and extensions.

Key words. Networks, nonlinear dynamics, phase transitions, community structure, agent-
based simulation

AMS subject classifications. 82B26, 91D30, 91-08, 91B14

1. Introduction. A common feature of social networks is trait assortativity, the
tendency of similar individuals to interact more intensely or frequently than dissim-
ilar pairs. Assortativity can be beneficial, allowing communities of individuals who
share common beliefs or experiences to pursue shared goals. On the other hand, as-
sortativity can also restrict flows of information and resources across heterogeneous
populations. Recent scrutiny, for example, has fallen on the role of online platforms
in promoting political polarization by allowing users to micromanage their contacts
and information sources [1, 3].

The importance of trait assortativity has inspired various models of self-sorting
populations. Among the most influential of these is the classical Schelling model [31],
which models the emergence of spatial segregation through a preference of agents to
live near a minimum number of similar neighbors. Inspired by this model, the authors
of [17] consider the case of a social network in which agents are assigned an immutable
attribute vector that may model demographics or opinions. Agents are allowed to
destroy their connections to dissimilar partners and create new connections to similar
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ones, with the aversion to dissimilarity governed by a tunable parameter. They then
show that the model always generates segregated communities for any nonzero degree
of dissimilarity aversion. Because the fixed node attributes are generated exogenously
to the system dynamics, this model is most appropriate for studying assortativity
based on immutable or slowly-changing attributes, such as demographic variables.
The family of voter models [8, 18], which are also defined on networks, provide a
contrasting framework. In a typical voter model, each node is endowed with an
opinion that evolves over time, usually via adoption of the opinion of a uniformly
random neighbor. In the original voter model formulations, the network topology is
held fixed as opinions evolve.

In many networks, we naturally expect the opinions of individuals to both in-
fluence and be influenced by the connections they form. Over the past dozen years,
a class of adaptive network models [14, 16, 36] has emerged within which to study
such interacting influences. The distinguishing feature of these models is the dy-
namical coupling between node attributes and network topology. Such models have
been studied in contexts including epidemic spreading [9, 15, 20, 25, 27] and strategic
behavior [24, 28], but are most commonly deployed as models of opinion dynam-
ics [11, 19, 26, 29, 32, 33, 38]. In this setting, they often appear as adaptive (or co-
evolutionary) voter models (AVMs). AVMs add opinion-based edge-rewiring to the
opinion-adoption dynamics of the base voter model.1 The tunable coupling of these
processes generates polarized networks of opinion-based communities. AVMs thus
constitute a class of “model organisms” [33] of endogenous fragmentation, polariza-
tion, and segregation in social and information networks.

Mathematically, AVMs display rich behavior, including metastability and phase
transitions. However, the nonlinearity driving this rich behavior renders AVMs dif-
ficult to analyze even approximately. Many extant methods are restricted in scope,
tractability, or accuracy, and often fail to provide insight into observed behaviors. Our
aim in this article is to develop a class of approximation methods that both explain
qualitative behaviors in these systems and provide analytical scope, computational
efficiency, and predictive accuracy.

1.1. Outline of the Paper. In Section 2, we formulate the class of binary-state
AVMs studied here, review their behavior, and survey previous approaches developed
for approximating their macroscopic behaviors. We study a model variant that in-
cludes a small amount of random opinion-switching (“mutation”), which renders the
model ergodic. Using ergodicity, we develop in Section 3 an approximation scheme for
the equilibrium macroscopic properties across the entirety of the model’s phase space.
Our scheme offers predictions for the point of emergence of persistent disagreement,
which corresponds to the “fragmentation transition” in non-ergodic model variants.
It also offers predictions for the density of disagreement once it emerges, including the
arch-shaped quasistable manifolds characteristic of this class of models. We close in
Section 4 with comparisons to the body of existing models, showing that we achieve fa-
vorable scope, accuracy, and computational complexity. Finally, we discuss promising
extensions, both to our approximation methodology and to the model itself.

2. Adaptive Voter Models. An adaptive voter model is a first-order, discrete-
time Markov process whose states are graphs with opinion-labeled nodes. Each state
has the form G = (N ,L, E), where N is a set of nodes and E a set of edges. We let

1Non-voter type updates are also possible in adaptive opinion-dynamics models; see e.g. [5] for
a game-theoretic approach.
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(u, v) ∈ E to mean that an edge linking nodes u and v is present in G. We denote
by N (u) the neighborhood of u, comprising all nodes adjacent to u and u itself. The
vector L maps N → X where X is an alphabet of possible states or opinions. We treat
the node set N as fixed, while both L and E evolve stochastically in each time-step.
We here restrict ourselves to the commonly-considered binary-state case, which we
denote X = {0, 1}, though multi-state variants [19,32] are also of interest.

The temporal evolution of an AVM is characterized by superimposed voting dy-
namics on L and edge-rewiring dynamics on E . To these, our model variant adds a
third process in the form of random opinion switching or “mutation” in L. We specify
the discrete-time stochastic dynamics (E(t),L(t)) 7→ (E(t+ 1),L(t+ 1)) as follows:

1. With probability λ ∈ [0, 1], mutate: uniformly sample a node u ∈ N and set
Lu(t + 1) ← uniformChoice(X \ {Lu(t)}). Note that mutation does not add
states to the opinion alphabet X , which is fixed. In the binary-state case, a
mutation step deterministically maps Lu(t+ 1)← 1− Lu(t).

2. Otherwise (with probability 1 − λ), sample an edge (u, v) ∈ E(t) uniformly
from the set {(u, v) : Lu(t) 6= Lv(t)} of active edges (also referred to in some
studies as discordant edges). The orientation of (u, v) is uniformly random.
Then,
(a) With probability α ∈ [0, 1], rewire: delete the (undirected) edge (u, v)

and add edge (u,w) selected according to one of the following two rules
depending on the model variant being used. In the rewire-to-random
model variant, w is chosen uniformly from N \ N (u). In the rewire-
to-same variant, w is chosen uniformly from the set Su = {w ∈ N \
N (u)|Lw(t) = Lu(t)}. In the rewire-to-same case, it may in principle
occur that u is already connected to all members of the set Su. In this
case, we simply pass to the next iteration, starting from Step 1, without
modifying G.

(b) Otherwise (with probability 1− α) vote: Lu(t+ 1)← Lv(t).
From a modeling perspective, mutation may represent phenomena such as media
influence, noisy communication, or finite agential memory. The mutation mechanism
is reminiscent of the “noisy” voter model of [13], and was introduced in an adaptive
model variant by [21].

The rewiring and voting steps both occur after sampling an active edge uniformly
at random. Other sampling schemes are also possible. The sampling in [19], for ex-
ample, selects a uniformly random node u with nonzero degree. Then, a uniformly
random neighbor v of u is chosen. Rewiring occurs with probability α and voting
with probability 1 − α regardless of their respective opinions. In the model intro-
duced by [36] and further studied by [21, 22, 34], u and v are chosen similarly, but
in the event that Lu(t) = Lv(t) nothing happens and the sampling step is repeated.
Sampling via active edges as we do here was studied in [11] and employed in many
recent studies [4, 6, 7, 10, 30, 33]. The authors of [11] note that models with different
sampling mechanisms nevertheless display similar qualitative — and often quantita-
tive — macroscopic behaviors.

AVMs are usually studied through a standard set of summary statistics. Let
n = |N | be the number of nodes, m = |E(t)| the number of edges, and c = 2m/n the
mean degree. Since the dynamics conserve n and m, c is time-independent and may
be regarded as an additional system parameter. Let Ni(t) = |{u ∈ N | Lu(t) = i}|
be the number of nodes holding opinion i at time t. Let q(t) = (q0(t), q1(t)) =
n−1 (N0(t), N1(t)) be the vector of opinion densities. For each pair i and j of opinions
in X , let Mij(t) = |{(u, v) ∈ E | Lu(t) = i, Lv(t) = j}| be the number of oriented
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edges between nodes of opinion i and nodes of opinion j. Note that Mij(t) = Mji(t)
and

∑
i,j∈X Mij(t) = 2m at all times t, since each (undirected) edge is counted twice

in the vector M, once in each of two orientations. Let X(t) = (X00, X01, X10, X11) =
(2m)−1M = (2m)−1 (M00(t),M01(t),M10(t),M11(t)) be the vector of oriented edge
densities. We define the scalar R(t) = X01(t) + X10(t) = 2X01(t) to be the overall
density of active edges. By construction, R(t) is a random variable on the interval
[0, 1]. Let x(t) = E[X(t)] and ρ(t) = E[R(t)], with expectations taken with respect
to the time-dependent measure of the Markov process. Note that the objects L(t),
X(t), and R(t) are random functions of time t, while x(t) and ρ(t) are deterministic
functions of time.

Most previous studies have considered AVM variants without mutation, corre-
sponding in our setting to λ = 0. In this setting, any state in which R = 0 is an
absorbing state of the Markov chain. Such a state consists of one or more connected
components within each of which consensus reigns. Letting C(u) denote the connected
component of node u in the absorbing state in this regime, it holds that C(u) = C(v)
implies Lu = Lv for any nodes u and v. As discussed in both [19] and [11], there is
a phase transition in the (random) final value q∗ of the opinion densities in the ab-
sorbing state. In both model variants, there is a critical value α∗, depending on q(0),

such that, if α ≥ α∗(q(0)), |q∗ − q(0)|1 = O
(

logn
n

)
with high probability as n grows

large. Thus, in the large n limit, the opinion densities are not appreciably altered by
the dynamics. We refer to this as the “subcritical” parameter regime. On the other
hand, if α < α∗(q(0)), q∗ is governed by a bimodal distribution parameterized by α,
c, and the model rewiring variant. In both models, the phase transition marks the
point at which the voting dynamics outstrip the rewiring dynamics, in the sense that
the rewiring dynamics are no longer fast enough to resolve most disagreements, and
therefore also corresponds to a transition in the time to reach the final state [19, 30].
We refer to this regime as “supercritical.” Note that in the λ = 0 case, the non-
ergodicity of the model implies that all these results are to an extent dependent on
the initial state G0 of the AVM. While this dependence is generally weak in the stan-
dard AVM we consider here, in related model variants [23] the initial conditions may
often dominate even the rewiring mechanism in determining the final system state.

In [11], the authors show via simulation and analytical approximations that the
same phase transition marks the emergence of a quasistable manifold along which the
system dynamics evolve. This manifold is well-approximated by a concave parabola
in the (q1, ρ)-plane, reflected by its colloquial name, “the arch.” Similar arches were
observed for an AVM variant in [36] and for a non-adaptive voter model in [35].
When α > α∗(q(0)), ρ converges rapidly to 0 while q remains nearly constant. When
α < α∗, on the other hand, the trajectory converges to a point on the arch, and
then slowly diffuses along it until reaching an absorbing state at one of the two bases
(zeros) of the arch. In the rewire-to-random arch, α∗ depends on q1 in that the arch is
supported on a proper sub-interval of [0, 1]. In contrast, the rewire-to-same transition
is independent of q1, with the associated arch supported on the entirety of [0, 1]. The
bases of the arch correspond to the modes in the long-run distribution of q∗.

While multiple studies have achieved insight via numerical study of simulation
traces [21, 32, 37], analytical insight into the phenomenology of AVMs remains rel-
atively limited. The central analytical project is to estimate the behavior of the
expected edge density ρ as a function of the parameters λ, α, and c, as well as the
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Fig. 1: (a): Estimates of the phase transition α∗ in the expected density ρ of active
edges when q(0) =

(
1
2 ,

1
2

)
, for varying mean degree c. Vertical black lines give the

empirical location of the phase transition, determined numerically as the smallest
value of α for which ρ > 0.01. Colored points give estimates of the phase transition
from extant methods. The c = 4 estimates for the rewire-to-same variant of Böhme
and Gross [6] and Demirel et al. [10] overlap. The solid line gives the estimate of our
proposed method, obtained by solving Equation (3.11). (b): Quasi-stable arches in the
(q1, ρ)-plane for varying α. Higher arches correspond to lower values of α. Points are
sampled from simulations at intervals of 5, 000 time-steps. Black dots on the rewire-
to-same panel give the active-motif estimate of [10] for the symmetric top of the arch.
The solid lines give the approximate master equation estimates of [11]. Simulations
in this and subsequent figures were performed with N = 104 nodes and mutation rate
λ = 2−10 ≈ 10−3. All simulations were initialized with an Erdős-Rényi G(n, p) graph
on n = 104 nodes with specified mean degree c. Each node independently chooses
its initial opinion 0 or 1 with equal probability. We performed 107 total simulation
steps, sampling the process after a burn-in period of 2× 106 steps. This process was
repeated ten times for each combination of parameters α and c.

opinion density q.2 The most modest task is to estimate the phase transition α∗ in
the case of symmetric opinion initialization q(0) =

(
1
2 ,

1
2

)
. Figure 1(a) summarizes

a selection of extant methods developed over the past decade to approximate the
location of the phase transition in these model variants and compares them to the ob-
served emergence of the top of the arch in model simulations. The pair approximation
(PA) [11, 22] is an all-purpose method for binary-state models that usually produces
qualitatively correct but quantitatively poor results. Indeed, Figure 1 shows that

2Recent papers have studied other features of interest, such as approximate conservation laws [34]
and network topology near the phase transition α∗ [20]; however, we will not pursue these themes
further here.
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the pair approximation overestimates the location of the phase transition, perform-
ing especially poorly in the rewire-to-same model variant. More specialized methods
are required to obtain quantitatively reasonable estimates. The method of [6] uses
compartmental equations to accurately estimate the rewire-to-same phase transition
with symmetric opinion densities, finding close agreement with observation in this
restricted task. In [4] the authors apply stopping-time arguments to give a rigorous
proof of the existence of a phase transition in both model variants. However, their
results apply only in the context of dense limiting graphs and do not explicitly predict
the value of α∗.

Other schemes provide estimates not only of the transition but also of the qua-
sistable supercritical active link density ρ when q(0) =

(
1
2 ,

1
2

)
. The authors of [10]

propose a compartmental approach based on active motifs to estimate the phase
transition and arch in the symmetric opinion rewire-to-same model variant. An ac-
tive motif consists of a node and a number of active links attached to it; a system of
ordinary differential equations may be obtained by approximately tracking the evolu-
tion of active motif densities in continuous time. The resulting estimate of the phase
transition (Figure 1(a)) and of the top of the arch (Figure 1(b)) are both highly accu-
rate, but require an active-link localization assumption specific to the rewire-to-same
variant. The authors of [33] follow a related approach for the rewire-to-same variant
based on more general active neighborhoods. Active neighborhoods count the numbers
of both active and inactive links attached to a given node. They obtain an analytic
approximation by transforming the resulting system into a single partial differential
equation governing the generating functions of the neighborhood densities. The re-
sulting estimate of the phase transition (Figure 1(a)) and the active link density (not
shown) are, however, uniformly dominated in accuracy by the explicit active-motif
approach.

To our knowledge, the only methods for approximating the complete arch are the
pair approximation and the approximate master equations (AMEs, [12]) used in [11].
Approximate master equations are similar to active-neighborhood techniques, but are
formulated explicitly for the case of general opinion densities q. For small mean
degree, approximate master equations can provide relatively accurate predictions of
the rewire-to-random phase transition (Figure 1(a)) and qualitatively reasonable esti-
mates of the arches (Figure 1(b)), though the shapes of the arches may be somewhat
distorted. Their estimates for α∗ and ρ in the rewire-to-same variant are substan-
tially worse, although the qualitative shape of the arches appears correct. AMEs are
constrained by their computational cost: to obtain a solution requires the numerical
solution of Θ(k2

max) coupled differential equations, where kmax is the largest node-
degree expected to emerge in the course of a simulation, and therefore depends at
least linearly on the mean degree c. The scheme thus rapidly becomes impractical for
high enough mean degree or for initially skewed degree distributions.

2.1. AVMs with Mutation. The approximation scheme we will develop in
Section 3 depends on the presence of mutation in the model, i.e. λ > 0. The intro-
duction of mutation has an important technical consequence: the process is ergodic,
up to symmetry.

Definition 2.1. A labeled graph isomorphism of a state G = (N ,L, E) is a per-
mutation τ : N → N such that (u, v) ∈ E iff (τ(u), τ(v)) ∈ E and Lu = Lτ(u) for all

u ∈ N . We write G for the equivalence class of G under labeled graph isomorphisms.

Theorem 2.2. When λ > 0, if
(
n−4

2

)
≥ m− 1, the process G(t) is ergodic.
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Proof. We will first show aperiodicity by constructing cycles of lengths 2 and 3 in
the state space. To construct a cycle of length 2, simply choose a node and perform
two sequential mutation steps. The construction of a cycle of length 3 is slightly more
involved. Pick an edge e ∈ E . Label one end u, and the other end v1. Pick two more
nodes v2 and v3. Using mutation and rewiring steps, remove all edges connected to u,
v1, v2, and v3 except for e. This can always be done by hypothesis, since the remaining
m − 1 edges may be placed among the

(
n−4

2

)
pairs of remaining nodes via mutation

and rewiring steps. Using mutation steps, set Lu = Lv2
= 0 and Lv1

= Lv3
= 1. Call

this initial state G. Then, consider the following sequence:
1. Rewire (u, v1) 7→ (u, v2).
2. Mutate Lv2 ← 1.
3. Mutate Lv1

← 0.
Call the end state G′. Each of these steps is supported in both rewire-to-same and
rewire-to-random model variants. Furthermore, the permutation τ that interchanges
v1 and v2 is a labeled isomorphism from G to G′. We have therefore constructed a
supported cycle of length 3 in the state space of the process G(t), completing the proof
of aperiodicity.

To show irreducibility, let G1 = (N ,L1, E1) and G2 = (N ,L2, E2) be elements of
the state space of a single AVM. Since |E1| = |E2| = m, we have |E1 \ E2| = |E2 \ E1|.
These sets may therefore be placed in bijective correspondence. For each edge e =
(u, v) ∈ E1 \ E2, we arbitrarily identify e′ = (u′, v′) ∈ E2 \ E1. Perform the sequence of
rewirings (u, v) 7→ (u, v′) 7→ (u′, v′) possibly with mutation steps in order to activate
the edges as needed. Doing so reduces the set E1 \E2 by one edge. Repeat this process
inductively until E1\E2 = ∅; that is, until E1 = E2. Finally, perform mutation steps on
all nodes u on which L1 and L2 disagree. The result is a path of nonzero probability
through the state space of G(t) and therefore of G(t), as was to be shown.

Since the process G(t) is ergodic, it possesses an equilibrium measure η supported
on the entirety of its state space. In the remainder of this paper, we will abuse no-
tation by identifying G with Ḡ and referring to η as the equilibrium distribution of
G(t). An important consequence of ergodicity is that all properties of η derived for the
mutating AVM are independent of the state in which the network is initialized. This
situation contrasts with the extant literature discussed previously (with the excep-
tion of [21]), in which the model behavior can, in principle, depend on initialization.
Ergodicity also implies that states with R = 0 are no longer absorbing. Instead, a
typical sample from η displays bifurcated structure closely aligned with the opinion
groups, with dense connections between common opinions and sparser connections
between differing opinions. This behavior of the mutating AVM thus makes it a more
flexible model of social processes in which long-standing disagreement may influence
connections. We focus here on the limit of small λ, which allows us to derive ap-
proximations for the non-mutating AVMs. In particular, the equilibrium measure η
concentrates around the λ = 0 arch, allowing us to describe the arch as the expected
active link density ρ∗ = Eη[R] under the equilibrium measure η.

3. Model Analysis. Our strategy is to study perturbations from the fully-
fragmented state R = 0. These perturbations are induced by mutation, without which
the fully-fragmented state is absorbing. While many existing techniques amount to
continuous-time mass-action laws for system moments, our methods are fundamen-
tally discrete and local in that we study changes in the edge density vector X stemming
from a single mutation event. Carefully-chosen approximations in this regime can be
expected to be accurate near the critical point.
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Assume that λ is small but positive. Suppose that at time t, R = 0. In this state,
G(t) consists of one or more connected components within which the opinion function
L is constant. Suppose now that, at time t + 1, node u on component C(u) changes
its opinion from 0 to 1 through mutation. Because opinions on C(u) are otherwise
uniform, all active links present in component C(u) are contained in the neighborhood
of u itself. In particular, any additional active links that may be generated over short
timescales near u, as measured by the geodesic distance on G.

Let T be the hitting time of the event R = 0; i.e., the amount of time required to
return to the fully-fragmented state. We can distinguish two regimes, depending on
the scaling of E[T ] with n.

1. Subcritical: We have E[T ] = O(1). Intuitively, this occurs when u’s dis-
senting opinion is either snuffed out by voting events or “quarantined” by
rewiring events in a small number of time steps. This case always occurs
when α = 1, since T is then simply the time until each active link has been
rendered inactive via rewiring. The expected number of active edges scales as
nρ∗ = O(1), since there are only O(1) time steps in which additional active
edges may be generated. We therefore have ρ∗ → 0 as n grows large.

2. Supercritical: We have E[T ] = O(n2), corresponding to the consensus-time
of the non-adaptive voter model [18]; as such, this case always occurs for
α = 0. Mechanistically, u’s dissenting opinion triggers a cascade of active
edge generation through voting and rewiring events with nonzero probability.
In this case, the number R of active edges scales with n (see, e.g. [35]), and
the equilibrium active edge density ρ∗ is nonzero as n grows large.

These two regimes are separated by critical values in the parameters α, λ, and c.
Indeed, the transition in α is precisely that described previously for the λ = 0 case.
The situation is thus reminiscent of the standard Galton-Watson branching process [2],
in which the criticality of the aggregate process can be characterized locally by the
reproductive potential of a single node.

To develop quantitative approximations, we therefore study the local dynamics
around node u. At the moment that node u changes its opinion from 0 to 1, all nodes
on C(u) other than u itself have opinion 0. Even if further mutation events take
place, it will still be true that local neighborhoods of nodes in C(u) are statistically
dominated by opinion 0 nodes. That is, we can distinguish a local minority — initially
comprising node u alone — of opinion 1 nodes. In the subcritical regime, every
connected component possesses a clearly defined local minority and local majority.
In the supercritical regime, these distinctions degrade as the number of active links
increases.

We will use this physical intuition to formulate a closed-form approximation in
the neighborhood of the critical point. Then, the dynamics in the expected edge
counts may be written

m(t+ 1)−m(t) = E [λW(G(t)) + (1− λ)αR(G(t)) + (1− λ)(1− α)V(G(t))] ,
(3.1)

where W, R, and V are (random) functions of the graph state G(t) giving the incre-
ments in m due to mutation, rewiring, and voting, respectively. Importantly, W and
R depend only on q and x, the expected first and second moments of L. Starting
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with the former, the entries of the expected mutation term may be written

E[W(G)] = w(x) = c


x10 − x00

x00 − x10 + x11 − x01

x00 − x10 + x11 − x01

x01 − x11

 .(3.2)

We illustrate by deriving the expression for w00(x). Edges between nodes of opinion 0
are created when an opinion-1 node on an active edge mutates. A uniformly random
opinion-1 node has in expectation cx10 active edges available to transform into 0-0
edges upon mutation. Similarly, 0-0 edges are destroyed when one of the incident
nodes mutates. A uniformly random opinion-0 node has in expectation cx00 inactive
edges that are destroyed upon mutation. The expressions for the other entries of w
are derived by parallel arguments. The rewiring terms r are written as follows:

E[R(G)] = r(q) =

{[
q0,− 1

2 ,−
1
2 , q1

]T
rewire-to-random

[1,−1,−1, 1]
T

rewire-to-same.

Notably, the rewiring function depends on the opinion densities q only in the rewire-
to-random case, because the rewire-to-same variant always removes exactly one active
edge, replacing it with an inactive one in a rewiring step. To derive the expression for
the rewire-to-random case, we can condition on the opinion of the node that “keeps”
the active edge e. If the 0-opinion node keeps e, then, with probability q0, e joins to
another opinion 0 node, destroying the active edge and creating a 0-0 edge. A similar
argument accounts for the q1 term. Summing up the ways for an active edge to be
removed, we have r01(q) = − 1

2 (q0 + q1) = − 1
2 , as was to be shown.

The computations above show that the mutation and rewiring dynamics in X
are Markovian: for any fixed q, when α = 1, X is a Markov process. Because of
this, computing x in the α = 1 case for fixed q reduces to solving a four-dimensional
linear system subject to nonnegativity and normalization constraints. Unfortunately,
the voting term v(G(t)) = E[V(G)] cannot be similarly parsed in terms of q and
X, because the voting dynamics depend on higher graph moments and are therefore
non-Markovian in these variables. We may therefore view the short-timescale dy-
namics of X for fixed q as a mixture of Markovian opinion-switching and rewiring
processes with a non-Markovian voting process. Our strategy is to approximate the
expectation of the non-Markovian voting term with a Markovian approximation near
the phase transition, using the asymmetry between local minorities and majorities.
This approximation supposes that E[V(G(t))] ≈ v̂(q,x) near the critical regime, with
the function v̂ of q and x to be determined. Note that doing so and setting the
lefthand side of (3.1) equal to zero removes all dependence on the time-step t except
dependence through q and x. We therefore suppress the argument t throughout the
remainder of this section. All expectations are taken with respect to the stationary
distribution η.

To construct v̂, we study the local neighborhood of a node u that has just changed
its opinion from ı̄ ∈ {0, 1} to i ∈ {1, 0}. We denote expectations conditioned on this
event using the shorthand E[·|i]. Immediately after this event, u possesses an initial
random number J0 of inactive and K0 of active edges. The distributions of J0 and
K0 depend on q, x, c, and their moments, as well as the conditions under which node
u changed its opinion. If u changes its opinion due to a mutation on an otherwise
constant-opinion component, then J0 = 0. On the other hand, if u changes its opinion
through a voting event, then J0 ≥ 1, since there must have been a node to pass on
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the opinion to u. To compute v̂, we track each of the K0 active edges until each of
them has been rendered inactive, counting voting events along the way.

Under timescale-separation and mean-field assumptions, these calculations may
be carried out in closed form. The assumption of timescale-separation supposes that G
changes slowly relative to the neighborhood of node u, so that only update steps that
sample the initial K0 edges require accounting. The mean-field assumption supposes
that nodes in the local majority have degree distributions governed by the global
network average x, reflecting the fact that, by definition, most nodes are members of
their respective local majorities. These assumptions are approximately correct when
the active edge density R and mutation rate λ are both small, and will tend to degrade
when either quantity is increased.

Define the vector c with components cij = cxij/qi. Each entry cij gives the aver-
age number of neighbors of type j of a node of type i. Note that, though xij = xji,
it is not generally the case that cij = cji unless q =

(
1
2 ,

1
2

)
. The random variable K0

is the number of opinion ı̄ neighbors incident to u immediately prior to u changing
opinion; under the mean-field assumption, we therefore have E[K0|i] = cı̄ı̄. Mean-
while, E[J0|i] = 1 + cı̄i if u changed its opinion due to voting and E[J0|i] = 0 if u
changed its opinion due to mutation. Since we assume λ to be small and mutations
to therefore be slow, we focus on the former case.

We need to track multiple types of voting events, and we define random variables
for each.

1. Neighbors of u may vote. By the assumption of timescale separation, each
such vote occurs along one of the K0 initial active edges. Let E denote the
(random) number of such votes.

2. Nodes not attached to u may vote. In the rewire-to-random model, such
events may occur after an active edge attached to u is rewired away from u
but remains active, allowing for a later time at which one of the two nodes
on this edge votes to render the edge inactive. In the rewire-to-same model
variant, this type of voting event does not occur. Let F denote the (random)
number of such voting events.

3. Node u itself may vote prior to all of its K0 active edges becoming inactive or
removed from u. Let G denote the indicator random variable for this event.

We next write down vectors tracking the impact of each of the above voting event types
on m, the vector of expected global edge counts. We first compute the vector ei(c)
whose entries give the expected increment in m due to a Type 1 event. Since votes
occur along active edges, a Type 1 event consists of a neighboring node v changing
opinion from Lv = ı̄ to Lv = i. In this event, edge (u, v) is rendered inactive. At
node v, cı̄ı̄ edges are activated in expectation, and cı̄i edges are rendered inactive as
i-i edges. Both of these expressions are implied by the mean-field approximation. We
therefore have

ei(c) =
1

2
(−2E[K0|i],E[K0|i]− E[J0|i],E[K0|i]− E[J0|i], 2E[J0|i]))

=
1

2
(−2cı̄ı̄, cı̄ı̄ − cı̄i − 1, cı̄ı̄ − cı̄i − 1, 2(1 + cı̄i)) .(3.3)

The expected increment vector for Type 2 events may again be computed via the
mean-field approximation. Since the edges involved in Type 2 events are not connected
to u, the increment is independent of Lu. We therefore have

f(c) =
e0(c) + e1(c)

2
.(3.4)
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The analysis for Type 3 events is more subtle. For i = 1, this term has components

g1(q, c) =
1

2
(2E[GK|1],E[G(J −K)|1],E[G(J −K)|1],−2E[GJ |1]) ,(3.5)

where J (respectively, K) are the number of inactive (active) edges attached to u at
the time of voting, and G is the event that u votes prior to deactivation.

To complete the approximation scheme, it is necessary to first compute the ex-
pectations appearing in Equation (3.5) and then compute the expected number of
events of each type. We begin with K, the active edge count at the time that u
votes. Conditioned on a fixed initial number K0 of active edges and u’s opinion i, K
is distributed as a truncated geometric random variable:

P(K = k|i,K0) =

{
(1− βi)βK0−k

i 1 ≤ k ≤ K0

βK0
i k = 0,

where βi is the probability that an event is not a vote by u, given that it removes a
discordant edge from u and that u has opinion i. This probability is given explicitly
by

βi =

{
1+αqi

2−α(1−qi) rewire to random
1+α

2 rewire to same.
(3.6)

To derive the rewire-to-random expression, we enumerate the events that remove an
active edge (u, v) from u, given that (u, v) is sampled for update. A vote by either node
u or node v deactivates the edge, and occurs with probability 1−α. A rewiring event
in which v maintains the edge removes the edge from u and occurs with probability
α/2. A rewiring event in which u maintains the edge occurs with probability α/2,
and deactivates the edge with probability qi in the rewire-to-random case. The total
rate of active edge removal from u is therefore 2− α(1− qi). The rate of active edge
removal, excluding Type 3 voting events, is 2−α(1−qi)− (1−α) = 1+αqi. A similar
derivation yields the expression for the rewire-to-same variant.

The probability of u voting prior to deactivation, conditioned on K0, is

E[G|K0, i] = P(K ≥ 1) = 1− βK0
i .

Averaging over K0 yields

E[G|i] =
∑
k0

P(K0 = k0)(1− βk0
i ) = 1− φK0(βi) ,

where φK0
(z) =

∑∞
k=1 P(K0 = k)zk is the probability generating function of K0.

Some previous work (e.g. [36]) explicitly models quantities such as K0 as binomial
or Poisson random variables. In our experiments, the crude approximation E[G|i] ≈
1 − βE[K0|i]

i = 1 − βcı̄ı̄i yields similar results with much faster computations, and is
therefore used in the results presented below.

The expected number of active edges at the time that u votes is

E[GK|i] = EK0
E[GK|i,K0]

= EK0

[
K0 −

βi(1− βK0
i )

1− βi

∣∣∣∣i
]

= E[K0|i]−
βi

1− βi
E[G|i] .
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This accounts for the decay in the local active edge density around u. It remains to
compute E[E|i], E[F |i], and E[GJ |i]. To do so, it is useful to introduce the coefficients

εi =

{
1−α(1−qi)

1+αqi
,

1
1+α ,

σi =

{
q1

2(1−α)
2−α , rewire to random ,

0 , rewire to same.
(3.7)

The coefficient εi gives the probability that an event that removes an active edge
from u, other than a vote by u, produces an inactive edge either through rewiring or
through a vote by a neighbor of u. The coefficient σi gives the probability that an
active edge which is rewired but not immediately deactivated is ultimately deactivated
via a voting event. The derivations of these coefficients are similar to that of βi above.

Node u begins with an initial number J0 of inactive edges, and gains more via
rewiring and voting. At the time that u votes, in expectation E[K0|i] − E[GK|i]
active links have been removed; each has a probability εi of being deactivated while
remaining attached to u. The expected number of inactive edges at the time that u
votes is therefore

E[GJ |i] = E[J0|i] + εi (E[K0|i]− E[GK|i]) .

To compute E[E|i], the expected number of Type 1 events, we note that a voting event
along edge (u, v) has equal probability to change Lu as Lv. The expected number of
Type 1 events is therefore equal to the expected number of Type 3 events, and we
have E[E|i] = E[G|i] = 1 − φK0(βi). Finally, we compute the expected number of
Type 2 events. By definition, for a Type 2 event to occur, the edge must no longer
be attached to u. The expected number of such edges is E[K0 + J0 − G(K + J)|i].
The probability that such an edge was removed by u by a rewiring event that did not
deactivate the edge is σi. We obtain

E[F |i] = σiE[K0 + J0 −G(K + J)|i] .

An important prediction of this formalism is that Type 1 and Type 3 events,
though they occur at the same rate, have different impacts on the active edge density.
Since E[K|i] < E[K0|i] and E[J |i] > E[J0|i], we have

ei(c)ı̄i =
E[K0|i]− E[J0|i]

2
>

E[K|i]− E[J |i]
2

= −gi(q, c)ı̄i .(3.8)

Equation (3.8) states that Type 1 events increase the active edge density more than
Type 3 events decrease it. This reflects a local asymmetry in the subcritical regime,
between votes that increase the prevalence of a local minority opinion and votes that
reduce it. The asymmetry is due to the intervening rewiring steps, which tend to
remove edges from the focal node u prior to a Type 3 event. Since Type 1 and Type
3 events occur at the same rate, our formalism predicts that voting events tend to
increase the active-edge density when ρ is small. In Figure 2, we check this prediction
by comparing the expressions in Equation (3.8) to the distribution of all impacts
∆M01 on the active edge count due to voting events. In the subcritical regime,
the mean increment (black) is positive, reflecting the fact that Type 1 events (blue)
outstrip Type 3 events (orange) in expected generation of active edges. As ρ grows,
the separation-of-timescales assumption degrades, and the asymmetry between Type
1 and Type 3 events breaks down. For large ρ, Type 1 and Type 3 events have similar
increments in expectation and the distribution of ∆M01 becomes symmetric.
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Fig. 2: Illustration of the asymmetry between Type 1 and Type 3 events. Histograms
give the impact of a voting event on M01, the number of active edges. Each panel
corresponds to a different value of the expected active edge density ρ. The expected
impact of Type 1 (blue) and Type 3 (orange) events are shown in the horizontal
margin, as well as the simulation mean (black). Simulations performed on a rewire-
to-random AVM of n = 104 nodes and c = 8, with varying rewiring rate α under the
conditions described in Figure 1. Events are tallied only for 0.45 ≤ q1 ≤ 0.55.

Term Expression
Type 1 expected increment ei(c)01 = cı̄i − cii − 1

Type 2 expected increment fi(c)01 = e0(c)01+e1(c)01

2

Type 3 expected increment gi(c)01 = cı̄i + εi
βi

1−βi
(1− φK0

(βi))

Type 1 expected count E[E|i] = 1− φK0
(βi)

Type 2 expected count E[F |i] = σi(cı̄ı̄ + cı̄i − gi(c)01)
Type 3 expected count E[G|i] = 1− φK0(βi)

Table 1: Summary of the terms appearing in Equation (3.9). Only the 01 components
(corresponding to active edges) are shown.

Finally, we average over events of Types 1–3 to obtain the approximate expected
increment in edge counts per voting event. It is given by the four-vector

v̂(q,x) =
1

2

∑
i∈{0,1}

E[E|i]ei(c) + E[F |i]f(c) + E[G|i]gi(q, c)

E[E + F +G|i]
.(3.9)

For convenience, we summarize the expressions appearing in Equation (3.9) in Table 1.
Combining Equation (3.1) with Equations (3.3), (3.4), and (3.9) and setting the

lefthand side equal to zero gives our Markovian approximation for the arch:

0 = λw(x) + (1− λ)αr(q) + (1− λ)(1− α)v̂(q,x) .(3.10)

This is a closed, deterministic equation in x, derived under assumptions that are
approximately correct near the critical point. Solving this equation yields x̂, the
limit point of the approximate dynamics under Equation (3.10).3 The approximation

3In principle, Equation (3.10) may admit multiple limit points. Throughout our numerical ex-
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indicates the subcritical case when ρ̂(q;α, λ) = 2x̂01(q;α, λ) ≤ 0, and the supercritical
case otherwise. Solving

α∗(q, λ) = max{α : ρ̂(q;α, λ) = 0}(3.11)

then gives our approximation for the critical value α∗ at which persistent disagreement
emerges. We again emphasize that this solution is independent of both the time step
t and the initialization of G.

Figure 3 compares numerical solutions to Equation (3.11) simulation data for
the complete range of q1 ∈ [0, 1]. The accuracy of the approximation is strongest
for q ≈

(
1
2 ,

1
2

)
and on the rewire-to-random model variant. See also Figure 1(a) for

comparisons of the solutions of Equation (3.11) to extant approximation schemes in
the case q =

(
1
2 ,

1
2

)
.

Figure 3 highlights one of the qualitative differences between the rewire-to-random
and rewire-to-same model variants. As discussed in Section 2, while α∗ depends
strongly on q in the rewire-to-random model variant, it is independent of q in the
rewire-to-same variant. This behavior is reflected algebraically in Equations (3.6) and
(3.7), which in turn govern the terms appearing in Equation (3.10). The quantities β,
ε, and σ depend directly on q in the rewire-to-random model, regardless of the value of
x. However, in the rewire-to-same model, dependence on q emerges only when ρ > 0.
This in turn implies that the phase transition is itself independent of q, as is indeed
observed in both the data and our approximation. Beyond the algebra, the localized
approximation scheme we have developed gives to our knowledge the first mechanistic
explanation of this difference in the phase transitions of the two models.4 Consider
the emergence of dissenting node u with opinion 1 on a component of majority opinion
0. In the rewire-to-random model, the fast local rewiring dynamics depend explicitly
on q, the global opinion densities. When q1 is large, an edge rewired away from u is
more likely to become inactive, resulting in fewer active edges in the neighborhood of
u. This is in turn reflected by the term g1(q, c)01 = 1

2 (E[K|i]− E[J |i]) governing the
impact of Type 3 events, whose magnitude enters into the calculation of the phase
transition via Equations (3.10) and (3.11). In the rewire-to-same case, however, the
fast rewiring does not explicitly depend on q. An active edge attached to u that
rewires becomes inactive with probability 1. As a result, there is no dependence of
Type 3 events on q, and the phase transition is independent of q.

We now turn to the approximation of ρ∗(q;α, λ), the equilibrium density of ac-
tive edges in the supercritical regime. In this regime, the distinction between local
minority and majority nodes progressively erodes, as does the validity of the timescale-
separation assumption. One way to view this erosion is in terms of decay of the impact
of Type 3 events, as discussed in Figure 2. As ρ increases, the impact of a single Type
3 event progressively diminishes due to re-randomization of the focal node’s local
neighborhood. We model this re-randomization via a simple interpolation to a mean-
field approximation of the arch in the case α = 0, which corresponds to a variant of
the voter model without rewiring. We begin by deriving this approximation.

When α = λ = 0, active edges enter and exit the system only through voting
events. We have already written the mean-field approximation for the expected impact
of a voting event in Equation (3.3). When only these events take place, the equilibrium

periments, we have found the limit point to be unique.
4The pair-approximation (PA) equations of [11] predict this difference but the mechanism therein

is less clear to us.
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Fig. 3: Approximation of the phase transition α∗ for rewire-to-random and rewire-to-
same systems for varying mean degree c and opinion densities q under the equilibrium
measure η. Dashed lines give estimates of α∗(q) obtained by numerically solving
Equation (3.11). Some numerical artifacts are visible in the rewire-to-random case
for large c. Color gives the equilibrium density of active edges ρ from simulations
carried out under the conditions described in Figure 1. Both the estimate of α∗ and
the simulation results are independent of initialization of G.

condition is ei(c) = 0 for i = 0, 1. It suffices to solve the system

0 = 1 + c10 − c00

0 = 1 + c01 − c11

for c and subsequently for x. We recall that cij = cxij/qi and that 2x01 = 1−x00−x11.
Substituting these relations we obtain

2q0q1

c

(
1
1

)
+ q =

[
1 + q1 q0

q1 1 + q0

](
x00

x11

)
.

The unique solution is(
x∗00

x∗11

)
=
q0q1

c
e +

1

2

(
q0(1 + q0 − q1)
q1(1 + q1 − q0)

)
.

We may then compute the mean-field approximation for the α = 0 arch:

ρ̂∗(q) = 2x01 = 1− x∗00 − x∗11 = 2q0q1
c− 1

c
.

We note that this result is identical to that derived in [35] for a node-updating non-
adaptive voter model.
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Fig. 4: Approximations to the arch for varying α, q, and c. Points give averages
over simulation runs on AVMs under the conditions described in Figure 1. Solid lines
give the equilibrium value of ρ̂ obtained by numerically solving for the fixed points
of Equation (3.1) using the interpolation function given by Equation (3.12). Higher
arches correspond to lower values of α.

We now introduce the interpolation function

s(q,x) =
ρ̂∗(q)− ρ
ρ̂∗(q)

(3.12)

to quantify the distance of the system state from the estimated α = 0 arch. We then
use this interpolation function to introduce decay in Type 3 events, replacing g(q, c)
in Equation (3.9) with g̃(q, c) = g(q, c)s(q,x). The corresponding solution for x̂
yields the supercritical approximation of ρ.

Figure 4 shows the resulting approximations for the arch in both models, across
a range of parameter regimes and both model variants. The arches for the rewire-
to-random model agree well with the data on both the support of the arch and the
equilibrium active edge density. The rewire-to-same arches are somewhat less pre-
cise. The arches do correctly span the complete interval [0, 1]. The overall numerical
agreement with the data is comparable to extant methods, but the parabolic shape
of the arch is not completely reproduced — there is some warping near the base. The
reason for this warping is not clear to us at present, and further investigation into
this phenomenon may yield both theoretical and computational progress.

4. Discussion. The Markovian approximation technique we have developed of-
fers predictions for the equilibrium active edge density ρ∗ across the entirety of param-
eter space, and for varying opinion densities q. Its accuracy in these tasks is generally
comparable to that of the best extant methods. For example, Figure 1(a) shows that
our Markovian approximation is at least as accurate as AMEs [11] in predicting the
c = 4 phase transition for the rewire-to-random model, and grows more accurate
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as c increases. Our approximation is substantially more accurate than AMEs for the
rewire-to-same phase transition, and only slightly less accurate than the compartmen-
tal approach of [6] for this model variant. Relatively few approximation schemes make
predictions for the full arch, and it is therefore more difficult to make quantitative
comparisons. The compartmental method of [10] approximates the equilibrium active
edge density at q =

(
1
2 ,

1
2

)
in the rewire-to-same variant more accurately than our

method (Figure 1(b)), but does not make predictions for asymmetric opinion densities.
AME predictions [11] recover the asymmetric phase transition and arches reasonably
well in the rewire-to-random case, but are much less accurate for the rewire-to-same
variant. Whereas the AME arches display warping in the rewire-to-random variant,
our Markovian approximation displays warping in the rewire-to-same variant. In the
c = 4 case shown in Figure 1(b), the present method offers overall accuracy in com-
puting the arches similar to that of the AMEs, and improves as c increases.

4.1. Computational Considerations. Solving (3.10) requires finding the so-
lution of a system of four coupled nonlinear equations, which may be done efficiently
using a standard numerical solver. Notably, the dimensionality of the approxima-
tion is independent of the mean degree c. This contrasts to compartmental meth-
ods [6,10,11,33], the dimension of which generally display quadratic or higher scaling
in c. For example, AMEs comprise a system of Θ

(
k2

max

)
coupled differential equa-

tions, where kmax is the highest node degree expected to be encountered in simulation;
in the c = 4 case, the authors of [11] used 272 such equations. This scaling makes the
computation of approximations computationally prohibitive even for modest mean
degree c. Similarly, the method of [6] for approximating the rewire-to-same phase
transition requires a bisection search in α for which each function evaluation corre-
sponds to finding the largest eigenvalue of a (c−1)×(c−1) matrix. The scaling is thus
at least O

(
(log 1

ε )(c− 1)2
)
, where ε is the desired approximation accuracy. Because

our proposed method scales independently of c, it can be used to approximate AVMs
with arbitrarily large mean degrees.

4.2. Conclusions. Adaptive voter models offer a simple set of mechanisms that
generate emergent opinion-based assortativity in complex networks. While the un-
derlying rules are simple to state, the coevolving nature of the dynamics render these
systems interesting and challenging to analyze. We have considered an ergodic adap-
tive voter model variant which enables a local perspective on fragmentation transitions
and other model properties. The local perspective allows us to use the asymmetry
of voting events to develop Markovian approximations based on the fast timescale
dynamics around single nodes. The resulting approach is conceptually intuitive, com-
putationally tractable, and predictively performant.

One of the most puzzling issues raised by our results is the difference between the
accuracies of our approach for the rewire-to-random and rewire-to-same adaptive voter
models. While we succeed in characterizing the rewire-to-random arch nearly exactly,
the same methods produce poorer results for the rewire-to-same model. We conjecture
that the rapid local sorting produced in rewire-to-same dynamics violates our mean-
field assumption on Type 1 events, which would lead to approximation degradation.
It would be interesting to extend our methodology to see whether refinements are
possible that better characterize the rewire-to-same behavior and shed further light
on the essential features governing the dramatic difference in the nature of the phase
transitions in these two models.

It is also of interest to consider extensions and generalizations. The most natu-
ral extension is to the case of multiple opinion states and structured opinion spaces.
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Previous work on multi-opinion models has been restricted to either approximation
of the various phase transitions [7] or empirical discussion of supercritical equilib-
rium behavior [32]. One reason for this is computational. The number of operations
required to compute approximations under active-motif and AME approaches are ex-
ponential in the number |X | of opinion states, rendering both methods infeasible. In
contrast, likely extensions of our local Markovian approximation methods scale as
Θ(|X |2), which would offer a significant reduction in computing time. If accuracy
were preserved, such extensions would present the first scalable analytic methods for
multi-opinion models. Other generalizations are also possible. While we developed
our approximations for the specific case of the binary-state AVM, that development
relies only on ergodicity, timescale separation, and the mean-field assumption. We
conjecture that these ingredients should be present in any adaptive model with ho-
mophilic dynamics in which rewiring steps involve uniform selection from an extensive
subset of the graph, such as a subset sharing a given node state. An example of a more
complex system in which these ingredients are present is the networked evolutionary
prisoner’s dilemma game of [24], in which nodes display richer strategic behavior in
their opinion update and rewiring behavior. The existence of a phase transition driven
by homophily may allow for the deployment of our novel methods in such cases as
well.

Acknowledgments. We are grateful to Feng (Bill) Shi for contributing code
used for simulations, Hsuan-Wei Lee for contributing code used to construct the ap-
proximate master equation solutions shown in Figure 1, and Patrick Jaillet for helpful
discussions.

Code. Documented code for running simulations and computing the approxi-
mations described in this paper may be found at https://github.com/PhilChodrow/
AVM.
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