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DISCRETE-TO-CONTINUUM LIMITS OF PARTICLES WITH AN

ANNIHILATION RULE

PATRICK VAN MEURS AND MARCO MORANDOTTI

Abstract. In the recent trend of extending discrete-to-continuum limit passages for gradi-
ent flows of single-species particle systems with singular and nonlocal interactions to particles
of opposite sign, any annihilation effect of particles with opposite sign has been side-stepped.
We present the first rigorous discrete-to-continuum limit passage which includes annihilation.
This result paves the way to applications such as vortices, charged particles, and disloca-
tions. In more detail, the discrete setting of our discrete-to-continuum limit passage is given
by particles on the real line. Particles of the same type interact by a singular interaction
kernel; those of opposite sign interact by a regular one. If two particles of opposite sign
collide, they annihilate, i.e., they are taken out of the system. The challenge for proving a
discrete-to-continuum limit is that annihilation is an intrinsically discrete effect where par-
ticles vanish instantaneously in time, while on the continuum scale the mass of the particle
density decays continuously in time. The proof contains two novelties: (i) the observation
that empirical measures of the discrete dynamics (with annihilation rule) satisfy the con-
tinuum evolution equation that only implicitly encodes annihilation, and (ii) the fact that,
by imposing a relatively mild separation assumption on the initial data, we can identify the
limiting particle density as a solution to the same continuum evolution equation.

Keywords: Particle system, discrete-to-continuum asymptotics, annihilation, gradient flows.
2010 MSC: 82C22, (82C21, 35A15, 74G10).

1. Introduction

A recent trend in discrete-to-continuum limit passages in overdamped particle systems
with singular and nonlocal interactions (with applications to, e.g., vortices [Sch96, Hau09,
Due16], charged particles [SS15], dislocations [HCO10, LMSZ18, MPS17], and dislocation
walls [GPPS13, vMMP14, vMM14]) is to extend such results to two-species particle systems.
The singularity in the interaction potential imposes the immediate problem that the evolution
of the particle system is only defined up to the first collision time between particles of opposite
sign. This problem is dealt with by either regularising the singular interaction potential (see
[GLP10, GvMPS18]) or by limiting the geometry such that particles of opposite sign cannot
collide (see [CXZ16, vM18]). However, more realistic models of vortices, charged particles,
and dislocations include the annihilation of particles of opposite sign. While annihilation has
been analysed on the discrete scale [SBO07, Ser07] and continuum scale [BKM10, AMS11]
separately, there is no rigorous discrete-to-continuum limit passage known between these two
scales.

The main result in this paper establishes the first result on a discrete-to-continuum limit
passage in two-species particle systems in one dimension with annihilation.

After introducing the discrete and continuum problems, we present our main result on the
connection between them, i.e., the limit as the number of particles n tends to ∞. Then, we

Date: January 1, 2019.

1

http://arxiv.org/abs/1807.11199v2


2 PATRICK VAN MEURS AND MARCO MORANDOTTI

put our discrete and continuum problems in the perspective of the literature, and comment
how our proof combines known techniques with novel ideas. We conclude with an exposition of
possible extensions to work towards singular interspecies interactions and higher dimensions.

1.1. The discrete problem (particle system with annihilation). We introduce our
discrete evolution problem by first specifying the state of the system, then the related in-
teraction energy, and finally the evolution law. The state of the system is described by
x := (x1, . . . , xn) ∈ R

n and b := (b1, . . . , bn) ∈ {−1, 0, 1}n with n ≥ 2 the number of particles.
The point xi is the location of the i-th particle, and bi is its charge (or Burgers vector, in the
setting of dislocations).

To any state (x, b) we assign the interaction energy En : R
n × {−1, 0, 1}n → R ∪ {+∞} by

En(x; b) :=
1

2n2

n
∑

i=1

( n
∑

j=1
j 6=i

bibj=1

V (xi − xj) +

n
∑

j=1
bibj=−1

W (xi − xj)

)

, (1)

where V and W are the interaction potentials between particles of equal and opposite charge,
respectively. For V andW , we have three choices in mind, all of which are of separate interest:

(i) V (r) = − log |r| and W ≡ 0. This corresponds to the easiest case in which the two
species only interact with their own kind. It is distinct from the single-particle case
solely by the annihilation rule which we specify below.

(ii) V (r) = − log |r| and W a regularisation of −V (as illustrated in Figure 1). This is a first
step to considering the case of positive and negative charges (or positive and negative
dislocations). After stating our main result for regular W , we comment in Section 1.6
on possible extensions to singular W , in particular W = −V .

(iii) V (r) = r coth r − log |2 sinh r| and W a regularisation of −V . This setting corresponds
to that of dislocation walls, whose discrete-to-continuum limit is established in [HL82,
Hal11, GPPS13, vMMP14, vMM14, vM18] for either single-sign scenarios or without
annihilation. The potential V has several pleasant properties: it has a logarithmic
singularity at 0, it is decreasing on (0,∞), and it is positive with integrable tails.

r

V (r)

W (r)

Figure 1. Plots of V (r) = − log |r| and a typical regularisation W of −V .

We propose a unified setting which includes the three cases above: we consider a class of
potentials V and W which satisfy a certain set of assumptions specified in Assumption 2.1.
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The crucial assumptions are that the singularity of V at 0 is at most logarithmic, that
V (r) → +∞ as r → 0, that W is regular, and that V and W have at most logarithmic
growth at infinity. In view of other typical assumptions in the literature, we do not rely on
convexity or monotonicity. In Section 1.5 we elaborate on the necessity of these assumptions
to our main discrete-to-continuum result.

Finally, we make three observations on the structure of (1). First, if the i-th particle has
0 charge (i.e., bi = 0), then it does not contribute to En. Second, the factor 1/2 in front
of the energy is common; it corrects the fact that all interactions are counted twice in the
summation. Third, the condition j 6= i prevents self-interaction.

Equation (2) formally describes the dynamics; for a rigorous definition see Problem 4.1 and
Definition 4.2.











d

dt
xi = − 1

n

∑

j : bibj=1

V ′(xi − xj)−
1

n

∑

j : bibj=−1

W ′(xi − xj) on (0, T ) \ Tcol,

annihilation rule at Tcol.

(2)

Here, Tcol = {t1, . . . , tK} is a finite set, outside of which x(t) is the gradient flow of En. The
collision times tk correspond to the times at which at least one pair (i, j) of two particles
collide, i.e. xi(tk) = xj(tk). We will show that the singularity of V keeps particle of the same
type separated, which implies that the only possible particle collisions are that of two particles
with opposite charge. The annihilation rule dictates that at a collision between particles xi
and xj, the charges bi(t) and bj(t) are put to 0 for all t ≥ tk. After tk, the system of ODEs
is restarted with initial condition (x(tk); b(tk)). While particles are not removed from the
dynamics, we note that, if particle i has zero charge, then

• xi(t) remains stationary,
• the velocity of all other particles does not depend on xi(t), and
• particle i cannot annihilate any more with any other particle.

Hence, the mathematical framework of (2) encodes annihilations without removing particles
from the equations.

1.2. The continuum problem (PDE for the particle density). On the continuum level,
the state of the system is described by the nonnegative measures ρ±, which represent the
density of the positive/negative particles (including those that are annihilated). We further
set

ρ := ρ+ + ρ− and κ := ρ+ − ρ−,

and require the total mass of ρ to be 1. We note that ρ+ and ρ− need not be mutually
singular, and thus ρ± ≥ [κ]±, where [κ]± denotes the positive/negative part of the signed
measure κ. We interpret [κ]± as the density of positive/negative particles that have not been
annihilated yet.

For ρ±(t) we consider the following set of evolution equations
{

∂tρ
+ = div

(

[κ]+ (V ′ ∗ [κ]+ +W ′ ∗ [κ]−)
)

in D′((0, T ) × R),

∂tρ
− = div

(

[κ]− (V ′ ∗ [κ]− +W ′ ∗ [κ]+)
)

in D′((0, T ) × R),
(3)

We remark that no annihilation rule is specified; the annihilation is encoded in taking the
positive/negative part of κ. Indeed, it is easy to imagine that while ρ = ρ+ + ρ− is conserved
in time, [κ]+ + [κ]− = |ρ+ − ρ−| may not be.
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1.3. Main result: discrete-to-continuum limit. Our main theorem (Theorem 5.1) states
that the solutions to (2) converge to a solution of (3) as n → ∞. It specifies the concept
of solution to both problems, the required conditions on the sequence of initial data of (2),
and guarantees that the so-constructed solution to (3) at time 0 corresponds to the limit
of the initial conditions as n → ∞. The convergence is uniform in time on [0, T ] for any
T > 0. The convergence in space is with respect to the weak convergence. As a by-product
of Theorem 5.1, we obtain global-in-time existence of a solution (ρ+, ρ−) to (3) for which the
masses of ρ± are conserved in time.

In order to give effectively an outline of the proof and the motivation for the main assump-
tions under which Theorem 5.1 holds (Section 1.5), we first describe the related literature.

1.4. Related literature. We start by relating (3) formally to its singular counterpart. Re-
placing W by −V , we obtain from a formal calculation that the difference of the two equations
in (3) is given by

∂tκ = div
(

|κ|(V ′ ∗ κ)
)

. (4)

For V (r) = − log |r|, equation (4) was introduced by [Hea72] and later proven in [BKM10] to
attain unique solutions when posed on R with proper initial data.

In the remainder of this subsection, we put our main result Theorem 5.1 in the perspective
of the literature. We start by describing those specifications of [FIM09, MP12b, MP12a] which
are closest to our main result. A specification of [FIM09, Theorems 2.1–2.3] proves a ‘discrete’-
to-continuum result from (2) to (4), in the case where V (r) = −W (r) is a regularisation of
− log |r| on the length-scale 1/n. We put ‘discrete’ in apostrophes, because their equivalent
of (2), given by [FIM09, equation (5)], is a Hamilton-Jacobi equation, which includes the
solution to (2) only if all particles have the same sign. It is not clear if this Hamilton-Jacobi
equation relates to (2) if the particles have opposite sign.

As opposed to [FIM09], [MP12b] starts from a different Hamilton-Jacobi equation, which
corresponds to the Peierls-Nabarro model [Nab47, Pei40]. This model is a phase-field model
for the dynamics of dislocations which naturally includes annihilation. In this model, op-
posite to encoding dislocations as points on the line, the dislocations are identified by the
pulses of the derivative of a multi-layer phase field on the real line. In [MP12b], the width
of these pulses is taken to be on the same length-scale as the typical distance between neigh-
bouring dislocations. Then, in the joint limit when the regularisation length-scale (and thus
simultaneously 1/n) tend to 0, an implicit Hamilton-Jacobi equation is recovered [MP12b].
In [MP12a, Theorem 1.2] it is shown that this implicit Hamilton-Jacobi equation converges
to (4) in the dilute dislocation density limit. While this framework seems promising for a
direct ‘discrete’-to-continuum result (‘discrete’ being the Peierls-Nabarro model) to (3), it
only applies to co-dimension 1 objects, i.e., particles in 1D and curves in 2D.

Next we discuss the literature related to problem (2). [Ser07] and [SBO07, Theorems 1.3
and 1.4] describe the version of (2) in which W (r) is replaced by −V (r) = log |r|. In this
setting, a solution is constructed as the limit of the Ginzburg-Landau equation on the dy-
namics of vortices when the phase-field parameter ε tends to 0, and detailed properties of this
solution are established. However, we did not find a precise solution concept to this version
(or any other version) of (2), which in particular yields a unique solution. We establish such
a solution concept to (2) in Definition 4.2 and Proposition 4.5.

Regarding the continuum problem (3), we have not found this set of equations in the
literature. Nonetheless, we believe the case W = 0 to be of independent interest, since
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then (3) serves as the easiest benchmark problem for future studies on annihilating particles.
Also, since our discrete-to-continuum result holds for taking W as a regularisation of −V , we
expect that (4) can be obtained from (3) as the regularisation length-scale tends to 0 (see
Section 1.6). Therefore, we review the literature on (4).

Equation (4) as posed on R with V (r) = − log |r|, or even V (r) = |r|−a with 0 < a < 1,
attains a self-similar solution [BKM10, Theorem 2.4] in which κ has a sign. The self-similar
solution is expanding in time (due to the repelling interaction force V ′(r)), and describes
the long-time behaviour of the unique viscosity solutions to (4) [BKM10, Theorem 2.5] for
appropriate initial data. Moreover, for V (r) = − log |r| and initial condition κ◦ ∈ L1(R), the
viscosity solution κ to (4) satisfies κ(t) ∈ Lp(R) for all 1 ≤ p ≤ ∞ [BKM10, Theorem 2.7]. In
conclusion, despite (4) being the singular counterpart of (3), it has a well-defined global-in-
time solution concept.

Lastly, we compare our result to that of [AMS11]. There, the authors are interested in
deriving a gradient flow structure of (4) on R

2 with V having a logarithmic singularity at 0
by defining a discrete in time minimising movement scheme and passing to the limit as the
time step size tends to 0. The related convergence result is [AMS11, Theorem 1.4]. However,
the limit equation is not fully characterised as (4), since in that equation |κ| is replaced by an
unknown measure µ ≥ |κ| which is obtained from compactness. The connection to our main
result is that we faced a similar problem. Due to our 1D setup and by a technical assumption
on the initial data, we were able to characterise the corresponding µ as |κ|.

1.5. Discussion on the proof, assumptions, and possible extensions. We divide this
section into several topics regarding the proof, assumptions, and possible extensions of The-
orem 5.1 (outlined in Section 1.3).

Summary of the proof. A crucial step is the observation that the solution to (2), seen as a
pair of empirical measures µ±

n , is a solution to (3), i.e.,
{

∂tµ
+
n = div

(

[κn]+ (V ′ ∗ [κn]+ +W ′ ∗ [κn]−)
)

in D′((0, T ) × R),

∂tµ
−
n = div

(

[κn]− (V ′ ∗ [κn]− +W ′ ∗ [κn]+)
)

in D′((0, T ) × R),
(5)

where κn := µ+
n − µ−

n . The annihilation is completely covered by taking the positive and
negative part of κn. This property is the reason for encoding annihilation in the charges
bi(t) rather than removing particles from the dynamics. Then, relying on the gradient flow
structure underlying (2) and the boundedness of W , we find, by the usual compactness
arguments à la Arzelà-Ascoli, limiting curves ρ±(t). It then remains to pass to the limit
n → ∞ in (5). The difficulty is in characterising the limit of [κn]±, which only accounts for
the particles that have not collided yet. Indeed, the convergence of measures is not invariant
with respect to taking the positive and negative part. It is here that we heavily rely on the
one-dimensional setting and on a technical assumption on the initial data (Assumption 2.2),
which provides an n-independent bound on the number of neighbouring pairs of particles with
opposite sign. This bound allows us to characterise the limit of [κn]± as [κ]±.

Motivation for Assumption 2.2. Assumption 2.2 prevents small-scale oscillations between
±1 phases. A similar assumption is made in [MP12b], where the initial data for the particles
is constructed from the continuum initial datum. While one might expect that small-scale
oscillations cancel out on small time scales, the simulations in [vM15, Chapter 9] suggest
otherwise. The problem with such small-scale oscillations is that they cause the limit of [κn]±
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to be larger than [κ]±, which makes it difficult to characterise the limit as n → ∞ of (5) as
(3).

Singularity of V . Assuming the singularity of V to be at most logarithmic is needed to
apply the discrete-to-continuum limit passage technique in [Sch96].

In fact, we also require that V (r) → ∞ as r → 0, i.e., we do not allow for a regular
V . While regular V and W (in particular W = −V ) would simplify the equations and
many steps in the proof of our main theorem, it may result in two technical difficulties:
collision between three or more particles, and the limiting signed measure κ having atoms.
These difficulties complicate the convergence proof of [κn]± to [κ]± as n → ∞. Since all
our intended applications correspond to singular potentials V , we choose to side-step these
technical difficulties by simply requiring V to have a singularity at 0.

Regularity of W . W being bounded around 0 results in a lower bound on the energy along
the evolution, which we need for equicontinuity and thus for compactness of µ±

n . Also, while
passing to the limit n → ∞ in (5), we need W ′ regular enough (the technique in [Sch96] does
not apply for logarithmic W ).

Logarithmic tails of V,W . While it would be easier to assume that V is bounded from
below and W is globally bounded, we also allow for logarithmic tails to include all three
scenarios in Section 1.1. The logarithmic tails of V and W result in the energy En to be
unbounded from below. However, following the idea in [Sch96] to prove a priori bounds on
the moments of µ±

n (t), we easily obtain that E(µ±
n (t)) is bounded from below by −C(1 + t)

for some C > 0 independent of n and t.

1.6. Conclusion and outlook. We intend our main result to open a new thread of research
on including annihilation in discrete-to-continuum limits. Here we discuss several open ends.

W = −V singular. This setting corresponds to charges (or dislocations) on the real line.
On the continuum level, see (4), this equation is well-understood [BKM10], but on the discrete
level we have not found a closed set of equations to describe the discrete counterpart of (2)
(other than [Ser07], [SBO07], whose results are discussed in Section 1.4). Since our main
result does allow for −W to be a regularisation Vδ of V (δ denotes the arbitrarily small, but
fixed, length-scale of the regularisation), this calls for three interesting limit passages:

(a) δ → 0 with n fixed. This limit seems the easiest out of the three. Similar to [Ser07],
[SBO07], the idea is to pass to the limit, and describe the limit rather than posing a
closed set of equations for it. One challenge is that in the limiting curves prior to collision
at t∗, the particles’ speed blows up as ∼ 1/

√
t∗ − t (this is easily seen by considering only

2 particles; one positive and one negative). While the resulting curves are not Lipschitz

in time, they are C1/2 in time. However, such collisions correspond to −∞ wells in the
energy, which require the development of a proper renormalisation of En.

Another challenge is that particles need not collide if they come close, regardless how
small δ > 0 is. To see this, consider two particles with opposite sign and with mutual
distance smaller than δ. Since Vδ is regular, the particles will come exponentially close,
but they will not collide in finite time. In the case of many particles, such a close pair
will only collide if the external force (induced by the other particles) acts in the right
direction. If it does not collide, then the pair remains in the system (as opposed to the
case of singular W ), and may even interact with or annihilate other particles that come
close.
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(b) Connecting (3) to (4) by δ → 0. Taking W = −Vδ and setting ρ±δ as a corresponding
solution to (3), it is impossible to pass directly to the limit in (3) due to the term [κδ ]±(V

′
δ ∗

[κδ]∓). Instead, the structure of (4) in terms of viscosity solutions (see [BKM10]) seems
promising. We leave it to future research to find out whether (3) enjoys a similar structure,
and if not, whether there is a different continuum model for annihilating particles that
does.

(c) Connecting (2) to (4) by a joint limit n → ∞ and δn → 0. This approach fits to the
convergence result obtained in [MP12b], where roughly speaking δn ∼ 1/n is considered,
but where a different equation than (4) is obtained in the limit. It would be interesting
to see whether those results can be extended to the case δn ≪ 1/n, in which case the
expected limit is (4) (see [MP12a]).

Different regularisations of collisions. In the spirit of proving any of the above limit pas-
sages, we discuss alternative regularisations other than taking W regular. One idea is ‘pre-
mature annihilation’, where particles are removed from the system when they come δ-close,
with δ > 0 a regularisation parameter. This approach is commonly adapted in numerical
simulations of discrete systems with an annihilation rule. However, it is not obvious what the
limiting equation as n → ∞ (counterpart of (4)) is for δ > 0 fixed, because we expect the
supports of [κ]+ and [κ]− to be separated by at least δ. A third option is to mollify the jump
of the charge bi(t) from ±1 to 0, possibly by an additional ODE for bi(t). We have not found
a proper rule for this that would still allow for a discrete-to-continuum convergence result.

Higher dimensions. In this paragraph we consider the extension to two dimensions; the
discussion easily extends to higher dimensions. The one ingredient in our proof which intrin-
sically relies on our 1D setting, is the separation condition on the initial data. This condition
limits the collisions to happen only at a finite number of points. In 2D, collisions are bound
to happen along curves (or more complicated subsets of R

2), which makes it challenging
to characterise the limit of [κn]±. A similar problem occurred in [AMS11] as discussed in
Section 1.4. In future research we plan to relax our ‘separation’ assumption, possibly by
considering a different regularisation of collisions.

The remainder of the paper is organised as follows. In Section 2 we fix our notation and
list the assumptions on V , W and the initial data. In Section 3 we recall known results and
provide the preliminaries. In Section 4 we give a rigorous definition of (2), show that it attains
a unique solution, and establish several properties of it. In Section 5 we state and prove our
main result, Theorem 5.1.

2. Notation and standing assumptions

Here we list the symbols and notation which we use in the remainder of this paper:

B(R) space of Borel sets on R Section 3
f(a−) limy↑a f(y)
[f ]± positive or negative part of f
µ⊗ ν product measure; (µ ⊗ ν)(A×B) = µ(A)ν(B) Section 3
C > 0 constant whose value can possibly change from line to line
µ µ := (µ+, µ−) ∈ P(R × {±1}) (10)
M(R) space of finite, signed Borel measures on R Section 3
M+(R) space of the non-negative measures in M(R) Section 3
N {1, 2, 3, . . .}
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P(R) space of probability measures;
P(R) = {µ ∈ M+(R) : µ(R) = 1}

Section 3

P2(R) probability measures with finite second moment;
P2(R) = {µ ∈ P2(R) :

´∞
−∞ x2 dµ(x) < ∞}

Section 3

V interaction potential for equally signed particles Assumption 2.1
W interaction potential for oppositely signed particles Assumption 2.1
W (µ, ν) 2-Wasserstein distance between µ, ν ∈ P(R) [AGS08]
W(µ,ν) 2-Wasserstein distance between µ,ν ∈ P2(R) (11)

Assumption 2.1 lists the standing properties which we impose on V and W .

Assumption 2.1. We require that the interaction potentials V : R\{0} → R and W : R → R

satisfy the following conditions:

V ∈ C1(R \ {0}), W ∈ C1(R), V ′ ∈ Liploc(R \ {0}), and W ′ ∈ Lip(R), (6a)

V and W are even; (6b)

V (r) → +∞ as r → 0; (6c)

r 7→ rV ′(r) and r 7→ rW ′(r) are in L∞(R). (6d)

For convenience, we set V ′(0) := 0. Below we list two remarks on Assumption 2.1:

• we assume no monotonicity on V or W ;
• Condition (6d) implies that V has at most a logarithmic singularity, and that V and
W have at most logarithmically diverging tails, namely

|V (r)|+ |W (r)| ≤ C
(∣

∣ log |r|
∣

∣+ 1
)

, for all r 6= 0. (7)

Due to condition (6c), we can sharpen this inequality around 0 by

(V +W )(r) ≥ −Cr2, for all r 6= 0; (8)

The following assumption on the initial data states that no pair of particles of opposite
sign should start at the same position.

Assumption 2.2 (Separation assumption on the initial data (x◦; b◦)). There exist −∞ <
a0 ≤ a1 ≤ . . . ≤ a2L < +∞ such that

{x◦i : b◦i = 1} ⊂
L
⋃

ℓ=1

(a2ℓ−2, a2ℓ−1), {x◦i : b◦i = −1} ⊂
L
⋃

ℓ=1

(a2ℓ−1, a2ℓ).

The importance of this assumption is clarified later when the limit n → ∞ is considered,
in which the number L is assumed to be n-independent (see also Section 1.5). Moreover, we
will show in Proposition 4.5 that this assumption is conserved in time.

3. Preliminary results

We collect here some basic definitions and known results that will be useful in the sequel.
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3.1. Probability spaces and the Wasserstein distance. On P2(R) (space of probability
measures with finite second moment; see Section 2), the (square of the) 2-Wasserstein distance
between µ, ν ∈ P2(R) is defined as

W 2(µ, ν) := inf
γ∈Γ(µ,ν)

¨

R2

|x− y|2 dγ(x, y), (9)

where Γ(µ, ν) is the set of couplings of µ and ν, namely,

Γ(µ, ν) :=
{

γ ∈ P(R2) : γ(A× R) = µ(A), γ(R ×A) = ν(A) for all A ∈ B(R)
}

.

We refer to [AS08] for the basic properties of W . As usual, we set Γ◦(µ, ν) ⊂ Γ(µ, ν) as the
set of transport plans γ which minimise (9).

Since we are working with positive and negative particles, we follow [GvMPS18] by defining
a space of probability measures on R× {±1}, where R× {±1} is endowed with the distance

d
2(x̄, ȳ) := |x− y|2 + |p− q|, x̄ = (x, p) ∈ R× {±1}, ȳ = (y, q) ∈ R× {±1}.

We denote this probability space by P(R × {±1}), and its elements by µ or (µ+, µ−), with
the understanding that

µ(A+, A−) = µ+(A+) + µ−(A−), for all A+, A− ∈ B(R). (10)

On

P2(R× {±1}) :=
{

µ ∈ P(R × {±1}) :
ˆ

R

|x|2 dµ±(x) < +∞
}

we define the (square of the) 2-Wasserstein distance between µ and ν as

W2
(

µ,ν
)

:= inf
γ∈Γ(µ,ν)

¨

(R×{±1})2
d
2(x̄, ȳ) dγ(x̄, ȳ), (11)

where Γ(µ,ν) is the set of couplings of µ and ν, namely,

Γ(µ,ν) :=
{

γ ∈ P
(

(R× {±1})2
)

: γ(A× (R× {±1})) = µ(A),

γ((R× {±1}) ×A) = ν(A) for all A ∈ B(R× {±1})
}

.

Since it turns out that (3) has a mass-preserving solution ρ(t) := (ρ+(t), ρ−(t)) ∈ P2(R ×
{±1}), for which also the mass of ρ+(t) and ρ−(t) is conserved in time, we define the corre-
sponding subspace

Pm
2 (R× {±1}) := {µ ∈ P2(R × {±1}) : µ+(R) = m};

wherem ∈ [0, 1] is the total mass of the positive particle density. Clearly, if µ ∈ Pm
2 (R×{±1}),

then µ−(R) = 1−m. For any µ,ν ∈ Pm
2 (R× {±1}) we have that

W2(µ,ν) ≤ W 2(µ+, ν+) +W 2(µ−, ν−), (12)

which simply follows by shrinking the set of couplings Γ(µ,ν) in (11).
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3.2. Weak form of the continuum problem (3). We use the following notation conven-
tion. For any ρ ∈ P(R × {±1}), we set

ρ := ρ+ + ρ− ∈ P(R), κ := ρ+ − ρ− ∈ M(R), ρ̃± := [κ]± ∈ M+(R). (13)

We consider the following weak form of (3): given an initial condition ρ
◦ ∈ P2(R × {±1}),

find ρ satisfying

0 =

ˆ T

0

ˆ

R

∂tϕ
±(x) dρ±(x)dt

− 1

2

ˆ T

0

¨

R×R

(

(ϕ±)′(x)− (ϕ±)′(y)
)

V ′(x− y) d([κ]± ⊗ [κ]±)(x, y)dt

−
ˆ T

0

ˆ

R

(ϕ±)′(x) (W ′ ∗ [κ]∓)(x) d[κ]±(x)dt, for all ϕ± ∈ C∞
c ((0, T )× R),

(14)

where we have exploited that V ′ is odd. We seek a solution of (14) in AC(0, T ;Pm
2 (R×{±1}))

with m = ρ+,◦(R) ∈ [0, 1].

3.3. Several topologies and their connections. Next we define the space of absolutely
continuous curves and their metric derivatives. While the following definitions work on any
complete metric space, we limit our exposition to (P2(R × {±1}),W). For any 1 ≤ p < ∞,
ACp(0, T ;P2(R×{±1})) denotes the space of all curves µ : (0, T ) → P2(R×{±1}) for which
there exists a function f ∈ Lp(0, T ) such that

W
(

µ(s),µ(t)) ≤
ˆ t

s
|f(r)|p dr, for all 0 < s ≤ t < T. (15)

We set AC(0, T ;P2(R×{±1})) := AC1(0, T ;P2(R×{±1})). By [AGS08, Theorem 1.1.2], the
metric derivative

|µ′|W(t) := lim
s→t

W
(

µ(s),µ(t)
)

|s− t| (16)

is defined for any µ ∈ AC(0, T ;P2(R × {±1})) and for a.e. t ∈ (0, T ). Moreover, |µ′|W is a
possible choice for f in (15).

The following theorem is a simplified version of [Mun00, Theorem 47.1] applied to the
metric space (P2(R× {±1}),W).

Lemma 3.1 (Ascoli-Arzelà). F ⊂ C([0, T ];P2(R× {±1})) is pre-compact if and only if

(i) {µ(t) : µ ∈ F} is pre-compact in P2(R × {±1}) for all t ∈ [0, T ],
(ii) ∀ ε > 0 ∃ δ > 0 ∀µ ∈ F ∀ t, s ∈ [0, T ] : |t− s| < δ =⇒ W

(

µ(t),µ(s)
)

< ε.

The following theorem provides a lower semi-continuity result on the L2(0, T )-norm of the
metric derivative. We expect it to be well-known, but we only found it proven in the PhD
thesis [vM15, Lemma 8.2.8].

Theorem 3.2 (Lower semi-continuity of metric derivatives). Let µn,µ : [0, T ] → P2(R ×
{±1}). If W(µn(t),µ(t)) → 0 as n → ∞ pointwise for a.e. t ∈ (0, T ), then

lim inf
n→∞

ˆ T

0
|µ′

n|2W(t) dt ≥
ˆ T

0
|µ′|2W(t) dt. (17)
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Proof. We start with several preparations. First, we take a dense subset (tℓ)ℓ of [0, T ] for
which W(µn(tℓ),µ(tℓ)) → 0 as n → ∞ for any ℓ ∈ N. Second, without loss of generality, we
assume that there exists C > 0 such that for all n

ˆ T

0
|µ′

n|2W(t) dt ≤ C. (18)

In particular, this means that µn has a representative in AC2(0, T ;P2(R × {±1})) which is
defined for all t ∈ (0, T ). Taking this representative, we set Dℓ

n(t) := W(µn(tℓ),µn(t)), and
obtain from [AGS08, Thm. 1.1.2] that

|µ′
n|W(t) = sup

ℓ∈N

∣

∣(Dℓ
n)

′(t)
∣

∣ for a.e. t ∈ (0, T ). (19)

Next we prove (17). Firstly, since W(µn(t),µ(t)) → 0 as n → ∞ for a.e. t ∈ (0, T ), we
have for fixed ℓ ∈ N and for a.e. t ∈ (0, T ) that

∣

∣Dℓ
n(t)−Dℓ(t)

∣

∣

n→∞−−−→ 0, where Dℓ(t) := W
(

µ(tℓ),µ(t)
)

. (20)

Secondly, ‖Dℓ
n‖H1(0,T ) and ‖Dℓ‖H1(0,T ) are bounded uniformly in n and ℓ. To see this, we

have by the definition of the metric derivative and (18) that

Dℓ
n(t) =

∣

∣

∣

∣

ˆ t

tℓ

|µ′
n|W(s) ds

∣

∣

∣

∣

≤ C
√
T .

Hence, ‖Dℓ
n‖L2(0,T ) is uniformly bounded. With the characterisation of |µ′

n|W in (19), we
estimate

C ≥
ˆ T

0
|µ′

n|2W(t) dt ≥
ˆ T

0

(

(Dℓ
n)

′(t)
)2

dt for all ℓ ∈ N, (21)

and thus ‖Dℓ
n‖H1(0,T ) is uniformly bounded. Therefore, in view of (20), we have

Dℓ
n ⇀ Dℓ in H1(0, T ) as n → ∞. (22)

In particular, we observe from (22) that Dℓ ∈ H1(0, T ) and that

C ≥ lim inf
n→∞

‖Dℓ
n‖H1(0,T ) ≥ ‖Dℓ‖H1(0,T ) for all ℓ ∈ N.

To establish (17), we carefully perform a joint limit passage as n → ∞ and a maximisation
over ℓ in (21). With this aim, we take a large fixed L ∈ N, and choose a partition {Aℓ}Lℓ=1 of
Borel sets of (0, T ) such that for all ℓ = 1, . . . , L,

∣

∣(Dℓ)′(t)
∣

∣ = sup
1≤ℓ̃≤L

∣

∣(Dℓ̃)′(t)
∣

∣ for a.e. t ∈ Aℓ.

We estimate
ˆ T

0
|µ′

n|2W(t) dt ≥
ˆ T

0
sup

1≤ℓ≤L

(

(Dℓ
n)

′(t)
)2

dt ≥
L
∑

ℓ=1

ˆ

Aℓ

(

(Dℓ
n)

′(t)
)2

dt.

Using (22), we pass to the limit n → ∞ to obtain

lim inf
n→∞

ˆ T

0
|µ′

n|2W(t) dt ≥
L
∑

ℓ=1

ˆ

Aℓ

(

(Dℓ)′(t)
)2

dt =

ˆ T

0
sup

1≤ℓ≤L

(

(Dℓ)′(t)
)2

dt.
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By using the Monotone Convergence Theorem, we take the supremum over L ∈ N to deduce
that

lim inf
n→∞

ˆ T

0
|µ′

n|2W(t) dt ≥
ˆ T

0
sup
ℓ∈N

(

(Dℓ)′(t)
)2

dt.

We conclude by using [AGS08, Theorem 1.1.2] to identify supℓ∈N |(Dℓ)′| in L2(0, T ) by |µ′|W.
�

Next we introduce the narrow convergence of measures. For νn, ν ∈ M(R), we say that νn
converges in the narrow topology to ν (and write νn ⇀ ν) as n → ∞ if

ˆ

ϕdνn
n→∞−−−→

ˆ

ϕdν.

for any bounded test function ϕ ∈ C(R). The following lemma extends this notion for non-
negative measures by allowing for discontinuous test functions.

Lemma 3.3 ([Pou02, Lemma 2.1]). Let νn ⇀ ν in M+(R
d). Let A ∈ B(Rd) such that

ν(A) = 0. Then for every bounded ϕ ∈ C(Rd \A) it holds that
ˆ

ϕdνn
n→∞−−−→

ˆ

ϕdν.

Proofs can be found in [Sch81, Theorems 62-63, chapter IV, paragraph 6] and in [Del91,
Gér92], or [Sch95] in the case where A is closed.

Finally, we state and prove a lemma which allows us to show that Assumption 2.2 is
conserved in the limit as n → ∞.

Lemma 3.4 (Narrow topology preserves separation of supports). Let (νε)ε>0, (ρε)ε>0 ⊂
M+(R) converge in the narrow topology as ε → 0 to ν and ρ respectively. If

∀ ε > 0 : sup(supp νε) ≤ inf(supp ρε),

then also sup(supp ν) ≤ inf(suppρ).

Proof. We reason by contradiction. Suppose M := sup(supp ν) > inf(supp ρ) =: m. Take a
non-decreasing test function ϕ ∈ Cb(R) which satisfies

ϕ ≡ 0 on
(

−∞,
m+ 2M

3

]

, and ϕ ≡ 1 on [M,∞).

Since M = sup(supp ν), it holds that
´

ϕdν > 0. Hence, from νε
ε→0−−−→ ν we infer that for all

ε small enough, it also holds that
´

ϕdνε > 0, and thus

sup(supp νε) ≥
m+ 2M

3
.

With a similar argument, we can deduce that inf(supp ρε) ≤ 2m+M
3 , which contradicts with

m < M . �

4. Definition and properties of the discrete problem (2)

In this section we give a rigorous definition to the discrete dynamics formally given by
(2). We start by giving the definition of solution, establishing some properties of the energy
En introduced in (1), and proving an existence and uniqueness result (see Proposition 4.5).
Finally, we state the discrete problem in the language of measures (see Proposition 4.6).
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Problem 4.1. Given (x◦, b◦) ∈ R
n×{±1}n such that x◦1 < x◦2 < . . . < x◦n, find (x, b) : [0, T ] →

R
n × {−1, 0, 1}n such that











d

dt
xi = − 1

n

∑

j : bibj=1

V ′(xi − xj)−
1

n

∑

j : bibj=−1

W ′(xi − xj) on (0, T ) \ Tcol

(xi(0), bi(0)) = (x◦i , b
◦
i ),

(23)

for all i = 1, . . . , n, where Tcol is the jump set of b.

We encode the annihilation rule in the solution concept below. With this aim, we set
H : R ∪ {+∞} → [0, 1] as the usual Heaviside function, with H(0) := 0 and H(+∞) := 1.

Definition 4.2 (Solution to Problem 4.1). We say that (x, b) : [0, T ] → R
n ×{−1, 0, 1}n is a

solution to Problem 4.1 if

(a) x ∈ Lip([0, T ];Rn);
(b) (23) is satisfied in the classical sense;
(c) there exists a vector of collision times τ = (τ1, . . . , τn) with τi ∈ (0, T )∪ {+∞} such that,

setting
Tcol := {τi : 1 ≤ i ≤ n} \ {+∞} = {t1, t2, . . . , tK} ⊂ (0, T ) (24)

with 0 < t1 < . . . < tK < T , there holds

bi(t) := b◦iH(τi − t) for all i = 1, . . . , n; (25)

(d) setting t0 := 0, for all k = 1, . . . ,K,

tk = inf
{

t ∈ (0, T ) : ∃ (i, j) such that bi(tk−1)bj(tk−1) = −1 and xi(t) = xj(t)
}

> tk−1;

(e) at each time t ∈ [0, T ], there is a bijection

α : {i : b◦i = 1, τi ≤ t} → {j : b◦j = −1, τj ≤ t}
such that xi(t) = xα(i)(t).

Remark 4.3 (Comments on Definition 4.2). We collect here some remarks on the notion of
solution presented above.

• τi is the time at which particle xi gets annihilated: equation (25) describes this by
putting to zero the charge bi at time τi. If τi = +∞, then it means that the particle
xi does not collide in the time interval (0, T ).

• (tk) is the ordered list of collision times at which at least one collision occurs.
• In equation (23), both xi and bi depend on time. However, on each open component
of (0, T ) \ Tcol, the charges bi remain constant.

• Property (d) ensures that for each pair of two colliding particles, at least one gets
annihilated. Property (e) ensures that both particles are getting annihilated, and
that annihilation can only occur for colliding particles with non-zero charge.

With reference to the collision times t1 < . . . < tK in (24), we define the set of indices of
the particles colliding at tk and its cardinality by

Γk := {i : τi = tk}, γk := #Γk. (26)

We observe that γk is even for every k and that

K
∑

k=1

γk ≤ n

2
. (27)



14 PATRICK VAN MEURS AND MARCO MORANDOTTI

We first establish some properties of En defined in (1). For convenience, we display

∂

∂xi
En(x; b) =

1

n2

∑

j : bibj=1

V ′(xi − xj) +
1

n2

∑

j : bibj=−1

W ′(xi − xj), (28)

where we rely on the choice V ′(0) = 0. We also introduce

Mk : Rn → [0,∞), Mk(x) :=
1

n

n
∑

i=1

|xi|k, k = 1, 2, . . .

which is the k-th moment of the empirical measure related to the particles x1, . . . , xn.

Lemma 4.4 (Properties of En). Let n ≥ 2. For any x ∈ R
n and b ∈ {−1, 0, 1}n, the following

properties hold:

(i) En(x; b) < +∞ if and only if ∀ i 6= j : xi = xj ⇒ bibj 6= 1;
(ii) En +M2 is bounded from below;
(iii) ∇En is Lipschitz continuous on the sublevelsets of y 7→ En(y; b) + 2M2(y);
(iv) if En(x; b) < +∞ and if there exists an index pair (I, J) which satisfies bIbJ = −1 and

xI = xJ , then, there exists C > 0 independent of n such that

En(x; b̄) ≤ En(x; b) +
C

n
(M2(x) + x2I + 1),

where b̄ is the modification of b in which bI and bJ are put to 0.

Proof. Property (i) is a direct consequences of the properties of V,W (see Assumption 2.1).
Property (ii) is a matter of a simple estimate. Using Assumption 2.1) (in particular (7)),
some manipulations inspired by [Sch95], and r 7→ r2 −C log r being bounded from below, we
obtain

En(x; b) +M2(x) =
1

2n2

(

∑

i 6=j
bibj=1

V (xi − xj) +
∑

i,j
bibj=−1

W (xi − xj) +

n
∑

i,j=1

(x2i + x2j )
)

≥ 1

2n2

n
∑

i,j=1

(

− C
(

[log |xi − xj |]+ + 1
)

+
1

2
(xi − xj)

2
)

≥ C.
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Property (iii) follows easily from property (ii). To prove (iv), we set y := xI = xJ and
assume for convenience that bI = 1 and bJ = −1. Then, we compute

En(x; b) − En(x; b̄) =
1

2n2

(

∑

j 6=I
bj=1

V (xI − xj) +
∑

i 6=J
bi=−1

V (xi − xJ)

)

+
1

2n2

(

∑

j : bj=−1

W (xI − xj) +
∑

i : bi=1

W (xi − xJ)

)

− W (0)

2n2

=
1

2n2

( n
∑

i=1
i 6=I,J

|bi|V (xi − y) +
n
∑

i=1

|bi|W (xi − y)

)

− W (0)

2n2

=
1

2n2

n
∑

i=1
i 6=I,J

|bi|(V +W )(xi − y) +
W (0)

2n2

≥ − C

n2

n
∑

i=1

(xi − y)2 +
W (0)

2n2
≥ −C

n
(M2(x) + y2 + 1),

where we have used (8). �

We now prove that Problem 4.1 has a unique solution. In addition, we establish several
properties of it.

Proposition 4.5. Let n ≥ 2, T > 0, and (x◦, b◦) ∈ R
n×{±1}n be such that x◦1 < x◦2 < . . . <

x◦n. Then there exists a unique solution (x, b) to Problem 4.1 in the sense of Definition 4.2.
Moreover, the following properties are satisfied:

(i) there exists C > 0 independent of n such that

M2(x(t)) ≤ Ct+M2(x
◦), M4(x(t)) ≤ Ct(M2(x

◦) + t) +M4(x
◦) for all t ∈ [0, T ];

(ii) inf
0<t<T

min{|xi(t)− xj(t)| : bi(t)bj(t) = 1} > 0;

(iii) the energy function e : [0, T ) → R defined by e(t) := En(x(t); b(t)) is left-continuous on
[0, T ), differentiable on (0, T ) \ Tcol, and e′(t) ≤ 0 for all t ∈ (0, T ) \ Tcol. Moreover,
denoting by Je(tk)K := e(tk)− e(tk−) the jump of e at tk, we have that

Je(tk)K ≤
C

n

(

γkM2(x(tk)) + γk +
∑

i∈Γk

x2i (tk)

)

for every k = 1, . . . ,K, (29)

K
∑

k=1

Je(tk)K ≤ C(T +M2(x
◦) + 1), (30)

where γk and Γk are defined in (26), and C > 0 is a constant independent of n;

(iv) En(x(t); b(t)) − En(x
◦; b◦) ≤ C(t+M2(x

◦) + 1)− 1

n

ˆ t

0
|ẋ(s)|2 ds for all t ∈ (0, T ];

(v) there exists an L ∈ N such that for all t ∈ [0, T ), (x(t), b(t)) satisfies Assumption 2.2,
i.e., there exist −∞ < a0(t) ≤ a1(t) ≤ . . . ≤ a2L(t) < +∞ such that

{xi(t) : bi(t) = 1} ⊂
L
⋃

ℓ=1

(

a2ℓ−2(t), a2ℓ−1(t)
)

, {xi(t) : bi(t) = −1} ⊂
L
⋃

ℓ=1

(

a2ℓ−1(t), a2ℓ(t)
)

.
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Proof. Step 1: Construction of (x, b), properties (i) and (ii), and (29). We define the coun-
terpart of (23) in which no collision occurs, i.e., we seek n trajectories yi : [0, T ] → R such
that yi(0) = x◦i and

d

dt
yi = − 1

n

∑

j : b◦i b
◦

j=1

V ′(yi − yj)−
1

n

∑

j : b◦i b
◦

j=−1

W ′(yi − yj) on (0,+∞). (31)

for all i = 1, . . . , n. From (28) we observe that (31) is the gradient flow of En(·; b◦) given by
{

ẏ(t) = −n∇En(y(t); b
◦),

y(0) = x◦.
(32)

From Lemma 4.4 we observe that (32) has a unique, classical solution y(t) locally in time. In
particular, t 7→ En(y(t); b

◦) is non-increasing.
Next we show that the solution y can be extended to the complete time interval [0, T ]. With

this aim, we prove that the second moment M2(y(t)) (and for later use the fourth moment
M4(y(t))) are finite as long as t 7→ y(t) exists. From (31), using (6b) and (6d), we estimate

d

dt
M2(y(t)) =

2

n

n
∑

i=1

yi(t)ẏi(t)

= − 2

n2

n
∑

i=1

(

∑

j : bibj=1

yiV
′(yi − yj) +

∑

j : bibj=−1

yiW
′(yi − yj)

)

= − 1

n2

∑

i,j : bibj=1

(yi − yj)V
′(yi − yj)−

1

n2

∑

i,j : bibj=−1

(yi − yj)W
′(yi − yj) ≤ C,

Hence,

M2(y(t)) ≤ M2(y(0)) + Ct ≤ M2(x
◦) + CT, for all t ∈ [0, T ]. (33)

Similarly, using the identity a3 − b3 = (a2 + ab+ b2)(a− b), we compute

d

dt
M4(y(t)) =

4

n

n
∑

i=1

y3i (t)ẏi(t)

= − 4

n2

n
∑

i=1

(

∑

j : bibj=1

y3i V
′(yi − yj) +

∑

j : bibj=−1

y3iW
′(yi − yj)

)

= − 2

n2

∑

i,j : bibj=1

(y3i − y3j )V
′(yi − yj)−

2

n2

∑

i,j : bibj=−1

(y3i − y3j )W
′(yi − yj)

≤ C

n2

∑

i,j : bibj=1

(y2i + yiyj + y2j ) +
C

n2

∑

i,j : bibj=−1

(y2i + yiyj + y2j )

≤ C

n2

n
∑

i=1

n
∑

j=1

(y2i (t) + y2j (t)) = CM2(y(t)) ≤ C(t+M2(x
◦)),

where we have used (33). Hence,

M4(y(t)) ≤ M4(x
◦) + CT

(

M2(x
◦) + T

)

, for all t ∈ [0, T ]. (34)
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In conclusion, (33) and (34) provide a priori bounds for M2(y(t)) and M4(y(t)) that are
uniform in n and t. Finally, from (33) and Lemma 4.4(i)–(iii) we obtain that the solution y
to (32) is defined and unique at least up to time T .

Next we identify t1 and choose those bi that jump at t = t1 (see (25)). For this choice, it
is enough to specify the collision times τi (see (24)). We note that

t∗ := inf
{

t ∈ (0, T ] : ∃ (i, j) : b◦i b◦j = −1 and yi(t) = yj(t)
}

is either attained or t∗ = +∞. If t∗ ≥ T , we set x = y and τi = +∞ for all i, and observe
that properties (d) and (e) of Definition 4.2 are satisfied. If t∗ < T , we observe that t1
in Definition 4.2(d) has to be equal to t∗. We set x|[0,t1] := y|[0,t∗] and observe from (33)
and (34) that property (i) is satisfied up to t = t1. For the choice of τi, we follow the
algorithm explained in Section 1.1, i.e., for each pair of particles that collide at t1, we set
the corresponding τi equal to t1. We choose the remaining values for τj > t1 later on in
the construction. With this choice for τi, it follows from the continuity of xi that properties
(d) and (e) of Definition 4.2 are satisfied by construction. Since En(x(t)) ≤ En(x

◦) for all
t ∈ [0, t1), it follows that (ii) holds on [0, t1].

Next we show that we can continue the construction above for t > t1. First, applying
Lemma 4.4(iv) 1

2γ1 times (recall from (26) that γ1 is even), we find that

En(x(t1); b(t1)) ≤ En(x(t1); b(t1−)) +
C

2n

(

γ1M2(x(t1)) + γ1 +
∑

i∈Γ1

x2i (t1)

)

.

Hence, (29) is satisfied for k = 1. Furthermore, we obtain that En(x(t1); b(t1)) < ∞, and
thus we can continue the construction above for t > t1 by putting x(t1), b(t1) as the initial
condition at t = t1.

Iterating over k, this construction identifies all τi < T (for i /∈ ∪K
k=1Γk, we set τi := +∞)

and tk, and guarantees that x is piecewise C1 on [tk, tk+1] and globally Lipschitz. In addition,
(29) holds for all k = 1, . . . ,K.

Step 2: Uniqueness of (x, b). Let x and τ be as constructed in Step 1, and set b accord-
ingly. Since (32) has a unique solution, Definition 4.2(d) defines uniquely the time t1 until
which x(t) is uniquely defined. By Definition 4.2(e), b has to be constant on [0, t1). Since x
satisfies Property (ii) at t = t1, all collisions at t1 are collisions of two particles with opposite
type. Then, from the explanation in Remark 4.3, it is obvious that properties (d) and (e) of
Definition 4.2 define uniquely the set of indices i for which τi = t1. Hence, b(t1) is uniquely
determined. We conclude by iterating over k.

Step 3: The remaining Properties (iii)–(v). Estimate (29) is already proved; summing over
k reads

K
∑

k=1

Je(tk)K ≤
C

n

(

K
∑

k=1

γkM2(x(tk)) +

K
∑

k=1

γk +

K
∑

k=1

∑

i∈Γk

x2i (tk)
)

. (35)

The first and second sums in the right-hand side above can be easily estimated using (i) and
(27). We estimate the third sum by using that the sets Γk for k = 1, . . . ,K are disjoint, and
that for every k = 1, . . . ,K and for every i ∈ Γk we have that xi(t) = xi(tk) for all t ≥ tk.
Hence, the third sum is bounded by M2(x(T )). Collecting our estimates, we obtain (30) from
(35).
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With (iii) proven, we prove (iv) for t = T by the following computation (the case t < T
follows by a similar estimate). Setting tK+1 := T , we compute

En(x(T ); b(T )) − En(x
◦; b◦) = En(x(T ); b(T )) − En(x(tK); b(tK))

+
K
∑

k=1

[

Je(tk)K +
(

En(x(tk−); b(tk−))− En(x(tk−1); b(tk−1))
)]

≤
K+1
∑

k=1

ˆ tk

tk−1

d

dt
En(x(t); b(t)) dt + C(T +M2(x

◦) + 1)

= −
K+1
∑

k=1

1

n

ˆ tk

tk−1

|ẋ(t)|2 dt+ C(T +M2(x
◦) + 1)

= − 1

n

ˆ T

0
|ẋ(t)|2 dt+ C(T +M2(x

◦) + 1).

Finally, we prove (v). First, we claim that the strict ordering of the particles {xi(t) :
|bi(t)| = 1} is conserved in time. Clearly, this ordering holds at t = 0. From (ii) it follows
that any two particles, say with corresponding indices i 6= j such that bi(t)bj(t) = 1, can
never swap position. Similarly, any pair (xi(t), xj(t)) with bi(t)bj(t) = −1 cannot swap
either, because (d) ensures that bi(t) and bj(t) jump to 0 at the first t at which xi(t) = xj(t).

Next we construct aℓ(t). We start with t = 0, and set a0(0), a1(0), . . . sequentially. We set
a0(0) := x◦1 − 1, and, if b◦1 = −1, we also put a1(0) := x◦1 − 1. For each pair of consecutive
particles x◦i , x

◦
i+1 of opposite sign, we define a new point

aℓ(0) :=
1

2
(x◦i + x◦i+1).

If the current value of ℓ is odd, we define L := (ℓ+1)/2 and set a2L(0) := x0n+1. If ℓ is even,
we define L := (ℓ+ 2)/2 and set a2L−1(0) := a2L(0) := x◦n + 1.

Since the strict ordering of the particles {xi(t) : |bi(t)| = 1} is conserved in time, we
can construct aℓ(t) analogously, but for a time-dependent Lt. Next we show how to modify
this construction such that Lt can be chosen independently of t. Because of the ordering of
{xi(t) : |bi(t)| = 1} and that its cardinality is non-increasing in time, the numbers of pairs of
consecutive particles xi(t), xi+1(t) of opposite non-zero charge is also non-increasing in time.
Hence, t 7→ Lt is non-increasing in time. In case Lt < L, we modify the construction of aℓ(t)
above simply by adding a surplus of points aℓ(t) which all equal a2Lt(t). �

Next we establish several properties of the empirical measures associated to the solution
(x; b) of Problem 4.1 with initial condition (x◦, b◦) as in Proposition 4.5. With this aim, we
set n± := {i : b◦i = ±1} as the number of positive/negative particles at time 0, and note that
n+ + n− = n. The empirical measures associated to (x(t); b(t)) are

µ±,◦
n :=

1

n

∑

i : b◦
i
=±1

δx◦

i
, µ±

n (t) :=
1

n

∑

i : b◦
i
=±1

δxi(t), (36)

which both have total mass equal to n±/n for all t ∈ [0, T ). As in (13), we also set

κn(t) :=
1

n

n
∑

i=1

b◦i δxi(t), µn(t) :=
1

n

n
∑

i=1

δxi(t), µ̃±
n (t) := [κn(t)]±. (37)
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Proposition 4.6 (Proposition 4.5 in terms of measures). Given the setting as in Propo-
sition 4.5 with (x, b) the solution to (23), let µn := (µ+

n , µ
−
n ), µ̃n := (µ̃+

n , µ̃
−
n ), and κn as

constructed from (x, b) through (36) and (37). Then,

(i) µ̃±
n (t) =

1

n

n
∑

i=1

[bi(t)]±δxi(t);

(ii) µn ∈ AC2(0, T ;Pm
2 (R2)) with m = n+/n, and

|µ′
n|2W(t) ≤ 1

n

n
∑

i=1

( d

dt
xi(t)

)2
for all 0 < t < T ; (38)

(iii) µn is a solution to (3) with initial condition µ
◦
n = (µ+,◦

n , µ−,◦
n ).

Proof. Property (i) is a corollary of Proposition 4.5. Indeed, Proposition 4.5(v) implies that
[κn(t)]± ≥ 1

n

∑n
i=1[bi(t)]±δxi(t), while Definition 4.5(e) implies that |κn(t)|(R) ≤ 1

n

∑n
i=1 |bi(t)|.

We conclude (i).

Next we prove (ii). From the definition of µn in (36) we observe that µn(t) ∈ Pm
2 (R2) for

all 0 < t < T . Hence, (12) applies, and we obtain

W2
(

µn(s),µn(t)
)

≤ W 2
(

µ+
n (s), µ

+
n (t)

)

+W 2
(

µ−
n (s), µ

−
n (t)

)

for all 0 < s ≤ t < T. (39)

To estimate the right-hand side, we let 0 < s ≤ t < T be given, and introduce the coupling

γ±n :=
1

n

∑

i : b◦i=±1

δ(xi(s),xi(t)) ∈ Γ
(

µ±
n (s), µ

±
n (t)

)

.

By definition of the Wasserstein distance (9), we obtain

W 2
(

µ±
n (s), µ

±
n (t)

)

≤
¨

R2×R2

|x− y|2 dγ±n (x, y) =
1

n

∑

i : b◦
i
=±1

(

xi(s)− xi(t)
)2
. (40)

Finally, using in sequence the estimates (16), (39) and (40), we conclude (38). Since x ∈
Lip([0, T ];Rn), we obtain that µn ∈ AC2(0, T ;Pm

2 (R2 × {±1})).
Next we prove (iii). We rewrite (23) as

ẋi(t) = −bi(t)
(

V ′ ∗ µ̃+
n (t) +W ′ ∗ µ̃−

n (t)
)

(xi(t)), for i such that b◦i = 1,

ẋi(t) = −bi(t)
(

W ′ ∗ µ̃+
n (t) + V ′ ∗ µ̃−

n (t)
)

(xi(t)), for i such that b◦i = −1.

Let ϕ ∈ C∞
c ((0, T )×R) be any test function. Since xi is Lipschitz, the Fundamental Theorem

of Calculus applies, and thus we obtain, using (i),

0 =
1

n

∑

i : b◦i=1

ˆ T

0

d

dt
ϕ(t, xi(t)) dt =

1

n

∑

i : b◦i=1

[
ˆ T

0
∂tϕ(xi) dt+

ˆ T

0
ϕ′(xi) ẋi dt

]

=

ˆ T

0

ˆ

R

∂tϕdµ+
n dt−

ˆ T

0

1

n

∑

i : bi=1

ϕ′(xi)
(

V ′ ∗ µ̃+
n +W ′ ∗ µ̃−

n

)

(xi) dt

=

ˆ T

0

ˆ

R

∂tϕdµ+
n dt−

ˆ T

0

ˆ

R

ϕ′
(

V ′ ∗ [κn]+ +W ′ ∗ [κn]−
)

d[κn]+dt.

Since ϕ is arbitrary and V ′ is odd, we conclude that µ+
n satisfies (14). From a similar argument,

it follows that also µ−
n satisfies (14). �
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5. Statement and proof of the main convergence theorem

In this section, we state and prove our main convergence theorem.

Theorem 5.1 (Discrete-to-continuum limit). Let the potentials V and W satisfy Assump-
tion 2.1. Let (xn,◦, bn,◦)n be a sequence of initial conditions such that

(i) En(x
n,◦; bn,◦) is bounded uniformly in n,

(ii) (µ◦
n)n (see (36)) has bounded fourth moment uniformly in n,

(iii) there exists an L ∈ N independent of n such that Assumption 2.2 is satisfied for all n.

Then for every T > 0 the curves µn ∈ AC2(0, T ;P2(R × {±1})) determined by the solution
(xn, bn) to Problem 4.1 through (36) for each n, converge in measure uniformly in time along
a subsequence to a solution ρ of (14), whose initial condition ρ◦ is the limit of (µ◦

n)n along
the same subsequence.

The proof is divided in three steps. In the first step we use compactness of µn(t) to extract
a subsequence nk along which µn(t) converges to some ρ(t). In the remaining two steps we
pass to the limit in (14) as k → ∞ to show that the limiting curve ρ(t) also satisfies (14).
Step 2 contains the main novelty; relying on Assumption 2.2 with an nk-independent number
L, we prove that [κnk

(t)]± ⇀ [κ(t)]± as k → ∞ pointwise in t.

Proof. Step 1: µn converges along a subsequence nk → ∞ in C([0, T ];P2(R × {±1})) to
ρ ∈ AC2(0, T ;Pm

2 (R × {±1})) with m := ρ◦,+(R). We prove this statement by means of the
Ascoli-Arzelà Theorem (see Lemma 3.1) applied to the metric space (P2(R× {±1}),W).

First, we show that, for fixed t ∈ [0, T ], the sequence (µn(t))n is pre-compact in P2(R ×
{±1}). From the assumption on the initial data and Proposition 4.5(i) we observe that the
second and fourth moments of the measures µn(t) defined in (37), given by

M2(x
n(t)) =

ˆ

R

y2 dµn(t)(y), M4(x
n(t)) =

ˆ

R

y4 dµn(t)(y),

are bounded uniformly in n and t ∈ [0, T ]. Then, from [vMM14, Lemma B.3] and [AGS08,
Proposition 7.1.5] we find that (µn(t))n is pre-compact in the Wasserstein distance W.

Second, we show that the sequence (µn)n ⊂ C([0, T ];P2(R×{±1})) is equicontinuous (i.e.,
(µn)n satisfies Lemma 3.1(ii)). For any 0 ≤ s < t ≤ T , we estimate

W2
(

µn(t),µn(s)
)

≤
(
ˆ t

s
|µ′

n|W(r) dr

)2

≤ (t− s)

ˆ T

0
|µ′

n|2W(r) dr. (41)

To estimate the last integral above, we use consecutively the estimates in Proposition 4.6(ii),
Proposition 4.5(iv), Lemma 4.4(ii) and Proposition 4.5(i) to obtain

ˆ T

0
|µ′

n|2W(r) dr ≤ 1

n

ˆ T

0

n
∑

i=1

( d

dt
xni (r)

)2
dr =

1

n

ˆ T

0
|ẋn(r)|2 dr

≤ C(T +M2(x
n,◦) + 1) + En(x

n,◦; bn,◦)− En(x
n(T ); bn(T ))

≤ C(T +M2(x
n,◦) + 1) + En(x

n,◦; bn,◦).

(42)

which, by the assumptions on the initial data, is bounded uniformly in n. Hence, the right-
hand side in (41) is bounded by C(t− s), and thus (µn)n is equicontinuous.

From the pre-compactness of (µn(t))n and the equicontinuity of (µn)n, we obtain from
Lemma 3.1 the existence of a subsequence nk along which (µn)n converges in C([0, T ];P2(R×
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{±1})) to some limiting curve ρ ∈ C([0, T ];P2(R×{±1})). In fact, combining the lower semi-
continuity obtained in Theorem 3.2 with (42), we obtain that ρ ∈ AC2(0, T ;P2(R× {±1})).
Moreover, since the total mass of µ+

n (t) is conserved in time, and since the narrow topology
conserves mass, we conclude that ρ(t) ∈ Pm

2 (R× {±1}) for all t ∈ [0, T ]. This completes the
proof of Step 1. For later use, we set as in (13)

ρ := ρ+ + ρ−, κ := ρ+ − ρ−, ρ̃± := [κ]±.

Step 2: µ̃nk
(t) ⇀ ρ̃(t) as k → ∞ pointwise for all t ∈ [0, T ]. We set µ̃±

nk
= [κnk

]± as in
(37). We keep t ∈ [0, T ] fixed, and remove it from the notation in the remainder of this step.
The structure of the proof of Step 2 is to show by compactness that (µ̃nk

)k has a converging
subsequence, and to characterise the limit as ρ̃. Since ρ̃ is independent of the choice of
subsequence, we then conclude that the full sequence (µ̃nk

)k converges to ρ̃. Keeping this in
mind, in the following we omit all labels of subsequences of n.

Since the second moments of µ̃n are obviously bounded by M2(x
n), the sequence (µ̃n) is

tight, and thus, by Prokhorov’s Theorem, (µ̃n) converges narrowly along a subsequence to
some µ̃ ∈ M+(R × {±1}).

We claim that µ̃ does not have atoms. We reason by contradiction. Suppose that µ̃+ has an
atom at y of mass α > 0 (the case of µ̃− can be treated analogously). Then, setting Bη(y) as
the ball around y with radius η, we infer from µ̃+

n ⇀ µ̃+ that lim infn→∞ µ̃+
n (Bη(y)) ≥ α > 0

for any η > 0. By choosing η > 0 small enough, the contribution of the particles in Bη(y)
to the energy En(x

n; bn) can be made arbitrarily large, which contradicts with the uniform
bound on En(x

n; bn) given by Proposition 4.5(iv).
In the remainder of this step we show that µ̃± = [κ]±, regardless of the choice of the

subsequence. It is enough to show that

[κ]± ≤ µ̃± (43)

[κ]±(R) ≥ µ̃±(R) (44)

Regarding (43), we obtain from Step 1 that

µ̃+
n − µ̃−

n = κn ⇀ κ as n → ∞.

Hence, µ̃+ − µ̃− = κ, which implies (43). To prove (44), we let {anℓ }2Lℓ=0 be as in Proposi-
tion 4.5(v), and set

µ̃ℓ
n :=

{

µ̃+
n |(anℓ−1

,an
ℓ
) ℓ odd

µ̃−
n |(anℓ−1

,an
ℓ
) ℓ even

for all ℓ ∈ {1, . . . , 2L}. By construction,

L
∑

ℓ=1

µ̃2ℓ−1
n = µ̃+

n and

L
∑

ℓ=1

µ̃2ℓ
n = µ̃−

n .

Together with µ̃n ⇀ µ̃, we conclude that (µ̃ℓ
n)n are tight for any ℓ, and thus, applying

Prokhorov’s Theorem once more, each sequence (µ̃ℓ
n)n converges along a subsequence in the

narrow topology to some µ̃ℓ ∈ M+(R). In particular, from µ̃n ⇀ µ̃ and

µ̃−
n =

L
∑

ℓ=1

µ̃2ℓ
n ⇀

L
∑

ℓ=1

µ̃2ℓ,
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we infer that µ̃− =
∑L

ℓ=1 µ̃
2ℓ. By a similar argument, it follows that µ̃+ =

∑L
ℓ=1 µ̃

2ℓ−1. Finally,

since sup(supp µ̃ℓ
n) < inf(supp µ̃ℓ+1

n ) for all 1 ≤ ℓ ≤ 2L − 1, we obtain from Lemma 3.4 that

sup(supp µ̃ℓ) < inf(supp µ̃ℓ+1) for all 1 ≤ ℓ ≤ 2L− 1. Hence, there exists A := {aℓ}2L−1
ℓ=1 such

that

supp µ̃+ ∩ supp µ̃− =

( L
⋃

ℓ=1

supp µ̃2ℓ−1

)

∩
( L

⋃

k=1

supp µ̃2k

)

=
L
⋃

ℓ=1

L
⋃

k=1

(

supp µ̃2ℓ−1 ∩ supp µ̃2k
)

=
2L−1
⋃

ℓ=1

(

supp µ̃ℓ ∩ supp µ̃ℓ+1
)

⊂ A.

Since µ̃± does not have atoms, µ̃±(A) = 0. Together with µ̃+− µ̃− = κ, it is easy to construct
a Hahn decomposition of κ (see, e.g., [Rud87, Theorem 6.14]). We conclude (44).

Step 3: ρ is a solution to (3). To ease notation, we replace nk by n. We show that ρ satisfies
(14). With this aim, let ϕ± ∈ C∞

c ((0, T )×R) be arbitrary. We recall from Proposition 4.6(iii)
that µn satisfies

0 =

ˆ T

0

ˆ

R

∂tϕ
±(x) dµ±

n (x)dt−
ˆ T

0

ˆ

R

(ϕ±)′(x) (W ′ ∗ [κn]∓)(x) d[κn]±(x)dt

− 1

2

ˆ T

0

¨

R×R

(

(ϕ±)′(x)− (ϕ±)′(y)
)

V ′(x− y) d([κn]± ⊗ [κn]±)(x, y)dt.

(45)

We show that we can pass to the limit in all three terms separately. From Step 1 it follows
that µn ⇀ ρ, and thus the limit of the first integral equals

ˆ T

0

ˆ

R

∂tϕ
±(x) dρ±(x)dt.

Regarding the other two integrals in (45), we recall from Step 2 that [κn(t)]± ⇀ [κ(t)]± as n →
∞ pointwise for all t ∈ [0, T ]. Then, for the second term, since (x, y) 7→ (ϕ±)′(x)W ′(x − y)
is bounded and continuous on R

2, we obtain that

ˆ

R

(ϕ±)′(x) (W ′ ∗ [κn]∓)(x) d[κn]±(x) =
¨

R2

(ϕ±)′(x)W ′(x− y) d([κn]± ⊗ [κn]∓)(x, y)

n→∞−−−→
¨

R2

(ϕ±)′(x)W ′(x− y) d([κ]± ⊗ [κ]∓)(x, y) =

ˆ

R

(ϕ±)′(x) (W ′ ∗ [κ]∓)(x) d[κ]±(x).

Finally, we pass to the limit in the third integral in (45). We employ Lemma 3.3 with d = 2
and ∆ = {(y, y) : y ∈ R} the diagonal in R

2. To show that the conditions of Lemma 3.3 are
satisfied, we observe from the fact that r 7→ rV ′(r) is bounded and belongs to C(R \ {0}),
it holds that (x, y) 7→ [(ϕ±)′(x) − (ϕ±)′(y)]V ′(x − y) is bounded and belongs to C(R2 \∆).
Moreover, by Step 2, ([κ]± ⊗ [κ]±)(∆) = (µ̃± ⊗ µ̃±)(∆) = 0. Hence, by Lemma 3.3 we can
pass to the limit in the third term in (45), whose limit reads

−1

2

ˆ T

0

¨

R×R

(

(ϕ±)′(x)− (ϕ±)′(y)
)

V ′(x− y) d([κ]± ⊗ [κ]±)(x, y)dt.

Combining the three limits above, and recalling the time regularity of ρ from Step 1, we
conclude that ρ is a solution to (3). �
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