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Abstract

We consider the application of the type-I Anderson acceleration ([FS09]) to solving
general non-smooth fixed-point problems. By interleaving with safe-guarding steps,
and employing a Powell-type regularization and a re-start checking for strong linear
independence of the updates, we propose the first globally convergent variant of Ander-
son acceleration assuming only that the fixed-point iteration is non-expansive. We show
by extensive numerical experiments that many first order algorithms can be improved,
especially in their terminal convergence, with the proposed algorithm. Our proposed
method of acceleration is being implemented in SCS 2.0 [OCPB17], one of the default
solvers used in the convex optimization parser-solver CVXPY 1.0 [AVDB18].

1 Introduction

We consider solving the following general fixed-point problem:

Find x ∈ Rn such that x = f(x), (1)

where f : Rn → Rn is potentially non-smooth. Unless otherwise stated, we assume through-
out the paper that f is non-expansive (in the `2-norm), i.e., ‖f(x)− f(y)‖2 ≤ ‖x− y‖2 for
all x, y ∈ Rn, and that the solution set X = {x? | x? = f(x?)} of (1) is nonempty. With
these assumptions, (1) can be solved by the Krasnosel’skǐı-Mann (KM, or averaged) iteration
algorithm, which updates xk in iteration k to xk+1 = (1−α)xk +αf(xk), where α ∈ (0, 1) is
an algotihm parameter. An elementary proof shows the global convergence of KM iteration
to some fixed-point x? ∈ X [RB16]. In one sense, our goal is to accelerate the vanilla KM
algorithm.
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Fixed-point problems such as (1) arise ubiquitously in mathematics, natural science and
social science. For example, to find a Nash equilibrium in a multi-player game, one can refor-
mulate it as a monotone inclusion problem under mild assumptions on the utility functions
[BAC13], which can then be further reformulated as a fixed-point problem of the correspond-
ing (non-expansive) resolvent or Cayley operator [RB16]. In general, the solution of most,
if not all, convex optimization problems falls into the above scenario. In fact, almost all
optimization algorithms are iterative, and the goal is to solve the corresponding fixed-point
problem (1), where f : Rn → Rn is the iteration mapping. When the optimization problem
is convex, f is typically non-expansive, and the solution set of the fixed-point problem is the
same as that of the original optimization problem, or closed related to it. Another related
example is infinite-horizon discounted Markov Decision Process [Bel57, Ber15], in which the
optimal policy can be found by solving the fixed-point problem of the associated Bellman
operator, which is not non-expansive (in the `2-norm) but is contractive in the `∞-norm.
Such kind of scenarios are also discussed in §5.1.3 as a variant of our main setting.

In spite of the robustness of the vanilla KM iteration algorithm, the convergence can be
extremely slow in practice, especially when high or even just moderate accuracy is needed.
Data pre-conditioning and step-size line-search are the two most commonly used generic
approaches to accelerate the convergence of the KM method [GFB16]. To further acceler-
ate the convergence, a trade-off between the number of iterations and per-iteration cost is
needed. In this case, when f(x) = x − α∇F (x) is the gradient descent mapping for the
minimization of the differentiable objective function F (x), Newton, quasi-Newton, and ac-
celerated gradient descent methods (e.g., Nesterov’s [Nes13]) can then be used to reduce
the overall iteration complexity at the cost of increased cost in each step [LY84]. For more
general f , Semi-smooth Newton [AWK17, XLWZ16] and B-differentiable (quasi-)Newton
[Pan90, IK92], which generalize their classical counterparts, have also been proposed and
widely studied. More recently, some hybrid methods, which interleave vanilla KM iterations
with (quasi-)Newton type acceleration steps, are designed to enjoy smaller per-iteration cost
while maintaining fast convergence in practice [SdB16, TP16].

Nevertheless, to our knowledge, apart from (pure) pre-conditioning and line-search (which
can be superimposed on top of other acceleration schemes), the (local or global) convergence
of most, if not all existing methods require additional assumptions, e.g., some kind of differen-
tiability around the solution [MT76, CCL14], symmetry of the Jacobian of f [LF99a, LF99b],
or symmetry of the approximate Jacobians in the algorithm [ZL07, ZL08]. Moreover, line
search is (almost) always enforced in these methods to ensure global convergence, which can
be prohibitive when function evaluations are expensive. Our main goal in this paper is hence
to provide a globally convergent acceleration method with relatively small per-iteration costs,
without resorting to line search or any further assumptions other than non-expansiveness,
thus guaranteeing improvement of a much larger class of algorithms ruled out by existing
methods.

To achieve this goal, we propose to solve (1) using the type-I (or “good”) Anderson accel-
eration (AA-I) [FS09], a natural yet underdeveloped variant of the original Anderson accel-
eration (AA), also known as the type-II Anderson acceleration (AA-II) [And65]. Despite its
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elegance in implementation, popularity in chemistry and physics, and success in specific op-
timization problems, a systematic treatment of AA, especially AA-I in optimization-related
applications is still lacking. One of the main purposes of this work is thus to showcase the
impressive numerical performance of AA-I on problems from these fields.

On the other hand, both early experiments in [FS09] and our preliminary benchmark tests
of SCS 2.0 [OCPB17] show that although AA-I outperforms AA-II in many cases (matching
its name of “good”), it also suffers more from instability. Moreover, few convergence analysis
of AA and its variants (and none for AA-I) for general nonlinear problems exist in the
literature, and the existing ones all require f to be continuously differentiable (which excludes
most algorithms involving projections, and in general proximal operators), and are either
local [GS78, RS11, TK15] or assume certain non-singularity (e.g., contractivity) conditions
[SdB16, SBd17, SOdB18b]. Another goal of this paper is hence to provide modifications
that lead to a stabilized AA-I with convergencence beyond differentiability, locality and non-
singularity. As a result, we obtain global convergence to a fixed-point with no additional
assumptions apart from non-expansiveness.

We emphasize that our analysis does not provide a rate of convergence. While it would be
nice to formally establish that our modified AA-I algorithm converges faster than vanilla KM,
we do not do this in this paper. Instead, we show only that convergence occurs. The benefit
of our method is not an improved theoretical convergence rate; it is instead (a) a formal
proof that the method always converges, under very relaxed conditions, and (b) empirical
studies that show that terminal convergence, especially to moderately high accuracies, is
almost always much better than vanilla methods.

Related work. As its name suggests, AA is an acceleration algorithm proposed by D.
G. Anderson in 1965 [And65]. The earliest problem that AA dealt with was nonlinear
integral equations. Later, developed by another two different communities [Pul80, Pul82],
AA has enjoyed wide application in material sciences and computational quantum chemistry
for the computation of electronic structures, where it is also known as Pulay/Anderson
mixing and (Pulay’s) direct inversion iterative subspace (DIIS), respectively. In contrast, its
name is quite unpopular in the optimization community. As far as we know, it was not until
[FS09] connected it with Broyden’s (quasi-Newton) methods, that some applications of AA to
optimization algorithms, including expectation-maximization (EM), alternating nonnegative
least-squares (ANNLS) and alternating projections (AP), emerged [WN11, HR18, HS16].
More recently, applications are further extended to machine learning and control problems,
including K-means clustering [ZYP+18], robot localization [POD+17] and computer vision
[SOdB18a].

There has been a rich literature on applications of AA to specific problems, especially
within the field of computational chemistry and physics [WTK14, AJW17, AUM+16, WPT15,
BRZS, MST+17]. In the meantime, an emerging literature on applications to optimization-
related problems is also witnessed in recent years, as mentioned above.

Nevertheless, theoretical analysis of AA and its variants is relatively underdeveloped,
and most of the theory literature is focused on the full memory AA-II, i.e., mk = k for all
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k ≥ 0 in Algorithm 1 below. This deviates from the original AA-II [And65] and in general
most of the numerical and application literature, where limited memory AA is predominant.
For solving general fixed-point problems (or equivalently, nonlinear equations), perhaps the
most related work to ours is [GS78] and [RS11], among which the former proves local Q-
superlinear convergence of a full-memory version of AA-I, while the latter establishes local
Q-linear convergence for the original (limited memory) AA-II, both presuming continuous
differentiability of f in (1) around the solutions. A slightly more stabilized version of full-
memory AA-I is introduced in [BF94] by generalizing the re-starting strategy in [GS78],
which is then later globalized using a non-monotone line search method [LF00], assuming
Lipschitz differentiability of f [BK17]. In practice, the generalized re-starting strategy is
more computationally expensive, yet the performance improvement is non-obvious [BK17].
This motivates us to keep to the original re-starting strategy in [GS78] in §3.2. By assuming
in addition contractivity of f , a slightly stronger and cleaner local linear convergence of the
original AA-II can also be obtained [TK15]. A similar analysis for noise-corrupted f is later
conducted in [TEE+17].

Interestingly, the three papers on full-memory AA-I, which to our knowledge are the
only papers analyzing the convergence of AA-I (variants) for general nonlinear fixed-point
problems, are not aware of the literature stemming from [And65], and the algorithms there
are termed as projected Broyden’s methods. We will discuss the connection between AA
and the Broyden’s methods in §2 following a similar treatment as in [FS09, WN11, RS11],
which also paves the way for the analysis of our modified (limited-memory) AA-I.

On the other hand, stronger results have been shown for more special cases. When f
is restricted to affine mappings, finite-step convergence of full-memory AA is discussed by
showing its essential equivalence to GMRES and Arnoldi method [WN11, PE13]. More re-
cently, a regularized variant of full-memory AA-II is rediscovered as regularized nonlinear
acceleration (RNA) in [SdB16], in which f is the gradient descent mapping of a strongly
convex and strongly smooth real-valued function. Global linear convergence with improved
rates similar to Nesterov’s accelerated gradient descent is proved using a Chebyshev’s accel-
eration argument. The results are then extended to stochastic [SBd17] and momentum-based
[SOdB18b] algorithms.

We are not aware of any previous work on convergence of the limited memory AA-I or its
variants, let alone global convergence in the absence of (Fréchet continuous) differentiability
and non-singularity (or contractivity), which is missing from the entire AA literature.

Outline. In §2, we introduce the original AA-I [FS09], and discuss its relation to quasi-
Newton methods. In §3, we propose a stabilized AA-I with Powell-type regularization, re-
start checking and safe-guarding steps. A self-contained convergence analysis of the stabilized
AA-I is given in §4. Finally, we demonstrate the effectiveness of our proposed algorithms
with various numerical examples in §5. Extensions and variants to our results are discussed
in §6, followed by a few conclusive remarks in §7.
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1.1 Notation and definitions

We list some basic definitions and notation to be used in the rest of the paper. We denote
the set of real numbers as R; R+ the set of non-negative real numbers; R̄ = R ∪ {+∞} is
the extended real line, and Rn the n-dimensional Euclidean space equipped with the inner
product xTy for x, y ∈ Rn and the `2-norm ‖ · ‖2. For notational compactness, we will
alternatively use

(x1, . . . , xn) and

 x1
...
xn


to denote a vector in Rn.

The proximal operator of a convex, closed and proper function F : Rn → R̄ is given by

proxF (x) = argminy{F (y) + 1
2
‖y − x‖2

2}.

For a nonempty, closed and convex set C ⊆ Rn, the indicator function of C is denoted as

IC(x) =

{
0 if x ∈ C
+∞ otherwise.

Similarly, we denote the projection on C as

ΠC(x) = argminy∈C ‖x− y‖2,

and the normal cone of C as

NC(x) = {y ∈ Rn | supx′∈C y
T (x′ − x) ≤ 0}.

The projection ΠC is the proximal operator of IC.
A mapping f : Rn → Rn is said to be non-expansive if for all x, y ∈ Rn,

‖f(x)− f(y)‖2 ≤ ‖x− y‖2.

It is said to be γ-contractive in an (arbitrary) norm ‖ · ‖ if for all x, y ∈ Rn,

‖f(x)− f(y)‖ ≤ γ‖x− y‖.

A relation G : Rn → 2R
n

is said to be monotone, if for all x, y ∈ Rn,

(u− v)T (x− y) ≥ 0 for all u ∈ G(x), v ∈ G(y).

It is said to be maximal monotone if there is no monotone operator that properly contains it
(as a relation, i.e., subset of Rn ×Rn). We refer interested readers to [RB16] for a detailed
explanation of relations. When a relation G is single-valued, it becomes a usual mapping
from Rn to Rn, and the same definition of (maximal) monotonicity holds.
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For a matrix A = (aij)n×n ∈ Rn×n, its `2-norm (or spectral/operator norm) is denoted

as ‖A‖2 = sup‖x‖2=1 ‖Ax‖2. The Frobenius norm of A is denoted as ‖A‖F =
√∑n

i,j=1 a
2
ij.

The spectral radius of a square matrix A is the maximum absolute value eigenvalue, i.e.,

ρ(A) = max{|λ1|, . . . , |λn|},

where λ1, . . . , λn are eigenvalues of A (with repetitions counted).
For a description of strong convexity and strong smoothness of a function F : Rn → R,

see [RB16]. They will only be used when it comes to the examples in §5.

2 Type-I Anderson acceleration

In this section we introduce the original AA-I, with a focus on its relation to quasi-Newton
methods. Following the historical development from [And65] to [FS09], we naturally motivate
it by beginning with a brief introduction to the original AA-II, making explicit its connection
to the type-II Broyden’s method, and then move on to AA-I as a natural counterpart of the
type-I Broyden’s method.

2.1 General framework of AA

As illustrated in the prototype Algorithm 1, the main idea is to maintain a memory of
previous steps, and update the iteration as a linear combination of the memory with dynamic
weights. It can be seen as a generalization of the KM iteration algorithm, where the latter
uses only the most recent two steps, and the weights are pre-determined, which leads to sub-
linear convergence for non-expansive mappings in general [RB16], and linear convergence
under certain additional assumptions [BNP15].

Algorithm 1 Anderson Acceleration Prototype (AA)

1: Input: initial point x0, fixed-point mapping f : Rn → Rn.
2: for k = 0, 1, . . . do
3: Choose mk (e.g., mk = min{m, k} for some integer m ≥ 0).
4: Select weights αkj based on the last mk iterations satisfying

∑mk

j=0 α
k
j = 1.

5: xk+1 =
∑mk

j=0 α
k
j f(xk−mk+j).

6: end for

The integer mk is the memory in iteration k, since the next iterate is a linear combination
of the images of the last k iterates under the map f . Based on the choices of the weights αkj
in line 4 of Algorithm 1, AA is classified into two subclasses [FS09], namely AA-I and AA-II.
The terminology indicates a close relationship between AA and quasi-Newton methods, as
we will elaborate in more details below. While existing literature is mainly focused on AA-II,
our focus is on the less explored AA-I.
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2.2 The original AA: AA-II

Define the residual g : Rn → Rn of f to be g(x) = x − f(x). In AA-II [And65], for each
iteration k ≥ 0, we solve the following least squares problem with a normalization constraint:

minimize ‖
∑mk

j=0 αjg(xk−mk+j)‖2
2

subject to
∑mk

j=0 αj = 1,
(2)

with variable α = (α0, . . . , αmk
). The weight vector αk = (αk0, . . . , α

k
mk

) in line 4 of Algorithm
1 is then chosen as the solution to (2). The intuition is to minimize the norm of the weighted
residuals of the previous mk + 1 iterates. In particular, when g is affine, it is not difficult
to see that (2) directly finds a normalized weight vector α, minimizing the residual norm
‖g(xk+1/2)‖2 among all xk+1/2 that can be represented as xk+1/2 =

∑mk

j=0 αjx
k−mk+j, from

which xk+1 = f(xk+1/2) is then computed with an additional fixed-point iteration in line 5
of Algorithm 1.

Connection to quasi-Newton methods. To reveal the connection between AA-II and
quasi-Newton methods, we begin by noticing that the inner minimization subproblem (2)
can be efficiently solved as an unconstrained least squares problem by a simple variable
elimination [WN11]. More explicitly, we can reformulate (2) as follows:

minimize ‖gk − Ykγ‖2, (3)

with variable γ = (γ0, . . . , γmk−1). Here gi = g(xi), Yk = [yk−mk
. . . yk−1] with yi = gi+1− gi

for each i, and α and γ are related by α0 = γ0, αi = γi − γi−1 for 1 ≤ i ≤ mk − 1 and
αmk

= 1− γmk−1.
Assuming for now that Yk is full column rank, the solution γk to (3) is given by γk =

(Y T
k Yk)

−1Y T
k gk, and hence by the relation between αk and γk, the next iterate of AA-II can

be represented as

xk+1 = f(xk)−
mk−1∑
i=0

γki
(
f(xk−mk+i+1)− f(xk−mk+i)

)
= xk − gk − (Sk − Yk)γk

= xk − (I + (Sk − Yk)(Y T
k Yk)

−1Y T
k )gk

= xk −Hkgk,

where Sk = [sk−mk
. . . sk−1], si = xi+1−xi for each i, and Hk = I+(Sk−Yk)(Y T

k Yk)
−1Y T

k . It
has been observed that Hk minimizes ‖Hk−I‖F subject to the inverse multi-secant condition
HkYk = Sk [FS09, WN11], and hence can be regarded as an approximate inverse Jacobian
of g. The update of xk can then be considered as a quasi-Newton-type update, with Hk

being some sort of generalized second (or type-II) Broyden’s update [Bro65] of I satisfying
the inverse multi-secant condition.
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It’s worth noticing that a close variant of AA-II, with an additional non-negative con-
straint α ≥ 0, is also widely used to accelerate the SCF (self-consistent field) iteration in the
electronic structure computation. Such methods are typically referred to as “energy DIIS” in
literature [HY10]. However, the inner minimization problem of energy DIIS has to be solved
as a generic convex quadratic program. Moreover, our preliminary experiments suggest that
it may not work as well for many optimization algorithms (e.g., SCS).

2.3 AA-I

In the quasi-Newton literature, the type-II Broyden’s update is often termed as the “bad
Broyden’s method”. In comparison, the so-called “good Broyden’s method”, or type-I Broy-
den’s method, which directly approximates the Jacobian of g, typically seems to yield better
numerical performance [Gri12].

In the same spirit, we define the type-I AA (AA-I) [FS09], in which we find an approxi-
mate Jacobian of g minimizing ‖Bk − I‖F subject to the multi-secant condition BkSk = Yk.
Assuming for now that Sk is full column rank, we obtain (by symmetry) that

Bk = I + (Yk − Sk)(STk Sk)−1STk , (4)

and the update scheme is defined as

xk+1 = xk −B−1
k gk, (5)

assuming Bk to be invertible. We will deal with the potential rank deficiency of Sk and
singularity of Bk shortly in the next sections.

A direct application of Woodbury matrix identity shows that

B−1
k = I + (Sk − Yk)(STk Yk)−1STk , (6)

where again we have assumed for now that STk Yk is invertible. Notice that this explicit
formula of B−1

k is preferred in that the most costly step, inversion, is implemented only on
a small mk ×mk matrix.

Backtracking the derivation in AA-II, (5) can be rewritten as

xk+1 = xk − gk − (Sk − Yk)γ̃k = f(xk)−
mk−1∑
i=0

γ̃ki
(
f(xk−mk+i+1)− f(xk−mk+i)

)
, (7)

where γ̃k = (STk Yk)
−1STk gk. Now we can see how AA-I falls into the framework of Algorithm

1: here the weight vector αk in line 4 is defined as αk0 = γ̃k0 , αki = γ̃ki − γ̃ki−1 for 1 ≤ i ≤ mk−1
and αkmk

= 1− γ̃kmk−1. Note that although not as intuitive as the weight vector choice in AA-
II, the computational complexity is exactly the same whenever matrix-vector multiplication
is done prior to matrix-matrix multiplication.

For easier reference, we detail AA-I in the following Algorithm 2. As our focus is on
the more numerically efficient limited-memory versions, we also specify a maximum-memory
parameter m in the algorithm.

8



Algorithm 2 Type-I Anderson Acceleration (AA-I-m)

1: Input: initial point x0, fixed-point mapping f : Rn → Rn, max-memory m > 0.
2: for k = 0, 1, . . . do
3: Choose mk ≤ m (e.g., mk = min{m, k} for some integer m ≥ 0).
4: Compute γ̃k = (STk Yk)

−1(STk gk).
5: Compute αk0 = γ̃k0 , αki = γ̃ki − γ̃ki−1 for 1 ≤ i ≤ mk − 1 and αkmk

= 1− γ̃kmk−1.
6: xk+1 =

∑mk

j=0 α
k
j f(xk−mk+j).

7: end for

Note that in the above algorithm, the iteration may get stuck or suffer from ill-conditioning
if Bk, or equivalently either Sk or Yk is (approximately) rank-deficient. This is also a major
source of numerical instability in AA-I. We will solve this issue in the next section.

3 Stabilized type-I Anderson acceleration

In this section, we propose several modifications to the vanilla AA-I (Algorithm 2) to stabilize
its convergence. We begin by introducing a Powell-type regularization to ensure the non-
singularity of Bk. We then introduce a simple re-start checking strategy that ensures certain
strong linear independence of the updates sk. These together solve the stagnation problem
mentioned at the end of the last section. Finally, we introduce safe-guarding steps that
check the decrease in the residual norm, with which the modifications altogether lead to
global convergence to a solution of (1), as we will show in §4.

Rank-one update. To motivate the modifications, we take a step back to the update
formula (5) and formalize a closer connection between AA-I and the type-I Broyden’s method
in terms of rank-one update. The counterpart result has been proved for AA-II in [RS11].

Proposition 1. Suppose that Sk is full rank, then Bk in (4) can be computed inductively
from B0

k = I as follows:

Bi+1
k = Bi

k +
(yk−mk+i −Bi

ksk−mk+i)ŝ
T
k−mk+i

ŝTk−mk+isk−mk+i

, i = 0, . . . ,mk − 1 (8)

with Bk = Bmk
k . Here {ŝi}k−1

i=k−mk
is the Gram-Schmidt orthogonalization of {si}k−1

i=k−mk
, i.e.,

ŝi = si −
i−1∑

j=k−mk

ŝTj si

ŝTj ŝj
ŝj, i = k −mk, . . . , k − 1. (9)

We remark that another similar rank-one update formula for full-memory AA-I is pre-
sented in [GS78]. However, the result there corresponds to successive minimization of ‖Bi+1

k −
Bi
k‖F with the multi-secant constraints, instead of the direct minimization of ‖Bk−I‖F . It’s

thus non-obvious how we can apply their result here, and we instead provide a self-contained
proof in the Appendix. The basic idea is to prove by induction, and to fix Bk by its restric-
tions to span(Sk) and its orthogonal complement, respectively.
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3.1 Powell-type regularization

To fix the potential singularity of Bk, we introduce a Powell-type regularization to the rank-
one update formula (8). The idea is to specify a parameter θ̄ ∈ (0, 1), and simply replace
yk−mk+i in (8) with

ỹk−mk+i = θikyk−mk+i + (1− θik)Bi
ksk−mk+i, (10)

where θik = φθ̄(η
i
k) is defined with

φθ̄(η) =

{
1 if |η| ≥ θ̄
1−sign(η)θ̄

1−η if |η| < θ̄
(11)

and ηik =
ŝTk−mk+i(B

i
k)−1yk−mk+i

‖ŝk−mk+i‖22
. Here we adopt the convention that sign(0) = 1. The formu-

lation is almost the same as the original Powell’s trick used in [Pow70], but we redefine ηk
to take the orthogonalization into considerations. Similar ideas have also been introduced in
[SdB16] and [HR18] by adding a Levenberg-Marquardt-type regularization. However, such
tricks are designed for stabilizing least-squares problems in AA-II, which are not applicable
here.

We remark that the update remains unmodified when θ̄ = 0. On the other hand, when
θ̄ = 1, (5) reduces to the vanilla fixed-point iteration associated with (1). Hence θ̄ serves as
a bridge between the two extremes. By definition, we immediately see that θik ∈ [1− θ̄, 1+ θ̄],
which turns out to be a useful bound in the subsequent derivations.

The following lemma establishes the non-singularity of the modified Bk, which also indi-
cates how θ̄ trades off between stability and efficiency.

Lemma 2. Suppose {si}k−1
i=k−mk

to be an arbitrary sequence in Rn. Define Bk = Bmk
k induc-

tively from B0
k = I as

Bi+1
k = Bi

k +
(ỹk−mk+i −Bi

ksk−mk+i)ŝ
T
k−mk+i

ŝTk−mk+isk−mk+i

, i = 0, . . . ,mk − 1, (12)

with ŝk−mk+i and ỹk−mk+i defined as in (9) and (10), respectively. Suppose that the updates
above are all well-defined. Then |det(Bk)| ≥ θ̄mk > 0, and in particular, Bk is invertible.

Proof. We prove by induction that |det(Bi
k)| ≥ θ̄i. The base case when i = 0 is trivial. Now

suppose that we have proved the claim for Bi
k. By Sylvester’s determinant identity, we have

|det(Bi+1
k )| = |det(Bi

k)|

∣∣∣∣∣det

(
I + θik

((Bi
k)
−1yk−mk+i − sk−mk+i)ŝ

T
k−mk+i

ŝTk−mk+isk−mk+i

)∣∣∣∣∣
= |det(Bi

k)|

∣∣∣∣∣1 + θik
ŝTk−mk+i((B

i
k)
−1yk−mk+i − sk−mk+i)

ŝTk−mk+isk−mk+i

∣∣∣∣∣
= |det(Bi

k)|
∣∣1− θik(1− ηik)∣∣ ≥ θ̄i ·

{
|ηik|, |ηik| ≥ θ̄
|sgn(ηik)θ̄|, |ηik| < θ̄

≥ θ̄i+1.

By induction, this completes our proof.
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Now that we have established the non-singularity of the modified Bk, defining Hk = B−1
k ,

we can directly update Hk = Hmk
k from H0

k = I as follows:

H i+1
k = H i

k +
(sk−mk+i −H i

kỹk−mk+i)ŝ
T
k−mk+iH

i
k

ŝTk−mk+iH
i
kỹk−mk+i

, i = 0, . . . ,mk − 1, (13)

again with ŝk−mk+i and ỹk−mk+i defined as in (9) and (10), respectively. This can be easily
seen by a direct application of the Sherman-Morrison formula. Notice that the Hk hereafter
is different from the one in §2.2 for AA-II.

It’s worth pointing out that [BK17] also considers selecting an appropriate θik in (10) to
ensure the non-singularity of Bk, but an explicit choice of θik is not provided to guarantee its
existence. Moreover, apart from the well-defined-ness of the iterations, the modification is
neither needed in the proof, nor in the smooth numerical examples there as claimed by the
authors. In contrast, in our general non-smooth settings the modification is both significant
in theory and practice, as we will see below.

3.2 Re-start checking

In this section, we introduce a re-start checking strategy proposed in [GS78], and use it to
establish uniform bounds on the approximate (inverse) Jacobians, which turns out to be
essential to the final global convergence, as we will see in §4.

Notice that the update formula (12) is well-defined as long as ŝk−mk+i 6= 0, in which case
the denominator ŝTk−mk+isk−mk+i = ‖ŝk−mk+i‖2

2 > 0. However, unless gk−mk+i = 0 for some
i = 0, . . . ,mk − 1, in which case the problem is already solved, we will always have

sk−mk+i = −B−1
k−mk+igk−mk+i 6= 0,

where we used Lemma 2 to deduce that Bk−mk+i is invertible.
This means that the only case when the updates in (12) break down is sk−mk+i 6= 0 while

ŝk−mk+i = 0. Unfortunately, such a scenario is indeed possible if mk is chosen as min{m, k}
for some fixed 1 ≤ m ≤ ∞ (with m = ∞ usually called “full”-memory), a fixed-memory
strategy most commonly used in the literature. In particular, when m is greater than the
problem dimension n, we will always have ŝk = 0 for k > n due to linear dependence.

To address this issue, we enforce a re-start checking step that clears the memory immedi-
ately before the algorithm is close to stagnation. More explicitly, we keep mk growing, until
either mk = m+ 1 for some integer 1 ≤ m <∞ or ‖ŝk−1‖2 < τ‖sk−1‖2, in which case mk is
reset to 0 (i.e., no orthogonalization). The process is then repeated. Formally, the following
rule is adopted to select mk in each iteration k ≥ 0, initialized from m0 = 0:

Update mk = mk−1 + 1. If mk = m+ 1 or ‖ŝk−1‖2 < τ‖sk−1‖2, then reset mk = 0. (14)

Here τ ∈ (0, 1) is pre-specified. The main idea is to make sure that ŝk 6= 0 whenever
sk is so, which ensures that the modified updates (12) and (13) won’t break down before
reaching a solution. We actually require a bit more by imposing a positive parameter τ ,
which characterizes a strong linear independence between sk and the previous updates. This
leads to boundedness of Bk, as described in the following lemma.
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Lemma 3. Assume the same conditions as in Lemma 2, and in addition that mk is chosen
by rule (14). Then we have ‖Bk‖ ≤ 3(1 + θ̄ + τ)m/τm − 2 for all k ≥ 0.

Proof. Notice that by rule (14), we have ‖ŝk‖2 ≥ τ‖sk‖2 and mk ≤ m for all k ≥ 0. Hence
by (12), we have that

‖Bi+1
k ‖2 ≤ ‖Bi

k‖2 + θik
‖yk−mk+i −Bi

ksk−mk+i‖2

‖ŝk−mk+i‖2

≤ ‖Bi
k‖2 +

1 + θ̄

τ

‖yk−mk+i −Bi
ksk−mk+i‖2

‖sk−mk+i‖2

.

Noticing that yk−mk+i = g(xk−mk+i+1) − g(xk−mk+i) and that f(x)(= x − g(x)) is non-
expansive, we see that

‖Bi+1
k ‖2 ≤

1 + θ̄ + τ

τ
‖Bi

k‖2 +
2(1 + θ̄)

τ
,

and hence by telescoping the above inequality and the fact that ‖B0
k‖2 = 1, we conclude that

‖Bk‖2 = ‖Bmk
k ‖2 ≤ 3

(
1 + θ̄ + τ

τ

)m
− 2.

This completes our proof.

In sum, combining the modified updates with the re-starting choice of mk, the rank-
deficiency problem mentioned at the end of §2.3 is completely resolved. In particular, the
full-rank assumption on Sk is no longer necessary. Moreover, the inverse Hk = B−1

k is also
bounded, as described in the following corollary.

Corollary 4. Under the same assumptions in Lemma 3, we have for all k ≥ 0 that

‖Hk‖2 ≤
(

3

(
1 + θ̄ + τ

τ

)m
− 2

)n−1

/θ̄m. (15)

Proof. Denote the singular values of Bk as σ1 ≥ · · · ≥ σn. Then by Lemma 2, we have∏n
i=1 σi ≥ θ̄mk ≥ θ̄m. On the other hand, by Lemma 3, we have σ1 ≤ 3(1 + θ̄ + τ)m/τm − 2.

Hence we obtain that

‖Hk‖2 = 1/σn ≤
n−1∏
i=1

σi/θ̄
m ≤

(
3

(
1 + θ̄ + τ

τ

)m
− 2

)n−1

/θ̄m,

which finishes our proof.

We remark that for type-II methods as in [RS11], the algorithm can already get stuck
if g(xk+1) = g(xk), which is not informative enough for us to say anything. That’s also one
of the reasons for favoring the type-I AA in this paper. It’s also worth mentioning that
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empirical results in [PS15] and [HR18] have already suggested that cleaning memories from
time to time improves performance significantly for self-consistent field (SCF) methods and
EM-type algorithms, partially supporting our modification here.

Notice that when mk is chosen by rule (14) and Bk is computed as in Lemma 2, we
have Bi

k = Bk−mk+i. This means that in iteration k, only a rank-one update (12) with
i = mk−1 is needed, which yields Bk = Bmk

k from Bk−1 = Bmk−1
k . Moreover, we can remove

the necessity of maintaining updates for Bi
k used in Powell’s regularization by noticing that

Bi
ksk−mk+i = Bk−mk+isk−mk+i = −Bk−mk+iB

−1
k−mk+igk−mk+i = −gk−mk+i.

3.3 Safe-guarding steps

We are now ready to introduce the final piece for our modified AA-I algorithm. The main idea
is to interleave AA-I steps with the vanilla KM iteration steps to safe-guard the decrease
in residual norms g. In particular, we check if the current residual norm is sufficiently
small, and replace it with the α-averaged (or KM) operator of f in (1) (defined as fα(x) =
(1− α)x+ αf(x)) whenever not.

The idea of interleaving AA with vanilla iterations has also been considered in [BSP16]
with constant periods, and is observed to improve both accuracy and speed for a certain
class of algorithms (e.g., SCF), despite that no theoretical guarantees for convergence is
provided. Similar ideas have been applied to regularized AA [SdB16] and the classical
Broyden’s methods [TP16] to seek for smaller per-iteration costs without sacrificing much
the acceleration effects.

The resulting algorithm, combining all the aforementioned tricks, is summarized as Al-
gorithm 3. Here, lines 4-8 perform re-start checking (rule (14)) described in §3.2, lines 9-11
perform the Powell-type regularization (update (12)) described in §3.1, and lines 12-14 ex-
ecute the safe-guarding strategy described above. As mentioned at the end of §3.2, only
a rank-one update of (12) from i = mk − 1 is performed in iteration k, in which case the
subscript k −mk + i becomes k − 1.

Notice that in line 5 of Algorithm 3, instead of defining sk−1 = xk − xk−1 and yk−1 =
g(xk) − g(xk−1) as in §2.3, we redefine it using the AA-I trial update x̃k to ensure that
Bk−1sk−1 = −Bk−1B

−1
k−1gk−1 = −gk−1 still holds as mentioned at the end of §3.2, which

makes it possible to get rid of maintaining an update for Bk.
We remark that the assumptions in Lemma 2, Lemma 3 and Corollary 4 all hold for

Algorithm 3 unless a solution is reached and the problem is solved, despite that the updates
are modified in line 4 and the safe-guarding strategy is introduced in lines 12-14. This
comes immediately from the arbitrariness of the update sequence {si}k−1

i=k−mk
(c.f. Lemma

2), Formally, we have the following corollary.

Corollary 5. In Algorithm 3, the inequality (15) holds for all k ≥ 0. Moreover, the condition
number of Hk is uniformly bounded by

cond(Hk) ≤
(

3

(
1 + θ̄ + τ

τ

)m
− 2

)n
/θ̄m.

The proof is a simple combination of the results in Lemma 3 and Corollary 4.
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Algorithm 3 Stablized Type-I Anderson Acceleration (AA-I-S-m)

1: Input: initial point x0, fixed-point mapping f : Rn → Rn, regularization constants
θ̄, τ, α ∈ (0, 1), safe-guarding constants D, ε > 0, max-memory m > 0.

2: Initialize H0 = I, m0 = nAA = 0, Ū = ‖g0‖2, and compute x1 = x̃1 = fα(x0).
3: for k = 1, 2, . . . do
4: mk = mk−1 + 1.
5: Compute sk−1 = x̃k − xk−1, yk−1 = g(x̃k)− g(xk−1).

6: Compute ŝk−1 = sk−1 −
∑k−2

j=k−mk

ŝTj sk−1

ŝTj ŝj
ŝj.

7: If mk = m+ 1 or ‖ŝk−1‖2 < τ‖sk−1‖2

8: reset mk = 0, ŝk−1 = sk−1, and Hk−1 = I.
9: Compute ỹk−1 = θk−1yk−1 − (1− θk−1)gk−1

10: with θk−1 = φθ̄(γk−1) and γk−1 = ŝTk−1Hk−1yk−1/‖ŝk−1‖2.

11: Update Hk = Hk−1 +
(sk−1−Hk−1ỹk−1)ŝTk−1Hk−1

ŝTk−1Hk−1ỹk−1
, and x̃k+1 = xk −Hkgk.

12: If ‖gk‖ ≤ DŪ(nAA + 1)−(1+ε)

13: xk+1 = x̃k+1, nAA = nAA + 1.
14: else xk+1 = fα(xk).
15: end for

4 Analysis of global convergence

In this section, we give a self-contained proof for global convergence of Algorithm 3. The
proof can be divided into three steps. Firstly, we prove that the residual gk converges to 0.
We then show that ‖xk − y‖2 converges to some finite limit for any fixed point y ∈ X of f .
Finally, we we show that xk converges to some solution to (1). We note that some of the
arguments are motivated by the proofs in [Com01].

We begin by noticing that xk+1 either equals xk−Hkgk or fα(xk), depending on whether
the checking in line 12 of Algorithm 3 passes or not. We partition the iteration counts into
two subsets accordingly, with KAA = {k0, k1, . . . } being those iterations that passes line 12,
while KKM = {l0, l1, . . . } being the rest that goes to line 14.

Step 1: Convergence of gk. Consider y ∈ X an arbitrary fixed point of f .
For ki ∈ KAA (i ≥ 0), by Corollary 5, we have ‖Hki‖2 ≤ C for some constant C

independent of the iteration count, and hence

‖xki+1 − y‖2 ≤ ‖xki − y‖2 + ‖Hkigki‖2

≤ ‖xki − y‖2 + C‖gki‖2 ≤ ‖xki − y‖2 + CDŪ(i+ 1)−(1+ε).
(16)

For li ∈ KKM (i ≥ 0), since f is non-expansive, by Theorem 4.25(iii) in [BC10] or
inequality (5) in [RB16], we have that

‖xli+1 − y‖2
2 ≤ ‖xli − y‖2

2 − α(1− α)‖gli‖2
2 ≤ ‖xli − y‖2

2. (17)
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By telescoping the above inequalities, we obtain that

‖xk − y‖2 ≤ ‖x0 − y‖2 + CDŪ
∑∞

i=0
(i+ 1)−(1+ε) = E <∞, (18)

and hence ‖xk − y‖2 remains bounded for all k ≥ 0.
Hence by squaring both sides of (16), we obtain that

‖xki+1 − y‖2
2 ≤ ‖xki − y‖2

2 + (CDŪ)2(i+ 1)−(2+2ε) + 2CDEŪ(i+ 1)−(1+ε)︸ ︷︷ ︸
=εki

. (19)

Combining (17) and (19), we see that

α(1− α)
∑∞

i=0
‖gli‖2

2 ≤‖x0 − y‖2
2 +

∑∞

i=0
εki <∞, (20)

and hence limi→∞ ‖gli‖2 = 0. Noticing that ‖gki‖2 ≤ DŪ(i+1)−(1+ε) by line 12 of Algorithm
3, we also have limi→∞ ‖gki‖2 = 0. Hence we see that

lim
k→∞
‖gk‖2 = 0. (21)

Also notice that by defining εli = 0, we again see from (17) and (19) that

‖xk+1 − y‖2
2 ≤ ‖xk − y‖2

2 + εk, (22)

with εk ≥ 0 and
∑∞

k=0 εk =
∑∞

i=0 εki <∞.
Notice that in the above derivation of (20)-(22), we have implicitly assumed that both

KAA and KKM are infinite. However, the cases when either of them is finite is even simpler
as one can completely ignore the finite index set.

Step 2: Convergence of ‖xk−y‖2. Still consider y ∈ X an arbitrary fixed point of f . We
now prove that ‖xk− y‖2 converges. Since ‖xk− y‖2 ≥ 0, there is a subsequence {j0, j1, . . . }
such that limi→∞ ‖xji − y‖2 = u = lim infk→∞ ‖xk − y‖2. For any δ > 0, there exists an
integer i0 such that ‖xji0 − y‖2 ≤ u+ δ and

∑∞
k=ji0

εk ≤ δ. This, together with (22), implies

that for any k ≥ ji0 ,

‖xk − y‖2
2 ≤ ‖xji0 − y‖2

2 +
∑∞

k=ji0

εk ≤ u2 + 2δu+ δ2 + δ, (23)

and in particular, we have lim supk→∞ ‖xk − y‖2
2 ≤ lim infk→∞ ‖xk − y‖2

2 + δ(2u+ δ+ 1). By
the arbitrariness of δ > 0, we see that ‖xk − y‖2

2 (and hence ‖xk − y‖2) is convergent.

Step 3: Convergence of xk. Finally, we show that xk converges to some solution x? of
(1), i.e., x? = f(x?). To see this, notice that since ‖xk− y‖2 is bounded for y ∈ X, xk is also
bounded. Hence it must have a convergent subsequence by Weierstrass theorem.
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Suppose on the contrary that xk is not convergent, then there must be at least two
different subsequences {k′0, k′1, . . . } and {l′0, l′1, . . . } converging to two different limits y1 6= y2,
both of which must be fixed points of f . This is because that by (21), we have

0 = limi→∞ ‖g(xk
′
i)‖2 = ‖g(y1)‖2, 0 = limi→∞ ‖g(xl

′
i)‖2 = ‖g(y2)‖2,

where we used the fact that f is non-expansive and hence g(x) = x − f(x) is (Lipschitz)
continuous. Now notice that we have proved that α(y) = limk→∞ ‖xk − y‖2 exists for any
y ∈ X. By the simple fact that ‖xk − y‖2

2 − ‖y‖2
2 = ‖xk‖2

2 − 2yTxk, we have

lim
i→∞
‖xk′i‖2

2 = lim
k→∞
‖xk − y‖2

2 − ‖y‖2
2 + 2yT lim

i→∞
xk
′
i = α(y)− ‖y‖2

2 + 2yTy1,

lim
i→∞
‖xl′i‖2

2 = lim
k→∞
‖xk − y‖2

2 − ‖y‖2
2 + 2yT lim

i→∞
xl
′
i = α(y)− ‖y‖2

2 + 2yTy2.

Subtracting the above inequalities, we obtain that for any y ∈ X,

2yT (y1 − y2) = lim
i→∞
‖xk′i‖2

2 − lim
i→∞
‖xl′i‖2

2.

By taking y = y1 and y = y2, we see that yT1 (y1 − y2) = yT2 (y1 − y2), which implies that
y1 = y2, a contradiction. Hence we conclude that xk converges to some x̄, which must be a
solution as we have by (21) that 0 = limk→∞ ‖g(xk)‖2 = ‖g(x̄)‖2. Here we again used the
fact that f is non-expansive, and hence g(x) = x− f(x) is (Lipschitz) continuous.

In sum, we have the following theorem.

Theorem 6. Suppose that {xk}∞k=0 is generated by Algorithm 3, then we have limk→∞ x
k =

x?, where x? = f(x?) is a solution to (1).

5 Numerical results

In this section we present examples to demonstrate the power of AA-I. The major focus is on
optimization problems and algorithms, where f in (1) comes from the iterative algorithms
used to solve them. For each example, we specify the concrete form of f , verify its non-
expansiveness, and check the equivalence between the fixed-point problem and the original
problem.

We compare the performance of the following three algorithms for each experiment:

• The vanilla algorithm: e.g., gradient descent;

• AA-I-m: Algorithm 2 with max-memory m, choosing mk = min{m, k};

• AA-I-S-m: Algorithm 3 with max-memory m.

The convergence curves against both clock time (seconds) and iteration numbers will be
shown.
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5.1 Problems and algorithms

We begin by describing some example problems and the corresponding (unaccelerated) al-
gorithms used to solve them.

5.1.1 Proximal gradient descent

Consider the following problem:

minimize F1(x) + F2(x), (24)

where F1, F2 : Rn → R are convex closed proper (CCP), and F1 is L-strongly smooth.
We solve it using proximal gradient descent, i.e.,

xk+1 = proxαF2
(xk − α∇F1(xk)),

where α ∈ (0, 2/L). In our notation, the fixed-point mapping is f(x) = proxαF2
(x −

α∇F1(x)). For a proof of non-expansiveness for f and the equivalence between the fixed-
point problem and the original optimization problem (24), see [PB14].

Gradient descent (GD). When F2 = 0, proximal gradient descent reduces to vanilla
gradient descent for unconstrained problems, i.e., (denoting F = F1)

xk+1 = xk − α∇F (xk),

where α ∈ (0, 2/L), and the fixed-point mapping is f(x) = x− α∇F (x).

Projected gradient descent (PGD). When F2(x) = IK(x), with K being a nonempty
closed and convex set, problem (24) reduces to a constrained optimization problem. Ac-
cordingly, proximal gradient descent reduces to projected gradient descent, i.e., (denoting
F = F1)

xk+1 = ΠK(xk − α∇F (xk)),

where α ∈ (0, 2/L), and the fixed-point mapping is f(x) = ΠK(x− α∇F (x)).

Alternating projection (AP). When F1(x) = 1
2
dist(x,D)2 and F2(x) = IC(x), with

C, D being nonempty closed convex sets and C ∩D 6= ∅. The problem (24) then reduces to
finding an element x in the intersection C ∩D. Noticing that F1 is 1-smooth, by choosing
α = 1, proximal gradient descent reduces to alternating projection, i.e.,

xk+1 = ΠCΠD(xk),

with f(x) = ΠCΠD(x).
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ISTA. When F2 = µ‖x‖1, the problem reduces to sparsity-regularized regression (e.g.,
Lasso, when F1 is quadratic). Accordingly, proximal gradient descent reduces to Iterative
Shrinkage-Thresholding Algorithm (ISTA), i.e., (denoting F = F1)

xk+1 = Sαµ(xk − α∇F (xk)),

where α ∈ (0, 2/L), and

Sκ(x)i = sign(xi)(|xi| − κ)+, i = 1, . . . , n,

is the shrinkage operator. The fixed-point mapping here is f(x) = Sαµ(x− α∇F (x)).

5.1.2 Douglas-Rachford splitting

Consider the following problem:

find x such that 0 ∈ (A+B)(x), (25)

where A, B : Rn → 2Rn

are two maximal monotone relations.
Douglas-Rachford splitting (DRS) solves this problem by the following iteration scheme:

zk+1 = f(zk) = zk/2 + CACB(zk)/2, (26)

where CG is the Cayley operator of G, defined as CG(x) = 2(I + αG)−1(x) − x, where I is
the identity mapping, and α > 0 is an arbitrary constant. Since the Cayley operator CG
of a maximal monotone relation G is non-expansive and defined over the entire Rn, we see
that the fixed-point mapping f(x) = x/2 + CACB(x)/2 is a 1

2
-averaged (and hence non-

expansive) operator. The connection between (25) and (26) is established by the fact that
x solves (25) if and only if z solves (26) and x = RB(z), where RB is the resolvent operator
of B, RB(x) = (I + αB)−1.

Below we will implicitly use the facts that subgradients of CCP functions, linear mappings
Mx with M + MT � 0, and normal cones of nonempty closed convex sets are all maximal
monotone. These facts, as well as the equivalence between (25) and (26), can all be found
in [RB16].

Notice that whenever zk converges to a fixed-point of (26) (not necessarily following the
DRS iteration (26)), xk = RB(zk) converges to a solution of problem (25), where RB(x) =
(I + αB)−1(x) is the resolvent of B. This comes immediately from the equivalence between
(25) and (26) and the fact that RB is non-expansive [RB16] and hence continuous. Together
with Theorem 6, this ensures that the application of Algorithm 3 to the DRS fixed-point
problem (26) leads to the convergence of xk = RB(zk) to a solution of the original problem.

Consensus optimization (CO). In consensus optimization [RB16], we seek to solve

minimize
∑m

i=1 Fi(x) (27)
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where Fi : Rn → R are all CCP. Rewriting the problem as

minimize
∑m

i=1 Fi(xi) + I{x1=x2=···=xm}(x1, x2, . . . , xm), (28)

the problem reduces to (25) with

A(x) = (∂F1(x1), . . . , ∂Fm(xm))T ,

B(x) = N{x1=x2=···=xm}(x1, . . . , xm).

Since for a CCP function F : Rn → R and a nonempty closed convex set C, C∂F (x) =
2proxαF (x)−x and CNC

(x) = ΠC(x), we see that the DRS algorithm reduces to the following:

xk+1
i = argminxi Fi(xi) + (1/2α)‖xi − zki ‖2

2,

zk+1
i = zki + 2x̄k+1 − xk+1

i − z̄k, i = 1, . . . ,m.

where x̄k = 1
m

∑m
i=1 xi, and the fixed-point mapping f is the mapping from zk to zk+1. As

discussed above, xk+1 converges to the solution of (27) if zk converges to the fixed-point of
f , and hence can be deemed as approximate solutions to the original problem.

SCS. Consider the following generic conic optimization problem:

minimize cTx
subject to Ax+ s = b, s ∈ K. (29)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and K is a nonempty, closed and convex cone. Our
goal here is to find both primal and dual solutions when they are available, and provide a
certificate of infeasibility or unboundedness otherwise [OCPB16]. To this end, one seeks to
solve the associated self-dual homogeneous embedding (SDHE) system [YTM94],

Qu = v, (u, v)T ∈ C × C∗, (30)

where u = (x, y, τ)T ∈ Rn ×Rm ×R, v = (r, s, κ)T ∈ Rn ×Rm ×R, C = Rn × K∗ ×R+,
C∗ = {0}n ×K ×R+ is the dual cone of C, and the SDHE embedding matrix

Q =

 0 AT c
−A 0 b
−cT −bT 0

 .
The SDHE system can then be further reformulated into (25) ([TP16]), with A(u) = NC(u),
B(u) = Qu. Accordingly, DRS reduces to splitting conic solver (SCS) [OCPB16], i.e.,

ũk+1 = (I +Q)−1(uk + vk)

uk+1 = ΠC(ũ
k+1 − vk)

vk+1 = vk − ũk+1 + uk+1,
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Notice that here we have actually used an equivalent form of DRS described in [Van16] with
change of variables. In our notation, the fixed-point mapping f is

f(u, v) =

[
ΠC((I +Q)−1(u+ v)− v)
v − (I +Q)−1(u+ v) + u

]
,

which is non-expansive (c.f., the appendix in [OCPB16]).
Notice that with the transformations made, the equivalence and convergence properties

of DRS can not be directly applied here as in the previous examples. Nevertheless, the
equivalence between the fixed-point problem and the SDHE system here can be seen directly
by noticing that f(u, v) = (u, v)T if and only if

(I +Q)−1(u+ v) = u, ΠC((I +Q)−1(u+ v)− v) = u,

i.e., Qu = v and ΠC(u− v) = u. By Moreau decomposition [PB14], we have

ΠC(u− v) + Π−C∗(u− v) = u− v,

and hence
ΠC(u− v) = u⇔ Π−C∗(u− v) = −v ⇔ ΠC∗(v − u) = v.

Hence we see that f(u, v) = (u, v)T ⇒ Qu = v, (u, v)T ∈ C × C∗. On the other hand, when
Qu = v and (u, v) ∈ C × C∗, we have uTv = uTQu = 0 by the skew-symmetry of Q, and
hence for any w ∈ C,

‖u− v − w‖2
2 = ‖u− w‖2

2 + ‖v‖2
2 − 2vT (u− w) = ‖u− w‖2

2 + ‖v‖2
2 + 2vTw ≥ ‖v‖2

2,

where the last inequality comes from the fact that vTw ≥ 0 as v ∈ C∗ and w ∈ C, and the
equality is achieved if and only if u = w. Hence we have ΠC(u − v) = u, from which we
conclude that (u, v)T is a fixed-point of f if and only if Qu = v, (u, v)T ∈ C×C∗, i.e., (u, v)T

solves the SDHE system.

5.1.3 Contractive mappings in different norms

As we can see from (17) in the proof of Theorem 6, which does not hold for general norms,
the `2-norm in the definition of non-expansiveness is essential to our analysis of global con-
vergence. Nevertheless, an expansive mapping in one norm may be non-expansive or even
contractive in another norm, as we will see in the examples below. When a mapping is
actually contractive in some (arbitrary) norm, the global convergence of Algorithm 3 can
still be guaranteed. Formally, we have the following theorem.

Theorem 7. Suppose that {xk}∞k=0 is generated by Algorithm 3, but with α = 1, and instead
of f being non-expansive (in `2-norm) in (1), f is γ-contractive in some (arbitrary) norm
‖ · ‖ (e.g., l∞-norm) on Rn, where γ ∈ (0, 1). Then we still have limk→∞ x

k = x?, where
x? = f(x?) is a solution to (1).

20



The proof can be found in the appendix. Notice that the global convergence in the above
algorithm also holds for α ∈ (0, 1), and the proof is exactly the same apart from replacing
γ with (1− α) + αγ, which is larger than γ but is still smaller than 1. The only reason for
specifying α = 1 is that it gives the fastest convergence speed both in theory and practice
for contractive mappings.

Value iteration (VI). Consider solving a discounted Markov decision process (MDP)
problem with (expected) reward R(s, a), transition probability P (s, a, s′), initial state dis-
tribution π(·), and discount factor γ ∈ (0, 1), where s, s′ ∈ {1, . . . , S} and a ∈ {1, . . . , A}.
The goal is to maximize the (expected) total reward Eπ[

∑∞
t=0 γ

tr(st, µ(st))] over all possible
(stationary) policies µ : {1, . . . , S} → {1, . . . , A}, where st+1 ∼ P (st, µ(st), ·).

One of the most basic algorithms to solve this problem is the well-known value iteration
algorithm:

xk+1 = Txk,

where xk approximates the optimal value function V ?(s) = maxµ E[
∑∞

t=0 γ
tr(st, µ(st))|s0 =

s], and T : RS → RS is the Bellman operator:

(Tx)s = max
a=1,...,A

R(s, a) + γ
∑S

s′=1
P (s, a, s′)xs′ .

In our notation, the fixed-point mapping f(x) = T (x). A prominent property of T is that
although not necessarily non-expansive in `2-norm, it is γ-contractive under the l∞-norm,
i.e.,

‖Tx− Ty‖∞ ≤ γ‖x− y‖∞.
By Theorem 7, the global convergence is still guaranteed when Algorithm 3 is applied to

VI here. We also remark that it would be interesting to apply the accelerated VI to solving
the MDP subproblems in certain reinforcement learning algorithms (e.g., PSRL [ORR13],
UCRL2 [JOA10]), where the rewards r and transitions P are unknown.

Heavy ball (HB). Consider the following convex quadratic program (QP),

minimize F (x) = 1
2
xTAx+ bTx+ c (31)

where A ∈ Rn×n is positive definite with its eigenvalues lying between µ and L, b is a
constant vector, and c is a constant scalar. Equivalently, we consider solving the nonsingular
linear equation Ax+b = 0. Notice that this is just a special case of the optimization problem
for gradient descent described above, and the unique optimizer is simply x? = −A−1b and
can be obtained by solving the corresponding linear equation. But here we instead consider
solving it using the heavy-ball method, which enjoys a faster linear convergence rate than
the vanilla gradient descent [Rec10].

The heavy ball (HB) method is a momentum-based variant of the usual gradient descent,
which takes the following form of iterations:

xk+1 = xk − α(Axk + b) + β(xk − xk−1),
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where α = 4
(
√
L+
√
µ)2

and β =
√
L−√µ√
L+
√
µ
.

Viewing (xk, xk−1)T as the iteration variable, the fixed-point mapping f is

f(x′, x) =

[
x′ − α(Ax′ + b) + β(x′ − x)

x′

]
= T

[
x′

x

]
+ h,

where

T =

[
(1 + β)I − αA −βI

I 0

]
, h =

[
−αb

0

]
,

in which z lies on the segment between x and x′, and I is the n-by-n identity matrix.
It’s easy to see that (x′, x)T is a fixed-point of f if and only if x = x′ and Ax′ + b = 0,

and hence x = x′ are both solutions to the original problem.
In general, f may not be non-expansive in `2-norms. However, for any norm ‖ · ‖ on Rn,

‖f(x′, x)− f(y′, y)‖ ≤ ‖T‖‖(x′ − y′, x− y)T‖,

where we use the same notation for the induced norm of ‖ · ‖ on Rn×n, i.e., ‖T‖ =
supx 6=0 ‖Tx‖/‖x‖. By noticing that the eigenvalues of A all lie between µ and L, we see
that the spectral radius of T is upper bounded by [Rec10]

ρ(T ) ≤ (
√
κ− 1)/(

√
κ+ 1) < 1,

where κ = L/µ. Hence for any sufficiently small ε satisfying
√
κ−1√
κ+1

+ ε < 1, we can define the

norm ‖ · ‖ as ‖x‖ = ‖D(1/ε)S−1x‖1, where ‖ · ‖1 is the l1-norm,

T = S diag (Jn1(λ1), Jn2(λ2), . . . , Jnk
(λk))S

−1

is the Jordan decomposition of T , and

D(η) = diag (Dn1(η), Dn2(η), . . . , Dnk
(η)) ,

in which Dm(η) = diag(η, η2, . . . , ηm). Then we have γ = ‖T‖ ≤ ρ(T ) + ε < 1 [Fou12], and
hence f is γ-contractive in the norm ‖ · ‖.

We remark that the although the above example seems to be a bit trivial as f is an
affine mapping, there has been no global convergence result even for these simple cases as
the existing analysis for applying AA to linear equations all require a full memory [WN11,
PE13, RS11]. This indicates that even for affine mappings, one may not be able to avoid
our analysis based on non-expansiveness or contractivity. And the HB example here further
exemplifies the flexibility of choosing norms for verifying these properties, and restriction to
the `2-norm is unnecessary.

We also remark that similar analysis may be conducted for general strongly convex and
strongly smooth objective F , and a convex set constraint may be included by adding a
projection step on top of HB. But here we restrict to the above toy case for succinctness,
and we leave the more general scenarios for future work.
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5.2 Numerical experiments

We are now ready to illustrate the performance of the Anderson Acceleration algorithms
with the example problems and (unaccelerated) algorithms above. All the experiments are
run using Matlab 2014a on a system with two 1.7 GHz cores and 8 GB of RAM, running
macOS X El Capitan.

For each experiment, we show the convergence curves of one representative run against
clock time (seconds) and iteration numbers, respectively. The instances we show below are
slightly biased towards more difficult ones to better exemplify the improvement of AA-I-S-
m (Algorithm 3) over the original AA-I-m (Algorithm 2) . However, in fact our modified
algorithm outperforms the original AA-I-m in more than 80% of the tests we tried, and is
at least as good as AA-I-m in almost all cases, both in terms of iteration numbers and clock
time.

The codes for the experiments, including some further comparisons with other algorithms
(e.g., AA-II and its regularized version [SdB16], which are also beaten by our algorithm in
most cases, but we only present results focusing on the comparison within the AA-I algo-
rithms) can be found in https://github.com/cvxgrp/nonexp_global_aa1. The random
seeds are all set to 456, i.e., the one used for producing the plots in this paper for repro-
ducibility. Code in other languages, including Python and Julia, is being developed and will
soon be posted.

5.2.1 Implementation details

Before we move on to the numerical results, we first describe in more details the implemen-
tation tricks for better efficiency.

Matrix-free updates. In line 11 of Algorithm 3, instead of computing and storing Hk,

we actually first compute dk = Hk−1gk +
(sk−1−Hk−1ỹk−1)ŝTk−1Hk−1gk

ŝTk−1Hk−1ỹk−1
, and then update x̃k+1 =

xk − dk. This leads to a much more efficient matrix-free implementation. Another small
trick we use is to normalize the ŝk vectors, store them, and keep them transposed to save
the computational overhead.

Termination criteria. In all our experiments, we simply terminate the experiment when
either the iteration number reaches a pre-specified maximum Kmax, or the relative residual
norm ‖gk‖2/‖g0‖2 is smaller than some tolerance tol. Accordingly, the residual norms in
the plots are all rescaled by dividing ‖g0‖2, so all of them starts with 1 in iteration 0. The
initial residual norm ‖g0‖2 is shown in the title as res0. Unless otherwise specified (e.g.,
ISTA for elastic net regression), we always choose Kmax = 1000 and tol = 10−5. We remark
that although not shown in the plots, the residual norms actually continue to decrease as
iterations proceed in all the examples below.

Choice of hyper-parameters. Throughout the experiments, we use a single set of hyper-
parameters to show the robustness of our algorithm (Algorithm 3). We choose θ = 0.01,
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τ = 0.001, D = 106, ε = 10−6, and memory m = 5 (apart from the memory effect experiment
on VI, in which we vary the memory sizes to see the performance change against memories).
We choose a small averaging weight α = 0.1 to make better use of the fact that most vanilla
algorithms already correspond to averaged f .

Additional rules-of-thumb. In our algorithm, in general by setting a relatively small
D and large ε, one enforces the modified algorithm to use safe-guarding steps more often,
making it closer to the original AA-I-m. This may be wanted in case the problems are
relatively easy and safe-guard checking is a slight waste of time. The Powell regularization
parameter should not be set too large, as it will empirically break down the acceleration
effect. For the re-start checking parameter τ , a choice ranging from 0.001 to 0.1 are all found
reasonable in our experiments. A large τ will force the algorithm to re-start quite often,
making it close to choosing the memory size m = 1. A memory size ranging from 2 to 50 are
all found to be reasonable choices, with larger memories leading to more stable acceleration
with slightly larger per-iteration costs. However, when the memory size becomes too large,
especially when it is close to the variable dimension, our algorithm (as well as the original
AA-I-m) will again become unstable.

In addition, AA algorithms are in general relatively more sensitive to scaling than the
vanilla algorithms. For most of the random instances we show below, the scaling is unneces-
sary as expected. However, even for the synthetic but structural UCI Madelon dataset used
in the regularized logistic regression example below, the AA algorithms will fail if we do not
divide m in the objective. Similar issues occur when we come to the heavy ball example
below with an ill-conditioned linear system. Hence in practice, the problem data need to be
scaled. For examples of pre-scaling and pre-conditioning, see [OCPB16].

5.2.2 Problem instances

We consider the following specific problem instances for the algorithms listed in Section 5.1,
ranging from statistics, control to game theory and so on. For each plot, AA-I-m is labeled
as aa1, AA-I-S-m is labeled as aa1-safe, and the original (vanilla) algorithm is labeled as
origin. The residual norms are computed in the `2-norm, i.e., the vertical axis in the plots
is ‖gk‖2. In the title of the “residual norm versus time” figures, “time ratio” indicates the
average time per iteration of the specified algorithm divided by that of the vanilla algorithm.
The average is computed for the single run shown in the figure among all the iterations up
to Kmax.

GD: Regularized logistic regression. We consider the following regularized logistic
regression (Reg-Log) problem:

minimize
1

m

∑m
i=1 log(1 + yiθ

Txi) +
λ

2
‖θ‖2

2, (32)

where yi = ±1 are the labels, and xi ∈ Rn are the features and attributes. The minimization
is over θ ∈ Rn. We use UCI Madelon dataset, which contains 2000 samples (i.e., m = 2000)
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and 500 features (i.e., n = 500) . We choose λ = 0.01, and initialize x0 with independent
normally distributed entries, i.e., using randn.m. To avoid numerical overflow, we normalize
x0 to have a `2-norm equal to 0.001. The step size α is chosen as 2/(L + λ), where L =
‖X‖2

2/4m is an upper bound on the largest eigenvalues of the objective Hessians [SdB16],
and X = [x1, . . . , xm]. The results are shown in Figure 1.
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Figure 1: GD: Reg-Log. Left: residual norm versus iteration. Right: residual
norm versus time (seconds).

In this example, the original AA-I-m completely fails, and our modified AA-I-S-m obtains
a 100x-1000x improvement over the original gradient descent algorithm in terms of the
residual norms. Interestingly, although the residual norms of AA-I-S-m oscillate above the
vanilla algorithm at several points, the improvement in terms of objective values is much
more stable, as shown in Figure 2. Here the vertical axis is the objective value minus the
smallest objective value found among all three algorithms. The objective value of the original
AA-I-m is mostly not even plotted as plugging its corresponding iterates into (32) yields∞.

HB: Linear system. As described in §5.1.3, we consider the simple problem of solving
the nonsingular linear system Ax + b = 0, where A ∈ Rn×n is positive definite and b is a
constant vector. We generate A = BTB + 0.005I, where I is the n-by-n identity matrix,
and B ∈ Rbn/2c×n is generated by randn.m. The vector b is also generated with randn.m.
We choose n = 1000 in our experiments. To compute the step sizes α and β, we choose µ as
0.005 and L = ‖A‖F , which avoids the expensive eigenvalue decomposition.

Notice that here we deliberately choose B to be a “fat” matrix so that A is ill-conditioned.
In our example, the condition number is cond(A) ≈ 6.4629 × 105. And with κ = L/µ ≥
cond(A), the convergence of the vanilla HB algorithm will be rather slow, as can be seen
from the theoretical convergence rate (

√
κ− 1)/(

√
κ+ 1) (which is super close to 1).
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Figure 2: GD: Reg-Log. Left: objective value versus iteration. Right: objective
value versus time (seconds).

To remedy this, we adopt a simple diagonal scaling strategy that scales A and b by the row
and column absolute value sums of A = (aij)n×n. More explicitly, we compute Â = D−1A
and b̃ = D−1b, where

D = diag

(
n∑
j=1

|a1j|, . . . ,
n∑
j=1

|anj|

)
.

We then further right diagonalize Â = (âij)n×n as Ã = ÂE−1, where

E = diag

(
n∑
i=1

|âi1|, . . . ,
n∑
i=1

|âin|

)
.

Essentially, this is exactly performing one step of Sinkhorn-Knopp algorithm to the absolute
value matrix |A| = (|aij|)n×n of A for matrix equilibration [Kni08]. Obviously, we see that
x̃ is the solution to Ãx̃ + b̃ = 0 if and only if x = E−1x̃ is the solution to Ax + b = 0. The
results are shown in Figure 3, from which we again see the anticipated improvement.

AP: Linear program. We consider solving the following linear program (LP),

minimize cTx
subject to Ax = b, x ∈ K, (33)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and K is a nonempty, closed and convex cone. Notice
that here we deliberate choose a different (dual) formulation of (29) to show the flexibility
of our algorithm, which can be easily mounted on top of vanilla algorithms.
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Figure 3: HB: linear system. Left: residual norm versus iteration. Right: residual
norm versus time (seconds).

As in SCS, (33) can be similarly formulated as the self-dual homogeneous embedding
(SDHE) system (30), but now with

Q =

 0 −AT c
A 0 −b
−cT bT 0

 , C = K ×Rm ×R+.

Under the notations of AP, solving the SDHE system above reduces to finding a point in
the intersection of C and D, with C = {(u, v) | Qu = v} and D = C × C∗, which can then
be solved by AP.

We generate a set of random data ensuring primal and dual feasibility of the original
problem (33), following [OCPB16]. More specifically, we first generate A as a sparse random
matrix with sparsity 0.1 using sprandn.m. We then generate z? with randn.m, and take
x? = max(z?, 0), s? = max(−z?, 0) where the maximum is taken component-wisely. We then
also generate y? with randn.m, and take b = Ax?, c = ATy? + s?. In our experiments, we set
m = 500 and n = 1000, and x0 is simply initialized using randn.m and then normalized to
have a unit `2-norm.

In addition, as in the HB example above and SCS [OCPB16], we perform diagonal scaling
on the problem data. More explicitly, we compute Ã = D−1AE−1 exactly as in the HB
example, and accordingly scale b to be b̃ = D−1b and c to be c̃ = E−1c. Again, we see that
x̃ is a solution to (33) with A, b, c replaced with the scaled problem data Ã, b̃, c̃, if and only
if x = E−1x̃ is a solution to the original problem.

The results are summarized in Figure 4. We can see that our algorithm AA-I-S-m com-
pares favorably with the original AA-I-m in terms of iteration numbers, and both AA-I-S-m
and AA-I-m outperform the vanilla AP algorithm. In terms of running time, we can see a
further slight improvement over the original AA-I-m.
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Figure 4: AP: LP as SDHE. Left: residual norm versus iteration. Right: residual
norm versus time (seconds).

PGD: Non-negative least squares and convex-concave matrix game. We consider
the following non-negative least squares (NNLS) problem:

minimize 1
2
‖Ax− b‖2

2

subject to x ≥ 0,
(34)

where A ∈ Rm×n and b ∈ Rm.
Such a problem arises ubiquitously in various applications, especially when x has certain

physical interpretation [CP10]. We consider the more challenging high dimensional case,
i.e., m < n [SH13]. The gradient of the objective function can be simply evaluated as
ATAx− AT b, and hence the PGD algorithm can be efficiently implemented.

We generate both A and b using randn.m, with m = 500 and n = 1000. We again
initialize x0 using randn.m and then normalize it to have a unit `2-norm. The step size α is
set to 1.8/‖ATA‖2. The results are summarized in Figure 5.

We also consider a more specialized and structured problem: convex-concave matrix game
(CCMG), which can be reformulated into a form solvable by PGD, as we show below.

A CCMG can be formulated as the following LP [BV04]:

minimize t
subject to u ≥ 0, 1Tu = 1, P Tu ≤ t1,

(35)

where t ∈ R, u ∈ Rm are variables, and P ∈ Rm×n is the pay-off matrix. Of course we can
again reformulate it as an SDHE system and solve it by AP as above. But here we instead
consider a different reformulation amenable to PGD.

To do so, we first notice that the above LP is always feasible. This can be seen by
choosing u to be an arbitrary probability vector, and setting t = ‖P Tu‖∞. Hence the above
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Figure 5: PGD: NNLS. Left: residual norm versus iteration. Right: residual norm
versus time (seconds).

LP can be further transformed into

minimize t+ 1
2
‖P Tu+ s− t1‖2

2

subject to u ≥ 0, 1Tu = 1, s ≥ 0,
(36)

where we introduce an additional (slack) variable s ∈ Rn. Using the efficient projection
algorithm onto the probability simplex set [WCP13, BV04], the above problem can be solved
efficiently by PGD.

We generate P using randn.m with m = 500 and n = 1500. Again, x0 is initialized using
randn.m and then normalized to have a unit `2-norm. The step size α is set to 1.8/‖ÃT Ã‖2,
where Ã = [P T , I, e], in which I is the n-by-n identity matrix and e ∈ Rn is an all-one
vector. The results are summarized in Figure 6.

ISTA: Elastic net regression. We consider the following elastic net regression (ENR)
problem [ZH05]:

minimize 1
2
‖Ax− b‖2

2 + µ
(

1−β
2
‖x‖2

2 + β‖x‖1

)
, (37)

where A ∈ Rm×n, b ∈ Rm. In our experiments, we take β = 1/2 and µ = 0.001µmax, where
µmax = ‖AT b‖∞ is the smallest value under which the ENR problem admits only the zero
solution [OCPB16]. ENR is proposed as a hybrid of Lasso and ridge regression, and has been
widely used in practice, especially when one seeks both sparsity and overfitting prevention.

Applying ISTA to ENR, we obtain the following iteration scheme:

xk+1 = Sαµ/2

(
xk − α

(
AT (Ax− b) +

µ

2
x
))

,

in which we choose α = 1.8/L, with L = λmax(ATA) + µ/2.
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Figure 6: PGD: CCMG. Left: residual norm versus iteration. Right: residual norm
versus time (seconds).

We again consider a harder high dimensional case, where m = 500 and n = 1000. The
data is generated similar to the Lasso example in [OCPB16]. More specifically, we generate
A using randn.m, and then generate x̂ ∈ Rn using sprandn.m with sparsity 0.1. We then
generate b as b = Ax̂ + 0.1w, where w is generated using randn.m. The initial point x0 is
again generated by randn.m and normalized to have a unit `2-norm. The step size is chosen
as α = 1.8/L, where L = ‖ATA‖2 +µ/2. The results are shown in Figure 7. Here we set the
tolerance tol to 10−8 to better exemplify the performance improvement of our algorithm in
a relative long run.
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Figure 7: ISTA: ENR. Left: residual norm versus iteration. Right: residual norm
versus time (seconds).
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CO: Facility location. Consider the following facility location problem [XY97]:

minimize
∑m

i=1 ‖x− ci‖2, (38)

where ci ∈ Rn, i = 1, . . . ,m are locations of the clients, and the goal is to find a facility
location that minimizes the total distance to all the clients.

Applying CO to this problem with α = 1, we obtain that ([PB14])

xk+1
i = prox‖·‖2(z

k
i + ci)− ci

zk+1
i = zki + 2x̄k+1 − xk+1

i − z̄k, i = 1, . . . ,m,

where prox‖·‖2(v) = (1− 1/‖v‖2)+v.
Notice that all the updates can be parallelized. In particular, in the Matlab implementa-

tion no for loops is needed within one iteration, which is important to the numerical efficiency.
We generate ci using sprandn.m, with m = 500 and n = 300 and sparsity 0.01. The results
are summarized in Figure 8. Notice that here we again set the tolerance tol to 10−8 to better
demonstrate the improvement of our algorithm, and we truncate the maximum iteration
number to Kmax = 500 for better visualization.
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Figure 8: CO: facility location. Left: residual norm versus iteration. Right: resid-
ual norm versus time (seconds).

We remark that in general, the `2-norm can also be replaced with an arbitrary p-norm,
and more generally any function for which the proximal operators can be easily evaluated.

SCS: Cone programs. Consider (29) with K = Rm
+ (resp. K = {s ∈ Rm | ‖s1:m−1‖2 ≤

sm}), i.e., a generic LP (resp. SOCP). We solve it using a toy implementation of SCS, i.e.,
one without approximate projection, CG iterations, fine-tuned over-relaxation and so on.
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We make use of the following explicit formula for the projection onto the second order
cone K = {s ∈ Rm | ‖s1:m−1‖2 ≤ sm} ([PB14]):

ΠK(s) =


s if ‖s1:n−1‖2 ≤ sn
0 if ‖s1:n−1‖2 ≤ −sn
‖s1:n−1‖2+sn

2

[
s1:n−1

‖s1:n−1‖2 , 1
]T

otherwise.

For both LP and SOCP, we choose m = 500 and n = 700, and x0 is initialized using
randn.m and then normalized to have a unit `2-norm. We again follow [OCPB16] to generate
data that ensures primal and dual feasibility of the original cone programs.

For LP, we generate A as a horizontal concatenation of sprandn(m,bn/2c,0.1) and
identity matrix of size m × bn/2c, added with a noisy term 1e-3 * randn(m, n). We
then generate z? using randn.m, and set s? = max(z?, 0) and y? = max(−z?, 0), where the
maximum is also taken component-wisely. We then also generate x? using randn.m, and
take b = Ax? + s? and c = −ATy?.

For SOCP, we similarly generate A exactly the same as in LP. We then generate z?

using randn.m, and set s? = ΠK(z?) and y? = s? − z?, where the maximum is also taken
component-wisely. We then once again generate x? using randn.m, and take b = Ax? + s?

and c = −ATy?.
The results are summarized in Figure 9 and Figure 10.
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Figure 9: SCS: LP. Left: residual norm versus iteration. Right: residual norm
versus time (seconds).

VI: Markov decision process. As described in §5.1.3, we consider solving a general
random Markov decision process (MDP) using VI. In our experiments, we choose S = 300
and A = 200, and we choose a large discount factor γ = 0.99 to make the problem more
difficult, thusly making the improvement of AA more explicit.
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Figure 10: SCS: SOCP. Left: residual norm versus iteration. Right: residual norm
versus time (seconds).

The transition probability matrices Pa ∈ RS×S, a = 1, . . . , A are first generated as sprand
(S, S, 0.01) + 0.001I, where I is the S-by-S identity matrix, and then row-normalized to be
a stochastic matrix. Here the addition of 0.001I is to ensure that no all-zero row exists.
Similarly, the reward matrix R ∈ RS×A is generated by sprandn.m with sparsity 0.01. The
results are summarized in Figure 11. Notice that the maximum iteration Kmax is set to 50
for better visualization.
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Figure 11: VI: MDP. Left: residual norm versus iteration. Right: residual norm
versus time (seconds).

It would be interesting to test the algorithms on more structured MDP, e.g., the chain
MDP, frozen lake, grid world, and more practically an energy storage problem (http://
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castlelab.princeton.edu/html/datasets.htm#storagesalas).
Moreover, it would also be interesting to see how our algorithm helps as a sub-solver in

other reinforcement learning algorithms.

Influence of memory sizes. Finally, we rerun the VI experiments above with different
memories m = 2, 5, 10, 20, 50. We consider a slightly smaller problem size S = 200
and A = 100 here for faster running of a single instance, which facilitates the empirical
verification of the representativeness of the plot we show here. All other data are exactly
the same as in the above example. The results are summarized in Figure 12. Notice that
again the maximum iteration Kmax is set to 50 for better visualization.
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Figure 12: VI: memory effect. Left: residual norm versus iteration. Right: residual
norm versus time (seconds).

We can see from the figures that the best performance is achieved (for both AA-I-S-m
and the original AA-I-m) when m = 10, and deviating from 10 in either direction impedes
the performance. However, choosing a reasonably large memory size seems to be a more
stable choice compared to choosing a small one, as can be seen from the case when m = 5.

5.2.3 Summary of numerical results

As we have seen above, surprisingly our algorithm actually performs better than the original
AA-I-m in various cases, sometimes even when AA-I-m does not seem to suffer much from
instability (e.g., SCS for SOCP), and the improvement is more significant when the latter
does (e.g., GD for regularized logistic regression).

In terms of running time, the safe-guard checking steps does seem to slightly slow down
our algorithm AA-I-S-m, as expected. This is more obvious for simple problems with larger
sizes (e.g., VI for MDP). Nevertheless, due to the easiness of such problems the extra time
is still quite affordable, making this a minor sacrifice for robustness. In addition, as in our
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algorithm the approximate Jacobians are computed with rank-one updates and re-starts are
invoked from time to time, it is indeed potentially faster than the original fixed-memory
AA-I-m, in which the approximate Jacobian is computed from scratch with m memories.
This is also exemplified in most of our numerical experiments shown above.

Finally, by better parallelization and GPU acceleration, the per-iteration running time
of both AA-I-S-m and AA-I-m should be further improved compared to the current single
CPU version without any nontrivial parallelization. This may relieve the contrary result
of acceleration and deceleration of the original AA-I-m in terms of iteration numbers and
time respectively in some examples above (e.g., CO for facility location), and may further
improve the acceleration effect of our algorithm in terms of computational time.

6 Extensions to more general settings

In this section, we briefly outline some extended convergence analysis and results of our
algorithm in several more general settings, and discuss the necessity of potential modifications
of our algorithm to better suit some more challenging scenarios. We then conclude our work
with some final remarks, and shed some light on potential future directions to be explored.

Quasi-nonexpansive mappings. A mapping f : Rn → Rn is called quasi-nonexpansive
if for any y ∈ X a fixed-point of f , ‖f(x) − y‖2 ≤ ‖x − y‖2 for any x ∈ Rn. Obviously,
non-expansive mappings are quasi-nonexpansive.

Our convergence theorems actually already hold for these slightly more general mappings.
By noticing that non-expansiveness is only applied between an arbitrary point and a fixed-
point of f in the proof of Theorem 6 we immediately see that the same global convergence
result hold if f is only assumed to be quasi-nonexpansive.

Similarly, Theorem 7 remain true if the contractivity is assumed only between an arbitrary
point and a fixed-point of f , i.e., ‖f(x) − f(y)‖ ≤ γ‖x − y‖ for any x ∈ Rn and y ∈ X,
which we term as quasi-γ-contractive.

Formally, we have the following corollary:

Corollary 8. Suppose that {xk}∞k=0 is generated by Algorithm 3, and instead of f being
non-expansive (in `2-norm) in (1), we only assume that f is either quasi-nonexpansive (in
`2-norm), or quasi-γ-contractive in some (arbitrary) norm ‖·‖ (e.g., l∞-norm) on Rn, where
γ ∈ (0, 1). Then we still have limk→∞ x

k = x?, where x? = f(x?) is a solution to (1). In the
latter (quasi-γ-contractive) case, the averaging weight α can also be taken as 1.

Iteration-dependent mappings. Consider the case when the mapping f varies as it-
eration proceeds, i.e., instead of a fixed f , we have fk : Rn → Rn for each k = 0, 1, . . . .
The goal is to find the common fixed-point of all fk (assuming that it exists), i.e., finding
x? ∈ ∩k≥0Xk with Xk being the fixed-point set of fk. For example, in GD, we may consider
a changing (positive) step size, which will result in a varying mapping f . However, the
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common fixed-point of all fk is still exactly the optimal solution to the original optimization
problem. In fact, all fk have the same fixed-point set.

Assuming non-expansiveness (actually quasi-nonexpansiveness suffices) of each fk, k ≥ 0,
and that the fixed-point set Xk = X of fk is the same across all k ≥ 0, both of which hold
for GD with positive varying step sizes described above, we can still follow exactly the same
steps 1 and 2 of the proof for Theorem 6 to obtain that ‖gk‖2 → 0 as k → ∞, where
gk = xk − fk(xk), and that ‖xk − y‖2 converges for any fixed-point y ∈ X.

Unfortunately, in general step 3 does not go through with these changing mappings.
However, if we in addition assume that for any sequence xk ∈ Rn, limk→∞ ‖xk−fk(xk)‖2 = 0
and xk → x̄ ⇒ x̄ ∈ X, then any limit point of xk is a common fixed-point of fk’s in X. The
rest of step 3 then follows exactly unchanged, which finally shows that Theorem 6 still holds
in this setting.

Formally, we have the following corollary:

Corollary 9. Suppose that fk : Rn → Rn, k ≥ 0 are all quasi-nonexpansive, and that the
fixed-point sets Xk = {x ∈ Rn | fk(x) = x} of fk are equal to the same set X ⊆ Rn. Assume
in addition that for any sequence {zk}∞k=0 ⊆ Rn, if limk→∞ ‖zk − fk(zk)‖2 = 0 and zk → z̄
for some z̄ ∈ Rn, then z̄ ∈ X. Suppose that {xk}∞k=0 is generated by Algorithm 3, with f
replaced with fk in iteration k. Then we have limk→∞ x

k = x?, where x? = f(x?) is a solution
to (1).

Although the additional assumption about “zk” seems to be a bit abstract, it does hold
if we nail down to the aforementioned specific case, the GD example with varying step sizes,
i.e., fk(x

k) = xk −αk∇F (xk), and if we assume in addition that the step size αk is bounded
away from 0, i.e., αk ≥ ε > 0 for some positive constant ε for all k ≥ 0.

In fact, by limk→∞ ‖gk‖2 = limk→∞ ‖xk − fk(xk)‖2 = 0, we have limk→∞ α
k‖∇F (xk)‖2 =

0, which implies that limk→∞ ‖∇F (xk)‖2 = 0 as αk ≥ ε > 0. In particular, any limit point
x̄ of xk satisfies ∇F (x̄) = 0 by the continuity of ∇F assumed in §5.1.1, i.e., x̄ ∈ X. Hence
we see that the assumptions made in Corollary 9 all hold in this example, and hence global
convergence of xk is ensured.

A similar analysis can be carried out to reprove Theorem 7 in this setting.
Nevertheless, it remains open what assumptions are needed in general to obtain global

convergence as in Theorem 6 and Theorem 7. In particular, the above analysis fails if αk is
vanishing, which may arise in many practical cases, e.g., training of deep neural networks
(using stochastic algorithms, which is to be discussed below). It might be true that some
adaptive mechanisms need to be included in the design of our algorithm to fully fit to this
changing mapping scenario.

Non-expansive mappings in non-Euclidean norms. Theorem 7 establishes global
convergence for contractive mappings in arbitrary norms. It is hence natural to ask what
happens if f is only non-expansive (instead of contractive) in an arbitrary norm different
from the `2-norm. More generally, the norm in which the mapping f is non-expansive or
contractive may also change as the iterations proceed, which is exactly the case if we perform
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the same analysis of HB for a general strongly convex and strongly smooth objective function.
In general, finding out the additional assumptions needed for the global convergence of the
current algorithm in these settings, or a way to further modify our algorithm to work here
if necessary, may largely contribute to a more flexible algorithm.

7 Conclusions

In this paper, we modify the type-I Anderson acceleration (AA-I) to propose a globally con-
vergent acceleration algorithm that works for general non-expansive non-smooth fixed-point
problems, with no additional assumptions required. We list 9 problem-algorithm combina-
tions, each supported by one or more concrete problem instances. Our extensive numerical
results show that our modified algorithm is not only more robust, but also more efficient
than the original AA-I. Finally, extensions to different settings are discussed, and in partic-
ular another theorem is established to ensure global convergence of our algorithm on value
iteration in MDPs and heavy ball methods in QPs.

Despite the success of our algorithm both in theory and practice, several problems re-
main open. In particular, the convergence of our proposed algorithm on general momentum
methods (e.g., HB for general convex constrained optimization, and Nesterov’s accelerated
gradient descent), and the potential modifications needed in the absence of such conver-
gence, deserves a more thorough study. In addition, it is also interesting to see how our
algorithm performs in stochastic settings, i.e., when the evaluation of f is noisy. Moreover,
some popular algorithms are still ruled out from our current scenario, e.g., Frank-Wolfe and
Sinkhorn-Knopp. It is thus desired to push our algorithm more beyond non-expansiveness
(apart from quasi-nonexpansiveness and contractivity in a non-Euclidean norm) to incorpo-
rate these interesting examples, which may also help address the convergence for algorithms
in non-convex optimization settings. In the meantime, a theoretical characterization of the
acceleration effect of our algorithm is still missing, and in particular no convergence rate has
been established for our algorithm. Although some partial unpublished results relying on
certain differentiability has been obtained by us, it remains super challenging how we can
include all the (non-smooth) mappings listed in §5 into the assumptions. Last but not least,
numerical tests with larger sizes and real-world datasets, and more systematic comparisons
with other acceleration methods (e.g., AA-II), are yet to be conducted, which may finally
contribute to a new automatic acceleration unit for general existing solvers.

8 Acknowledgements

We thank Ernest Ryu for his comments on the possibility and difficulty of analyzing Frank-
Wolfe and Nesterov’s algorithms in fixed-point mapping frameworks. We thank Tianyi Lin
for his advice on generating appropriate random data for LPs, and his comments on the
challenge of convergence order analysis in quasi-Newton methods. We thank Qingyun Sun
for the general discussions in the early stage of the project, especially those related to in-

37



terpreting AA as multi-secant methods [FS09, WN11]. We also thank Michael Saunders for
his constant encouragement and positive feedback on the progress of the project on a high
level. We are also grateful to Zaiwen Wen for the inspiring discussions on related literature.
Last but not least, we also thank Anran Hu for her suggestions on the organization and
presentation of the paper, and her suggestion on considering the heavy ball algorithm.

38



References

[AJW17] H. An, X. Jia, and H. F. Walker. Anderson acceleration and application to the
three-temperature energy equations. Journal of Computational Physics, 347:1–
19, 2017.

[And65] D. G. Anderson. Iterative procedures for nonlinear integral equations. J. Assoc.
Comput. Mach., 12:547–560, 1965.

[AUM+16] A. Atanasov, B. Uekermann, C. A. P. Meja, H. J. Bungartz, and P. Neumann.
Steady-state Anderson accelerated coupling of lattice boltzmann and navierstokes
solvers. Computation, 4(4):38, 2016.

[AVDB18] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system
for convex optimization problems. Journal of Control and Decision, 5(1):42–60,
2018.

[AWK17] A. Ali, E. Wong, and J. Z. Kolter. A semismooth Newton method for fast, generic
convex programming. arXiv preprint arXiv:1705.00772, 2017.

[BAC13] L. M. Briceno-Arias and P. L. Combette. Monotone operator methods for Nash
equilibria in non-potential games. Computational and Analytical Mathematics,
pages 143–159, 2013.

[BC10] H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator
theory in Hilbert spaces, volume 2011. New York: Springer, 2010.

[Bel57] R. Bellman. A Markovian decision process. Journal of Mathematics and Me-
chanics, pages 679–684, 1957.

[Ber15] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control 4th Edition,
Volume II. Athena Scientific, 2015.

[BF94] O. Burdakov and U. Felgenhauer. Stable multipoint secant methods with released
requirements to points position. System Modelling and Optimization, pages 225–
236, 1994.

[BK17] O. Burdakov and A. Kamandi. Multipoint secant and interpolation methods
with nonmonotone line search for solving systems of nonlinear equations. arXiv
preprint arXiv:1712.01142, 2017.

[BNP15] H. H. Bauschke, D. Noll, and H. M. Phan. Linear and strong convergence of
algorithms involving averaged nonexpansive operators. Journal of Mathematical
Analysis and Applications, 421(1):1–20, 2015.

[Bro65] C. G. Broyden. A class of methods for solving nonlinear simultaneous equations.
Mathematics of computation, 19(92):577–593, 1965.

39



[BRZS] C. Brezinski, M. Redivo-Zagila, and Y. Saad. Shanks sequence transformations
and Anderson acceleration.

[BSP16] A. S. Banerjee, P. Suryanarayana, and J. E. Pask. Periodic Pulay method for
robust and efficient convergence acceleration of self-consistent field iterations.
Chemical Physics Letters, 647:31–35, 2016.

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

[CCL14] Z. Chen, W. Cheng, and X. Li. A global convergent quasi-newton method for
systems of monotone equations. Journal of Applied Mathematics and Computing,
44(1-2):455–465, 2014.
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Appendices

Proof of Proposition 1.

Proof. Suppose that Zk ∈ Rn×n−mk is a basis of span(Sk)
⊥. Then from (4), we see that

BkSk = Yk and BkZk = Zk. Now we prove that Bmk
k also satisfies these linear equations.

Firstly, we show by induction that Bi
kS

i
k = Y i

k , where Sik = (sk−mk
, . . . , sk−mk+i−1) and

Y i
k = (yk−mk

, . . . , yk−mk+i−1), i = 1, . . . ,mk.
Base case. For i = 1, we have B0

k = I, S1
k = sk−mk

and Y 1
k = yk−mk

, and hence

B1
kS

1
k = B1

ksk−mk
= sk−mk

+
(yk−mk

− sk−mk
)ŝTk−mk

sk−mk

ŝTk−mk
sk−mk

= yk−mk
= Y 1

k .

Induction. Suppose that we have proved the claim for i = l. Then for i = l + 1,

Bl+1
k Slk = Bl

kS
l
k +

(yk−mk+l −Bl
ksk−mk+l)ŝ

T
k−mk+lS

l
k

ŝTk−mk+lsk−mk+l

= Y l
k ,

where we used the hypothesis and the fact that by orthogonalization, ŝTk−mk+lS
l
k = 0.

In addition, we also have

Bl+1
k sk−mk+l = Bl

ksk−mk+l +
(yk−mk+l −Bl

ksk−mk+l)ŝ
T
k−mk+lsk−mk+l

ŝTk−mk+lsk−mk+l

= yk−mk+l,

which shows that Bl+1
k Sl+1

k = Y l+1
k together with the equalities above. This completes the

induction, and in particular shows that

Bmk
k Sk = Bmk

k Smk
k = Y mk

k = Yk.

Secondly, we show that Bmk
k Zk = Zk. To see this, notice that by span(ŝk−mk

, . . . , ŝk−1) =
span(Sk), we have ŝTk−iZk = 0 (i = 1, . . . ,mk), and hence

Bmk
k Zk = Zk +

mk−1∑
i=0

(yk−mk+i −Bi
ksk−mk+i)ŝ

T
k−mk+iZk

ŝTk−mk+isk−mk+i

= Zk.

Finally, since (Sk, Zk) is invertible, we see that the equation B(Sk, Zk) = (Yk, Zk) has a
unique solution, and hence Bk = Bmk

k .

Proof of Theorem 7.

Proof. Below we use the same notation for the vector norm ‖·‖ on Rn and its induced matrix
norm on Rn×n, i.e., ‖A‖ = supx 6=0 ‖Ax‖/‖x‖ for any A ∈ Rn×n. Again, we partition the
iteration counts into two subsets accordingly, with KAA = {k0, k1, . . . } being those iterations
that passes line 12, while KKM = {l0, l1, . . . } being the rest that goes to line 14. Denote as
y the unique fixed point of f in (1), where the uniqueness comes from contractivity of f .
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The proof is completed by considering two scenarios separately. The first is when KKM is
finite, in which case the proof is identical to Theorem 6, as neither the contractivity nor the
non-expansiveness comes into play after a finite number of iterations. The second is when
KKM is infinite, the proof of which is given below.

Suppose from now on that KKM is an infinite set.
On one hand, for ki ∈ KAA, by Corollary 5 and norm equivalence on Rn, we have

‖Hki‖ ≤ C ′ for some constant C ′ independent of the iteration count, and similarly ‖gki‖ ≤
C
′′‖gki‖2 ≤ C

′′
DŪ(i+ 1)−(1+ε). Hence

‖xki+1 − y‖ ≤ ‖xki − y‖+ ‖Hkigki‖
≤ ‖xki − y‖+ C ′‖gki‖ ≤ ‖xki − y‖+ C ′C

′′
DŪ(i+ 1)−(1+ε)︸ ︷︷ ︸

ε′ki

. (39)

On the other hand, for li ∈ KKM (i ≥ 0), (17) does not hold anymore. Instead, we have
by γ-contractivity that

‖xli+1 − y‖ ≤ γ‖xli − y‖ ≤ ‖xli − y‖. (40)

Hence by defining ε′li = 0, we again see from (39) and (40) that

‖xk+1 − y‖ ≤ ‖xk − y‖+ ε′k, (41)

with ε′k ≥ 0 and
∑∞

k=0 ε
′
k =

∑∞
i=0 ε

′
ki
<∞.

Now define aj =
∑

lj+1≤k<lj+1
ε′k =

∑
lj≤ki<lj+1

ε′ki . Then we have
∑∞

j=0 aj =
∑∞

k=0 ε
′
k <

∞, and in particular limj→∞ aj = 0 and 0 ≤ aj ≤ E ′ for some E ′ > 0. Then we have

‖xli − y‖ ≤ ‖xli−1+1 − y‖+
∑

li−1+1≤k<li
ε′k ≤ γ‖xli−1 − y‖+ ai−1. (42)

By telescoping the above inequality, we immediately see that

‖xli − y‖ ≤ γi‖xl0 − y‖+
i−1∑
k′=0

γk
′
ai−1−k′

≤ γi‖x0 − y‖+ E ′
i−1∑

k′=b(i−1)/2c

γk
′
+

b(i−1)/2c−1∑
k′=0

ai−1−k′

≤ γi‖x0 − y‖+
E ′

1− γ
γb(i−1)/2c +

∞∑
k′=d(i−1)/2e

ak′

(43)

where we used the fact that l0 = 0 by Line 2 of Algorithm 3. In particular, by using the fact
that γi → 0 as i→∞, and that

∑∞
k′=k ak′ → 0 as k →∞, we see that

lim
i→∞
‖xli − y‖ = 0. (44)

46



Finally, for any k > 0, define ik = argmaxi {li < k}. Then we have limk→∞ ik = ∞ as
KKM is infinite, and moreover, lik+1 ≥ k. Hence we obtain that

‖xk − y‖ ≤ ‖xlik+1 − y‖+
∑

lik+1≤k′≤k−1
ε′k′

≤ γ‖xlik − y‖+ aik ,
(45)

from which and (44) we immediately conclude that

lim
k→∞
‖xk − y‖ = 0, (46)

i.e., limk→∞ x
k = y, where y is the unique solution of (1). This completes our proof.
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