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APPROXIMATE CLOAKING FOR TIME-DEPENDENT MAXWELL

EQUATIONS VIA TRANSFORMATION OPTICS

HOAI-MINH NGUYEN AND LOC TRAN

Abstract. We study approximate cloaking using transformation optics for electromagnetic
waves in the time domain. Our approach is based on estimates of the degree of visibility in
the frequency domain for all frequencies in which the frequency dependence is explicit. The
difficulty and the novelty analysis parts are in the low and high frequency regimes. To this end,
we implement a variational technique in the low frequency domain, and multiplier and duality
techniques in the high frequency domain. Our approach is inspired by the work of Nguyen and
Vogelius on the wave equation.
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1. Introduction and statements of results

Cloaking via transformation optics was introduced by Pendry, Schurig, and Smith [42] for
the Maxwell system and by Leonhardt [22] in the geometric optics setting. The idea is to use
the invariance of Maxwell equations under a change of variables. They used a singular change
of variables that blows up a point into a cloaked region. The same transformation was used
by Greenleaf, Lassas, and Uhlmann in an inverse context [12]. However, the singular nature
of the cloaks presents various difficulties in practice as well as in theory: (1) they are hard to
fabricate and (2) in certain cases, the correct definition (and therefore the properties) of the
corresponding electromagnetic fields is an issue. To avoid using the singular structure, various
regularized schemes have been proposed. One of them was suggested by Kohn, Shen, Vogelius,
and Weinstein [19] in which they used a transformation which blows up a small ball of radius ρ
instead of a point into the cloaked region. Other, related regularizations schemes have also been
proposed [44, 13]. It is worth mentioning that there are other techniques for cloaking, some of
which use negative index materials such as cloaking using complementary media, see, e.g., [20, 29]
and cloaking via localized resonance, see, e.g., [30] (see also [41, 24, 28]).

Approximate cloaking using transformation optics for the acoustic setting has been investigated
in the last fifteen years. In the frequency domain, if an appropriate or a fixed lossy layer (damping
layer) is implemented between the transformation cloak and the cloaked region, then cloaking
is achieved, and the degree of visibility is of the order ρ in three dimensions and 1/| ln ρ| in
two dimensions, see [19, 26] respectively. Without such a lossy layer, the phenomena are more
complex and have been investigated in more depth [27]. In this setting, there are two distinct
situations: resonant and non-resonant. In the non-resonant case, cloaking is achieved with the
same degree of visibility; however, the field inside the cloaked region might depend on the field
outside (cloaking vs shielding). In the resonant case, the energy inside the cloaked region can
blow up, and cloaking might not be achieved. Different cloaking aspects related to the Helmholtz
equation such as zero frequency context and the enhancement, have been studied [19, 33, 2, 14, 16]
and references therein. There are much less rigorous works in the time domain. Cloaking using
transformation optics for the wave equation was established in which a lossy layer is also used
[35], and in which the dispersion of the transformation cloak using the Drude-Lorentz model is
accounted and a fixed lossy layer is used [36], in this direction.
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In the electromagnetic time harmonic context, the situation on one hand shares some common
features with the scalar case and on the other hand has some distinct figures, see [39]. In the non-
resonant electromagnetic case, without sources inside the cloaked region, it is shown that cloaking
is achieved and the degree of visibility is of the order ρ3. In the resonant electromagnetic case,
in contrast to the scalar case, cloaking is always achieved even if the energy inside the cloaked
region might blow up. Moreover, the degree of visibility varies between the non-resonant and
resonant cases. Other works on cloaking for the Maxwell equations in the time harmonic regime
can be found in [11, 47, 48, 3, 9, 21] and references therein.

This paper is devoted to cloaking using transformation optics for the Maxwell equations in the
time domain. We use the regularization transformation instead of the singular one for the starting
point, which is necessary for viewing previous results in the time harmonic regime. Concerning
the analysis, we first transform the Maxwell equations in the time domain into a family of the
Maxwell equations in the time harmonic regime by taking the Fourier transform of the solutions
with respect to time. After obtaining appropriate estimates on the near invisibility of the Maxwell
equations in the time harmonic regime, we simply invert the Fourier transform. This idea has its
roots in the work of Nguyen and Vogelius [35] (see also [36]) in the context of acoustic cloaking
and was used to study impedance boundary conditions in the time domain [38] and cloaking for
the heat equation [32]. To implement this idea, the heart of the matter is to obtain the degree
of visibility in which the dependence on frequency is explicit and well controlled. The analysis
involves a variational method, a multiplier technique, and a duality argument in different ranges
of frequency. An intriguing fact about the Maxwell equations in the time harmonic regime worth
mentioned is that the multiplier technique does not fit well for the purposes of cloaking in the very
high frequency regime, and a duality argument is involved instead. Another key technical point
is the proof of the radiating condition for the Fourier transform in time of the weak solutions
of the general Maxwell equations, a fact which is interesting in itself. Note that after a change
of variables, the study of the cloaking effect can be derived from the study of the effect of a
small inclusion which is known when the coefficients inside the small inclusions are fixed (or has
a finite range), generally for a fixed frequency, see, e.g., [4, 45]. Nevertheless, the situation in the
context of cloaking is non-standard since the coefficients inside the small inclusion blow up as the
diameter goes to 0.

Let us now describe the problem in more detail. For simplicity, we suppose that the cloaking
device occupies the annular region B2 \B1/2 and the cloaked region is the ball B1/2 in R3 in which
the permittivity and the permeability are given by two 3 × 3 matrices εO, µO, respectively. In
this paper, for r > 0, we denote Br as the ball centered at the origin and of radius r. Throughout
this paper, we assume that, in B1/2,

(1.1) εO, µO are real, symmetric,

and uniformly elliptic, i.e.,

(1.2)
1

Λ
|ξ|2 ≤ 〈εO(x)ξ, ξ〉, 〈µO(x)ξ, ξ〉 ≤ Λ|ξ|2 ∀ ξ ∈ R3,

for a.e. x ∈ B1/2 and for some Λ ≥ 1. We also assume εO, µO are piecewise C1 to ensure the
uniqueness of solutions via the unique continuation principle (see [40, 5], and also [43]).

Let ρ ∈ (0, 1) and let Fρ : R3 → R3 be defined by

Fρ(x) =





x in R3\B2,
(
2− 2ρ

2− ρ
+

|x|
2− ρ

)
x

|x| in B2\Bρ,

x

ρ
in Bρ.

(1.3)
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The cloaking device in B2 \ B1/2 constructed via the transformation optics technique is charac-
terized by the triple of permittivity, permeability, and conductivity and contains two layers. The
first one in B2 \B1 that comes from the transformation technique using the map Fρ is

(Fρ∗I, Fρ∗I, 0)

and the second one in B1 \B1/2, which is a fixed lossy layer, is

(I, I, 1).

Here and in what follows, for a diffeomorphism F and a matrix-valued function A, one denotes

(1.4) F∗A :=
DFADF T

|detDF | ◦ F−1.

Remark 1.1. Different fixed lossy layer can be used. However, to simplify the notations and to
avoid several unnecessary technical points, the triple (I, I, 1) is considered.

Assume that the medium is homogeneous outside the cloaking device and the cloaked region.
In the presence of the cloaked object and the cloaking device, the medium in the whole space R3

is described by the triple (εc, µc, σc) given by

(1.5) (εc, µc, σc) =





(I, I, 0) in R3 \B2,

(Fρ∗I, Fρ∗I, 0) in B2 \B1,

(I, I, 1) in B1 \B1/2,

(εO, µO, 0) in B1/2.

Let J represent a charge density. We assume that

(1.6) J ∈ L1([0,∞); [L2(R3)]3) with suppJ ⊂ [0, T ]× (BR0
\B2), for some T > 0, R0 > 2,

and

(1.7) divJ = 0 in R+ × R3.

With the cloaking device and the cloaked object, the electromagnetic wave generated by J with
zero data at time 0 is the unique weak solution (Ec,Hc) ∈ L∞

loc([0,∞), [L2(R3)]6) to the system

(1.8)





εc
∂Ec
∂t

= ∇×Hc − J − σcEc in (0,+∞) ×R3,

µc
∂Hc

∂t
= −∇× Ec in (0,+∞) ×R3,

Ec(0, ·) = Hc(0, ·) = 0 in R3.

In the homogeneous space, the field generated by J with zero data at time 0 is the unique weak
solution (E ,H) ∈ L∞

loc([0,∞), [L2(R3)]6) to the system




∂E
∂t

= ∇×H− J in (0,+∞)× R3,

∂H
∂t

= −∇× E in (0,+∞)× R3,

E(0, ·) = H(0, ·) = 0 in R3.

(1.9)

The meaning of weak solutions, in a slightly more general context, is as follows.
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Definition 1.1. Let ε, µ, ∈ [L∞(R3)]3×3, σm, σe ∈ L∞(R3) be such that ε and µ are real,

symmetric, and uniformly elliptic in R3, and σm and σe are real and nonnegative in R3, and let

fe, fm ∈ L1
loc([0,∞); [L2(R3)]3). A pair (E ,H) ∈ L∞

loc([0,∞), [L2(R3)]6) is called a weak solution

of

(1.10)





ε
∂E
∂t

= ∇×H− σeE + fm in (0,+∞)× R3,

µ
∂H
∂t

= −∇× E − σmH + fe in (0,+∞)× R3,

E(0, ·) = 0;H(0, ·) = 0 in R3,

if

(1.11)





d

dt
〈εE(t, .), E〉 + 〈σeE(t, .), E〉 − 〈H(t, .),∇ × E〉 = 〈fm(t, .), E〉,

d

dt
〈µH(t, .),H〉 + 〈σmH(t, .),H〉 + 〈E(t, .),∇ ×H〉 = 〈fe(t, .),H〉,

for t > 0,

for all (E,H) ∈ [H(curl,R3)]2, and

(1.12) E(0, .) = H(0, .) = 0 in R3.

Some comments on Definition 1.1 are in order. System (1.11) is understood in the distributional
sense. Initial condition (1.12) is understood as

(1.13) 〈εE(0, .), E〉 = 〈µH(0, .),H〉 = 0 for all (E,H) ∈ [H(curl,R3)]2.

From (1.11), one can check that

〈εE(t, .), E〉, 〈µH(t, .),H〉 ∈ W 1,1
loc ([0,+∞)).

This in turn ensures the trace sense in (1.13).

Concerning the well-posedness of (1.10), we have, see, e.g., [37, Theorem 3.1],

Proposition 1.1. Let fe, fm ∈ L1
loc([0,∞); [L2(R3)]3). There exists a unique weak solution

(E ,H) ∈ L∞
loc([0,∞), [L2(R3)]6) of (1.10). Moreover, for T > 0, the following estimate holds

(1.14)

∫

R3

|E(t, x)|2 + |H(t, x)|2dx ≤ C




t∫

0

∥∥∥
(
fe(s, .), fm(s, .)

)∥∥∥
L2(R3)

ds




2

for t ∈ [0, T ],

for some positive constant C depending only on the ellipticity of ε and µ.

Remark 1.2. We emphasize here that the constant C in Proposition 1.1 is independent of T .
This fact is later used in the proof of the radiating condition. In [37], the authors considered
dispersive materials and also dealt with Maxwell equations which are non-local in time.

We are ready to state the main result of the paper that is proved in Section 3.

Theorem 1.1. Let ρ ∈ (0, 1), T > 0 and let (Ec,Hc), (E ,H) ∈ L∞
loc([0,∞), [L2(R3)]6) be the

unique solutions to systems (1.8) and (1.9), respectively. Assume (1.6) and (1.7). Then, for

K ⊂⊂ R3\B̄1,

(1.15) ‖(Ec,Hc)− (E ,H)‖L∞((0,T );L2(K)) ≤ CTρ3‖J ‖H11((0,∞);[L2(R3)]3),

for some positive constant C depending only on K, R0.

Remark 1.3. Assertion (1.15) is optimal since it gives the same degree of visibility as in the
frequency domain in [39] where the optimality is established.
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Remark 1.4. Estimate (1.15) requires that J is regular. The condition of the regularity of J
is not optimal, and this optimality would be studied elsewhere.

Our approach is inspired by the work of Nguyen and Vogelius [35] (see also [36, 38]), where
they studied approximate cloaking for the acoustic setting in the time domain. The main idea
can be briefly described as follows. We first transform the time-dependent Maxwell systems into
a family of the time-harmonic Maxwell systems by taking the Fourier transform of the solutions
with respect to time. After obtaining the appropriate degree of near invisibility for the Maxwell
equations in the time harmonic regime, where the frequency dependence is explicit, we simply
invert the Fourier transform. The analysis in the frequency domain ω (in Section 2) can be divided
into three steps that deal with frequencies in low and moderate (0 < ω < 1), moderate and high
(1 < ω < 1/ρ), high and very high (ω > 1/ρ) regimes. The analysis in the low and moderate
frequency regime (in Section 2.1) is based on a variational approach. In comparison with [39], one
needs to additionally derive an estimate for small frequency in which the frequency dependence
is explicit. In the moderate and high frequency regime, to obtain appropriate estimates, we use
the multiplier technique and the test functions are inspired from the scalar case due to Morawetz
(see [25]). The analysis in the moderate and high frequency regime is given in Section 2.2. There
is a significant difference between the scalar case and the Maxwell vectorial case. It is known in
the scalar case that one can control the normal derivative of a solution to the exterior Helmholtz
equation in homogeneous medium by its value on the boundary of a convex, bounded subset of
R3. However, in contrast with the scalar case, one cannot either use tangential components of the
electromagnetic fields to control the normal component in the same Sobolev norms and conversely.
This fact can be seen from the explicit solutions outside a unit ball of Maxwell equations (see,
e.g., [17, Theorem 2.50]). This is the reason for which we cannot use the multiplier technique in
the very high frequency regime and again reveals the distinct structure of Maxwell equations in
the time harmonic regime as compared to the Helmholtz equations. The analysis in the high and
very high frequency regime in Section 2.3 is based on the duality method inspired from [23]. The
proof of Theorem 1.1 based on the frequency analysis is given in Section 3. A key technical point
required for the analysis in the frequency domain is the establishment of the radiation condition
for the Fourier transform with respect to time of the solutions of Maxwell equations. The rigorous
proof on the radiation condition in a general setting is new to our knowledge and is interesting
in itself.

The paper is organized as follows. Section 2 is devoted to the estimates for Maxwell’s equations
in frequency domain. Section 3 gives the proof of Theorem 1.1. The assertion on the radiation
condition is also stated and proved there.

2. Frequency analysis

In this section, we provide estimates to assess the degree of visibility in the frequency domain.
We first recall some notations. Let U be a smooth open subset of R3. We denote

H(curl, U) :=
{
φ ∈ [L2(U)]3 : ∇× φ ∈ [L2(U)]3

}
,

H(div, U) :=
{
φ ∈ [L2(U)]3 : divφ ∈ L2(U)

}
.

We also use the notations Hloc(curl, U) and Hloc(div, U) with the usual convention.
Given J ∈ [L2(R3)]3 with compact support, let (E,H) ∈ [Hloc(curl,R

3)]2 and (Eρ,Hρ) ∈
[Hloc(curl,R

3)]2 (ρ > 0) be the corresponding unique radiating solutions of the following systems

(2.1)




∇× E = iωH in R3,

∇×H = −iωE+ J in R3,
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and

(2.2)




∇× Eρ = iωµρHρ in R3,

∇×Hρ = −iωερEρ + σρEρ + J in R3.

Here, for ρ > 0,

(2.3) (ερ, µρ, σρ) =





(I, I, 0) in R3 \Bρ,

(ρ−1I, ρ−1I, ρ−1) in Bρ \Bρ/2,

(F−1
ρ ∗

εO, F
−1
ρ ∗

µO, 0) in Bρ/2.

Recall that for ω > 0, a solution (E,H) ∈ [Hloc(curl,R
3\BR)]

2, for some R > 0, of the Maxwell
equations 



∇× E = iωH in R3 \BR,

∇×H = −iωE in R3 \BR

is called radiating if it satisfies one of the (Silver-Müller) radiation conditions

(2.4) H × x− |x|E = O(1/|x|) or E × x+ |x|H = O(1/|x|) as |x| → +∞.

Here and in what follows, for α ∈ R, O(|x|α) denotes a quantity whose norm is bounded by C|x|α
for some constant C > 0.

Throughout this section, we assume

(2.5) div J = 0 and suppJ ⊂ BR0
\B2,

for some R0 > 2. One sees later (in Section 3) that if (Êc, Ĥc) and (Ê , Ĥ) are the correspond-
ing Fourier transform with respect to t of (Ec,Hc) and (E ,H) in (1.8)-(1.9) and if one defines

(Êρ, Ĥρ) = (DF T
ρ Êc,DF T

ρ Ĥc) ◦ Fρ in R3 then (Ê , Ĥ) and (Êρ, Ĥρ) satisfy (2.1) and (2.2) respec-
tively (for some J). This is the motivation for the introduction of (E,H) and (Eρ,Hρ).

The goal of this section is to derive estimates for (Eρ,Hρ) − (E,H) in which the dependence
on the frequency ω and ρ is explicit. More precisely, we establish the following three results.

Proposition 2.1. Let 0 < ρ < ρ0 and 0 < ω < ω0. We have

(2.6) ‖(Eρ,Hρ)− (E,H)‖L2(BR\B2) ≤ CRω
−1ρ3‖J‖L2(R3),

for some positive constant CR depending only on R0, R, ω0, and ρ0.

Proposition 2.2. Let 0 < ρ < ρ0 and 0 < ω0 ≤ ω ≤ ω1ρ
−1, and assume that ρ0 is small enough

and ω0 is large enough. We have, for R > 2,

(2.7) ‖(Eρ,Hρ)− (E,H)‖L2(BR\B2) ≤ CRω
3ρ3‖J‖L2(R3),

for some positive constant CR depending only on R,R0, ω0, and ω1.

Proposition 2.3. Let 0 < ρ < 1, ω1 > 0, and ω > ω1ρ
−1. We have, for R > 2,

(2.8) ‖(Eρ,Hρ)− (E,H)‖L2(BR\B2) ≤ CRω
17/2ρ3‖J‖L2(R3),

for some positive constant CR depending only on R0, R, and ω1.

To motivate the analysis in this section, we define

(2.9) (Eρ,Hρ) =




(Eρ,Hρ)− (E,H) in R3 \Bρ,

(Eρ,Hρ) in Bρ,
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and set

(2.10) (Ẽρ, H̃ρ) = (Eρ,Hρ)(ρ · ) in R3.

Then, (Ẽρ, H̃ρ) ∈ [L2
loc(R

3)]6 with (Ẽρ, H̃ρ) ∈ ∩R>1H(curl, BR \ ∂B1) is the unique radiating
solution of

(2.11)





∇× Ẽρ = iωµ̃ρH̃ρ in R3 \ ∂B1,

∇× H̃ρ = −iωε̃ρẼρ + σ̃ρẼρ in R3 \ ∂B1,

[Ẽρ × ν] = −E(ρ · )× ν on ∂B1,

[H̃ρ × ν] = −H(ρ · )× ν on ∂B1,

where

(2.12) (ε̃ρ, µ̃ρ, σ̃ρ) :=





(ρI, ρI, 0) in R3 \B1,

(I, I, 1) in B1 \B1/2,

(εO, µO, 0) in B1/2.

Here and in what follows for a smooth, bounded, open subsetD of R3, we denote [u] := u|ext−u|int
on ∂D for an appropriate (vectorial) function u.

We will study (2.11) and using this to derive estimates for (Eρ,Hρ) − (E,H) in the following
three subsections.

2.1. Low and moderate frequency analysis - Proof of Proposition 2.1. This section is
devoted to the proof of Proposition 2.1 and contains two subsections. In the first subsection, we
present several useful lemmas and the proof of Proposition 2.1 is given in the second subsection.

2.1.1. Some useful lemmas. We first recall the following known result which is the basic ingredient
for the variational approach.

Lemma 2.1. Let D be a smooth, bounded, open subset of R3 and let ǫ be a measurable, symmetric,

uniformly elliptic, matrix-valued function defined in D. Assume that one of the following two

conditions holds:

i) (un)n∈N ⊂ H(curl,D) is a bounded sequence in H(curl,D) such that
(
div(ǫun)

)
n∈N

converges in H−1(D) and
(
un × ν

)
n∈N

converges in H−1/2(∂D).

ii) (un)n∈N ⊂ H(curl,D) is a bounded sequence in H(curl,D) such that
(
div(ǫun)

)
n∈N

converges in L2(D) and
(
(ǫun) · ν

)
n∈N

converges in H−1/2(∂D).

There exists a subsequence of (un)n∈N which converges in [L2(D)]3.

The conclusion of Lemma 2.1 under condition i) is [31, Lemma 1] and has its roots in [15, 8, 46].
The conclusion of Lemma 2.1 under condition ii) can be obtained in the same way.

In what follows, the following notations are used

H−1/2(divΓ,Γ) :=
{
φ ∈ [H−1/2(Γ)]3; φ · ν = 0 and divΓ φ ∈ H−1/2(Γ)

}
,

‖φ‖H−1/2(divΓ,Γ)
:= ‖φ‖H−1/2(Γ) + ‖divΓ φ‖H−1/2(Γ).

We have
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Lemma 2.2. Let 0 < ω < ω0 and D be a simply connected, bounded, open subset of R3 of class

C1, and denote Γ = ∂D. Let h ∈ H−1/2(divΓ,Γ) and E ∈ H(curl,D). We have

(2.13)
∣∣∣
∫

Γ
Ē · hds

∣∣∣ ≤ C
(
ω‖E‖L2(D) + ‖∇ × E‖L2(D)

)(
‖h‖H−1/2(Γ) + ω−1‖divΓ h‖H−1/2(Γ)

)
,

for some positive constant C depending only on D and ω0.

Here and in what follows, ū denotes the complex conjugate of u.

Proof. Let (E0,H0) ∈ [H(curl,D)]2 be the unique solution to




∇× E0 = iω(1 + i)H0 in D,

∇×H0 = −iω(1 + i)E0 in D,

E0 × ν = h on Γ.

We prove by contradiction that

(2.14) ‖(E0,H0)‖L2(D) ≤ C
(
‖h‖H−1/2(Γ) + ω−1‖divΓ h‖H−1/2(Γ)

)

for some positive constant C depending only on ω0. Assume that there exist sequences ((En,Hn)) ⊂
[H(curl,D)]2, (ωn) ⊂ (0, ω0) and (hn) ⊂ H−1/2(divΓ,Γ) such that

(2.15) ‖(En,Hn)‖ = 1 for all n,

(2.16) ‖hn‖H−1/2(Γ) + ω−1
n ‖divΓ hn‖H−1/2(Γ) converges to 0,

and

(2.17)





∇× En = iωn(1 + i)Hn in D,

∇×Hn = −iωn(1 + i)En in D,

En × ν = hn in Γ.

Without loss of generality, one can assume that ωn → ω∗. Applying Lemma 2.1, one might
assume that (En,Hn) converges to some (E,H) ∈ [L2(D)]6. We only consider the case ω∗ = 0,
the case where ω∗ > 0 is standard. Then





∇× E = 0 in D,

divE = 0 in D,

E × ν = 0 on Γ,

and





∇×H = 0 in D,

divH = 0 in D,

H · ν = 0 on Γ.

We also have, for each connected component Γj of Γ,
∫

Γj

E · ν ds = lim
n→∞

∫

Γj

En · ν ds = lim
n→∞

[ 1

−iωn(1 + i)

∫

Γj

(∇×Hn) · ν ds
]
= 0.

Since D is simply connected, it follows (see, e.g., [10, Theorems 2.9 and 3.1]) that E = ∇ × ξE
and H = ∇ξH for some ξE, ξH ∈ H1(D). We derive from the systems of E and H that

∫

D
|∇ × ξE|2 dx = 0 and

∫

D
|∇ξH |2 dx = 0.

This yields that E = H = 0 in D. We have a contradiction. Therefore, (2.14) is proved.
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We have
∫

Γ
Ē · hds =

∫

Γ
Ē · (E0 × ν) ds =

∫

D
(∇× Ē) · E0 dx−

∫

D
Ē · (∇× E0) dx (integration by parts)

=

∫

D
(∇× Ē) ·E0 dx− iω(1 + i)

∫

D
Ē ·H0 dx.

It follows from Hölder’s inequality and (2.14) that
∣∣∣∣
∫

Γ
Ē · hds

∣∣∣∣ ≤
(
ω‖E‖L2(D) + ‖∇ ×E‖L2(D)

)
‖(E0,H0)‖L2(D)

≤ C
(
ω‖E‖L2(D) + ‖∇ × E‖L2(D)

)(
‖h‖H−1/2(Γ) + ω−1‖divΓ h‖H−1/2(Γ)

)
,

which is (2.13). �

The following simple result is used in our analysis.

Lemma 2.3. Let D be a C1 bounded open subset of R3 and denote Γ = ∂D. Let h ∈ H−1/2(divΓ,Γ)
and u ∈ H(curl,D). We have

(2.18)
∣∣∣
∫

Γ
ū · h

∣∣∣ ≤ C‖u‖H(curl,D)‖h‖H−1/2(divΓ,Γ)
.

for some positive constant C independent of h and u.

Proof. The result is standard. For the convenience of the reader, we present the proof. By the
trace theory, see, e.g., [1, 6], there exists φ ∈ H(curl,D) such that

φ× ν = h on Γ and ‖φ‖H(curl,D) ≤ C‖h‖H−1/2(divΓ,Γ)

for some positive constant C depending only on D. Then, by integration by parts, we have
∫

Γ
ū · h =

∫

Γ
ū · (φ× ν) =

∫

D
∇× ū · φ−

∫

D
ū · ∇ × φ.

The conclusion follows by Hölder’s inequality. �

We next present an estimate for the exterior domain in the small and moderate frequency
regime.

Lemma 2.4. Let R0 > 2, 0 < k < k0, and D ⊂ B1 be a smooth open subset of R3 such

that R3 \ D is connected. Let (f1, f2) ∈ [L2(R3)]6 with support in BR0
\ D, and assume that

(E,H) ∈ [∩R>1H(curl, BR \D)]2 is a radiating solution of




∇×E = ikH + f1 in R3 \ D̄,

∇×H = −ikE + f2 in R3 \ D̄.

We have, for R > 2,
(2.19)

‖(E,H)‖L2(BR\D) ≤ CR

(
‖(E × ν,H × ν)‖H−1/2(∂D) + ‖(f1, f2)‖L2 + k−1‖(div f1,div f2)‖L2

)
,

for some positive constant CR depending only on D, k0, R0, and R.
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Proof. By the Stratton-Chu formula, we have, for x ∈ R3 with |x| > R0 + 1,

E(x) =

∫

∂BR0+1/2

∇xGk(x, y)×
(
ν(y)× E(y)

)
dy

+ ik

∫

∂BR0+1/2

ν(y)×H(y)Gk(x, y)dy −
∫

∂BR0+1/2

ν(y) ·E(y)∇xGk(x, y)dy,

and

H(x) =

∫

∂BR0+1/2

∇xGk(x, y)×
(
ν(y)×H(y)

)
dy

− ik

∫

∂BR0+1/2

ν(y)×E(y)Gk(x, y)dy −
∫

∂BR0+1/2

ν(y) ·H(y)∇xGk(x, y)dy,

where

(2.20) Gk(x, y) =
eik|x−y|

4π|x− y| for x 6= y.

It follows that, for R > R0 + 1,

(2.21) ‖(E,H)‖L2(BR\D) ≤ CR‖(E,H)‖L2(BR0+1\D).

Hence, it suffices to prove (2.19) for R = R0 + 1 by contradiction. Assume that there exist
sequences (kn) ⊂ (0, k0),

(
(f1,n, f2,n)

)
⊂ [L2(R3 \D)]6 with support in BR0

\D, and
(
(En,Hn)

)
⊂

[∩R>1H(curl, BR \D)]2 such that ‖(En,Hn)‖L2(BR0+1\D) = 1,

(2.22) lim
n→+∞

(
‖(En × ν,Hn × ν)‖H−1/2(∂D) + ‖(f1,n, f2,n)‖L2 + k−1

n ‖(div f1,n,div f2,n)‖L2

)
= 0,

and 


∇×En = iknHn + f1,n in R3 \ D̄,

∇×Hn = −iknEn + f2,n in R3 \ D̄.

Without loss of generality, one might assume that kn → k∗ as n → +∞. Using Lemma 2.1,
(2.21), and (2.22), one can assume that (En,Hn) converges to (E,H) in [L2(BR \D)]6. We first
consider the case k∗ = 0. We have

(2.23)




∇× E = 0 in R3 \ D̄,

E × ν = 0 on ∂D,




∇×H = 0 in R3 \ D̄,

H × ν = 0 on ∂D,

(2.24) divE = 0 in R3 \ D̄ divH = 0 in R3 \ D̄,

and

(2.25) |E(x)| = O(|x|−2) and |H(x)| = O(|x|−2) for large x.

Assertion (2.25) can be derived again from the Stratton-Chu formula using the fact that limn→+∞ kn =
0. It follows from (2.23), (2.24), and (2.25) that (see, e.g., [39, Lemma 3.5], [10, Chapter I])

E = H = 0 in R3 \D.

We have a contradiction with the fact ‖(En,Hn)‖L2(BR0+1\D) = 1.
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We next consider the case k∗ > 0. In this case, we have (E,H) satisfies the radiating condition
and 




∇× E = ik∗H in R3 \ D̄,

∇×H = −ik∗E in R3 \ D̄,

E × ν = H × ν = 0 on ∂D.

One also reaches (E,H) = (0, 0) in R3 \D and obtains a contradiction. �

In the same spirit, we have

Lemma 2.5. Let 0 < ρ < ρ0, 0 < ω < ω0, 1/2 < r < 1, and R0 > 2. Let h = (h1, h2) ∈
[H−1/2(div∂B1

, ∂B1)]
2. Assume that (E,H) ∈ [L2

loc(R
3 \Br)]

6 with (E,H) ∈ [∩R>1H(curl, (BR \
Br) \ ∂B1)]

2 is a radiating solution of




∇× E = iωµ̃ρH in (R3 \ B̄r) \ ∂B1,

∇×H = −iωε̃ρE + σ̃ρE in (R3 \ B̄r) \ ∂B1,

[E × ν] = h1, [H × ν] = h2 on ∂B1.

We have, for R > 2,

‖(E,H)‖L2(BR\Br) ≤ CR

(
‖(E × ν,H × ν)‖H−1/2(∂Br)

+ ‖(h1, h2)‖H−1/2(∂B1)

+ ω−1‖(div∂B1
h1,div∂B1

h2)‖H−1/2(∂B1)

)
,

for some positive constant CR independent of (h1, h2), (f1, f2), ρ, and ω.

Proof. As argued in the proof of Lemma 2.4, by Stratton-Chu’s formulas, it suffices to prove

‖(E,H)‖L2(B2\Br) ≤ CR

(
‖(E × ν,H × ν)‖H−1/2(∂Br) + ‖(h1, h2)‖H−1/2(∂Br)

+ ω−1‖(div∂B1
h1,div∂B1

h2)‖H−1/2(∂B1)

)
,

by contradiction. Assume that there exist sequences (ωn) ⊂ (0, ω0),
(
(h1,n, h2,n)

)
⊂ [H−1/2(divΓ, ∂B1)]

2,(
(f1,n, f2,n)

)
⊂ L2(R3 \ Br) with support in B1 \ Br, and

(
(En,Hn)

)
⊂ [∩R>1H(curl, BR \D)]2

such that

(2.26) ‖(En,Hn)‖L2(B2\Br) = 1,

(2.27) lim
n→+∞

(
‖(En × ν,Hn × ν)‖H−1/2(∂Br)

+ ‖(h1,n, h2,n)‖H−1/2(∂Br)

+ ω−1
n ‖(div∂B1

h1,n,div∂B1
h2,n)‖H−1/2(∂B1)

)
= 0,

and 



∇× En = iωnµ̃ρnHn in (R3 \ B̄r) \ ∂B1,

∇×Hn = −iωnε̃ρnEn + σ̃ρnEn in (R3 \ B̄r) \ ∂B1,

[En × ν] = h1,n, [Hn × ν] = h2,n on ∂B1.

Without loss of generality, one might assume that ωn → ω∗ and ρn → ρ∗ as n → +∞. We first
consider the case ρ∗ = 0. Since, as n → +∞,

(−iωn + 1)En · ν|int = −iωnρnEn · ν|ext − div∂B1
h2,n → 0 in H−1/2(∂B1)
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and

Hn · ν|int = ρnHn · ν|ext − (iωn)
−1 div∂B1

h1,n → 0 in H−1/2(∂B1),

using (2.27) and applying Lemma 2.1, one can assume that (En,Hn) converges to (E,H) in
L2(B1 \Br). Moreover,





divE = divH = 0 in B1 \ B̄r,

E × ν = H × ν = 0 on ∂Br,

E · ν = H · ν = 0 on ∂B1.

It follows that (E,H) = (0, 0) in B1 \Br. We derive that

(2.28) lim
n→+∞

‖(En,Hn)‖L2(B1\Br) = 0

and, by [15, Lemma A1],

lim
n→+∞

‖(En × ν,Hn × ν)|int‖H−1/2(∂B1)
= 0.

This yields

(2.29) lim
n→+∞

‖(En × ν,Hn × ν)|ext‖H−1/2(∂B1)
= 0.

This in turn implies, by Lemma 2.4, that

(2.30) lim
n→+∞

‖(En,Hn)‖L2(B2\B1) = 0.

Combining (2.26), (2.28), and (2.30), we obtain a contradiction.
We next consider the case ρ∗ > 0. The proof in this case is similar to the one in Lemma 2.4

and omitted (see also [31, Lemma 4] for the case ω∗ > 0). �

Remark 2.1. The proof gives the following slightly sharper estimate (for small ω):

(2.31) ‖(E,H)‖L2(BR\Br) ≤ CR

(
‖(E × ν,H × ν)‖H−1/2(∂Br)

+ ‖(h1, h2)‖H−1/2(∂Br)

+ ‖(ω−1 div∂B1
h1,div∂B1

h2)‖H−1/2(∂B1)

)
.

We are ready to give the main result of this section:

Lemma 2.6. Let 0 < ρ < ρ0 and 0 < ω < ω0, and let h1, h2 ∈ H−1/2(div∂B1
, ∂B1). Let

(Eρ,Hρ) ∈ [∩R>1H(curl, BR \ ∂B1)]
2 be the unique radiating solution of

(2.32)





∇× E = iωµ̃ρH in R3 \ ∂B1,

∇×H = −iωε̃ρE + σ̃ρE in R3 \B1,

[E × ν] = h1, [H × ν] = h2 on ∂B1.

We have

‖(E,H)‖L2(B2\B2/3)
≤ C

(
‖(h1, h2)‖H−1/2(∂B1)

+ ω−1‖(div∂B1
h1,div∂B1

h2)‖H−1/2(∂B1)

)
,

for some positive constant C depending only on ρ0 and ω0.
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Proof. Multiplying the first equation of (2.32) by µ̃−1
ρ ∇× Ē and integrating over BR \ ∂B1, we

have, for R > 1,
∫

BR\∂B1

µ̃−1
ρ ∇×E · ∇ × Ē dx = iω

∫

BR\∂B1

H · ∇ × Ē dx

= iω

∫

BR\∂B1

(−iωε̃ρE + σ̃ρE) · Ē dx+ iω

∫

∂BR

(H × ν) · Ē dx

− iω

∫

∂B1

(H × ν)|ext · Ē|ext − (H × ν)|int · Ē|int.

Using the definition of σ̃ρ and considering the imaginary part, we have

(2.33)

∫

B1\B1/2

|E|2 dx = ℜ
(∫

∂B1

h2 · Ē|ext dx− h̄1 ·H|int dx
)
−ℜ

∫

∂BR

(H × ν) · Ē dx.

Letting R → ∞ and using the radiation condition, we derive from (2.33) that
∫

B1\B1/2

|E|2 dx ≤
∣∣∣∣
∫

∂B1

h2 · Ē|ext − h̄1H|int ds
∣∣∣∣(2.34)

≤
∣∣∣∣
∫

∂B1

h2 · Ē|ext
∣∣∣∣+

∣∣∣∣
∫

∂B1

h̄1 ·H|ext ds
∣∣∣∣+

∣∣∣∣
∫

∂B1

(h̄1 × ν) · h2 ds
∣∣∣∣ .

Applying Lemma 2.2 with D = B2 \B1, we have

(2.35)

∣∣∣∣
∫

∂B1

h2 · Ē|ext ds
∣∣∣∣ ≤ Cω‖(E,H)‖L2(B2\B1)

(
‖h2‖H−1/2(∂B1)

+ ω−1‖divΓ h2‖H−1/2(∂B1)

)

and

(2.36)

∣∣∣∣
∫

∂B1

h1 · H̄|ext ds
∣∣∣∣ ≤ Cω‖(E,H)‖L2(B2\B1)

(
‖h1‖H−1/2(∂B1)

+ ω−1‖divΓ h1‖H−1/2(∂B1)

)
.

Applying Lemma 2.3, we obtain

(2.37)

∣∣∣∣
∫

∂B1

(h̄1 × ν) · h2 ds
∣∣∣∣ ≤ C‖(h1, h2)‖2H−1/2(div∂B1

,∂B1)
.

Denote

M = ‖(h1, h2)‖H−1/2(∂B1)
+ ω−1‖(divΓ h1,divΓ h2)‖H−1/2(∂B1)

.

Combining (2.34), (2.35), (2.36) and (2.37) yields

(2.38)

∫

B1\B1/2

|E|2 dx ≤ C
(
ωM‖(E,H)‖L2(B2\B1) +M2

)
.

From the equations of (E,H) in B1 \B1/2, we have

∆E + ω2E − iωE = 0 in B1 \B1/2.

It follows from (2.38) that

(2.39) ‖E‖2L2(∂B2/3)
+ ‖∇E‖2L2(∂B2/3)

≤ C
(
ωM‖(E,H)‖L2(B2\B1) +M2

)
,

which yields

(2.40) ‖(E,H)‖2L2(∂B2/3)
≤ C

(
ω−1M‖(E,H)‖L2(B2\B1) + ω−2M2

)
.
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Using (2.40) and applying Lemma 2.5 with r = 2/3, we derive that

‖(E,H)‖2L2(BR\B2/3)
≤ C

(
ω−1M‖(E,H)‖L2(B2\B1) + ω−2M2

)
,

and the conclusion follows. �

We end this subsection with

Lemma 2.7. Let 0 < ρ < 1 and ρω < k0, and let D ⊂ B1 be a smooth, open subset of R3.

Assume that (E,H) ∈ [∩R>2H(curl, BR \D)]2 is a radiating solution to the system



∇× E = iωρH in R3 \D,

∇×H = −iωρE in R3 \D.

We have, for R ≥ 1 and x ∈ B3R/ρ \B2R/ρ,

(2.41) |E(x),H(x)| ≤ CRρ
3(ω2 + 1)‖(E,H)‖L2(B2\D),

for some positive constant C depending only on k0 and R.

Proof. We only prove (2.41) for E, the proof H is similar. By Stratton-Chu’s formula, we have,
for x ∈ R3 \ B̄1,

(2.42) E(x) =

∫

∂B1

∇xGk(x, y)×
(
ν(y)× E(y)

)
dy

+ iωρ

∫

∂B1

ν(y)×H(y)Gk(x, y)dy −
∫

∂B1

ν(y) ·E(y)∇xGk(x, y)dy,

where k = ωρ and Gk is given in (2.20).

Let (Ẽ, H̃) ∈ [H(curl, B1)]
2 be the unique solution to the system

(2.43)





∇× Ẽ = iωρ(1 + i)H̃ in B1,

∇× H̃ = −iωρ(1 + i)Ẽ in B1,

Ẽ × ν = E × ν on ∂B1.

By a contradictory argument, see, e.g., [39] (see also the proof of Lemma 2.6), we obtain

(2.44) ‖(Ẽ, H̃)‖L2(B1) ≤ C‖E × νext,H · ν|ext‖H−1/2(∂B1)
.

Since ∣∣∣∣
∫

∂B1

E × ν ds

∣∣∣∣ =
∣∣∣∣
∫

∂B1

Ẽ × ν ds

∣∣∣∣ =
∣∣∣∣
∫

B1

∇× Ẽ dx

∣∣∣∣ =
∣∣∣∣
∫

B1

ωρ(1 + i)H̃dx

∣∣∣∣ ,

we obtain

(2.45)

∣∣∣∣
∫

∂B1

E × ν ds

∣∣∣∣ ≤ Cωρ‖(E,H)‖L2(B2\D).

Similarly, we have

(2.46)

∣∣∣∣
∫

∂B1

H × ν ds

∣∣∣∣ ≤ Cωρ‖(E,H)‖L2(B2\D).

One has

(2.47)

∫

∂B1

ν ·E ds =
1

iωρ

∫

∂B1

ν · ∇ ×H ds = 0.
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Rewrite (2.42) under the form

E(x) =

∫

∂B1

∇xGk(x, 0) ×
(
ν(y)× E(y)

)
dy +

∫

∂B1

(
∇xGk(x, y)−∇xGk(x, 0)

)
×

(
ν(y)× E(y)

)
dy

+ ik

∫

∂B1

ν(y)×H(y)Gk(x, 0)dy + ik

∫

∂B1

ν(y)×H(y)
(
Gk(x, y)−Gk(x, 0)

)
dy

−
∫

∂B1

ν(y) ·E(y)∇xGk(x, 0)dy −
∫

∂B1

ν(y) ·E(y)
(
∇xGk(x, y)−∇xG(x, 0)

)
dy.

Using the facts, for |x| ∈ (2R/ρ, 3R/ρ) and y ∈ ∂B1,

|Gk(x, y)−Gk(x, 0)| ≤ C(1 + ω)ρ2, |∇Gk(x, y)−∇Gk(x, 0)| ≤ C(1 + ω2)ρ3,

‖E‖L2(∂B1) ≤ C‖E‖L2(B2\D), and ‖H‖L2(∂B1) ≤ C‖H‖L2(B2\D),

we derive the conclusion from (2.45), (2.46), and (2.47). �

2.1.2. Proof of Proposition 2.1. Applying Lemma 2.6 to (Ẽρ, H̃ρ), defined in (2.11), we have

(2.48) ‖(Ẽρ, H̃ρ)‖L2(B2\B1) ≤ Cω−1‖
(
E(ρ .),H(ρ .)

)
‖L2(∂B1).

Since div J = 0, we have

∆E+ ω2E = −iωJ in R3.

It follows that, for x ∈ B2,

(2.49) E(x) = −iω

∫

R3

J(y)Gω(x, y) dy and H(x) = −∇x ×
∫

R3

J(y)Gω(x, y) dy.

This yields

(2.50) ‖
(
E(ρ.),H(ρ.)

)
‖L∞(∂B1) ≤ C‖J‖L2(R3).

From (2.48) and (2.50), we obtain

(2.51) ‖(Ẽρ, H̃ρ)‖L2(B2\B1) ≤ Cω−1‖J‖L2(R3).

Applying Lemma 2.7 to (Ẽρ, H̃ρ), we have, for x ∈ B3r/ρ \B2r/ρ,

∣∣∣
(
Ẽρ(x), H̃ρ(x)

)∣∣∣ ≤ Crω
−1ρ3‖J‖L2(R3) for r > 1/2,

Since (Eρ,Hρ)− (E,H) = (Ẽρ, H̃ρ)(ρ
−1 · ) in R3 \B2, the conclusion follows. �

2.2. Moderate and high frequency analysis - Proof of Proposition 2.2. This section con-
tains two subsections. In the first, we present several lemmas used in the proof of Proposition 2.2
and in the second, the proof of Proposition 2.2 is given.
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2.2.1. Some useful lemmas. The main result of this subsection is Lemma 2.9 which is analogous
to Lemma 2.5 though for the moderate and high frequency regime. We begin with

Lemma 2.8. Let ω > ω0, and let Ω be a convex, bounded subset of R3 of class C1. Let

j ∈ H(div,Ω), and let u ∈ H(curl,Ω) ∩H(div,Ω) be such that

(2.52) ∇× (∇× u)− ω2u = j in Ω,

and u · ν, (∇× u) · ν ∈ L2(∂Ω). Then

(2.53) ‖(ωu× ν, (∇× u)× ν)‖L2(∂Ω)

≤ C
(
‖(ωu,∇× u)‖L2(Ω) + ‖(ωu · ν, (∇× u) · ν)‖L2(∂Ω) + ‖j‖L2(Ω) + ω−1‖div j‖L2(Ω)

)
,

for some positive constant C depending only on Ω and ω0.

Proof. The analysis is based on the multiplier technique. We first consider div j = 0. Multiplying
(2.52) by (∇× ū)× x and integrating over Ω, we obtain

(2.54)

∫

Ω
j · (∇ × ū) × x dx =

∫

Ω
∇ × (∇ × u) · (∇ × ū) × x dx − ω2

∫

Ω
u · (∇ × ū) × x dx.

Set

I1 := −ω2

∫

Ω
u · (∇× ū)× x dx and I2 :=

∫

Ω
∇× (∇× u) · (∇× ū)× x dx.

We have

I1 = −ω2

∫

Ω
u · (∇× ū)× x dx = ω2

∫

Ω
(∇× ū) · (u× x) dx

= ω2

∫

Ω
ū · ∇ × (u× x) dx− ω2

∫

∂Ω
(ū× ν) · (u× x) ds (by integration by parts).

Recall that, for all v ∈ [H1(Ω)]3,

(2.55) ∇× (v × x) = −x× (∇× v) + v +∇(v · x)− xdiv v in Ω.

Using (2.55) and the fact div u = div j = 0 in Ω, we derive that

I1 = −ω2

∫

Ω
ū ·

[
x× (∇× u)

]
dx+ ω2

∫

Ω
|u|2 dx

+ ω2

∫

Ω
ū · ∇(u · x) dx− ω2

∫

∂Ω
(ū× ν) · (u× x) ds

= −I1 + ω2

[∫

Ω
|u|2 dx+

∫

∂Ω
(ū · ν)(u · x) ds−

∫

∂Ω
(ū× ν) · (u× x) ds

]
.

This implies

(2.56) ℜI1 =
ω2

2

(∫

Ω
|u|2 dx+

∫

∂Ω
(ū · ν)(u · x) ds −

∫

∂Ω
(ū× ν) · (u× x) ds

)
.

Similarly, we have
(2.57)

ℜI2 =
1

2

(∫

Ω
|∇ × u|2 dx+

∫

∂Ω
(∇× ū · ν)(∇× u · x) ds −

∫

∂Ω

(
(∇× ū)× ν

)
·
(
(∇× u)× x

)
ds

)
.
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Combining (2.54), (2.56), and (2.57) yields

(2.58)

∫

Ω
ω2|u|2 + |∇ × u|2 dx−

∫

∂Ω
ω2(ū× ν) · (u× x) + ((∇× ū)× ν) · ((∇× u)× x) ds

+

∫

∂Ω
ω2(ū · ν)(u · x) + (∇× ū · ν)(∇× u · x) ds = 2ℜ

{∫

Ω
j · (∇× ū)× x dx

}
.

This implies (2.53) in the case where div j = 0 in Ω.
We next consider an arbitrary div j. Let φ ∈ H1

0 (Ω) be the unique solution of

∆φ = div j in Ω.

It is clear that

(2.59) ‖φ‖H1(Ω) ≤ C‖j‖L2(Ω)

and

(2.60) ‖∇φ× ν‖L2(∂Ω) ≤ C‖φ‖H2(Ω) ≤ C‖div j‖L2(Ω),

for some positive constant C depending only on Ω. Set

(2.61) ũ = u− ω−2∇φ in Ω.

We have

∇×∇× ũ− ω2ũ = j −∇φ in Ω.

Since div(j − ∇φ) = 0 in Ω, applying the previous case to ũ, we obtain the conclusions from
(2.59), (2.60), and (2.61). �

As a consequence of Lemma 2.8, one has

Corollary 2.1. Let ω > ω0. Let j ∈ H(div, B1 \B3/4), and let (E,H) ∈ [H(curl, B1 \B3/4)]
2 be

such that E · ν,H · ν ∈ [L2(∂B1)]
3. Assume that




∇×E = iωH in B1 \B3/4,

∇×H = −iωE + j in B1 \B3/4,
and div j = 0 in B1 \B3/4.

We have

‖(E × ν,H × ν)‖L2(∂B1) ≤ C
(
‖(E,H)‖L2(B1\B3/4) + ‖(E · ν,H · ν)‖L2(∂B1) + ‖j‖L2(B1\B3/4)

)
,

for some positive constant C depending only on ω0.

Proof. Let 0 ≤ φ ≤ 1 be a smooth function in B1 such that φ(x) = 0 in B4/5 and φ(x) =
1 in B1 \B5/6. Extend u and j by 0 in B3/4, and set u = φE in B1. Then

(2.62) ∇×∇× u− ω2u = iωφj +∇× (∇φ× E) +∇φ× (∇× E) in B1.

Since ∆E + ω2E = iωj in B1 \B3/4, we have

(2.63) ‖∇E‖L2(B5/6\B4/5) ≤ Cω
(
‖E‖L2(B1\B3/4) + ‖j‖L2(B1\B3/4)

)
.

Applying Lemma 2.8 and using (2.62) and (2.63), one obtains the conclusion. �

The main result of this section is the following lemma, which is a variant of Lemma 2.6 in the
case where ω0 < ω < ω1ρ

−1.
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Lemma 2.9. Let 0 < ρ < ρ0 and 0 < ω0 < ω < ω1/ρ. Suppose that h1, h2 ∈ L2(divΓ, ∂B1), and
let (E,H) ∈ [∩R>1H(curl, BR \ ∂B1)]

2 be the unique radiating solution to the system




∇× E = iωµ̃ρH in R3,

∇×H = −iωε̃ρE + σ̃ρE in R3,

[E × ν] = h1, [H × ν] = h2 on ∂B1.

We have, if ρ0 is small enough and ω0 is large enough, that

‖(E × ν,H × ν)int‖L2(∂B1) ≤ C
(
‖(h1, h2)‖L2(∂B1) + ω−1‖(div∂B1

h1,div∂B1
h2)‖L2(∂B1)

)
,

for some positive constant C depending only on ω0, ω1, and ρ0.

Proof. Applying Corollary 2.1, we have

(2.64) ‖(E × ν|int,H × ν|int)‖L2(∂B1) ≤ C
(
‖(E,H)‖L2(B1\B3/4) + ‖(E · ν,H · ν)|int‖L2(∂B1)

)
.

One has, see, e.g., [8],

‖(E ·ν,H ·ν)|ext‖L2(∂B1) ≤ C
(
‖(E×ν,H×ν)|ext‖L2(∂B1)+‖(E,H)‖L2(B2\B1)+‖(E,H)‖L2(∂B2)

)
.

Applying Lemma 2.4 for (E,H) in R3 \B1, we obtain

‖(E,H)‖L2(B2\B1) + ‖(E,H)‖L2(∂B2) ≤ C‖(E × ν,H × ν)|ext‖L2(∂B1).

It follows that

(2.65) ‖(E · ν,H · ν)|ext‖L2(∂B1) ≤ C‖(E × ν,H × ν)|ext‖L2(∂B1).

Since

(
1− (iω)−1

)
E · ν|int = ρE · ν|ext +

1

iω
div∂B1

h2 and H · ν|int = ρH · ν|ext −
1

iω
div∂B1

h1,

we derive from (2.65) that

‖(E · ν,H · ν)|int‖L2(∂B1) ≤ C
(
ρ‖(E × ν,H × ν)|ext‖L2(∂B1) + ω−1‖div∂B1

(h1, h2)‖L2(∂B1)

)
.

From the transmission conditions on ∂B1, we deduce that

(2.66) ‖(E · ν,H · ν)|int‖L2(∂B1)

≤ C
(
ρ‖(E × ν,H × ν)|int‖L2(∂B1) + ρ‖(h1, h2)‖L2(∂B1) + ω−1‖div∂B1

(h1, h2)‖L2(∂B1)

)
.

On the other hand, as in (2.34), we have
∫

B1\B1/2

|E|2 dx ≤
∣∣∣∣
∫

∂B1

h2 · Ē|ext − h̄1H|int ds
∣∣∣∣(2.67)

≤ C
(
ω2
0‖(h1, h2)‖2L2(∂B1)

+ ω−2
0 ‖(E × ν,H × ν)|ext‖2L2(∂B1)

)
.

Since ∆E + ω2E − iωE = 0 in B1 \B1/2, it follows that

(2.68)

∫

B3/4\B2/3

|E|2+ω−2|∇E|2 dx ≤ C
(
ω2
0‖(h1, h2)‖2L2(∂B1)

+ω−2
0 ‖(E×ν,H×ν)|ext‖2L2(∂B1)

)
.
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An integration by parts yields, for 2/3 < r < 3/4, that

(2.69) ω2

∫

B1\Br

|H|2 dx− ω2

∫

B1\Br

|E|2 dx

= ℜ
{
iω

∫

∂B1

Ē|int(H × ν|int) ds − iω

∫

∂Br

Ē|int(H × ν|int) ds
}
.

Combining (2.67), (2.68), and (2.69) yields

(2.70) ‖(E,H)‖L2(B1\B3/4)
≤ C

(
ω0‖(h1, h2)‖L2(∂B1) + ω−1

0 ‖(E × ν,H × ν)|int‖L2(∂B1)

)
.

From (2.64), (2.66), and (2.70), one obtains that, for ρ small enough,

‖(E × ν|int,H × ν|int)‖L2(∂B1)

≤ C
(
ω0‖(h1, h2)‖L2(∂B1) + ω−1

0 ‖(E × ν,H × ν)|int‖L2(∂B1) + ω−1‖div∂B1
(h1, h2)‖L2(B1)

)
.

This implies

‖(E × ν|int,H × ν|int)‖L2(∂B1) ≤ C
(
‖(h1, h2)‖L2(∂B1) + ω−1‖div∂B1

(h1, h2)‖L2(B1)

)
,

for ω0 large enough and ρ small enough. �

2.2.2. Proof of Proposition 2.2. Since ω > ω0 is large, by (2.49), one has

‖E(ρ.),H(ρ.)‖L2(∂B1) + ω−1‖div∂B1
(E(ρ.)× ν,div∂B1

H(ρ.)× ν)‖L2(∂B1) ≤ Cω‖J‖L2(R3).

Applying Lemma 2.9, we obtain

‖(Ẽρ, H̃ρ)‖L2(B2\B1) ≤ Cω‖J‖L2(R3).

The conclusion now follows from Lemma 2.7. �

2.3. High and very high frequency analysis - Proof of Proposition 2.3. This section con-
tains two subsections. In the first, we present several lemmas used in the proof of Proposition 2.3
and in the second, the proof of Proposition 2.3 is given.

2.3.1. Some useful lemmas. We begin this section with a trace-type result for Maxwell’s equations
in a bounded domain. The analysis is based on a dual argument, see, e.g., [23, 7]). In this
subsection, D denotes a smooth, bounded, open subset of R3.

Lemma 2.10. Let ω > ω0 > 0 and f ∈ H(div,D). Assume that (E,H) ∈ [H(curl,D)]2 satisfies

the equations

(2.71)




∇× E = iωH in D,

∇×H = −iωE + f in D.

Then

‖E‖H−1/2(∂D) + ω‖H × ν‖H−3/2(∂D) ≤ C
(
ω2‖E‖L2(D) + ω‖f‖L2(D) + ω−1‖div f‖L2(D)

)
,

for some positive constant C depending only on D and ω0.

Remark 2.2. It is crucial to our analysis that the constant C is independent of ω.
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Proof. We have, from (2.71),

(2.72) ∆E + ω2E = ∇(divE)−∇× (∇× E) + ω2E =
1

iω
∇(div f)− iωf in D.

Fix φ ∈ [H1/2(∂D)]3 (arbitrary). By the trace theory, see, e.g., [10, Theorem 1.6], there exists
ξ ∈ [H2(D)]3 such that

(2.73) ξ = 0 on ∂D,
∂ξ

∂ν
= φ on ∂D,

and

(2.74) ‖ξ‖H2(D) ≤ C‖φ‖H1/2(∂D).

Here and in what follows, C denotes a positive constant depending only on D and ω0. Multiplying
(2.72) by ξ and integrating by parts, we obtain

∫

D
(∆ξ + ω2ξ)E −

∫

∂D
Eφ =

∫

D
(∆E + ω2E)ξ =

∫

D
− 1

iω
div f div ξ − iωfξ.(2.75)

We derive from (2.73), (2.74), and (2.75) that
∣∣∣∣
∫

∂D
Eφds

∣∣∣∣ ≤ C
(
ω2‖E‖L2(D) + ω‖f‖L2(D) + ω−1‖div f‖L2(D)

)
‖φ‖H1/2(∂D),

which implies, since φ is arbitrary,

(2.76) ‖E‖H−1/2(∂D) ≤ C
(
ω2‖E‖L2(D) + ω‖f‖L2(D) + ω−1‖div f‖L2(D)

)
.

It remains to prove

(2.77) ‖H × ν‖H−3/2(∂D) ≤ C
(
ω‖E‖L2(D) + ‖f‖L2(D) + ω−2‖div f‖L2(D)

)
.

Fix ϕ ∈ H3/2(∂D) (arbitrary), consider an extension of ϕ in D such that its H2(D)-norm is
bounded by C‖ϕ‖H3/2(∂D), and still denote this extension by ϕ. Such an extension exists by the

trace theory, see, e.g., [10, Theorem 1.6]. We have

(2.78)

∫

∂D
H × ν · ϕds =

∫

D

(
∇× ϕ ·H −∇×H · ϕ

)
dx.

Since ∣∣∣∣
∫

D
∇× ϕ ·H dx

∣∣∣∣ = ω−1

∣∣∣∣
∫

D
∇× ϕ · ∇ × E dx

∣∣∣∣

= ω−1

∣∣∣∣
∫

D
∇× (∇× ϕ) ·E dx+

∫

∂D
E · [(∇× ϕ)× ν)] ds

∣∣∣∣ ,

and ∇×H = iωE + f , it follows from (2.76) that

(2.79)
∣∣∣
∫

D
∇× ϕ ·H dx

∣∣∣ ≤ C
(
ω‖E‖L2(D) + ‖f‖L2(D) + ω−2‖div f‖L2(D)

)
‖ϕ‖H3/2(∂D)

and

(2.80)
∣∣∣
∫

D
∇×H · ϕdx

∣∣∣ ≤ C
(
ω‖E‖L2(D) + ‖f‖L2(D)

)
‖ϕ‖H3/2(∂D).

Combining (2.78), (2.79), and (2.80) yields
∣∣∣∣
∫

∂D
H × ν · ϕds

∣∣∣∣ ≤ C
(
ω‖E‖L2(D) + ‖f‖L2(D) + ω−2‖div f‖L2(D)

)
‖ϕ‖H3/2(∂D).

Since ϕ is arbitrary, assertion (2.77) follows. The proof is complete. �
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Using Lemma 2.10, we establish the following Lemma, which is the main result of this subsec-
tion.

Lemma 2.11. Let ω > ω1 > 0, 0 < ρ < 1, and assume that ωρ > ω1. Given h1, h2 ∈
H3/2(divΓ, ∂B1), let (E,H) ∈ [∩R>1H(curl, BR \ ∂B1)]

2 be the unique radiating solution of




∇× E = iωµ̃ρH in R3,

∇×H = −iωε̃ρE + σ̃ρE in R3,

[E × ν] = h1, [H × ν] = h2 on ∂B1.

We have

‖E × ν|ext‖H−1/2(∂B1)
+ ω‖H × ν|ext‖H−3/2(∂B1)

≤ C
(
ω4‖h2‖H1/2(∂B1)

+ ω3‖h1‖H3/2(∂B1)

)
,

for some positive constant C depending only on ω1.

Proof. As in (2.34), we have
∫

B1\B1/2

|E|2 dx ≤
∣∣∣∣
∫

∂B1

h2 · Ē|ext − h̄1H|int ds
∣∣∣∣ .

This implies

(2.81)

∫

B1\B1/2

|E|2 dx ≤ ‖h2‖H1/2(∂B1)
‖E|int‖H−1/2(∂B1)

+ ‖h1‖H3/2(∂B1)
‖H × ν|int‖H−3/2(∂B1)

+ ‖h2‖2L2(∂B1)
.

Applying Lemma 2.10 to (E,H) with f = E in B1 \B1/2, we have

‖E|int‖H−1/2(∂B1)
+ ω‖H × ν‖H−3/2(∂B1)

≤ Cω2‖E‖L2(B1\B1/2)
.

It follows from (2.81) that

‖E‖L2(B1\B1/2) ≤ C
(
ω2‖h2‖H1/2(∂B1)

+ ω‖h1‖H3/2(∂B1)

)
.

Applying Lemma 2.10 to (E,H) with f = E in B1 \B1/2 again, one has

‖E × ν|int‖H−1/2(∂B1)
+ ω‖H × ν|int‖H−3/2(∂B1)

≤ C
(
ω4‖h2‖H1/2(∂B1)

+ ω3‖h1‖H3/2(∂B1)

)
.

Using the transmission condition at ∂B1, one reaches the conclusion. �

We end this subsection by a simple consequence of Stratton-Chu’s formula.

Lemma 2.12. Let 0 < ρ < 1, ω > ω1 > 0 be such that ωρ > ω1, and let D ⊂ B1. Assume that

(E,H) ∈
[
Hloc(curl,R

3 \D)
]2

is a radiating solution to the Maxwell equations
{

∇× E = iωρH in R3 \ D̄,

∇×H = −iωρE in R3 \ D̄.

We have

|E(x)| ≤ C|ωρ|3/2
|x| ‖E × ν‖H−1/2(∂D) +

C|ωρ|5/2
|x| ‖H × ν‖H−3/2(∂D) for x ∈ B3/ρ \B1/ρ,

for some positive constant C independent of x, ω, and ρ.
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2.3.2. Proof of Proposition 2.3. Apply Lemma 2.11, we have

(2.82) ‖Ẽρ × ν‖H−1/2(B2\B1)
+ ω‖H̃ρ × ν‖H−3/2(B2\B1)

≤ Cω3‖E(ρ ·) × ν‖H3/2(∂B1)
+ Cω4‖H(ρ ·) × ν‖H1/2(∂B1)

.

Since ω > ω0, which is large, by (2.49), one has

(2.83) ω3‖E(ρ ·)× ν‖H3/2(∂B1)
+ ω4‖H(ρ ·) × ν‖H1/2(∂B1)

≤ Cω6ρ1/2‖J‖L2(R3).

Applying Lemma 2.12, we derive from (2.82) and (2.83) that

‖Ẽρ‖L2(B3\B1/2) ≤ Cω15/2ρ3‖J‖L2(R3),

which yields

‖H̃ρ‖L2(B2\B1) ≤ Cω17/2ρ3‖J‖L2(R3).

The proof is complete. �

3. Proof of Theorem 1.1

To implement the analysis in the frequency domain, let us introduce the notation for the
Fourier transform with respect to t:

(3.1) û(ω, x) =
1√
2π

∫

R

u(t, x)eiωt dt,

for an appropriate function u ∈ L∞
loc([0,+∞), L2(R3)); here we extend u by 0 for t < 0.

The starting point of the frequency analysis is based on the following result:

Proposition 3.1. Let fe, fm ∈ L2
(
[0,∞); [L2(R3)]3

)
∩ L1

(
[0,∞); [L2(R3)]3

)
. Let

(E ,H) ∈ L∞
loc

(
[0,+∞), [L2(R3)]6

)
be the unique weak solution of (1.10). Assume that there exists

R0 > 0 such that supp fe(t, ·), supp fm(t, ·), suppσe, suppσm ⊂ BR0
for t > 0. Then, for almost

every ω > 0, (Ê , Ĥ)(ω, .) ∈ [Hloc(curl,R
3)]2 is the unique, radiating solution to the system

(3.2)




∇× Ê(ω, .) = iωµĤ(ω, .)− σmĤ(ω, ·) + f̂e(ω, ·) in R3,

∇× Ĥ(ω, .) = −iωεÊ(ω, .) + σeÊ(ω, .) − f̂m(ω, .) in R3.

Proof. Let (Eδ,Hδ) ∈ L∞
loc

(
[0,∞), [L2(R3)]6

)
be the unique weak solution to





ε
∂Eδ
∂t

= ∇×Hδ − σeEδ − δEδ + fm in (0,+∞)× R3,

µ
∂Hδ

∂t
= −∇× Eδ − σmHδ − δHδ + fe in (0,+∞)× R3,

Eδ(0, ) = 0;Hδ(0, ) = 0 in R3.

By the standard Galerkin approach (see e.g., [34]), one can prove that

δ

∫ +∞

0

∫

R3

|Eδ(s, x)|2 + |Hδ(s, x)|2 dx ds ≤ C‖(fe, fm)‖2L2(R+,R3),

for some positive constant independent of δ and (fe, fm). Hence Eδ,Hδ ∈ L2
(
(0,∞); [L2(R3)]3

)
,

and thus Êδ, Ĥδ ∈ L2
(
(0,∞); [L2(R3)]3

)
by Parserval’s theorem. It follows, for a.e. ω > 0, that

(Êδ, Ĥδ) ∈ H(curl,R3) is the unique solution to

(3.3)




∇× Êδ(ω, .) = iωµĤδ(ω, .) − (σm + δ)Ĥδ(ω, .) + f̂e(ω, ·) in R3,

∇× Ĥδ(ω, .) = −iωεÊδ(ω, .) + (σe + δ)Êδ(ω, .) − f̂m(ω, .) in R3.
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For 0 < ω1 < ω < ω2 < ∞, one can check that the solution of (3.3) satisfies

(3.4) ‖(Êδ, Ĥδ)(ω, .)‖H(curl,BR) ≤ C‖(f̂e, f̂m)(ω, .)‖L2(R3) ≤ C‖(fe, fm)‖L1((0,∞),L2(R3)),

for some positive constant C depending only on ε, µ, R, ω1, and ω2. Letting δ → 0 and using the
limiting absorption principle, see e.g., [31, (2.28) and the following paragraph], one derives that

(3.5) (Êδ, Ĥδ)(ω, ) ⇀ (E0,H0)(ω, .) weakly in [Hloc(curl,R
3)]2 as δ → 0,

where (E0,H0)(ω, .) ∈ [Hloc(curl,R
3)]2 is the unique, radiating solution to the system




∇× E0(ω, .) = iωµH0(ω, .) − σmH0 + f̂e(ω, ·) in R3,

∇×H0(ω, .) = −iωεE0(ω, .) + σeE0(ω, .) − f̂m(ω, .) in R3.

From (3.4) and (3.5), we have

(3.6) (Êδ , Ĥδ) → (E0,H0) in the distributional sense in R+ × R3 as δ → 0.

We claim that

(3.7) (Êδ, Ĥδ) → (Ê , Ĥ) in the distributional sense in R+ × R3,

and the conclusion follows from (3.6) and (3.7).

It remains to prove (3.7). Let φ ∈ [C∞
c

(
(0,∞) × R3)

]3
. We have

∫

R

∫

R3

(Êδ(ω, x)− Ê(ω, x))φ̄(ω, x) dxdω =

∫

R

∫

R3

(Eδ(t, x)− E(t, x)) ¯̌φ(t, x) dxdt.

We derive that, by applying Proposition 1.1 to (Eδ − E ,Hδ −H),

‖Eδ(t, .)− E(t, .)‖L2(R3) ≤ Cδ

∫ t

0
‖(E(s, .),H(s, .))‖L2 (R3) ds for t > 0,

and, by applying Proposition 1.1 for (E ,H),

‖(E(t, .),H(t, .))‖L2 (R3) ≤ C‖(fe, fm)‖L1((0,∞),[L2(R3)]6) for t > 0.

It follows that

(3.8) ‖Eδ(t, .)− E(t, .)‖L2(R3) ≤ Cδt.

From (3.8), we obtain

(3.9)

∫

R

∫

R3

(Eδ(t, x)− E(t, x)) ¯̌φ(t, x) dxdt ≤ Cδ

∫

R

t‖φ̌(t, .)‖L2(R3) dt.

From (3.9) and the fast decay property of φ̌, we derive that

Êδ → Ê in the distributional sense in R+ × R3.

Similarly, one can prove that

Ĥδ → Ĥ in the distributional sense in R+ × R3.

The proof is complete. �

We are ready to give

Proof of Theorem 1.1. Fix K ⊂⊂ R3 \ B̄1 and T > 0. Using the fact that Êc(−k, x) = Êc(k, x)
and Ê(−k, x) = Ê(k, x) for k > 0, one has, for 0 < t < T ,
(3.10)

‖Ec(t, ·)− E(t, ·)‖L2(K) ≤
∫ T

0
‖∂tEc(t, ·) − ∂tE(t, ·)‖L2(K) ≤ T

∫ ∞

0
ω‖Êc(ω, ·)− Ê(ω, ·)‖L2(K)dω.
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We have, by Proposition 2.1,

(3.11)

1∫

0

ω‖Êc(ω, .)− Ê(ω, .)‖L2(K)dω ≤ C

1∫

0

ρ3‖Ĵ (ω, .)‖L2(R3)dω ≤ Cρ3‖J ‖2L2(R;L2(R3)),

by Proposition 2.2 (here to simplify the notations we assume that ω0 = 1),

(3.12)

1/ρ∫

1

ω‖Êc(ω, .)− Ê(ω, .)‖L2(K)dω ≤ Cρ3
1/ρ∫

1

ω4‖Ĵ (ω, .)‖L2(R3)dω,

and, by Proposition 2.3,

(3.13)

+∞∫

1/ρ

ω‖Êc(ω, .)− Ê(ω, .)‖L2(K)dω ≤ Cρ3
+∞∫

1

ρ

ω19/2‖Ĵ (ω, .)‖L2(R3)dω.

A combination of (3.12) and (3.13) yields

∞∫

1

ω‖Êc(ω, .)− Ê(ω, .)‖L2(K)dω ≤ Cρ3
∫ +∞

1

1

ω
‖ ̂
∂
(11)
t J (ω, ·)‖L2(R3)) dω(3.14)

≤ Cρ3‖J ‖H11(R,L2(R3))

We derive from (3.10), (3.11), and (3.14) that, for 0 < t < T ,

‖Ec(t, ·)− E(t, ·)‖L2(K) ≤ CTρ3‖J ‖H11(R,L2(R3)).

The proof is complete. �
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