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Abstract. In this work, Holder continuity is obtained for solutions to the nonlocal kinetic Fokker-
Planck Equation, and to a family of related equations with general integro-differential operators.
These equations can be seen as a generalization of the Fokker-Planck Equation, or as a linearization
of non-cutoff Boltzmann. Difficulties arise because our equations are hypoelliptic, so we utilize the
theory of averaging lemmas. Regularity is obtained using De Giorgi’s method, so it does not depend
on the regularity of initial conditions or coefficients. This work assumes stronger constraints on
the nonlocal operator than in the work of Imbert and Silvestre [22], but allows unbounded source
terms.

1. Introduction

We study in this paper the family of nonlocal kinetic equations

[∂t + v ⋅ ∇x] f = Lf + a,(1)

Lf ∶= ∫ K(t, x, v,w)[f(w) − f(v)]dw.

The kernel K can be any measurable function which is symmetric in v and w and which satisfies
a coercivity bound,

(2)

K(t, x, v,w) =K(t, x,w, v), K(t, x, v, v +w) =K(t, x, v, v −w)

χ{∣v−w∣≤6}
1

κ
∣v −w∣

−(n+2s)
≤K(t, x, v,w) ≤ κ∣v −w∣

−(n+2s)

for some constants 0 < s < 1 and κ > 1. The function a is a source term we take to be in some
Lebesgue space, the variables t, x and v are taken in R, Rn, and Rn respectively, and we restrict
ourselves to the case 2s < n. The integral defining L is taken in the principle value sense.

These models are used extensively in nuclear- and astro-physics (c.f. Zaslavsky [34], Goychuk
[16], and Haubold and Mathai [17]) to model the behavior of neutral particles moving through
a plasma (c.f. Larsen and Keller [23]). They can also model two-species particle fields wherein
the test particles are of a very dilute species ([16]). The theory of anomalous diffusion (Mellet
[26] and Mellet, Mischler, and Mouhot [27]) derives the small-mean-free-path limit of fractional
kinetic equations such as (1) and shows that these equations represent the mesoscopic behavior of
fat-tailed equilibrium distributions. These fat-tailed distributions appear in physical observations
from astrophysics ([23] and Mendis and Rosenberg [28]).

One notable special case of (1) is the fractional kinetic Fokker-Planck Equation, corresponding
to L = (−∆v)

s or equivalently to a homogeneous kernel K(t, x, v,w) = Cn,s∣v −w∣−n−2s. The (local)
kinetic Fokker-Planck Equation is obtained in the limit s→ 1, correpsponding to L = −∆v.

If we think of f as a density function for a collection of particles, with t, x, and v being time,
space, and velocity respectively, then the equation (1) states that these particles move freely through
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2 STOKOLS

space with their velocities changing in a stochastic manner. If the velocity of a given particle varied
according to the Weiner process, then f would obey a (local) kinetic Fokker-Planck Equation.
However, when the velocity of each particle varies according to a Levy process (without drift), the
density function obeys (1). A Levy process, unlike the Weiner process, allows individual particles
to change velocity suddenly and discontinuously, which better approximates the effect of elastic
collisions.

Another important model from the statistical mechanics of particles is the Boltzmann Equation

[∂t + v ⋅ ∇x] f = Q(f, f).

In the non-cutoff case, the Boltzmann Equation sometimes enjoys a regularization effect similar the
fractional Fokker-Planck equation (Alexandre, Morimoto, Ukai, Xu, and Yang [2]). Our equation
(1) is closely related to the linear approximation of the bilinear collision operator Q(⋅, ⋅). If the mass,
energy, and entropy of a solution are assumed to be uniformly bounded, then regularization due to
hypoellipticity is observed for the Boltzmann Equation (Imbert and Silvestre [22]), and also for the
closely related Landau Equation (Henderson and Snelson [18], Cameron, Silvestre, and Snelson [8]).
Note that [22] rewrites the Boltzmann equation in the form (1), but with kernel satisfying weaker
constraints than (2). Their regularity results are discussed below. The most important assumption
these papers require is that the mass is bounded away from the vacuum, which is connected to
the coercivity of the collision operator. In [19], Henderson, Snelson, and Tarfulea show that this
assumption really does hold for the Landau Equation. See Mouhot [30] for a thorough review of
the current state of research on this front.

Equation (1) is a typical hypoelliptic equation. Although regularization of the integral operator
happens only in v, we will gain regularity in t, x thanks to the mixing property of the transport
operator. This is reminiscent of the hypoelliptic theory based on C∞ of Hörmander [20] and
Kolmogorov. Averaging lemmas such as [14] (Golse, Lions, Perthame, Sentis) can be seen as an
Hs theory of hypoellipticity.

This Hs theory has already been applied specifically to the nonlocal kinetic Fokker-Planck Equa-
tion. Lerner, Morimoto, and Pravda-Starov [24] showed that solutions to certain fractional kinetic
equations are in a Sobolev space Hσ in all three variables. This result was inspired by the work on
hypoelliptic equations by Bouchut [4], which is discussed in more detail below. The precise amount
of Sobolev regularity is improved and expanded upon, for example, by Morimoto and Xu [29] and
by Li [25]. In fact, [29] obtains C∞ solutions in the case of no source term and L a specific operator
similar to (−∆)s.

This paper extends a Cα hypoellipticity theory, as was first introduced for kinetic Fokker-Planck
by Golse, Imbert, Mouhot, and Vasseur [13]. They show that solutions to the (local) kinetic
Fokker-Planck Equation

[∂t + v ⋅ ∇x] f = ∆vf

are Hölder continuous. In [21], Imbert and Mouhot show that, for certain initial data, the nonlinear
Fokker-Planck Equation has smooth solutions for all time. They utilize the Hölder continuity of
[13], as well as a Schauder-type estimate. In [22], Imbert and Silvestre obtain Hölder continuity for
a class of nonlocal kinetic Fokker-Planck-type equations with operators L more general than those
considered in the present paper, and with uniformly bounded source terms.

The seminal work on averaging lemmas is by Golse, Lions, Perthame and Sentis in 1988 [14],
which shows that solutions to [∂t + v ⋅ ∇x] f = g have their weighted velocity averages ρ[f] = ∫ ηfdv

in H1/2, assuming f and g are in L2. This result had precursers in [15] and Agoshkov [1]. Many
results followed, see for example DiPerna, Lions, and Meyer [11] and DeVore and Petrova [10],
which show various levels of regularity for ρ[f] assuming different regularity measures of f and g.

Notable in the history of averaging lemmas is [4], which showed that if f is regular in v (in the
Sobolev sense) then not only is ρ[f] regular but so is f itself. This powerful result was followed by
generalizations in [24], [29], and [25] which are especially relevant to (1). We’ve used these results
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to establish the regularity needed to justify our calculations, as explained in Section 1, but we do
not rely on their quantitative estimates.

Instead, the primary averaging lemma that we utilize is by Bezard [3]. Like Golse et al. but
unlike Bouchut, this lemma gives regularity only for the density ρ[f]. Bezard requires only that f
and g lie in a negative Sobolev space H−s

v , which gives us plenty of flexibility.
Our proof follows the De Giorgi method, pioneered by De Giorgi in [9] (c.f. also Vasseur [33],

[32], Caffarelli and Vasseur [7], Caffarelli, Chan, and Vasseur [5], and [13]). We are particularly
inspired by [13], which applies De Giorgi’s method to a kinetic equation, and [5], which applies the
method to a nonlocal integro-differential operator.

For two functions f, g ∈Hs(Rn), and t ∈ R and x ∈ Rn, define the bilinear operator

Bt,x(f, g) = B(f, g) ∶=
1

2
∫ K(t, x, v,w)[f(w) − f(v)][g(w) − g(v)]dwdv,

and note that

∫ g(v)L(f)(v)dv = ∫ g(v)∫ K[f(w) − f(v)]dw dv

=∬ K[f(w) − f(v)]g(v)dwdv

=
1

2
(∬ K[f(w) − f(v)]g(v)dwdv +∬ K[f(v) − f(w)]g(w)dvdw)

= −
1

2
(∬ K[f(w) − f(v)][g(w) − g(v)]dwdv)

= −Bt,x(f, g).

We call f ∈ L2(Q;Hs(Rn)) a weak solution to (1) on a domain Q ⊆ R ×Rn when

−∭ f [∂t + v ⋅ ∇x]φdvdxdt = −∬ B(f, φ)dxdt +∭ aφdvdxdt ∀φ ∈ L2
(Q;Hs

(Rn)).

Our main theorem is

Theorem 1.1 (Main theorem). Given constants s ∈ (0,1), κ > 1, and 2s < n ∈ N, there exist
exponents α ∈ (0,1) and r0 > 2 such that for any open set Ω ⊆ Rn, T > 0, constant r0 < r ≤ ∞, and
source term

a ∈ Lr([0, T ] ×Ω ×Rn) ∩L2
([0, T ] ×Ω ×Rn),

there exists a constant such that the following is true:
If

f ∈ L∞([0, T ) ×Ω ×Rn) ∩L2
([0, T ) ×Ω;Hs

(Rn)),
is a weak solution to (1) subject to (2), then f is in Cα((0, T ) ×Ω ×Rn).

Morover, for any 0 < T̄ < T and any compact set Ω̄ ⊂ Ω, there exists a constant C =

C(n, s, κ,Ω, Ω̄, T, T̄ ) > 0 independent of f such that the following bound holds:

∥f∥Cα([T̄ ,T ]×Ω̄×B1) ≤ C (∥f0∥L∞([0,T ]×Ω×Rn) + ∥a∥Lr([0,T ]×Ω×Rn)) .

Although the assumption (2) on the kernel is a natural one for studying absolutely continuous
kernels from an energy perspective, it is too strict to apply to e.g. the Boltzmann equation because
the collision kernel may not be absolutely continuous or symmetric. As a result, in the case
a ∈ L∞, our result is included in the result of [22]. Their proof does not use a averaging lemma,
instead utilizing a careful study of the Green’s function for the fractional Kolmogorov equation.
They employ a Krylov approach to obtain a weak Harnack inequality. The advantage of our
stronger assumtptions on the kernel is that our proof can be entirely energy based, which allows
us to consider source terms which are not uniformly bounded. We are also able to take a unified
variational approach to the cases s < 1/2 and s > 1/2 by adapting the technique of [5] to the kinetic
context.
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The assumption that solutions are in L∞ will hold in particular when the initial data and
source term are both in L∞. In such a case, we could obtain a maximum principle by computing
d
dt ∬ (f −C − t ∥a∥∞)2

+dvdx.
With arbitrary source term, a more robust L∞ bound can sometimes be obtained by adapting

Proposition 3.1 below. As stated, this proposition requires an assumption of uniformly bounded
growth for large values of v, to avoid interactions between high-velocity particles and the boundary
∂Ω of our spatial domain. Though outside the scope of the present paper, this assumption could be
removed with proper boundary conditions. For example, if we take x ∈ Tn the torus, then solutions
will be L∞ at any positive time.

In the case that K is homogeneous near the origin, meaning equal to ∣v − w∣−n−2s for ∣v − w∣

sufficiently small, we can obtain existence of an L2(Hs) weak solution from [29] Theorem 1.1 (by
treating the difference between Lf and (−∆)sf as a source term). When K is not homogeneous
near the origin, our result is an a priori estimate. In particular, when a uniform L∞ bound exists (as
discussed above), we can obtain existence of continuous solutions through the method of continuity.

The symmetry assumption posed in (2) is actually two symmetry assumptions. The former,
K(t, x, v,w) = K(t, x,w, v), is crucial to the weak formulation of the problem and hence is used
throughout this paper. The latter assumption K(t, x, v, v +w) =K(t, x, v, v −w) is really only used
in the proof of Lemma 2.3. It is necessary because otherwise, in the case s ≥ 1/2, the operator L
might not be bounded even from C∞

c to L∞. We list here a few alternative assumptions, any one
of which could replace the latter symmetry assumption of (2) with no loss of generality.

● For any C2 function φ, ∥Lφ∥∞ ≤ C ∥φ∥C2 .
● The parameter s is strictly less than 1/2.
● For any t, x, v ∈ R ×Rn ×Rn, ∫B1

wK(t, x, v,w)dw = 0.

● The function K(t, x, v, v +w) is independent of v.

The lower bound on the exponent r for the source term is

r0 =
n(1 + s)(n + 1)

s
(2
s

n
+

1

2
+
n

2s
) .

This bound is strictly greater than 2, and it is also strictly greater than n + 1 + n/s, which is the
critical scaling exponent. This lower bound may not be sharp.

The remainder of this article is dedicated to the proof of Theorem 1.1. Section 2 contains a few
preliminary lemmas. Sections 3 and 4 are dedicated to the proofs of the first and second De Giorgi
lemmas, respectively. Section 5 combines the De Giorgi lemmas to obtain a Harnack inequality
that proves Theorem 1.1.

Throughout this paper, C will represent arbitrary constants which may change from line to line.
A constant is called “universal” if it depends only on the dimension n, the order s of the operator
L, and the coercivity bound κ.

The function space C∞
c contains smooth functions with compact support.

2. Preliminary Lemmas

This section contains three lemmas which will be relied upon extensively in the forthcoming
sections.

The operator L behaves in many ways like the operator −(−∆v)
s = −Λ2s. The following lemma

codifies the important similarities between the two operators, specifically the relationship between
B and the Hs norm, and between L and the Bessell potential.

Lemma 2.1. There exists a constan C = C(n, s, κ) such that, for any function f ∈ Hs(Rn), we
have the following bounds:

∫ ∣Λsf ∣2 dv ≤ inf
t,x
C (Bt,x(f, f) + ∫ f2 dv) ,



CONTINUITY FOR NONLOCAL KINETIC EQUATIONS 5

and

sup
t,x

∥(1 −∆v)
−s/2
Lt,xf∥

L2(Rn)
≤ C (∥Λsf∥L2(Rn)) .

Since these results are true irrespective of t and x, we will omit their mention in the sequel.

Proof. For the first inequality, simply calculate

B(f, f) = ∬ K [f(w) − f(v)]2 dwdv

≥
1

κ
∬

∣v−w∣≤6

[f(w) − f(v)]2

∣v −w∣n+2s
dwdv

=
1

κ
∬

[f(w) − f(v)]2

∣v −w∣n+2s
dwdv −

1

κ
∬

∣v−w∣≥6

[f(w) − f(v)]2

∣v −w∣n+2s
dwdv

≥
1

κ
∬

[f(w) − f(v)]2

∣v −w∣n+2s
dwdv −

2

κ
∫ f(v)2

∫
χ{∣u∣≥6}

∣u∣n+2s
dudv −

2

κ
∫ f(w)

2
∫

χ{∣u∣≥6}

∣u∣n+2s
dudw

= C(n, s, κ)∫ ∣Λsf ∣2 dv −C ′
(n, s, κ)∫ f2 dv.

For the second inequality, let g be any function in Hs(Rn). For t and x fixed, we have the
following bound on inner products in v:

∣⟨Lf, g⟩∣v = ∣∬ [f(v +w) − f(v)][g(v +w) − g(v)]K(t, x, v, v +w)dwdv∣

=

RRRRRRRRRRR
∬ ([f(v +w) − f(v)]∣w∣

n+2s
2 )

[g(v +w) − g(v)]

∣w∣
n+2s

2

K dwdv
RRRRRRRRRRR

≤ (∬ [f(v +w) − f(v)]2K2
∣w∣

n+2s dwdv)
1/2

(∬ [g(v +w) − g(v)]2 dwdv

∣w∣n+2s
)

1/2

≤ κ(∬ [f(v +w) − f(v)]2 dwdv

∣w∣n+2s
)

1/2

(∬ [g(v +w) − g(v)]2 dwdv

∣w∣n+2s
)

1/2

= C(n, s, κ) (∫ ∣Λsf ∣2 dv)
1/2

∥g(t, x, ⋅)∥Hs(Rn) .

Therefore if φ is any L2(Rn) test function, then

⟨(1 −∆v)
−s/2
Lf, φ⟩ = ⟨Lf, (1 −∆v)

−s/2 φ⟩

≤ C(n, s, κ) (∫ ∣Λsf ∣2 dv)
1/2

∥(1 −∆v)
−s/2 φ∥

Hs(Rn)

= C(n, s, κ) (∫ ∣Λsf ∣2 dv)
1/2

∥φ∥L2(Rn) .

The lemma follows by taking a supremum over all such φ.
�

We now come to the energy inequality. An inequality of this type is to be expected due to the
parabolic flavor of Equation (1), and it is in some ways the most important quality of our equation.
Notice that the inequality gives control over the regularity in v, but not in t or x.

Lemma 2.2 (Energy Inequality). There exists a universal constant C = C(n, s, κ) such that the
following is true:
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Let T < S < 0 be times, and let Ω ⊆ Rn be an open region in space and Ω̄ ⊆ Ω a compact subset.
Let R > 0 a radius and ψ ∶ Rn → R a function of velocity. Denote Q ∶= (T,0]×Ω and Q̄ ∶= [S,0]× Ω̄,
and define

δ ∶= min (∣T − S∣,dist(Ω̄,ΩC
)) .

Let f ∈ L2(Q;Hs(Rn)) be any weak solution to (1) subject to (2) satisfying

f(t, x, v) ≤ ψ(v) ∀(t, x) ∈ Q, ∣v∣ ≥ R,

and denote f+ ∶= max(f − ψ,0) and f− ∶= max(ψ − f,0) so that f = f+ + ψ − f−.
Then the following energy inequality holds:

∬
Q̄
B(f+, f+)dxdt −∬

Q̄
B(f+, f−)dxdt ≤

C

δ

⎡
⎢
⎢
⎢
⎢
⎣

R∬
Q
∫ f2

+ dvdxdt +
⎛

⎝
sup
∣v∣<R

∣Lψ(v)∣
⎞

⎠
∬

Q
∫ f+ dvdxdt + ∥a∥Lr(Q) ∥f+∥Lr∗(Q)

⎤
⎥
⎥
⎥
⎥
⎦

.

The constant δ here is the distance from Q̄ to the parabolic boundary of Q.
The quantity B(f+, f+) is, as shown in Lemma 2.1, related to the fractional Dirichlet energy of

f+. We have an additional dissipation term −B(f+, f−) which we call the cross term. Because f+
and f− have disjoint supports,

−B(f+, f−) = −∬ K[f+(w) − f+(v)][f−(w) − f−(v)]dwdv

=∬ K[f+(w)f−(v) + f+(v)f−(w)]dwdv

= 2∬ Kf+(v)f−(w)dwdv.

In particular this means the cross term is non-negative. The cross term represents, in a sense, the
energy which is lost when we localize f to create f+. The bound on the cross term is critical to our
proof in Section 4 of De Giorgi’s second lemma.

Remark. The quantity f− appears on the left but not the right hand side of the energy inequality.
This means in particular that the growth and decay of any solution to (1) is constrained by the
local behavior alone.

Proof. Define φ ∶ Rn → [0,1] a function which equals 1 on Ω̄, which is supported on Ω, and which
is Lipschitz with constant ∥φ∥C1 ≤ 2δ−1.

Multiplying the left side of Equation (1) by the quantity φ2f+, we see that

φ2f+ [∂t + v ⋅ ∇x] f = φ2f+ [∂t + v ⋅ ∇x] (f+ + ψ − f−)

= φ2 1

2
[∂t + v ⋅ ∇x] f

2
+ + φ

2f+ [∂t + v ⋅ ∇x]ψ − φ
2f+ [∂t + v ⋅ ∇x] f−

=
φ2

2
[∂t + v ⋅ ∇x] f

2
+

because ψ is independent of x and t, and f+ and f− have disjoint supports.
Since f+ ∈ L

2(Hs), we can multiply Equation (1) by 2φ2f+ and integrate with respect to x and
v to obtain

d

dt
∬ (φf+)

2 dvdx −∬ f2
+v ⋅ ∇x(φ

2
)dvdx = −2∫ φ2B(f+, f+ + ψ − f−)dx + 2∬ φ2af+ dvdx

= −2∫ φ2B(f+, f+)dx − 2∬ φ2f+Lψ dvdx + 2∫ φ2B(f+, f−)dx + 2∬ φ2af+ dvdx.
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For any S ≤ τ ≤ T , we integrate this equality from τ to 0 in time and then rearrange to obtain

∬ (φf+(0))
2 dvdx + 2∫

0

τ
∫ φ2B(f+, f+)dxdt − 2∫

0

τ
∫ φ2B(f+, f−)dxdt

=∫

0

τ
∬ (v ⋅∇xφ

2) f2
+ dvdxdt+2∫

0

τ
∬ φ2

L(ψ)f+ dvdxdt+∫
0

τ
∬ φ2af+ dvdxdt+∬ (φf+(τ))

2 dvdx.

In particular,

2∫
0

T
∫ φ2B(f+, f+)dxdt − 2∫

0

T
∫ φ2B(f+, f−)dxdt

≤ ∫

0

S
∬ ∣v ⋅ ∇xφ

2∣ f2
+ dvdxdt + 2∫

0

S
∬ φ2

(∣L(ψ)∣ + ∣a∣) f+ dvdxdt +∬ (φf+(τ))
2 dvdx.

Now only one term depends on τ . If we take the average value over τ ∈ [S,T ] for both sides of
the inequality, we obtain

2∫
0

T
∫ φ2B(f+, f+)dxdt − 2∫

0

T
∫ φ2B(f+, f−)dxdt

≤ ∫

0

S
∬ ∣v ⋅ ∇xφ

2∣ f2
+ dvdxdt + 2∫

0

S
∬ φ2

(∣L(ψ)∣ + ∣a∣) f+ dvdxdt +
1

∣S − T ∣
∫

T

S
∬ (φf+)

2 dvdxdt.

Our energy inequality follows. �

The classical technique to localize a solution to a PDE is multiplication by a compactly supported
cutoff function. This allows us to disregard the behavior of the solution outside a specified region,
while the localized function usually solves the original PDE, modulo some sort of error term. One
should not expect this technique to work for nonlocal PDE; the far-away behavior of the solution
cannot be completely disregarded.

Instead, we must localize by a “soft cutoff,” which is a fixed function ψ that vanishes in a specified
local region but grows without bound outside that region. We have already seen soft cutoffs used
in the statement and proof of Lemma 2.2 just above.

Throughout the following sections, we will utilize a few different soft cutoff functions. We will
define all of our soft cutoff functions here and list all their relevant properties, then refer back to
this lemma as we use them. These functions ψ1 and ψθ are tailored to the required assumptions of
Lemmas 3.1 and 4.1 respectively. They also must have certain specific relationships with eachother
in order to prove Lemma 5.2, which is why we prefer to construct them here all at once.

Lemma 2.3. Let s ∈ (0,1) and 2s < n ∈ N be specified constants. There exists a function ψ1 ∶ Rn →
R+ and a family of functions ψθ ∶ Rn → R+ indexed by θ ∈ (0,1) with the following properties:

(i) There exists a constant Cψ such that for all v ∈ Rn

sup
t,x

∣Lt,xψ
1
(v)∣ ≤ Cψ, sup

t,x
∣Lt,xψθ(v)∣ ≤ Cψ,

and for all ∣v∣ ≤ 3

sup
t,x

∣Lt,xψθ(v)∣ ≤ Cψθ
3s/2.

(ii) For ∣v∣ ≤ 1,

ψ1
(v) = 0

and for ∣v∣ ≤ θ−1,

ψθ(v) = 0.

(iii) For any θ < ϑ, and for all v ∈ Rn

ψθ(v) ≤ ψϑ(v) ≤ ψ
1
(v).
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(iv) For all ∣v∣ ≥ 2, for any θ ∈ (0,1),

1 + ψθ(v) ≤ ψ
1
(v).

(v) For each θ, there exists ε0 = ε0(s, θ) such that ε < ε0 implies that for all ∣v∣ > ε−1,

ψθ (v) ≥ 2ψθ(εv) + 2.

Proof. First define a function g ∶ [0,∞) → [0,∞) such that, for all x > 1,

g(x) = xs/2

but g(0) = g′(0) = 0, and in the interval [0,1] let g be defined so that g is smooth and non-decreasing,

and g(x) ≤ xs/2.
Next define functions gr for each r > 0 by

gr(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 x < r

g(x − r) x ≥ r.

Then gr is pointwise-decreasing in r and both ∥g′′r ∥L∞ and the Hölder semi-norm ∥gr∥Ċs/2 are
finite and independent of r.

We’ll define

ψθ(v) ∶= gθ−1(∣v∣).

Let C1 > 1 be a constant large enough that for any θ ∈ (0,1), for all ∣v∣ ≥ 2

1 + ψθ(v) ≤ C1g1(∣v∣).

Then define

ψ1
(v) = C1g1(∣v∣).

Properties (ii), (iii), and (iv) all follow immediately from the construction. Notice also that all

of these functions have uniformly bounded second derivatives and uniformly bounded Ċs/2 semi-
norms.

Let ψ be either ψ1 or any of the ψθ, and let v ∈ Rn be chosen. We wish to calculate Lψ(v), so
let us break up the defining integral into the “near” part and the ”far” part.

Lψ(v) = ∫
∣w∣<1

K(v, v +w)[ψ(v +w) − ψ(v)]dw + ∫
∣w∣≥1

K(v, v +w)[ψ(v +w) − ψ(v)]dw.

For the near part, we utilize the fact that ψ is smooth with bounded second derivative. We apply
Taylor’s theorom to find that

ψ(v +w) − ψ(v) =Dψ(v) ⋅w +D2ψ(u)w ⊗w

for some u on the line segment between v and v +w. By the symmetry (2) of K,

∫
∣w∣<1

K(v, v +w)Dψ(v) ⋅wdw = 0.

Note that this integral must be understood in the principal value sense.
The remainder is

∫
∣w∣<1

K(v, v +w)D2ψ(u)w ⊗wdw ≤ Cκ∫
∣w∣<1

∣w∣2

∣w∣n+2s
dw,

with C here being the bound on ∥D2ψ∥∞ which is independent of ψ. Since n + 2s − 2 < n, the
integral is finite.

Notice that if ψ = ψθ with θ < 1/4 and if ∣v∣ ≤ 3 then the near part of the integral is in fact zero.

For the far away part, we utilize the fact that ψ is Hölder continuous in Ċs/2 and estimate

∣ψ(v +w) − ψ(v)∣ ≤ C ∣w∣
s/2
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with C independent of ψ. The integral of the far away part becomes

∫
∣w∣≥1

K(v, v +w)[ψ(v +w) − ψ(v)]dw ≤ Cκ∫
∣w∣≥1

∣w∣s/2

∣w∣n+2s
dw.

Since n + 2s − s
2 > n, the integral is finite.

In the case ψ = ψθ with θ < 1/4 and ∣v∣ ≤ 3, ψ(v) = 0 so we can make the stronger estimate

∣ψ(v +w) − ψ(v)∣ ≤ gθ−1(∣w∣ + 3) ≤ max(∣w∣ + 3 − θ−1,0)s/2.

The integral of the far away part becomes

∫
∣w∣≥1

K(v, v +w)[ψ(v +w) − ψ(v)]dw ≤ κ∫
∣w∣≥(θ−1−3)

(∣w∣ + 3 − θ−1)s/2

∣w∣n+2s
dw ≤ C ∫

∣w∣> θ−1
4

dw

∣w∣n+
3
2
s
.

This integral is proportional to θ3s/2. The property (i) follows.
All that remains is to show (v), so fix some value of θ. We’ll show the equivalent claim

(3) ψθ(v/ε) ≥ 2ψθ(v) + 2 ∀∣v∣ ≥ 1.

For ∣v∣ ≥ θ−1 + 1 and any 0 < ε < 1, we can say

ψθ(v/ε) = (∣v∣/ε − θ−1
)
s/2

≥ (∣v∣/ε − θ−1
/ε)s/2 = ε−s/2(∣v∣ − θ−1

)
s/2.

There exists 0 < ε1 < 1 and r1 > θ
−1 + 1 so that if ε < ε1 and ∣v∣ ≥ r1 then

ε−s/2(∣v∣ − θ−1
)
s/2

≥ 2ψθ(v) + 2.

Now take ε0 < ε1 small enough that ψθ(1/ε0) ≥ 2ψθ(r1) + 2. Now for 1 ≤ ∣v∣ ≤ r1 the inequality (3)
holds because

ψθ (
v

ε
) ≥ ψθ(1/ε0) ≥ 2ψθ(r1) + 2 ≥ 2ψθ(v) + 2,

and for ∣v∣ > r1 it holds by construction of r1. This proves property (3). �

3. First De Giorgi Lemma

In this section we will prove De Giorgi’s first lemma, which states that if a function solving (1)
is bounded in some region in an integral sense, then it is pointwise bounded in a smaller region.

The function ψ1 in the statement of this lemma is defined in Lemma 2.3.

Proposition 3.1 (De Giorgi’s First Lemma). There exists a universal constant δ0 > 0 such that
the following is true:

For any f ∈ L2([−2,0] × B2;Hs(Rn)) a weak solution to (1) subject to (2) with source term
∥a∥Lr([−2,0]×B2×Rn) ≤ 1, if

f(t, x, v) ≤ ψ1
(v) ∀x ∈ B2, t ∈ [−2,0], ∣v∣ ≥ 2

holds and

∭
[−2,0]×B2×B2

max(f − ψ1,0)2 dvdxdt ≤ δ0

holds, then

f(t, x, v) ≤
1

2
∀x ∈ B1, t ∈ [−1,0], v ∈ B1.

As in most De Giorgi-style proofs, we take a sequence of cutoffs of our function and show that
their L2 norm tends to zero. We show this by producing a non-linear recursive inequality. The key
to the proof is the inequality (14), which is located at the end of the second step. This inequality
tells us that our function cannot have very bad singularities, because any singularity which is L2

integrable is also Lq integrable for some specific q > 2. Classically such an inequality is produced
using the energy inequality and Sobolev embedding, but in this case we will also require an averaging
lemma.
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Our proof will proceed in three steps. In the first step, we will apply the averaging lemma to our
cutoff function to show that it has higher integrability in the t and x variables. Actually we will
apply the averaging lemma to a barrier function, because our solution itself has certain negative
measures in its derivatives. This is fine, since higher integrability for the barrier function trivially
implies higher integrability for the original function. In the second step, we will obtain higher
integrability in the v variable using the usual technique (with the energy inequality and Sobolev
embedding). Then we use Riesz-Thorin interpolation to combine our integrability in t, x and v. In
the third and final step, we produce the standard nonlinear recursion and argue that our cutoffs
tend to zero in the limit.

Proof. We begin by specifying the sequence of cutoff functions. For k ∈ N, consider soft cutoffs

ψk ∶= ψ
1
+

1

2
− 2−k−1

so that ψ0 = ψ
1 and in the limit ψ∞ = ψ1 + 1

2 . Then we have a sequence of cutoff functions

fk ∶= max(f − ψk,0).

We’ll make frequent use of the fact that for any k,

(4) χ{fk>0} ≤ 2k+1fk−1.

We also must specify a sequence of space-time regions. Define

Tk ∶= −1 − 2−k, Bk
∶= {x ∈ Rn ∶ ∣x∣ ≤ 1 + 2−k}, Qk ∶= [Tk,0] ×B

k

so that Q0 = [−2,0] × B2 and in the limit Q∞ = [−1,0] × B1. Notice that the distance from the
interior of Bk to the boundary of Bk−1 is 2−k, and that Tk − Tk−1 = 2−k.

For brevity, we will use ∫k to denote an integral with bounds [Tk,0] or Bk or Qk, as shall be

clear from context. We also frequently will use Ck to mean [C(n, s, κ)]k, a quantity which grows
geometrically in k for n, s, and κ held constant.

Step 1: Higher integrability in t, x
Define ηk,ε a smooth function which is supported on [Tk−1,0] and equal to 1 on [Tk,−ε]. Then

define µε(t) = χ{[−ε,0]}∂tηk,ε the derivative of ηk,ε near 0, and assume without loss of generality that
µε ≤ 0. The derivative of ηk,ε will be bounded uniformly in ε except for the blowup near 0 which is

captured by µε. In symbols, supε ∥∂tηk,ε − µε∥∞ ≤ Ck.

In addition, let φk(x) be a smooth function supported on Bk−1 and equal to 1 on Bk, with
derivative ∥∇xφk∥∞ ≤ Ck.

We want to apply the averaging lemma to ηk,εφkfk, so let’s apply the transport operator to this
function.

[∂t + v ⋅ ∇x] (ηk,εφkfk) = fk [∂t + v ⋅ ∇x] (ηk,εφk) + ηk,εφk [∂t + v ⋅ ∇x] fk

= fk [∂t + v ⋅ ∇x] (ηk,εφk) + ηk,εφkχ{f>ψk} [∂t + v ⋅ ∇x] (f − ψk)

= fk [∂t + v ⋅ ∇x] (ηk,εφk) + ηk,εφkχ{f>ψk}Lf + ηk,εφkχ{f>ψk}a

= fk [∂t + v ⋅ ∇x] (ηk,εφk) + ηk,εφkχ{f>ψk}Lψk + ηk,εφkχ{f>ψk}a + ηk,εφkχ{f>ψk}L(f − ψk).

By a well known pointwise inequality (c.f. Caffarelli and Sire [6]),

χ{f>ψk}L(f − ψk) ≤ Lfk.

Also µε ≤ 0. Therefore if we define

Fk ∶= ηk,εfk(v ⋅ ∇xφk) + φkfk(∂tηk,ε − µε) + ηk,εφkχ{f>ψk}Lψk + ηk,εφkχ{f>ψk}a,

then

[∂t + v ⋅ ∇x] (ηk,εφkfk) ≤ Fk + L(ηk,εφkfk).
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The source term Fk is in L2(R×Rn×Rn). From (4), Lemma 2.3 property (i), and the definitions
of φk, ηk,ε and µε,

∭

R×Rn×Rn
F 2
k ≤∭

k−1
[η2
k,ε(v ⋅ ∇xφk)

2
+ φ2

k(∂tηk,ε − µε)
2] f2

k +∭
k−1

(ηk,εφk)
2 [(Lψk)

2
+ a2]χ{fk>0}

≤ Ck∭
k−1

f2
k +C

k
∭

k−1
f2
k−1 +C

k
(∭

k−1
f2
k−1)

1− 2
r

≤ Ck (∭
k−1

f2
k−1)

1− 2
r

.(5)

Because the averaging lemma requires equality, not the inequality that we have, we’ll construct
a barrier function gk. Define gk as some solution to the PDE

(6)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

[∂t + v ⋅ ∇x] gk = Fk + Lgk ∀t, x, v ∈ (Tk−1,∞) ×Rn ×Rn

gk = ηk,εφkfk = 0 t = Tk−1

gk = 0 t < Tk−1.

Since Fk ∈ L
2(R×Rn×Rn), a solution gk ∈ L

2
loc([0,∞)×Rn;Hs(Rn)) exists by [29] (see Section 1

for more detail).
Moreover, gk ≥ ηk,εφkfk ≥ 0 by a maximum principle: the function max(ηk,εφkfk − gk,0) is a

subsolution to [∂t + v ⋅ ∇x]h = Lh so it has non-increasing energy, and it vanishes at t = Tk−1 so it
must be identically zero.

We’ll now produce some bounds on gk. Take the PDE (6) and multiply it by gk, then integrate
over x ∈ Rn, v ∈ Rn.

d

dt

1

2
∬ g2

k dvdx = −∫ B(gk, gk)dx +∬ gkFk dvdx.

Now applying Lemma 2.1 and Hölder’s inequality,

(7)
d

dt

1

2
∬ g2

k dvdx +
1

κ
∬ ∣Λsgk∣

2 dvdx ≤ C∬ g2
k dvdx +

1

2
∬ F 2

k dvdx.

If we define

G(t) = ∬
Rn×Rn

g2
k(t)dvdx

we see from (7) that G satisfies

d

dt
G(t) ≤ CG(t) +∬ F 2

k (t).

Also, by construction, G(Tk−1) = 0. Thus by Gronwall’s inequality, for all t > Tk−1:

G(t) ≤ eC(t−Tk−1)
∫

t

Tk−1
∬ F 2

k (τ)dvdxdτ

≤ eC(t−Tk−1)
∭

R×Rn×Rn
F 2
k dvdxdτ.

This means that for any compact interval K in R,

(8) ∥gk∥L∞(K;L2(Rn×Rn)) ≤ CK ∥Fk∥L2(R×Rn×Rn) .

Armed with this inequality, and the fact that ∂tχK is in the dual space of L∞(t), we integrate (7)
over K:

∭

K×Rn×Rn
∣Λsgk∣

2 dvdxdt ≤ C(n, s, κ) (∭
K×Rn×Rn

g2
k +∭

K×Rn×Rn
F 2
k dvdxdt +∭R×Rn×Rn

g2
k∂tχK)

≤ CK∭
R×Rn×Rn

F 2
k dvdxdt.(9)
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We can now apply Lemma A.1, the Averaging Lemma, to gk. Let η(v) be a C∞
c (Rn) function

which is identically 1 on v ∈ B2 and non-negative for all v, and choose any set, for example
[−3,1] ×B3, which compactly contains [−2,0] ×B2. The lemma yields that

∥∫ ηgk dv∥
Hβ([−2,0]×B2)

≤ C (∥gk∥L2([−3,1]×B3×Rn) + ∥(1 −∆v)
−s/2

(Fk + Lgk)∥
L2([−3,1]×B3×Rn)

)

with β = (2(1 + s))−1 < 1.
Therefore, by the bounds (5) and (8), and by Lemma 2.1 and the bound (9),

(10) ∥∫ ηgk dv∥
Hβ([−2,0]×B2)

≤ Ck (∭
k−1

f2
k−1)

1
2
− 1
r

.

Define p1 by
1

p1
=

1

2
−

β

n + 1
=

1

2
−

1

2(1 + s)(n + 1)
∈ (0,1/2).

By Sobolev embedding,

(11) ∥∫ ηgk dv∥
Lp1(t,x)

≤ C ∥∫ ηgk dv∥
Hβ(t,x)

.

Since fk is supported where η ≡ 1, the integral ∫ ηfk dv is just the L1(v) norm of fk. Recall also
that ηk,εφkfk ≤ gk. Therefore we can bound the Lp1,p1,1 norm of fk:

∫

−ε

Tk
∫
Bk

(∫ fk dv)
p1

dxdt ≤∬ (∫ η [ηk,εφkfk] dv)
p1

dxdt

≤∬ (∫ ηgk dv)
p1

dxdt

Since this inequality is true for all ε, we can chain it with (10) and (11) to conclude that

(12) ∥fk∥Lp1,p1,1(Qk×Rn) ≤ C
k
∥fk−1∥

1− 2
r

L2(Qk−1×Rn)
.

Step 2: Higher integrability in all three variables
Since each fk is supported on ∣v∣ ≤ 2, and ∥Lψk∥∞ ≤ Cψ by Lemma 2.3, property (i), we can

apply the energy inequality from Lemma 2.2 to obtain

∬
k+1

B(fk, fk) ≤ C
k
∭

k
f2
k +C

k
∭

k
fk +C

k
∥fk∥Lr∗(Qk) .

From this inequality, Lemma 2.1, and (4):

∭
k+1

∣Λsfk∣
2
≤ Ck∭

k
f2
k−1 +C

k
(∭

k
f2
k−1)

1/r∗

.

When ∥fk∥2 < 1, as we assume without loss of generality, the second term on the right-hand-side
will dominate.

Therefore, letting p2 be defined by 1
p2

= 1
2 −

s
n , we have by Sobolev embedding

(13) ∥fk∥L2,2,p2(Qk+1×Rn) ≤ C
k
∥fk−1∥

1/r∗
L2(Qk×Rn)

.

Now we wish to utilize Riesz-Thorin interpolation to interpolate between this inequality and
(12).

Consider θ ∈ [0,1] and the function

θ ↦ [
θ

2
+

1 − θ

p1
] − [

θ

p2
+

1 − θ

1
] .
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Because this function is negative at θ = 0 and positive at θ = 1, it must equal zero at some point
θ∗, and at this point we can define q by

1

q
∶=
θ∗

2
+

1 − θ∗

p1
=
θ∗

p2
+

1 − θ∗

1
.

Moreover, since 1/q is a nontrivial convex combination of 1/2 and 1/p1, it must be the case that
q > 2. Riesz-Thorin tells us that

∥fk∥Lq,q,q(Qk×Rn) ≤ ∥fk∥
θ∗
L2,2,p2(Qk×Rn) ∥fk∥

1−θ∗
Lp1,p1,1(Qk×Rn) .

Combining this with the bounds (12) and (13),

(14) ∥fk∥Lq(Qk×Rn) ≤ C
k
∥fk−2∥

1− 2
r
+ θ

∗
r

L2(Qk−2×Rn)
.

This bound is the key to De Giorgi’s first lemma.

Step 3: The recursion
This step is standard to all De Giorgi arguments. It does not depend on the specifics of our PDE

(1) in any way, except through the bound (14).
For any k, by (4),

∭
k
f2
k =∭

k
f2
kχ

q−2
{fk>0}

≤ 2(k+1)(q−2)
∭

k
f2
kf

q−2
k−1

≤ Ck∭
k−1

f qk−1.

From this and (14),

∭
k
f2
k ≤ C

k
(∭

k−3
f2
k−3)

q
2
(1− 2

r
+ θ

∗
r
)
.

Since q and θ∗ are independent of r and q > 2, the exponent on this recursive inequality will be
greater than 1 for r sufficiently large. Specifically, the exponent exceeds 1 precisely when r > r0,
with r0 as defined in Section 1, though we omit the explicit calculation.

Since the exponent is greater than one, and the sequence

(15) k ↦∭
k
f2
k

is monotone decreasing, by a standard fact about sequences (c.f. [33]) we can now say that this
sequence limits to 0 as k →∞, provided the initial value

∭
[−2,0]×B2×Rn

max(f − ψ1,0)2 dvdxdt ≤ δ0

is sufficiently small.
Lastly, since the limit of that sequence (15) is zero, by the Lebesgue’s monotone convergence

theorem

∭
[−1,0]×B1×Rn

(f − ψ1
−

1

2
)

2
+ dvdxdt = 0.

Since ψ1 = 0 on B1, the proposition is proven.
�
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4. Second De Giorgi Lemma

In this section we will prove the second De Giorgi lemma, the intermediate value lemma. It says
that solutions to our PDE cannot have, in a small region, very much measure above a certain value
and also very much measure below another value unless the solution also has sufficient measure
between the two values. The lemma is sometimes called an isoperimetric inequality.

ti
m
e

space
-6

-5

-4

-2

0

Qext

Qint

Qearly

Qlate

Figure 1. Four overlapping cylinders described in Proposition 4.1.

To state Proposition 4.1, we must define four cylindrical regions in space-time:

Qext ∶= [−6,0] ×B3

Qint ∶= [−5,0] ×B2

Qearly ∶= [−5,−4] ×B2

Qlate ∶= [−2,0] ×B2.

The constant δ0 in the statement of this proposition is defined in Proposition 3.1.

Proposition 4.1 (Second De Giorgi Lemma). There exist universal constants γ0 > 0 and 0 < θ0 <

1/3 such that the following is true:
For any f ∈ L2(Qext;H

s(Rn)) a weak solution to (1) subject to (2) with

∥a∥Lr(Qext×Rn) ≤ θ0

satisfying

∣f(t, x, v)∣ ≤ 1 + ψθ0(v) ∀(t, x, v) ∈ Qext ×Rn,
if

(16) ∣{f ≤ 0} ∩Qearly ×B2∣ ≥
∣Qearly∣ ⋅ ∣B2∣

2

and

(17) ∣{f ≥ 1 − θ0} ∩Qlate ×B2∣ ≥ δ0

then

(18) ∣{0 < f < 1 − θ0} ∩Qint ×B3∣ ≥ γ0.

As in other applications of De Giorgi’s method, the idea of the proof is to produce a sequence of
solutions to our PDE with smaller and smaller intermediate measure, show that they are compact
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and have a discontinuous limit, and then show that said limit function inherits enough regularity
from the PDE to result in a contradiction.

Our version of the proof is divided into four steps. In the first step, we show that our sequence is
uniformly differentiable in v. We then use the averaging lemma to show that, in some very specific
sense, our sequence is uniformly differentiable in t and x. In the second step, we combine the results
of step one to obtain compactness in all three variables, thus producing our limit. In the third step,
we show that this limit function is regular in v. The limit is constant in v for ∣v∣ small, and behaves
like an indicator function depending only on t and x. In the fourth and final step, we show that
certain t- and x-derivatives of our limit function are bounded, and that this contradicts what we
know about the jump discontinuities in our limit.

Proof. Assume that the theorem is false. Then there must exist a sequence fi of solutions to our
equation (1) with operators Li subject to (2) and source terms

∥ai∥Lr(Qext×Rn) ≤ 1/i

such that

∣fi(t, x, v)∣ ≤ 1 + ψ1/i ∀(t, x, v) ∈ Qext ×Rn

while

∣{fi ≤ 0} ∩Qearly ×B2∣ ≥
∣Qearly∣ ⋅ ∣B2∣

2
,

∣{fi ≥ 1 −
1

i
} ∩Qlate ×B2∣ ≥ δ0,

∣{0 < fi < 1 −
1

i
} ∩Qint ×B3∣ ≤

1

i
.

We wish to take a limit of these functions fi.

Step 1: Regularity in v and regularity in t, x
Let F ∶ Rn → R be a smooth radially-increasing function of v which is identically −1 on B2 and

identically 0 outside of B3. Since F ∈ C∞
c , it is trivial to show that

(19) ∥LiF ∥∞ ≤ C(n, s, κ).

To obtain compactness, we use a very blunt cutoff function ψ̄ defined by

ψ̄(v) ∶= ψ 1
3
(v) + 1 + F (v),

f+i ∶= max (f − ψ̄,0) ,

f−i ∶= max (ψ̄ − f,0) .

Because ψ1/3 ≥ ψθ for all θ < 1/3 by Lemma 2.3, property (iii), each f+i for i sufficiently large will
be supported on v ∈ B3. In fact

(20) 0 ≤ f+i (t, x, v) ≤ −F (v) ∀(t, x, v) ∈ Qext ×Rn.

Each fi is a solution to (1), so we can apply Lemma 2.2 on the regions Qext and Qint with cutoff
ψ̄. From (19) and Lemma 2.3, property (i) we know that ∥Liψ̄∥∞ is bounded by a finite universal

constant. The right hand side of this energy inequality is then universally bounded by (20) so

(21) ∬
Qint

Bi(f
+
i , f

+
i )dxdt −∬

Qint

Bi(f
+
i , f

−
i )dxdt ≤ C(n, s, κ).

In particular, by Lemma 2.1,

(22) ∬
Qint
∫ ∣Λsf+i ∣

2
dvdxdt ≤ C(n, s, κ).

Critically, the constant C(n, s, κ) does not depend on i.
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Unfortunately the energy inequality does not give us regularity in the t and x variables. In order
to obtain compactness, therefore, we must rely on an averaging lemma. To that end, apply the
transport operator to f+i

2 and obtain

[∂t + v ⋅ ∇x] f
+
i

2
= 2f+i [∂t + v ⋅ ∇x] fi

= 2f+i Lifi + 2f+i ai

= 2f+i Li (fi − ψ̄) + 2f+i Liψ̄ + 2f+i ai.

For any function g and operator L satisfying (2), and g+ ∶= max(g,0), it is true that, for any t,
x fixed,

2g+Lg = ∫ 2[g+(v)g(w) − g+(v)
2
]K(t, x, v,w)dw

= ∫ [g+(w)
2
− g+(v)

2
]K dw + ∫ [2g+(v)g(w) − g+(v)

2
− g+(w)

2
]K dw

= ∫ [g+(w)
2
− g+(v)

2
]K dw − ∫ [g+(w) − g+(v)]

2K dw + ∫ 2g+(v)[g(w) − g+(w)]K dw

= Lg2
+ − ∫ [g+(w) − g+(v)]

2K dw − 2∫ g+(v)g−(w)K dw.

Thus
[∂t + v ⋅ ∇x] f

+
i

2
=H ∶=H1 +H2 +H3 +H4

where

H1 ∶= Li (f
+
i

2
) ,

H2 ∶= −∫ [f+i (w) − f+i (v)]
2K(v,w)dw,

H3 ∶= −2∫ f+i (v)f
−
i (w)K(v,w)dw,

H4 ∶= 2f+i Liψ̄ + 2f+i ai.

We proceed to bound H, term by term, independent of i.
We begin with an Hs bound on f+i

2:

∫ ∣Λs(f+i
2
)∣

2
dv =∬

∣f+i
2
(w) − f+i

2
(v)∣2

∣v −w∣n+2s
dwdv

=∬ [f+i (w) + f+i (v)]
2 ∣f+i (w) − f+i (v)∣

2

∣v −w∣n+2s
dwdv

≤ 22
∥f+i ∥

2
L∞ ∫ ∣Λs(f+i )∣

2
dv.(23)

From this, the bounds (20) and (22), and Lemma 2.1, we obtain

(24) ∥(1 −∆v)
−s/2H1∥

L2(Qint×Rn)
≤ C(n, s, κ).

The terms H2 and H3 are strictly negative, so their total variations as measures are simply the
absolute values of their integrals. Thus their norms in M(Qint ×Rn) are

∣∬
Qint
∫ H2 dvdxdt∣ = ∬

Qint

Bi(f
+
i , f

+
i )dxdt,

∣∬
Qint
∫ H3 dvdxdt∣ = −∬

Qint

Bi(f
+
i , f

−
i )dxdt.

These are of course universally bounded by (21).

Recall that (1 −∆v)
−(s+n

2
)/2 can be represented as convolution with a Green’s function Gs+n/2(v)

(see e.g. Stein [31]). The function Gs+n/2 decays exponentially as ∣v∣ → ∞ and has a singularity like
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1

∣v∣
n
2 −s

near zero. Therefore Gs+n/2 is in L2. By Young’s Inequality, convolution of a measure and

an L2 function is bounded by the product of their M and L2 norms respectively, so

(25) ∥(1 −∆v)
−(s+n

2
)/2H2∥

L2(Qint×Rn)
≤ C(n, s, κ),

(26) ∥(1 −∆v)
−(s+n

2
)/2H3∥

L2(Qint×Rn)
≤ C(n, s, κ).

Lastly, from (20) and since r ≥ 2 we know

(27) ∥H4∥L2(Qint×Rn ≤ C(n, s, κ).

Finally we are ready to apply Lemma A.1 to f+i
2, which says for any η ∈ C∞

c (Rn) and any subset
Ω̄ compactly contained in the interior of Qext,

∥∫ ηf+i
2
dv∥

Hα(Ω̄)
≤ C(η, Ω̄) (∥f+i

2
∥
L2(Qint×Rn)

+ ∥(1 −∆v)
−(s+n

2
)/2H∥

L2(Qint×Rn)
)

where

α = (2(s +
n

2
))

−1

.

From (24), (25), (26), and (27), we can say that in fact

(28) ∥∫ ηf+i
2
dv∥

Hα(Ω̄)
≤ C(n, s, κ, η, Ω̄).

Step 2: Producing a strong L2 limit
Since all the f+i are bounded by (20), {f+i

2
}i is a bounded subset of L2(Qint ×Rn). By Banach-

Alaoglu, there exists a function f+ such that, along some subsequence,

f+i
2
⇀ f+

2

weakly in L2(Qint ×Rn).
Our goal is to show that this limit converges also strongly in L2

loc(Qint;L
2(Rn)). To that end,

fix some compact subset Ω̄ of Qint.
Strong and weak limits, when both exist, must be equal, so with the bound (28) we apply

Rellich-Kondrachov to prove that

∫ η(v)f+i
2
dv → ∫ η(v)f+

2
dv

strongly in L2(Ω̄), without passing to a further subsequence, for any η ∈ C∞
c (Rn).

In particular, if we fix some η such that ηε(v) = ε
−nη(v/ε) is an approximation to the identity,

then for ε > 0 and v ∈ Rn fixed,

∬
Ω̄
[∫ f+i

2
(w)ηε(v −w)dw − ∫ f+(w)

2ηε(v −w)dw]
2

dxdt
i→∞
ÐÐ→ 0.

Note that this is pointwise (in v) convergence of convolutions.
Since the f+i are all bounded by (20), and by weak convergence so is f+, we can apply the Lebesgue

dominated convergence theorem to conclude that not only do these convolutions converge pointwise
in v, but they converge in integral as well. That is,

(29) ∫ ∬
Ω̄
[(f+i

2
∗v ηε) (v) − (f+

2
∗v ηε) (v)]

2
dxdtdv → 0.

It is known (see Lemma A.3 in the appendix for a proof) that for any g ∈Hs(Rn),

∥g − g ∗ ηε∥L2(Rn) ≤ C(n, s, η) ∥g∥Hs(Rn) ε
s.
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Therefore for our functions f+i
2,

∬
Ω̄
∫ (f+i

2
− f+i

s
∗v ηε)

2
dvdxdt ≤ C(n, s, η)ε2s

∬
Qint
∫ ∣Λsf+i ∣

2 dvdxdt.

Remember that ∥f+i
2
∥
L2(Qint;Hs(Rn)) is bounded by (23) and (22), and, since the Hs norm is

weakly lower-semi-continuous, ∥f+2
∥
L2(Qint;Hs(Rn)) will be bounded as well.

Therefore we can bound

∥f+i
2
− f2

+∥
2
≤ ∥f+i

2
− ηε ∗v f

+
i

2
∥

2
+ ∥ηε ∗v f

+
i

2
− ηε ∗v f

+2
∥

2
+ ∥f+

2
− ηε ∗v f

+2
∥

2

≤ Cεs + ∥ηε ∗v f
+
i

2
− ηε ∗v f

+2
∥

2
.

By ∥⋅∥2 we mean ∥⋅∥L2(Ω̄×Rn). For any δ > 0, we take ε small enough that Cεs ≤ δ/2. Then with

ε fixed, we choose i large enough that (by (29)) ∥ηε ∗v f
+
i

2
− ηε ∗v f

+2
∥

2
≤ δ/2. This proves that

∥f+i
2
− f2

+∥2
goes to 0 as i→∞.

Since this is true for any Ω̄ compactly contained in the interior of Qint, we can say that f+i
2
→ f+2

in L2
loc(Qint;L

2(Rn)).
In fact, since our domain is compact, this convergence happpens in L1

loc(Qint;L
2(Rn)) as well.

Since f+i and f+ are non-negative, and since (x − y)2 ≤ ∣x2 − y2∣ for any non-negative real numbers
x and y, we can say that

f+i → f+ in L2
loc(Qint;L

2
(Rn)).

Step 3: The limit is constant in v
We’ll denote

f = f+ + 1 + F.

Because f+i → f+ strongly in L2
loc, we know that

(30)

∣{f = 0} ∩Qearly ×B2∣ ≥
∣Qearly∣ ⋅ ∣B2∣

2
,

∣{f = 1} ∩Qlate ×B2∣ ≥ δ0,

∣{1 + F < f < 1} ∩Qint ×B3∣ = 0.

Remark. If s ≥ 1/2, we can use the fact that the Hs
v norm of f is known to be finite for almost

every t, x fixed and obtain (33) immediately, making the remainder of Step 3 unnecessary. It is
only in the case s < 1/2 that this regularity in v is insufficient to rule out jump discontinuities.
Therefore we follow the technique used in [5] and by Bass and Kassmann in [12] to exploit the
energy inequality’s cross term.

For 0 < λ≪ 1, define the functions

f+i,λ ∶= (fi − ψλ − 1 − λF )+ ,

f−i,λ ∶= (fi − ψλ − 1 − λF )− .

From the the energy inequality of Lemma 2.2, we see that for all i the cross term is bounded
(31)

−∬
Qint

B (f+i,λ, f
−
i,λ) ≤ C(n, s, κ) [∬

Qext
∫ f+i,λ

2
+ sup
v∈B3

Li(ψλ + λF )∬
Qext
∫ f+i,λ + ∥ai∥r ∥f

+
i,λ∥r∗] .

For v ∈ B3, Lemma 2.3, property (i) says that Liψλ(v) ≤ Cψλ
3s/2. Moreover by (19), ∣LiλF (v)∣ ≤

Cλ for some universal constant C.
For λ fixed and i sufficiently large,

fi ≤ 1 + ψ1/i ≤ 1 + ψλ
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so

0 ≤ f+i,λ ≤ λF.

Therefore, for λ fixed and i sufficiently large, the inequality (31) yields

∬
Qint

−B (f+i,λ, f
−
i,λ) ≤ C(n, s, κ) [λ2

+ (λ + λ3s/2
)λ + (1/i)λ] .

The cross term in turn bounds the integral of f+i,λ and f−i,λ. For any t, x fixed

−Bi(f
+
i,λ, f

−
i,λ) = ∬ K(v,w)f+i,λ(v)f

−
i,λ(w)dwdv

≥
1

κ
∬

∣v−w∣≤6

f+i,λ(v)f
−
i,λ(w)

∣v −w∣n+2s
dwdv

≥
1

κ
∬

∣v∣≤3,∣w∣≤3

f+i,λ(v)f
−
i,λ(w)

6n+2s
dwdv

= C ∫
B3

f+i,λ dv∫
B3

f−i,λ dv.

Since fi → f strongly in L2
loc(Qint;L

2(Rn)), these upper- and lower-bounds on the cross term
hold in the limit:

(32) ∬
Qint

[∫
B3

(f − ψλ − 1 − λF )+ dv∫
B3

(f − ψλ − 1 − λF )− dv] dxdt ≤ C(n, s, κ)(λ2
+ λ1+3s/2

).

This bound on the limit f is very strong, because by (30) we have either f(t, x, v) = 1 or
f(t, x, v) = 1 + F (v) for almost all (t, x, v) ∈ Qint ×B3. For such (t, x, v), also ψλ(v) = 0 and so

f − ψλ − 1 − λF = [−λF ]χ{f=1} + [(1 − λ)F ]χ{f=1+F}.

The function −λF is non-negative, while (1 − λ)F is non-positive, so at any point t, x ∈ Qint,

∫
B3

(f − ψλ − 1 − λF )+ dv = −λ∫ Fχ{f=1} dv

∫
B3

(f − ψλ − 1 − λF )− dv = −(1 − λ)∫ Fχ{f=1+F} dv.

Plugging this into (32) and moving all the λ to one side, we obtain

∬
Qint
∫ Fχ{f=1} dv∫ Fχ{f=1+F} dv dxdt ≤ C(n, s, κ)

λ2 + λ1+3s/2

λ(1 − λ)
.

The left-hand side is independent of λ, and the right side tends to 0 as λ→ 0, so we conclude that
the left-hand side is in fact 0. In particular, this means that for almost every t, x ∈ Qint, either

(33) ∣{v ∶ f(t, x, v) = 1} ∩B3∣ = 0 or ∣{v ∶ f(t, x, v) = 1 + F} ∩B3∣ = 0.

Step 4: The limit has bounded derivative, which is a contradiction
What remains is to argue that f increases from 0 to 1, without taking intermediate values along

the way, despite having bounded derivative. Moreover, it is not enough to bound the derivatives
in any weak sense, because jump discontinuities can hide in sets of measure zero.

Since f is only defined up to an a.e.-equivalence class, we can assume without loss of generality
that, for every (not a.e.) t, x ∈ Qint, either f(t, x, v) ≡ 1 or f(t, x, v) ≡ 1 + F .

For each i, since ψ̄ is constant in t and x, it is true that

[∂t + v ⋅ ∇x] (fi − ψ̄) = Li (fi − ψ̄) + Liψ̄ + ai.

Multiplying by χ{fi≥ψ̄} and recalling the standard pointwise inequality for integral operators (c.f.

[6]),

[∂t + v ⋅ ∇x] f
+
i ≤ Lif

+
i + χ{fi≥ψ̄}Liψ̄ + χ{fi≥ψ̄}ai.
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By (19) and Lemma 2.3, property (i), the term χ{fi≥ψ̄}Liψ̄ is less than a universal constant

C(n, s, κ), and of course the Lr norm of χ{fi≥ψ̄}ai is less than 1/i so this term will vanish in the

limit. Let φ ∈ C∞
c (Qint ×Rn) be a non-negative test function and consider

−⟨f+i , [∂t + v ⋅ ∇x]φ⟩ ≤ ⟨f+i ,Liφ⟩ + ⟨C,φ⟩ +
1

i
∥φ∥r∗ .

For φ ∈ C∞
c fixed, the functions Liφ will be uniformly bounded in L∞ and decay like ∣v∣−n−2s. In

particular they are uniformly bounded in L2(Qint ×Rn). Therefore

⟨f+i − f
+,Liφ⟩ → 0

so in little-o notation

−⟨f+i , [∂t + v ⋅ ∇x]φ⟩ ≤ ⟨Lif
+, φ⟩ + ⟨C,φ⟩ + o(1).

By (33) and (19),

Lif
+
= −χ{t,x∶f≡1}LiF ≤ C(n, s, κ).

Thus for some universal constant C1 = C1(n, s, κ) we have, in the sense of distributions,

[∂t + v ⋅ ∇x] (f − 1 − F ) ≤ C1.

To make the remaining calculation rigorous, let ηε(t, x) be an approximation to the identity and
define

fε = ηε ∗t,x f.

These functions fε are smooth and fε → f pointwise a.e. as ε→ 0. For (t, x) ∈ Qint fixed, fε, like f ,
is constant over all v ∈ B2. Because the transport operator commutes with convolution in t and x,

[∂t + v ⋅ ∇x] fε = ηε ∗t,x [∂t + v ⋅ ∇x] f ≤ C1.

This inequality is true not only in the sense of distributions but also pointwise because the functions
are smooth.

Define two sets

M1 = {t, x ∈ Qlate ∶ f(t, x, v) = 1},

M0 = {t, x ∈ Qearly ∶ f(t, x, v) = 1 + F (v)}.

By (30) we know that ∣M0∣ ≥
∣Qearly∣

2 and ∣M1∣ ≥
δ0
∣B2∣ . By Egorov’s theorem, for ε sufficiently small,

∣M ε
1 ∣ ∶= ∣{t, x ∈ Qlate ∶ fε(t, x, v) > 0.9∀v ∈ B2}∣ ≥

δ0

2∣B2∣
,(34)

∣M ε
0 ∣ ∶= ∣{t, x ∈ Qearly ∶ fε(t, x, v) < 0.1∀v ∈ B2}∣ ≥

∣Qearly∣

4
.

Fixing ε, choose a point (t0, x0) ∈M
ε
0 .

For any (t1, x1) ∈M
ε
1 , we can define the velocity v̄ ∶= x1−x0

t1−t0 and see that ∣v̄∣ ≤ 2. Then the function

τ ↦ fε((1 − τ)t0 + τt1, (1 − τ)x0 + τx1, v̄)

is equal to 0 at τ = 0 and equal to 1 at τ = 1, and its derivative is less than (t1 − t0)C1. Therefore

(35) H
1
(segment [(t0, x0), (t1, x1)] ∩ {t, x ∶ 0.1 < f(t, x, v) < 0.9∀v ∈ B2}) ≥

.8
√

1 + ∣v̄∣2

C1
≥

2

C1
.

The facts (34) and (35) tell us, by the elementary geometric argument of Lemma A.2, that the
cone with vertex (t0, x0) and base M ε

1 must intersect {t, x ∶ 0.1 < f(t, x, v) < 0.9∀v ∈ B2} on a set
with measure (δ0/2∣B2∣)(2/C1)

2/80.
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In particular,

∣{0.1 < fε < 0.9} ∩Qint ×B2∣ ≥
2δ0

80C2
1 ∣B2∣

> 0.

This bound holds for all ε sufficiently small, but we know from (30) that it is not true for f . By
Egorov’s theorem, this is a contradiction.

Therefore our sequence fi must not exist, and the proposition must be true.
�

5. Hölder Continuity

In this section, we explain how Proposition 3.1 and Proposition 4.1 together lead to Hölder
regularity of our solution. We begin by showing that the PDE (1) is scaling invariant. We then
show, in Lemma 5.2, how to combine Proposition 3.1 and Proposition 4.1 to create a sort of
Harnack’s inequality. The ideas here are not new, in particular we follow [5] very closely.

Lemma 5.1 (Scaling). If f solves (1) on some region Q×Rn ⊆ R×Rn ×Rn, then for any constant
ε < 1,

f̄(t, x, v) ∶= f(ε2st, ε1+2sx, εv)

will solve

∂tf̄ + v ⋅ ∇xf̄ = ∫ [f̄(w) − f̄(v)]K̄(t, x, v,w)dw + ā

on the appropriate region Qε ×Rn with K̄ symmetric and satisfying (2), and with

∥ā∥Lr(Qε×Rn) ≤ ε
2s(1−n+1+n/s

r
)
∥a∥Lr(Q×Rn) .

Proof. Denote
p = (t, x, v), p̄ = (ε2st, ε1+2sx, εv).

Evaluate the equality (1) at the point p̄, so that

(36) (∂tf)(p̄) + εv ⋅ (∇xf)(p̄) = (Lf)(p̄) + a(p̄).

For our modified function f̄ evaluated at p,

∂tf̄(p) = ε
2s
(∂tf)(p̄),(37)

∇xf̄(p) = ε
1+2s

(∇xf)(p̄).(38)

Define
K̄(t, x, v,w) ∶= εn+2sK(ε2st, ε1+2sx, εv, εw).

It’s clear that K̄ is still symmetric. Since

K̄(t, x, v,w) ≥ εn+2sχ{ε∣v−w∣≤6}
1

κ
(ε∣v −w∣)

−(n+2s)
≥ χ{∣v−w∣≤6}

1

κ
∣v −w∣

−(n+2s)

and
K̄(t, x, v,w) ≤ εn+2sκ(ε∣v −w∣)

−(n+2s)
= κ∣v −w∣

−(n+2s),

K̄ satisfies the bound (2).
For this K̄,

∫ [f̄(w) − f̄(v)]K̄(p,w)dw = εn+2s
∫ [f(εw) − f(εv)]K(p̄, εw)dw

= εn+2s 1

εn
∫ [f(εw) − f(εv)]K(p̄, εw)d(εw)

= ε2s
(Lf)(p̄).(39)

Define

(40) ā(t, x, v) ∶= ε2sa(ε2st, ε1+2sx, εv).
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Then the Lr norm of ā is

∥ā∥r = ε
2sε−

2s+n(1+2s)+n
r (∭ a(ε2st, ε1+2sx, εv)r d(ε2st)d(ε1+2sx)d(εv))

1/r
.

Plugging (37), (38), (39), and (40) into (36) yields

ε−2s∂tf̄(p) + εε
−1−2sv ⋅ ∇xf̄(p) = ε

−2s
∫ [f̄(w) − f̄(v)]K̄(p)dw + ε−2sā(p).

Multiply both sides by ε2s to obtain our desired result. �

Remark. In addition to scaling, we can also translate solutions of (1). If f is a solution and
(t0, x0, v0) is a point in its domain, then

f̄(t, x, v) ∶= f(t0 + t, x0 + x + v0t, v0 + v)

will be a solution to (1) with similarly adjusted source term and kernel. This translation invariance
is necessary for the proof of Hölder continuity, though we omit any further detail.

The following lemma should be thought of as a Harnack inequality, except that it keeps track
also of the growth in v.

In the sequel, θ0 and γ0 refer to the constant defined in the statement of Proposition 4.1, and δ0

refers to the constant defined in Proposition 3.1 which is used again in the statement of Proposi-
tion 4.1.

Lemma 5.2 (Oscillation Lemma). There exists a universal constant 0 < λ < 1 such that the
following is true:

If f ∈ L2(Qext;H
s(Rn)) is a weak solution to (1) subject to (2) with source term

∥a∥Lr(Qext) ≤ λθ0

and satisfying

(41) ∣f(t, x, v)∣ ≤ 1 + λψθ0(v)

for all t, x ∈ Qext, v ∈ Rn, then

⎡
⎢
⎢
⎢
⎣

sup
[−1,0]×B1×B1

f
⎤
⎥
⎥
⎥
⎦
− [ inf

[−1,0]×B1×B1

f] ≤ 2 − λ.

Moreover, at least one of the two functions

f̄1(t, x, v) = (1 +
λ

2
) [f(λ2st, λ1+2sx,λv) + λ/2]

or

f̄2(t, x, v) = (1 +
λ

2
) [f(λ2st, λ1+2sx,λv) − λ/2]

will also solve (1) subject to (2) in the weak sense with source term smaller than λθ0 and satisfy

∣f̄i(t, x, v)∣ ≤ 1 + λψθ0(v)

for all t, x ∈ Qext, v ∈ Rn.

Proof. Choose k0 ∈ N such that

γ0k0 > ∣Qint ×B3∣.

Take λ small enough that

(42) λ ≤
θk0+1

0

2
, 3λ1+2s

< 1, 6λ2s
< 1, λ < ε0, and (1 +

λ

2
)λ

2s(1−n+1+n/s
r

)
≤ 1

where ε0 = ε0(s, θ0) is defined in Lemma 2.3 property (v).
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Assume without loss of generality that

(43) ∣{f ≤ 0} ∩Qearly ×B2∣ ≥ ∣Qearly∣ ⋅ ∣B2∣/2.

If this were not true, then we could simply discuss −f instead. This proposition holds for f if and
only if it holds for −f .

With this assumption, we will assert that the proposition’s result is true for

f̄(t, x, v) = (1 +
λ

2
) [f(λ2st, λ1+2sx,λv) + λ/2] .

It is clear by Lemma 5.1 and linearity of Equation (1) that f̄ will solve (1) subject to (2) with
source term ā smaller than λθ0 by (42). We must show that f̄ is also bounded as desired.

Consider the sequence of functions

f0 = f

fk =
fk−1 − 1

θ0
+ 1 =

f − 1

θ0
k
+ 1.

Since equation (1) is linear, all fk will also be solutions with source terms 1
θk0
a.

For each 0 ≤ k ≤ k0 + 1 and any (t, x, v) ∈ Qext ×Rn,

∣a(t, x, v)∣ ≤
λθ0

θk0
≤ θ0

by the assumption (42), and by (41) and (42),

(44) fk =
f − 1

θ0
k
+ 1 ≤

λ

θ0
k
ψθ0 + 1 ≤ ψθ0 + 1.

We wish to show that fk0 satisfies

(45) ∣{fk0 ≥ 1 − θ0} ∩Qlate ×B2∣ ≤ δ0.

Therefore assume, for contradiction, that (45) does not hold. Then by construction, each fk will
satisfy (17) for 0 < k ≤ k0. Moreover, all fk will satisfy (16) since f0 does by (43). Therefore we can
apply Proposition 4.1 and conclude that each fk for k from 0 to k0 must satisfy (18). That means
that the set

Sk ∶= ∣{fk ≤ 0} ∩Qint ×B3∣

must increase in measure by at least γ0 with each increment of k. By choice of k0, this would be a
contradiction. We conclude that (45) holds.

Due to (44) and Lemma 2.3, property (iv), we say that for all t, x ∈ Qlate and all ∣v∣ ≥ 2

fk0+1(t, x, v) ≤ 1 + ψθ0(v) ≤ ψ
1
(v).

By (44), fk0+1(t, x, v) ≤ 1 for all (t, x, v) ∈ [−2,0] ×B2 ×B2, so we can say by (45) that

∭
Qlate×B2

max(fk0+1 − ψ
1,0)2 dvdxdt ≤ δ0.

This is sufficent to apply Proposition 3.1 to fk0+1 and conclude that fk0+1 ≤ 1/2 on [−1,0]×B1×B1.
Thus for the original f ,

(46) − 1 ≤ f ≤ 1 −
1

2
θ0
k0+1

≤ 1 − λ ∀(t, x, v) ∈ [−1,0] ×B1 ×B1.

This proves the lemma’s first claim.
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We now know from (46), the definition of f̄ , and (42) that for all t, x ∈ Qext and ∣v∣ ≤ λ−1

f̄(t, x, v) ≤ (1 +
λ

2
) [1 − λ + λ/2] ≤ 1,

f̄(t, x, v) ≥ (1 +
λ

2
) [−1 + λ/2] ≥ −1.

For t, x ∈ Qext and ∣v∣ ≥ λ−1, since λ < ε0, we know by Lemma 2.3, property (v) that

2ψθ0(λv) + 2 ≤ ψθ0(v).

Therefore

∣f̄(t, x, v)∣ ≤ (1 +
λ

2
) [1 + λψθ0(λv) + λ/2]

≤ (1 +
λ

2
) [1 +

λ

2
ψθ0(v) − λ + λ/2]

≤ 1 + λψθ0(v).

This completes the proof.
�

Theorem 1.1 is proven by iteratively applying this Lemma 5.2 to an appropriately scaled function.

Appendix A. Some Technical Lemmas

We prove here the averaging lemma used throughout this paper. This lemma is an immediate
corollary of [3] Theorem 6. It is merely a localization of that result.

Lemma A.1 (Averaging Lemma). Let Ω be an open subset of space-time R×Rn, and Ω̄ a compact
subset of Ω.

For any smooth function η ∈ C∞
c (Rn) and any m ∈ R+, there exists a constant C = C(n,m, η, Ω̄,Ω)

and a constant

α =
1

2(1 +m)

such that the following is true:
For any two functions f and g in L2(Ω ×Rn) satisfying

[∂t + v ⋅ ∇x] f = g,

it is true that

∥∫ ηf dv∥
Hα(Ω̄)

≤ C (∥f∥L2(Ω×Rn) + ∥(1 −∆v)
−m/2 g∥

L2(Ω×Rn)
) .

By ∥g∥Hα(Ω̄), we mean the infimum of ∥g̃∥Hα(Rn+1) over all extensions g̃ of g to Rn+1.

Proof. Let φ(t, x) be a smooth function supported on Ω and identically equal to 1 on Ω̄. Then

[∂t + v ⋅ ∇x] (φf) = φg + f [∂t + v ⋅ ∇x]φ.

By [3] Theorem 6,

∥φ∫ ηf dv∥
Hα(R×Rn)

≤ C (∥φf∥L2(R×Rn×Rn) + ∥(1 −∆v)
−m/2

(φg + f [∂t + v ⋅ ∇x]φ)∥
L2(R×Rn×Rn)

) .

Because (1 −∆v)
−m/2 is a bounded operator from L2 to L2, and because φ is a smooth function

supported on Ω and depending only on t and x,

∥(1 −∆v)
−m
2 (φg + f [∂t + v ⋅ ∇x]φ)∥

L2(R1+n+n)
≤ C(φ) ∥(1 −∆v)

−m
2 g∥

L2(Ω×Rn)
+C(m,φ)∥f∥L2(Ω×Rn).

The result follows. �
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The following is a technical lemma about the geometry of cones. We use it at the very end of
the proof of Proposition 4.1.

-5 -4 -2 0

S
B

bμ
(t0,x0)

x

t
-2

2

Figure 2. A diagram showing the assumptions of Lemma A.2.

Lemma A.2. Let C ⊆ R × Rn be a cone from a vertex (t0, x0) ∈ [−5,−4] × B2 to a base set B ⊆

[−2,0] × B2. Let S be a subset of R × Rn such that for each b ∈ B, the line segment connecting
(t0, x0) to b intersects S on a set with Hausdorff H1 measure at least µ.

Then

∣C ∩ S∣ ≥
∣B∣µ2

80
.

Proof. Let A(t) be the cross-sectional area of our cone at time slice t. If Hn is the Hausdorff
measure of dimension n, we write

A(t) = Hn (C ∩ [{t} ×Rn]) .

By the nature of cones, A(t0) = 0, A is affine for t0 < t < −2, then sub-affine for −2 < t < 0, and
A(t) = 0 for t > 0. Specifically,

A(t) =
A(−2)

−2 − t0
(t − t0) t0 < t < −2,

A(t) ≤
A(−2)

−2 − t0
(t − t0) − 2 ≤ t.

Since B is contained in C ∩ [−2,0] ×Rn,

∣B∣ ≤ ∫

0

−2
A(t)dt ≤ ∫

0

−2

A(−2)

−2 − t0
(t − t0) dt =

A(−2)

−2 − t0
[t20 − (2 + t0)

2] /2 ≤ 4A(−2).

This means that

A(−2) ≥
∣B∣

4
.

Now we have a lower bound on the size of the cone, so for t0 ≤ t ≤ −2

(47) A(t) ≥
∣B∣

4(−2 − t0)
(t − t0).

Consider the map from B to {0} ×Rn given by stereographic projection from the point (t0, x0),
and let db be a probability measure on B proportional to the pullback of Hn↾{0}×Rn under this
projection. Then db represents the proportion of any time-slice of C generated by rays through a
given portion of B.
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To find the measure of C ∩ S, we must ask how much each time slice intersects S, or in integral
form

∣C ∩ S∣ = ∫
0

t0
A(t)∫

b∈B
χ{(t,x)∈C∩S} dbdt.

By Fubini, this becomes

(48) ∣C ∩ S∣ = ∫
b∈B
∫

0

t0
A(t)χ{(t,x)∈C∩S} dtdb.

From the definition of µ and the arc length formula,

µ ≤ ∫

0

t0
χ{(t,x)∈C∩S}

√
1 + ∣b − x0∣

2/(−2 − t0)2 dt ≤
√

5∫
0

t0
χ{(t,x)∈C∩S}.

Because A(t) is increasing and χ{(t,x)∈C∩S} integrates to at least µ/
√

5,

∫

0

t0
A(t)χ{(t,x)∈C∩S} dt ≥ ∫

t+µ/
√

5

t0
A(t)dt.

From this bound, (48), and (47) we can at last compute

∣C ∩ S∣ ≥
∣B∣

4(−2 − t0)
∫

t0+µ/
√

5

t0
(t − t0)dt =

∣B∣

4(−2 − t0)

µ2

10
≥

∣B∣µ2

80
.

�

The following lemma is a commonly known fact about mollifiers. Despite being known, a proof
is surprisingly difficult to find in the existing literature. Therefore, in the interest of completeness,
we prove it here.

Lemma A.3. Let η ∈ C∞
c (Rn) be such that the sequence ηε(v) = ε

−nη(v/ε) is an approximation to
the identity. There exists a constant C = C(n, s, η) such that, for any g ∈Hs(Rn),

∥g − g ∗ ηε∥L2(Rn) ≤ C ∥g∥Hs(Rn) ε
s.

Proof. The bound is easy to compute by taking the Fourier transform and using Plancharel’s
theorem:

∥g − g ∗ ηε∥
2
L2 = ∫ ĝ2

(1 − η̂ε)
2 dξ

≤ ∫ (1 + ξ2
)
sĝ2 dξ sup

ξ

∣1 − η̂ε(ξ)∣
2

(1 + ξ2)s

= ∥g∥2
Hs(Rn) sup

ξ

∣1 − η̂ε(ξ)∣
2

(1 + ξ2)s
.

Since η ∈ C∞
c , the fourier transform η̂ is Lipschitz with some constant C̄. Thus η̂ε(ξ) = η̂(εξ) is

Lipschitz with constant C̄ε. Since ηε is an approximation to the identity, η̂ε(0) = 1 and ∣η̂ε(ξ)∣ ≤ 1
for all ξ. Thus

∣1 − η̂ε(ξ)∣ ≤ min(2, C̄ε∣ξ∣).

The function
min(2,C̄εξ)2

(1+ξ2)s achieves its maxumum value at the critical point C̄ε∣ξ∣ = 2, and that

maximum value is
22

(1 + ( 2
C̄ε

)
2
)
s =

4ε2s

(ε2 + 4/C̄2)
s ≤ Cε

2s.

�
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Anal. Non Linéaire, 8(3-4):271–287, 1991.
[12] Richard F. Bass and Moritz Kassmann. Harnack inequalities for non-local operators of variable order. Transac-

tions of the American Mathematical Society, 357, 02 2005.
[13] François Golse, Cyril Imbert, Clément Mouhot, and Alexis Vasseur. Harnack inequality for kinetic Fokker-

Planck equations with rough coefficients and application to the Landau equation. To appear in Annali della
Scuola Normale Superiore di Pisa, Classe di Scienze, page arXiv:1607.08068, July 2016.
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[20] Lars Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147–171, 1967.
[21] Cyril Imbert and Clément Mouhot. A toy nonlinear model in kinetic theory. arXiv e-prints, page

arXiv:1801.07891, January 2018.
[22] Cyril Imbert and Luis Silvestre. The weak Harnack inequality for the Boltzmann equation without cut-off. arXiv

e-prints, page arXiv:1608.07571, August 2016.
[23] Edward W. Larsen and Joseph B. Keller. Asymptotic solution of neutron transport problems for small mean free

paths. Journal of Mathematical Physics, 15(1):75–81, 1974.
[24] Nicolas Lerner, Yoshinori Morimoto, and Karel Pravda-Starov. Hypoelliptic estimates for a linear model of the

Boltzmann equation without angular cutoff. Comm. Partial Differential Equations, 37(2):234–284, 2012.
[25] Wei-Xi Li. Global hypoelliptic estimates for fractional order kinetic equation. Math. Nachr., 287(5-6):610–637,

2014.
[26] Antoine Mellet. Fractional diffusion limit for collisional kinetic equations: a moments method. Indiana Univ.

Math. J., 59(4):1333–1360, 2010.
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