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Asymptotic stability for stochastic dissipative systems with a

Hölder noise

Luu Hoang Duc∗, Phan Thanh Hong †, Nguyen Dinh Cong ‡

Abstract

We prove the exponential stability of the zero solution of a stochastic differential equation
with a Hölder noise, under the strong dissipativity assumption. As a result, we also prove that
there exists a random pullback attractor for a stochastic system under a multiplicative fractional
Brownian noise.

Keywords: fractional Brownian motion, stochastic differential equations (SDE), Young inte-
gral, exponential stability, random attractor.

1 Introduction

In this paper we study the long term asymptotic behavior of the following nonautonomous stochastic
differential equation

dx(t) = [A(t)x(t) + F (t, x(t))]dt + C(t)x(t)dZ(t), x(0) = x0 ∈ R
d, (1.1)

where Z(t) is a stationary stochastic process with almost sure all trajectories ω(t) = Z(t, ω) to be
Hölder continuous of index ν > 1

2 . System (1.1) can be solved by the pathwise approach with the
help of Young integral [28]. We will derive sufficient conditions on coefficient functions A,F,C, for
which the zero solution is asymptotically or exponentially stable.

Stochastic stability is systematically treated in [18] and [20]. For example, the stability problem
for system under a standard Brownian noise, i. e. the case of which Z(t) is replaced by the stochastic
Brownian motion B(t), can be studied using the Ito’s formula

d‖x(t)‖2 =
(

2〈x(t), A(t)x(t)〉 + 2〈x(t), F (t, x(t))〉 + ‖C(t)x(t)‖2
)

dt+ 2〈x(t), C(t)x(t)〉dB(t),

which follows that

dE‖x(t)‖2 = E
(

2〈x(t), A(t)x(t)〉 + 2〈x(t), F (t, x(t))〉 + ‖C(t)x(t)‖2
)

dt, (1.2)

where E denotes the expectation function. Therefore under conditions on negative definiteness of
A(t) and global Lipschitz continuity of F w.r.t. x with a small Lipschitz constant, given ‖C(t)‖
small enough, the quantity E‖x(t)‖2 is exponentially decaying to zero, which implies that ‖x(t)‖
converges exponentially and almost surely to zero due to Borel-Catelli lemma (see [26, p 255]).
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The situation is however different here with equation (1.1), since in general Z is neither a Markov
process nor a semimartingale (e.g. fractional Brownian motion BH [24]), hence the expectation
E〈x(t), C(t)x(t)〉dZ(t) does not vanish. Therefore a new approach to study stochastic stability is
necessary. Recently, the global dynamics is studied in [11] for which the noise is assumed to be
fractional Brownian motion with small noise in the sense that the Hölder seminorm of its realization
is integrable and can be controlled to be small. On the other hand, the local stability is studied in
[14] and in [16] for which the diffusion coefficient C(t)x(t) is replaced by G(x(t)) which is flat, i.e.
G(0) = DG(0) = 0. It is also important to note that all above mentioned references apply fractional
calculus (see also [21], [23], [29], [30]) and the semigroup approach to deal with the stability problem.

Looking back at the classical theory of ordinary differential equations we know that there are
two fundamental methods to deal with stability problem of solution of an ODE — the methods of
Lyapunov, which proved to be powerful tools of qualitative theory of ODE and the stability theory
in particular. In case of the first method one linearizes the system near an equilibrium and studies
the growth rate (Lyapunov exponents) of the solutions and the spectrum of derived linear system
and then deduces the asymptotic properties of the original nonlinear systems near the fixed point.
In case of the second Lyapunov method one studies the action of the ODE on a specific function
(called Lyapunov function) and then deduces asymptotic properties of the system without the need
of solving the ODE explicitly (hence this method is called the method of Lyapunov functions).

In this paper we reinvestigate the stability problem using a different method compared to the
references mentioned above, namely we use the approach of the second Lyapunov method: we
construct a Lyapunov-type function, which is the norm function, and combine the discretization
scheme developed in [5], [6] and [11] but for polar coordinates, using p−var norm estimates. The
main difficulty lies in how to use path-wise estimates to deal with the driving noise, which is expected
to be technical. We prove in Theorem 3.4 that for A negative definite and F with small Lipschitz
coefficient, one can choose C small enough in terms of average q−var norm such that the system is
pathwise exponentially stable. As such, the result gives a significantly better stability criterion than
those in [11] and [13], and moreover matches the stability criteria for ordinary differential equations
when the noise is diminished (see details in Remark 3.6). To our knowledge, our method is also the
first attempt to study the stability for Young differential equations using Lyapunov type functions.

The result is then applied to study the asymptotic behavior of the stochastic system

dx(t) = [Ax(t) + f(x(t))]dt+ Cx(t)dBH(t), t ∈ R, x(0) = x0 ∈ R
d, (1.3)

where we assume for simplicity that A,C ∈ R
d×d, f : Rd → R

d such that f(0) 6= 0, and BH is
an one-dimensional fractional Brownian motion with Hurst exponent H ∈ (1/2, 1) [19], i.e. it is a
family of centered Gaussian processes BH = {BH(t)}, t ∈ R with continuous sample paths and the
covariance function

RH(s, t) = 1
2 (t

2H + s2H − |t− s|2H),∀t, s ∈ R.

Since no deterministic equilibrium such as the zero solution is found, system (1.3) is expected to
possess a random attractor, which is a generalization of the classical attractor concept (see e.g. [8]
or [7] for a survey on random attractor theory). In the stochastic setting with fractional Brownian
motions, in [13] the existence of the random attractor is investigated assuming that the diffusion
coefficient is bounded. Here in this paper, we will prove in Theorem 4.4 that there exists a global
random attractor for system (1.3), and moreover the random attractor consists of only one random
point.
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2 Preliminaries

2.1 Young integral

Let C([a, b],Rd) denote the space of all continuous paths x : [a, b] → R
d equipped with sup norm

‖ · ‖∞,[a,b] given by ‖x‖∞,[a,b] = supt∈[a,b] ‖x(t)‖, where ‖ · ‖ is the Euclidean norm in R
d. For

p ≥ 1 and [a, b] ⊂ R, Cp−var([a, b],Rd) ⊂ C([a, b],Rd) denotes the space of all continuous paths
x : [a, b] → R

d which are of finite p−variation

|||x|||p−var,[a,b] :=

(

sup
Π(a,b)

n
∑

i=1

‖x(ti+1)− x(ti)‖p
)1/p

< ∞, (2.1)

where the supremum is taken over the whole class of finite partitions of [a, b]. Cp−var([a, b],Rd)
equipped with the p−var norm

‖x‖p-var,[a,b] := ‖x(a)‖ + |||x|||p−var,[a,b] ,

is a nonseparable Banach space [12, Theorem 5.25, p. 92]. Also for each 0 < α < 1, we denote by
Cα−Hol([a, b],Rd) the space of Hölder continuous functions with exponent α on [a, b] equipped with
the norm

‖x‖α−Hol,[a,b] := ‖x(a)‖ + sup
a≤s<t≤b

‖x(t)− x(s)‖
(t− s)α

.

Given a simplex ∆[a, b] := {(s, t)| a ≤ s ≤ t ≤ b}, a continuous map ω : ∆[a, b] −→ R
+ is called

a control (see e.g. [12]) if it is zero on the diagonal and superadditive, i.e
(i), For all t ∈ [a, b], ωt,t = 0,
(ii), For all s ≤ t ≤ u in [a, b], ωs,t + ωt,u ≤ ωs,u.

Now, consider x ∈ Cq−var([a, b],Rd×m) and ω ∈ Cp−var([a, b],Rm) with 1
p + 1

q > 1, the Young

integral
∫ b
a x(t)dω(t) can be defined as

∫ b

a
x(s)dω(s) := lim

|Π|→0

∑

[u,v]∈Π

x(u)(ω(v) − ω(u)),

where the limit is taken on all the finite partitions Π = {a = t0 < t1 < · · · < tn = b} of [a, b]
with |Π| := max

[u,v]∈Π
|v − u| (see [28, p. 264–265]). This integral satisfies additive property by the

construction, and the so-called Young-Loeve estimate [12, Theorem 6.8, p. 116]

∥

∥

∥

∫ t

s
x(u)dω(u) − x(s)[ω(t)− ω(s)]

∥

∥

∥ ≤ K |||x|||q−var,[s,t] |||ω|||p−var,[s,t] , ∀ [s, t] ⊂ [a, b] (2.2)

where

K := (1− 21−θ)−1, θ :=
1

p
+

1

q
> 1. (2.3)

Throughout this paper, we would assume for simplicity that m = 1. Notice that all the results are
still correct for any m ∈ N, with a small modification.

2.2 Nonlinear Young differential equations

For any fixed 1 < p < 2, T > 0 and a continuous path ω that belongs to Cp−var([0, T ],R), consider
the deterministic differential equation in the Young sense

dx(t) = [A(t)x(t) + F (t, x(t))]dt + C(t)x(t)dω(t), x(0) = x0, (2.4)

3



where 0 ≤ t ≤ T , x0 ∈ R
d, A ∈ C([0, T ],Rd×d) and C ∈ Cq−var([0, T ],Rd×d) with q satisfying q ≥ p

and 1
p + 1

q > 1. Additionally, F is globally Lipschitz continuous w.r.t. x, i.e there exists L > 0

such that for all t ∈ [0, T ], for all x, y ∈ R
d: ‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖. Then the system (2.4)

possesses a unique solution in both the forward and backward sense, as studied in [5, 6]. In fact
under these conditions the system can be transformed to a classical ordinary differential equation
which satisfies the existence and uniqueness theorem.

Theorem 2.1 There exists a unique solution to the system (2.4) in the space Cq−var([0, T ],Rd).

Proof: Indeed, due to [6], there exists a unique solution to the equation

dz(t) = A(t)z(t)dt + C(t)z(t)dω(t) (2.5)

in the space Cq−var([0, T ],Rd). Denote by Φ(t, ω) the fundamental matrix of solution of (2.5) with
Φ(0, ω) = Id - the identity matrix. Put u(t) = Φ−1(t, ω)x(t), then by the integration by part
formula, u satisfies the equation

du(t) = Φ−1(t, ω)dx(t) + dΦ−1(t, ω)x(t)

= Φ−1(t, ω)
[(

A(t)x(t) + F (t, x(t))
)

dt+ C(t)x(t)dω(t)
]

−Φ−1(t, ω)
(

A(t)Φ(t)dt+ C(t)Φ(t, ω)dω(t)
)

Φ−1(t, ω)x(t)

= Φ−1(t, ω)F (t,Φ(t, ω)u(t))dt =: G(t, u(t))dt. (2.6)

Since, Φ(·, ω) and Φ−1(·, ω) are continuous on [0, T ], it is easy to check that G(t, u) satisfy the
global Lipschitz condition which assures the existence and uniqueness of a global solution to (2.6)
on [0, T ], and moreover u ∈ C1([0, T ],Rd). The one-one correspondence between solutions of (2.4)
and solutions of (2.6) then prove the existence and uniqueness of solution of (2.4). The same
conclusion holds for the backward equation of (2.4).

3 Exponential stability of nonlinear Young differential equations

In this section we are going to study the exponential stability of (2.4) where ω ∈ Cp−var([0, T ],R),
A ∈ C([0, T ],Rd×d) and C ∈ Cq−var([0, T ],Rd×d) for any T > 0. First, we formulate the definition
of stability for deterministic Young differential equations (for the classical stability notion see e.g.
[17, p. 17], [22, p. 152], or [10]).

Definition 3.1 (A) Stability: A solution µ(·) of the deterministic Young differential equation (2.4)
is called stable, if for any ε > 0 there exists an r = r(ε) > 0 such that for any solution x(·) of (2.4)
satisfying ‖x(0) − µ(0)‖ < r the following inequality holds

sup
t≥0

‖x(t)− µ(t)‖ < ε.

(B) Attractivity: µ(·) is called attractive, if there exists r > 0 such that for any solution x(·) of
(2.4) satisfying ‖x(0) − µ(0)‖ < r we have

lim
t→∞

‖x(t)− µ(t)‖ = 0.

(C) Asymptotic stability: µ(·) is called

(i) asymptotically stable, if it is stable and attractive.
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(ii) exponentially stable, if it is stable and there exists r > 0 such that for any solution x(·) of
(2.4) satisfying ‖x(0) − µ(0)‖ < r we have

lim
t→∞

1

t
log ‖x(t)− µ(t)‖ < 0.

Below we need several assumptions for A,F,C.

(H1) A is negative definite in the sense that there exists a function h : R+ → R
+ such that

〈x,A(t)x〉 ≤ −h(t)‖x‖2, for all x ∈ R
d. (3.1)

(H2) F (t, 0) ≡ 0 for all t ∈ R
+ and F (t, x) is of globally Lipschitz continuous w.r.t. x, i.e. there

exists a positive continuous function f : R+ → R
+ such that

‖F (t, x) − F (t, y)‖ ≤ f(t)‖x− y‖, ∀x, y ∈ R
d. (3.2)

(H3) There exist constants

Â := lim
m→∞

(

1

m+ 1

m
∑

k=0

(

‖A‖∞,∆k
+ ‖f‖∞,∆k

)4p
) 1

4p

< ∞; (3.3)

Ĉ := lim
m→∞

(

1

m+ 1

m
∑

k=0

‖C‖2p+2
q−var,∆k

) 1
2p+2

< ∞; (3.4)

Γ(ω, 2p + 2) := lim
m→∞

(

1

m+ 1

m
∑

k=0

|||ω|||2p+2
p−var,∆k

)
1

2p+2

< ∞, (3.5)

where ∆k := [k, k + 1].

Remark 3.2 (i), Since 〈x,A(t)x〉 = 1
2〈x,A(t)x〉+ 1

2〈x,AT (t)x〉 = 〈x,B(t)x〉, where B(t) = 1
2 [A(t)+

AT (t)] and since the smallest eigenvalue h∗(t) of the symmetric matrix −B(t) satisfies

h∗(t) = min{〈x,−B(t)x〉 | ‖x‖ = 1},
it follows from (H1) that h

∗(t) ≥ h(t) for all t ∈ R
+, h can also be replaced by h∗ in asssumption

(H1). The reader is referred to [9], [27] for stability theory of ordinary differential equations.
(ii) While assumptions (H1) and (H2) are usual, it is important to note that (H3) is satisfied

in the simplest case of autonomous systems, i.e. A(t) ≡ A,C(t) ≡ C and f is bounded on R
+.

Then Â ≤ ‖A‖ + ‖f‖∞,R+, Ĉ = ‖C‖. For a nontrivial example, consider A(t) = A(Θtη), f(t) =
f(Θtη), C(t) = C(Θtη) which depends on a dynamical system Θt on a space of elements η ∈
Cq−var such that Θ is invariant under some probability measure. Then A(·), C(·) are functions of a
stationary process. Conditions (3.3) and (3.4) are equivalent to

Â =
[

E(‖A(η)‖∞,[0,1] + ‖f(η)‖∞,[0,1])
4p
] 1

4p
< ∞, (3.6)

Ĉ =
(

E‖C(η)‖2p+2
q−var,[0,1]

)
1

2p+2
< ∞. (3.7)

Meanwhile, assumption (3.5) is satisfied for almost sure all trajectories ω of the stationary process
Z(t) if

Γ(ω, 2p + 2) =
(

E(|||Z(·)|||2p+2
p−var,[0,1])

) 1
2p+2

< ∞. (3.8)

(iii) It is easy to check (see [5] and [6]) that conditions (H2) and (H3) assure the existence and
uniqueness of a global solution to (2.4) on R

+.
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Lemma 3.3 Let 1 ≤ p ≤ q be arbitrary and satisfy 1
p + 1

q > 1. Assume that ω ∈ Cp−var([0, T ],R)

and y ∈ Cq−var([0, T ],Rd) satisfy

|||y|||q−var,[s,t] ≤ b(1 + |||y|||q−var,[s,t])(t− s+ |||ω|||p−var,[s,t]), (3.9)

for all [s, t] ⊂ [0, T ], where b ≥ 0 is a constant. Then there exists a constant C(b) independent of T
such that the following inequality holds for every s < t in [0, T ]

|||y|||q−var,[s,t] ≤ C(b)max
{

(t− s)p + |||ω|||pp−var,[s,t] , (t− s) + |||ω|||p−var,[s,t]

}

. (3.10)

Proof: Set ω(s, t) = 22p−1bp[(t − s)p + |||ω|||pp−var,[s,t]], then ω(s, t) is a control on ∆[0, T ] (see

[12]) and due to the inequality (a+ b)r ≤ (ar + br)max{1, 2r−1}, ∀a > 0, b > 0, r > 0 we have

|||y|||q−var,[s,t] ≤
1

2
(1 + |||y|||q−var,[s,t])ω(s, t)

1/p.

This implies that
|y(t)− y(s)| ≤ |||y|||q−var,[s,t] ≤ ω(s, t)1/p

for all s, t ∈ [0, T ] such that ω(s, t) ≤ 1. Due to Proposition 5.10 of [12], we have

|||y|||q−var,[s,t] ≤ 2max{ω(s, t)1/p, ω(s, t)}

≤ C(b)max
{

(t− s)p + |||ω|||pp−var,[s,t] , (t− s) + |||ω|||p−var,[s,t]

}

,

in which C(b) = 2max{(4b)p, 4b}.

Our first main result on stability of system (2.4) can be formulated as follows.

Theorem 3.4 Suppose that the conditions (H1) – (H3) are satisfied, and further that

lim inf
t→∞

1

t

∫ t

0
[h(s)− f(s)]ds ≥ h0 > 0. (3.11)

Then under the condition

h0 > K
(

1 + 4Ĝ
)

Ĉ
[

Γ(ω, 2) + Γ(ω, 4)2 + Γ(ω, 2p + 2)p+1
]

(3.12)

where K is given by (2.3) and

Ĝ := max
{

8Â, 16KĈ, 8pÂp, 16pKpĈp
}

,

the zero solution of system (2.4) is exponentially stable.

Proof: Our proof is divided into three steps. In Step 1, we use polar coordinates to derive
the growth rate of the solution in (3.16). The estimate for q−var seminorm of the angular y is then
derived in (3.18) in Step 2, applying Lemma 3.3. As such, the solution growth rate can finally be
estimated in (3.20), in which each component is estimated in Step 3 using hypothesis (H3). The
theorem is then proved by choosing ǫ such that (3.12) is satisfied.

Step 1: Put r(t) := ‖x(t)‖. Due to the fact that the system (2.4) possesses a unique solution
in both the forward and backward sense and that x(t) ≡ 0 is the unique solution through zero, the
solution starting from the initial condition x(0) 6= 0 ∈ R

d satisfies x(t) 6= 0 for all t ∈ R
+. We then

6



can define y(t) := x(t)
‖x(t)‖ . Using integration by part technique (see, e.g., Zähle [29, 30]), it is easy to

prove that r(t) satisfies the system

dr(t) =
[

〈y(t), A(t)y(t)〉 + 〈y(t), F (t, x(t))

‖x(t)‖ 〉
]

r(t)dt+ 〈y(t), C(t)y(t)〉r(t)dω(t), (3.13)

where

dy(t) =
r(t)dx(t)− x(t)dr(t)

r(t)2

=
[

A(t)y(t)− y(t)〈y(t), A(t)y(t)〉 + F (t, x(t))

‖x(t)‖ − y(t)〈y(t), F (t, x(t))

‖x(t)‖ 〉
]

dt

+[C(t)y(t)− y(t)〈y(t), C(t)y(t)〉]dω(t). (3.14)

Again using the integration by parts, we can prove that

d log r(t) =
[

〈y(t), A(t)y(t)〉 + 〈y(t), F (t, x(t))

‖x(t)‖ 〉
]

dt+ 〈y(t), C(t)y(t)〉dω(t), (3.15)

or in the integration form

log r(t) = log r(0) +

∫ t

0

[

〈y(s), A(s)y(s)〉 + 〈y(s), F (s, x(s))

‖x(s)‖ 〉
]

ds+

∫ t

0
〈y(s), C(s)y(s)〉dω(s).

Due to (3.2),
∥

∥

∥

F (t,x)
‖x‖

∥

∥

∥
≤ f(t) for any x 6= 0, hence

1

t
log r(t)

≤ 1

t
log r(0) +

1

t

∫ t

0

[

〈y(s), A(s)y(s)〉 +
∣

∣

∣〈y(s), F (s, x(s))

‖x(s)‖ 〉
∣

∣

∣

]

ds+
1

t

∣

∣

∣

∫ t

0
〈y(s), C(s)y(s)〉dω(s)

∣

∣

∣

≤ 1

t
log r(0)− 1

t

∫ t

0
[h(s)− f(s)]ds+

1

t

∣

∣

∣

∫ t

0
〈y(s), C(s)y(s)〉dω(s)

∣

∣

∣
. (3.16)

Step 2: To estimate the third term in the right hand side of (3.16), we use the discretization
scheme. Note that

∣

∣

∣

∫ k+1

k
〈y(s), C(s)y(s)〉dω(s)

∣

∣

∣
≤ |||ω|||p−var,∆k

(

|〈y(k), C(k)y(k)〉| +K |||〈y,Cy〉|||q−var,∆k

)

≤ |||ω|||p−var,∆k

(

‖C(k)‖ +K |||〈y,Cy〉|||q−var,∆k

)

,

due to the fact that ‖y(t)‖ = 1 where

|||〈y,Cy〉|||q−var,∆k
≤ ‖y‖∞,∆k

|||Cy|||q−var,∆k
+ |||y|||q−var,∆k

‖Cy‖∞,∆k

≤ |||C|||q−var,∆k
‖y‖∞,∆k

+ ‖C‖∞,∆k
|||y|||q−var,∆k

+ |||y|||q−var,∆k
‖C‖∞,∆k

‖y‖∞,∆k

≤ 2‖C‖∞,∆k
|||y|||q−var,∆k

+ |||C|||q−var,∆k
.

Hence,

∣

∣

∣

∫ k+1

k
〈y(s), C(s)y(s)〉dω(s)

∣

∣

∣

≤ |||ω|||p−var,∆k

(

‖C(k)‖ + 2K‖C‖∞,∆k
|||y|||q−var,∆k

+K |||C|||q−var,∆k

)
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≤ K‖C‖q−var,∆k
|||ω|||p−var,∆k

(

1 + 2 |||y|||q−var,∆k

)

. (3.17)

On the other hand, from (3.14) we derive that y satisfies the equation:

y(t)− y(0) =

∫ t

0

[

A(s)y(s)− y(s)〈y(s), A(s)y(s)〉 + F (s, x(s))

‖x(s)‖ − y(s)〈y(s), F (s, x(s))

‖x(s)‖ 〉
]

ds

+

∫ t

0
[C(s)y(s)− y(s)〈y(s), C(s)y(s)〉]dω(s)

=: I(y)(t) + J(y)(t), ∀t ≥ 0,

hence for all 0 < a ≤ b

|||y|||q−var,[a,b] ≤ |||I(y)|||q−var,[a,b] + |||J(y)|||q−var,[a,b] .

Since ‖y(t)‖ = 1, a direct computation shows that for 0 ≤ a < b,

|||I(y)|||q−var,[a,b] ≤ (b− a)
(

2‖A‖∞,[a,b] + 2‖f‖∞,[a,b]

)

,

and

|||J(y)|||q−var,[a,b]

≤ K |||ω|||p−var,[a,b]

(

‖Cy‖∞,[a,b] + ‖y〈y,Cy〉‖∞,[a,b] + |||Cy|||q−var,[a,b] + |||y〈y,Cy〉|||q−var,[a,b]

)

≤ K |||ω|||p−var,[a,b]

(

2‖C‖∞,[a,b] + 2 |||C|||q−var,[a,b] + 4‖C‖∞,[a,b] |||y|||q−var,[a,b]

)

≤ 4K‖C‖q−var,[a,b] |||ω|||p−var,[a,b] (1 + |||y|||q−var,[a,b]).

Put Âk := ‖A‖∞,∆k
+ ‖f‖∞,∆k

and Ĉk := ‖C‖q−var,∆k
, k ∈ N. Then for [a, b] ⊂ ∆k

|||y|||q−var,[a,b] ≤ max{2Âk, 4KĈk}
[

(b− a) + |||ω|||p−var,[a,b]

](

1 + |||y|||q−var,[a,b]

)

.

By applying Lemma 3.3 we obtain

|||y|||q−var,∆k
≤ 2Gk max

{

1 + |||ω|||p−var,∆k
, 1 + |||ω|||pp−var,∆k

}

≤ 2Gk

(

1 + |||ω|||p−var,∆k
+ |||ω|||pp−var,∆k

)

, (3.18)

where
Gk := max

{

8Âk, 16KĈk, 8
pÂp

k, 16
pKpĈp

k

}

.

For any t ∈ [m,m+ 1],

1

t

∣

∣

∣

∫ t

0
〈y(s), C(s)y(s)〉dω(s)

∣

∣

∣

≤ 1

m

(

m−1
∑

k=0

∣

∣

∣

∣

∫ k+1

k
〈y(s), C(s)y(s)〉dω(s)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

m
〈y(s), C(s)y(s)〉dω(s)

∣

∣

∣

∣

)

≤ K

m

m
∑

k=0

Ĉk |||ω|||p−var,∆k

(

1 + 2 |||y|||q−var,∆k

)

. (3.19)

Combining (3.19) with (3.16) and (3.18), we get

lim
t→∞

1

t
log r(t) ≤ −h0 + lim

m→∞

K

(m+ 1)

m
∑

k=0

Ĉk |||ω|||p−var,∆k
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+ lim
m→∞

4K

(m+ 1)

m
∑

k=0

ĈkGk

(

|||ω|||p−var,∆k
+ |||ω|||2p−var,∆k

+ |||ω|||p+1
p−var,∆k

)

.

(3.20)

Step 3. Using Hölder inequality, the second term in (3.20) can be estimated as follows

lim
m→∞

K

(m+ 1)

m
∑

k=0

Ĉk |||ω|||p−var,∆k
≤ K lim

m→∞

( 1

m+ 1

m
∑

k=0

Ĉ2
k

) 1
2

lim
m→∞

( 1

m+ 1

m
∑

k=0

|||ω|||2p−var,∆k

) 1
2

≤ KĈΓ(ω, 2).

Similarly, we get the estimates for the other terms at the right hand side of (3.20) so that

lim
t→∞

1

t
log r(t) ≤ −h0 +KĈΓ(ω, 2)

+4K lim
m→∞

( 1

m+ 1

m
∑

k=0

Ĉ2
kG

2
k

) 1
2
(

Γ(ω, 2) + Γ(ω, 4)2 + Γ(ω, 2p + 2)p+1
)

,

where all the values of Γ are finite due to assumption (3.5). To estimate the average of Ĉ2
kG

2
k,

observe that

lim
m→∞

(

1

m+ 1

m
∑

k=0

Â2
kĈ

2
k

) 1
2

≤ lim
m→∞

(

1

m+ 1

m
∑

k=0

Â4
k

) 1
4

lim
m→∞

(

1

m+ 1

m
∑

k=0

Ĉ4
k

) 1
4

≤ ÂĈ;

lim
m→∞

(

1

m+ 1

m
∑

k=0

Ĉ4
k

)
1
2

≤ Ĉ2;

lim
m→∞

(

1

m+ 1

m
∑

k=0

Â2p
k Ĉ2

k

) 1
2

≤ lim
m→∞

(

1

m+ 1

m
∑

k=0

Â4p
k

) 1
4

lim
m→∞

(

1

m+ 1

m
∑

k=0

Ĉ4
k

) 1
4

≤ ÂpĈ;

lim
m→∞

(

1

m+ 1

m
∑

k=0

Ĉ
2(p+1)
k

)
1
2

= Ĉp+1.

Hence

lim
m→∞

( 1

m+ 1

m
∑

k=0

Ĉ2
kG

2
k

) 1
2 ≤ max{8ÂĈ, 16KĈ2, 8pÂpĈ, 16pKpĈ1+p} = ĈĜ.

As a result

lim
t→∞

1

t
log r(t) ≤ −h0 +K(1 + 4Ĝ)Ĉ

(

Γ(ω, 2) + Γ(ω, 4)2 + Γ(ω, 2p + 2)p+1
)

< 0,

due to (3.12) which proves the exponentially asymptotical stability of the zero solution of system
(2.4).

Corollary 3.5 Consider the equation

dz(t) = Az(t)dt+ Cz(t)dω(t) (3.21)

in which A,C ∈ R
d×d, A is negative definite, i.e. there exists constant hA > 0 such that

〈x,Ax〉 ≤ −hA‖x‖2, ∀x ∈ R
d. (3.22)
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Denote by Φ(t, ω) the matrix solution of (3.21), Φ(0, ω) = Id. Then for any given δ > 0

‖Φ(t, ω)‖ ≤ exp
{

− hAt+ δ +max{‖C‖, ‖C‖p}κ(t, ω)
}

, ∀t ∈ [0, 1] (3.23)

where

G := max
{

8‖A‖, 16K‖C‖, 8p‖A‖p, 16pKp‖C‖p
}

, (3.24)

and

κ(t, ω) :=
1

δp−1
|||ω|||pp−var,[0,t] + 4KG |||ω|||p−var,[0,t]

(

t+ |||ω|||p−var,[0,t] + |||ω|||pp−var,[0,t]

)

. (3.25)

Proof: First, it can be seen that

‖C‖ |||ω|||p−var,[0,t] ≤ δ +
1

δp−1

(

‖C‖ |||ω|||p−var,[0,t]

)p

For any x0 ∈ R
d, it follows from (3.10) that for any t ∈ [0, 1] and y(t) = Φ(t,ω)x0

‖Φ(t,ω)x0‖

log ‖Φ(t, ω)x0‖ =

∫ t

0
〈y(s), Ay(s)〉ds +

∫ t

0
〈y(s), Cy(s)〉dω(s)

≤ −hAt+ ‖C‖ |||ω|||p−var,[0,t] + 2K‖C‖ |||ω|||p−var,[0,t] |||y|||q−var,[0,t]

≤ −hAt+ δ +
1

δp−1

(

‖C‖ |||ω|||p−var,[0,t]

)p

+4K‖C‖ |||ω|||p−var,[0,t]G
(

max{t, tp}+ |||ω|||p−var,[0,t] + |||ω|||pp−var,[0,t]

)

≤ −hAt+ δ +
1

δp−1

(

‖C‖ |||ω|||p−var,[0,t]

)p

+4KG‖C‖ |||ω|||p−var,[0,t]

(

t+ |||ω|||p−var,[0,t] + |||ω|||pp−var,[0,t]

)

≤ −hAt+ δ +max{‖C‖p, ‖C‖}κ(t, ω),

which proves (3.23).

Remark 3.6 (i), In [13] and [11] the authors develop the semigroup method to estimate the Hölder
norm of y on intervals τk, τk+1 where τk is a sequence of stopping times

τ0 = 0, τk+1 − τk + |||x|||β,[τk,τk+1]
= µ

for some µ ∈ (0, 1) and β > 1
p , which leads to the estimate of the exponent

−
(

hA −QehA max{Cf , ‖C‖} n

τn

)

,

where hA is given in (3.22), Cf is the Lipchitz constant of f and Q is generic constant independent
of A, f,C, ω. It is then proved that there exists lim inf

n→∞

τn
n = 1

d , where d = d(µ) depends on the

moment of the stochastic noise. As such the rate of exponential convergence of the solution to zero
can be estimated as

−
(

hA −QehA max{Cf , ‖C‖}d
)

. (3.26)

However, it is required from the stopping time analysis (see [11, Section 4]) that the stochastic noise
has to be small in the sense that the moment of Hölder semi-norm |||ω|||β,[−1,1] must be controlled as
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small as possible. On the other hand, when reduced to the case without noise, i.e. C ≡ 0, (3.26)
implies a very rough criterion for exponential stability of the ordinary differential equation

Cf ≤ 1

Q
hAe

−hA . (3.27)

By contrast, if A,C are constant matrices and f(t) ≡ Cf , condition (3.12) is satisfied if

hA − Cf > K‖C‖(1 + 4G)
{

Γ(ω, 2) + Γ(ω, 4)2 + Γ(ω, 2 + 2p)1+p
}

, (3.28)

where G is given by (3.24). The left and the right hand sides of criteria (3.12) and (3.28) therefore
can be interpreted as, respectively, the decay rate of the drift term and the intensity of the volatility
term. In this sense, criteria (3.12) and (3.28) have the same form as the one below

lim inf
t→∞

1

t

∫ t

0
[h(s)− f(s)]ds > lim sup

t→∞

1

t

∫ t

0
‖C(s)‖2ds (3.29)

for stochastic system driven by a standard Brownian motion (see e.g. [20]). Indeed, using Hypothe-
ses (H1) – (H2) and estimate (1.2), it follows that

dE‖x(t)‖2 = E
(

2〈x(t), A(t)x(t)〉 + 2〈x(t), F (t, x(t))〉 + ‖C(t)x(t)‖2
)

dt

≤
(

− h(t) + f(t) + ‖C(t)‖2
)

E‖x(t)‖2

which then derives the exponential stability given (3.29).
In addition, since ‖C‖(1 + 4G) is an increasing function of ‖C‖, criterion (3.28) is satisfied in case
the driving noise ω is small in the sense that the quantity in the brackets {. . . } is small enough, or
in case ‖C‖ is small. Moreover, for ordinary differential equations, criteria (3.12) and (3.28) reduce
to hA > Cf , which is the classical criterion and is much better than (3.27) for dissipative systems.
Therefore criteria (3.12) and (3.28) can be viewed as a better generalization of the classical results
on exponential stability for dissipative systems.

(ii), Regarding to system (3.21), we could have, in some special cases, better estimates than
(3.23). In particular, if A and C are commute, then a direct computation shows that

Φ(t, ω) = exp{At+ Cω(t)}, ∀t ≥ 0. (3.30)

As a result,
‖Φ(t, ω)‖ ≤ ‖eAt‖‖eCω(t)‖ ≤ ‖eAt‖e‖C‖|ω(t)|, ∀t ≥ 0. (3.31)

Therefore, under the assumption that

lim sup
t→∞

ω(t)

t
= 0,

(which is often satisfied for almost alls realization ω of a fractional Brownian motion), it follows
that

lim sup
t→∞

1

t
log ‖Φ(t, ω)‖ ≤ lim sup

t→∞

1

t
log ‖eAt‖+ lim sup

t→∞

1

t
‖C‖|ω(t)| = lim sup

t→∞

1

t
log ‖eAt‖.

In this situation, the exponential stability criterion of system (3.21) is then equivalent to the one
of the autonomous ordinary differential equation ż = Az, which is equivalent to that A has all
eigenvalues with negative real parts. However, since (3.30) does not hold in general, we could not
obtain (3.31) but only the discrete version (3.23).
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(iii), The strong condition (3.1) is still able to cover several interesting cases, for instance if
A(t) ≡ A with negative real part eigenvalues. Then there exists a positive definite matrix Q, which
is the solution of the matrix equation

ATQ2 +Q2A = 2D

where D is a symmetric negative definite matrix [3, Chapter 2 & Chapter 5] such that 〈Dx, x〉 ≤
−λD‖x‖2. Under the transformation x̃ = Qx the system

dx(t) = [Ax(t) + F (t, x(t))]dt + C(t)x(t)dω(t)

will be tranformed to

dx̃(t) =
[

QAQ−1x̃(t) +QF (t,Q−1x̃(t))
]

dt+QC(t)Q−1x̃(t)dω(t)

=
[

Ãx̃(t) + F̃ (t, x̃(t))
]

dt+ C̃(t)x̃(t)dω(t), (3.32)

where F̃ is globally Lipschitz continuous with f(t) in (3.2) is replaced by f̃(t) = ‖Q‖‖Q−1‖f(t);
Â, Ĉ in (3.3) and (3.4) are replaced by ‖Q‖‖Q−1‖Â, ‖Q‖‖Q−1‖Ĉ; and (3.1) is of the form

〈x̃, Ãx̃〉 = 〈x̃, 1
2
[Ã+ ÃT]x̃〉 = 〈x̃, 1

2
[QAQ−1 +Q−1ATQ]x̃〉

= 〈Qx,
1

2
QAQ−1Qx〉+ 〈Qx,

1

2
Q−1ATQ2x〉

= 〈x, 1
2
[Q2A+ATQ2]x〉

= 〈x,Dx〉 ≤ −λD‖x‖2 ≤ − λD

‖Q‖2 ‖x̃‖
2.

Therefore we are still able to apply Theorem 3.4 with a small modification of conditions (3.11) and
(3.12).

(iv), It is important to note that for the nonautonomous situation, the semigroup generated
from the method in [11] or [13] should be replaced by the two parameter flow Ψ(t, s) generated from
the nonautonomous differential equation ż = A(t)z. As a result, all p−variation norm estimates for
such Ψ would be quite complex to present. Our method however helps overcome this drawback by
using Lyapunov type functions, as seen in the proof of Theorem 3.4.

4 Applications: Existence of random attractors

In this section we would like to apply the main result to study the following system

dx(t) = [Ax(t) + f(x(t))]dt +Cx(t)dBH(t), x(0) = x0 ∈ R
d, (4.1)

where BH is an one dimensional fractional Brownian motion with Hurst index H > 1
2 ; A is negative

definite and f : Rd → R
d is globally Lipschitz continuous, i.e. there exist contants hA, cf > 0 such

that
〈x,Ax〉 ≤ −hA‖x‖2, ‖f(x)− f(y)‖ ≤ cf‖x− y‖, ∀x, y ∈ R

d. (4.2)

Given 1
2 < ν < H and any time interval [0, T ], almost sure all realizations ω(·) = BH(·, ω) belong to

the Hölder space Cν−Hol([0, T ],R) (see e.g. [24, Proposition 1.6]), thus system (4.1) can be solved in
the pathwise sense and admits a unique solution x(t, ω, x0), according to Theorem 2.1. Moreover, it
is proved, e.g. in [13] that, the solution generates a so-called random dynamical system defined by
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ϕ(t, ω)x0 := x(t, ω, x0) on the probability space (Ω,F ,P) equipped with a metric dynamical system
θ, i.e. θt+s = θt ◦ θs for all t, s ∈ R. Namely, ϕ : R× Ω× R

d → R
d is a measurable mapping which

is also continuous in t and x0 such that the cocycle property

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω), ∀t, s ∈ R,

is satisfied [1]. It is important to note that, given the probability space as Ω = C0(R,R) of continuous
functions on R vanishing at zero, with the Borel sigma-algebra F , the Wiener shift θtω(·) = ω(t+
·) − ω(t) and the Wiener probability P, it follows from [15, Theorem 1] that one can construct an
invariant probability measure P

H = BH
P on the subspace Cν such that BH ◦ θ = θ ◦ BH , and θ is

ergodic.
Following [2],[8], we call a set M̂ = {M(ω)}ω∈Ω a random set, if ω 7→ d(x|M(ω)) is F-measurable
for each x ∈ R

d, where d(E|F ) = sup{inf{d(x, y)|y ∈ F}|x ∈ E} for E,F are nonempty subset of
R
d and d(x|E) = d({x}|E). Given a continuous random dynamical system ϕ on R

d. An universe
D is a family of random sets which is closed w.r.t. inclusions (i.e. if D̂1 ∈ D and D̂2 ⊂ D̂1 then
D̂2 ∈ D). In our setting, we define the universe D to be a family of random sets D(ω) which is
tempered (see e.g. [1, pp. 164, 386]), namelyD(ω) belongs to the ball B(0, ρ(ω)) for all ω ∈ Ω where
the radius ρ(ω) > 0 is a tempered random varible, i.e.

lim
t→±∞

1

t
log ρ(θtω) = 0. (4.3)

An invariant random compact set A ∈ D is called a pullback random attractor in D, if A attracts
any closed random set D̂ ∈ D in the pullback sense, i.e.

lim
t→∞

d(ϕ(t, θ−tω)D̂(θ−tω)|A(ω)) = 0. (4.4)

Similarly, A is called a forward random attractor in D, if A attracts any closed random set D̂ ∈ D
in the forward sense, i.e.

lim
t→∞

d(ϕ(t, ω)D̂(ω)|A(θtω)) = 0.

The existence of a random pullback attractor follows from the existence of a random pullback
absorbing set (see [8],[25]). A random set B ∈ D is called pullback absorbing in a universe D if B
absorbs all sets in D, i.e. for any D̂ ∈ D, there exists a time t0 = t0(ω, D̂) such that

ϕ(t, θ−tω)D̂(θ−tω) ⊂ B(ω), for all t ≥ t0. (4.5)

Given a universe D and a random compact pullback absorbing set B ∈ D, there exists a unique
random pullback attractor (which is then a weak attractor) in D, given by

A(ω) = ∩s≥0∪t≥sϕ(t, θ−tω)B(θ−tω). (4.6)

The reader is referred to a survey on random attractors in [7].

Lemma 4.1 For δ > 0, the function κ defined in (3.25) satisfies
(i) For all 0 < s < t < 1

κ(t, ω) ≥ κ(s, ω) + κ(t− s, θsω), (4.7)

(ii) For all 0 ≤ t′ ≤ 1
κ(1, θt′ω) ≤ 2p[κ(1, ω) + κ(1, θ1ω)]. (4.8)

(iii) E κ(1, ω) < ∞.
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Proof: (i) The inequalitiy holds since |||ω|||pp−var,[s,t] , |||ω|||
2
p−var,[s,t] and |||ω|||p+1

p−var,[s,t] are control

functions (see [12] for details on control functions), meanwhile

t |||ω|||p−var,[0,t] + s |||ω|||p−var,[t,s+t] ≤ (t+ s) |||ω|||p−var,[0,t+s] .

(ii) Due to [5, Lemma 2.1] if z is an arbitrary function of bounded p−variation on [0, 2] then

|||z|||pp−var,[0,2] ≤ 2p−1(|||z|||pp−var,[0,1] + |||z|||pp−var,[1,2]),

which implies that for all n ≥ 0

|||z|||np−var,[0,2] ≤ 2
(p−1)n

p (|||z|||pp−var,[0,1] + |||z|||pp−var,[1,2])
n
p

≤ 2max{p,n}−1
(

|||z|||np−var,[0,1] + |||z|||np−var,[1,2]

)

.

Therefore, taking into account the formula (3.25) defining κ we can easily derive (4.8).
(iii) Recall that in this section we consider equation (4.1), hence ω is a realization of a fractional

Brownian motion BH(t, ω). Observe that for ν = 1/p < H and t > 0 be arbirary, |||ω|||p−var,[0,t] ≤
tν |||ω|||ν−Hol,[0,t].

Fix q0 ≥ max{ 2
H−ν , 2p + 2}, q0 ∈ N. Apply [12, Corollary A2] for α = ν + 1

q0
and [21, Remark

1.2.2, p 7] we get

E
∣

∣

∣

∣

∣

∣BH(·, ω)
∣

∣

∣

∣

∣

∣

q0
ν−Hol,[0,1]

≤
(

32(ν + 2
q0
)

ν

)q0 ∫ 1

0

∫ 1

0

E‖BH(u, ω)−BH(v, ω)‖q0
|u− v|νq0+2

dudv

≤
(

32(ν + 2
q0
)

ν

)q0 ∫ 1

0

∫ 1

0

2q0/2Γ( q0+1
2 )√

π
|u− v|(H−ν−2/q0)q0dudv

≤
(

32
√

2(q0 + 1)
)q0 2

[(H − ν)q0 − 1](H − ν)q0

≤
(

32
√

2(q0 + 1)
)q0

,

in which Γ(n) is the Gamma function. This implies

(

E
∣

∣

∣

∣

∣

∣BH(·, ω)
∣

∣

∣

∣

∣

∣

q0

p−var,[0,1]

)
1
q0 ≤ 32

√

2(q0 + 1) =: β, (4.9)

and since q0 ≥ 2p + 2 we conclude that

E κ(1, ω) ≤ max{ 1

δp−1
, 4KG}(β + βp + β2 + βp+1) < ∞ (4.10)

Before stating the main result, we need the following results (the technical proofs are provided
in the Appendix).

Lemma 4.2 (Gronwall-type lemma) Assume that z(·), α(·) : [a, b] → R
+ satisfy

z(t) ≤ z0 +

∫ t

a
α(s)ds +

∫ t

a
ηz(s)ds, ∀t ∈ [a, b] (4.11)

for some z0, η > 0. Then

z(t) ≤ z0e
η(t−a) +

∫ t

a
α(s)eη(t−s)ds, ∀t ∈ [a, b]. (4.12)
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Lemma 4.3 Consider the random variable

ξ(ω) := 1 +
∞
∑

k=1

exp
{(

− h+ c
1

k

k−1
∑

i=0

κ(1, θ−iω)
)

k
}

, (4.13)

where h, c are given positive numbers and κ is defined by (3.25). Then there exists ε > 0 such that
if c < ε, ξ(ω) is tempered.

Given the universe D of tempered random sets with property (4.3), our second main result is then
formulated as follows.

Theorem 4.4 Assume that hA > cf . There exists an ǫ > 0 such that under condition ‖C‖ < ǫ, ϕ
possesses a random pullback attractor consisting only of one random point a(ω) in the universe D
of tempered random sets. Moreover, every tempered random set converges to the random attractor
in the pullback sense with exponential rate.

Proof: We summarize the steps of the proof here. In Step 1 we prove (4.15), which helps
to prove (4.16) in the forward direction and (4.20) in the pullback direction, by choosing ‖C‖ < ǫ
such that (4.19) is statisfied. As a result, there exists an absorbing set of the system which is a
random ball with its radius described in (4.18). The existence of the random attractor A is then
followed. In Step 2, we prove that any two different points a1, a2 in attractor A(ω) can be pulled
from fiber ω backward to fiber θ−t∗ω, such that the difference of two solutions starting from fiber
θ−t∗ω in fiber ω can be estimated by (4.22). Finally, using (5.3), we conclude that a1(ω) = a2(ω)
almost surely, which proves that A is a single random point.

Step 1. Fix a δ > 0 which will be specified later. We first show that there exists an absorbing
set for system (4.1). Using (3.21) and the method of variation of parameter as in (2.6), one derives
from (4.1) the integral equation

x(t, ω, x0) = Φ(t, ω)x0 +

∫ t

0
Φ(t− s, θsω)f(x(s, ω, x0))ds,

where Φ defined in Corollary 3.5. Hence it follows from (3.23) and (4.7) that for any t ∈ [0, 1]

‖x(t, ω, x0)‖

≤ ‖Φ(t, ω)x0‖+
∫ t

0
‖Φ(t− s, θsω)‖

(

cf‖x(s, ω, x0)‖+ ‖f(0)‖
)

ds

≤ exp
{

− hAt+ δ +max{‖C‖, ‖C‖p}κ(t, ω)
}

‖x0‖

+

∫ t

0
exp

{

− hA(t− s) + δ +max{‖C‖, ‖C‖p}κ(t− s, θsω)
}(

cf‖x(s, ω, x0)‖+ ‖f(0)‖
)

ds

≤ exp
{

− hAt+ δ +max{‖C‖, ‖C‖p}κ(t, ω)
}

‖x0‖

+

∫ t

0
exp

{

− hA(t− s) + δ +max{‖C‖, ‖C‖p}
[

κ(t, ω) − κ(s, ω)
]

}(

cf‖x(s, ω, x0)‖+ ‖f(0)‖
)

ds.

Assign z(t) := ‖x(t, ω, x0)‖ exp
{

hAt−max{‖C‖, ‖C‖p}κ(t, ω)
}

, then for any t ∈ [0, 1]

z(t) ≤ ‖x0‖eδ + ‖f(0)‖eδ
∫ t

0
ehAs−max{‖C‖,‖C‖p}κ(s,ω)ds+

∫ t

0
cfe

δz(s)ds,
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which has the form of (4.11). By applying Gronwall lemma 4.2, we obtain

z(t) ≤ ‖x0‖eδ exp
{

cfe
δt
}

+ ‖f(0)‖eδ
∫ t

0
exp

{

cfe
δ(t− s) + hAs−max{‖C‖, ‖C‖p}κ(s, ω)

}

ds,

for all t ∈ [0, 1]. This follows that for any t ∈ [0, 1]

‖x(t, ω, x0)‖
≤ ‖x0‖ exp

{

− hAt+ δ +max{‖C‖, ‖C‖p}κ(t, ω) + cfe
δt
}

+‖f(0)‖eδ
∫ t

0
exp

{

cfe
δ(t− s)− hA(t− s) + max{‖C‖, ‖C‖p}(κ(t, ω) − κ(s, ω))

}

ds

≤ ‖x0‖ exp
{

−
(

hA − cfe
δ
)

t+ δ +max{‖C‖, ‖C‖p}κ(t, ω)
}

+‖f(0)‖eδ
∫ t

0
exp

{

− (hA − cfe
δ)(t− s) + max{‖C‖, ‖C‖p}(κ(t, ω) − κ(s, ω))

}

ds.

Since hA > cf there exists δ > 0 such that

h := hA − cfe
δ − δ > 0. (4.14)

Then for all t ∈ [0, 1]

‖x(t, ω, x0)‖
≤ ‖x0‖ exp

{

− (h+ δ)t + δ +max{‖C‖, ‖C‖p}κ(t, ω)
}

+‖f(0)‖eδ
∫ t

0
exp

{

− (h+ δ)(t − s) + max{‖C‖, ‖C‖p}(κ(t, ω) − κ(s, ω))
}

ds

≤ ‖x0‖ exp
{

− (h+ δ)t + δ +max{‖C‖, ‖C‖p}κ(1, ω)
}

+‖f(0)‖eδ
∫ t

0
exp

{

− (h+ δ)(t − s) + max{‖C‖, ‖C‖p}κ(1, ω)
}

ds

≤ ‖x0‖ exp
{

− (h+ δ)t + δ +max{‖C‖, ‖C‖p}κ(1, ω)
}

+
‖f(0)‖
h+ δ

exp
{

δ +max{‖C‖, ‖C‖p}κ(1, ω)
}

,

(4.15)

as κ is an increasing function of t. In particular

‖x(1, ω, x0)‖ ≤ ‖x0‖ exp
{

− h+max{‖C‖, ‖C‖p}κ(1, ω)
}

+
‖f(0)‖
h+ δ

exp
{

δ +max{‖C‖, ‖C‖p}κ(1, ω)
}

.

Assign

α(ω) := exp
{

− h+max{‖C‖, ‖C‖p}κ(1, ω)
}

,

β(ω) :=
‖f(0)‖
h+ δ

exp
{

δ +max{‖C‖, ‖C‖p}κ(1, ω)
}

.

By induction one can show that for any n ≥ 1

‖x(n, ω, x0)‖
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≤ ‖x(n − 1, ω, x0)‖α(θn−1ω) + β(θn−1ω)

≤ . . .

≤ ‖x0‖
n−1
∏

k=0

α(θkω) +

n−1
∑

k=0

β(θkω)

n−1
∏

i=k+1

α(θiω)

≤ ‖x0‖ exp
{(

− h+max{‖C‖, ‖C‖p} 1
n

n−1
∑

k=0

κ(1, θkω)
)

n
}

+

n−1
∑

k=0

‖f(0)‖
h+ δ

eh+δ exp
{(

− h+max{‖C‖, ‖C‖p} 1

n− k

n−1
∑

i=k

κ(1, θiω)
)

(n− k)
}

. (4.16)

Using (4.15) and (4.16), we have for t ∈ [(n, n + 1]

‖x(t, ω, x0)‖
≤ ‖x(n, ω, x0)‖ exp

{

− (h+ δ)(t − n) + δ +max{‖C‖, ‖C‖p}κ(1, θnω)
}

+
‖f(0)‖
h+ δ

exp
{

δ +max{‖C‖, ‖C‖p}κ(1, θnω)
}

≤ ‖x0‖eh+δ exp
{(

− h+max{‖C‖, ‖C‖p} 1

n+ 1

n
∑

k=0

κ(1, θkω)
)

(n+ 1)
}

+
n
∑

k=0

‖f(0)‖e2(h+δ)

h+ δ
exp

{(

− h+max{‖C‖, ‖C‖p} 1

n− k + 1

n
∑

i=k

κ(1, θiω)
)

(n − k + 1)
}

.

By computation using (4.8) we obtain

‖x(t, θ−tω, x0)‖

≤ ‖x0‖e2h+δ exp
{(

− h+ 2p+1 max{‖C‖, ‖C‖p} 1

n+ 2

n+1
∑

k=0

κ(1, θ−kω)
)

(n + 2)
}

+

n+1
∑

k=1

‖f(0)‖e3h+2δ

h+ δ
exp

{(

− h+ 2p+1max{‖C‖, ‖C‖p} 1

k + 1

k
∑

i=0

κ(1, θ−iω)
)

(k + 1)
}

.

(4.17)

Then for a fixed random set D̂(ω) ∈ D with the corresponding ball B(0, ρ(ω)) satisfying (4.3), and
for any random point x0(θ−tω) ∈ D̂(θ−tω), we have

‖x(t, θ−tω, x0(θ−tω))‖

≤ ‖x0(θ−tω)‖e2h+δ exp
{(

− h+ 2p+1 max{‖C‖, ‖C‖p} 1

n+ 2

n+1
∑

k=0

κ(1, θ−kω)
)

(n+ 2)
}

+
‖f(0)‖e3h+2δ

h+ δ

n+1
∑

k=1

exp
{(

− h+ 2p+1max{‖C‖, ‖C‖p} 1

k + 1

k
∑

i=0

κ(1, θ−iω)
)

(k + 1)
}

≤ ρ(θ−tω)e
2h+δ exp

{(

− h+ 2p+1max{‖C‖, ‖C‖p} 1

n+ 2

n+1
∑

k=0

κ(1, θ−kω)
)

(n+ 2)
}

+ b(ω),

where

b(ω) := 1 +
‖f(0)‖e3h+2δ

h+ δ

∞
∑

k=1

exp
{(

− h+ 2p+1max{‖C‖, ‖C‖p}1
k

k−1
∑

i=0

κ(1, θ−iω)
)

k
}

. (4.18)
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Now we choose δ small enough such that (4.14) holds and C which satisfies

h = hA − cfe
δ − δ > 2p+1max{‖C‖, ‖C‖p}max{ 1

δp−1
, 4KG}(β + βp + β2 + βp+1) (4.19)

and set λ := h− 2p+1 max{‖C‖, ‖C‖p}E κ(1, ·). There exists n0 = n(ω) such that

exp
{(

− h+ 2p+1 max{‖C‖, ‖C‖p} 1

n+ 2

n+1
∑

k=0

κ(1, θ−kω)
)

(n+ 2)
}

≤ e
−λ(n+2)

2

for all n ≥ n0 and ρ(θ−tω) ≤ e
λt
4 for all t ≥ n0 due to (4.3). This follows that

‖x(t, θ−tω, x0(θ−tω))‖ ≤ 2b(ω), (4.20)

for n large enough and uniformly in random points x0(ω) ∈ D̂(ω). This proves (4.5) and there exists
a compact absorbing set B(ω) = B(0, 2b(ω)) for system (4.1). Due to Lemma 4.3 b(ω) is tempered
when ‖C‖ is small enough and thus B ∈ D, this prove the existence of a random attractor A(ω) of
the form (4.6) for system (4.1).

Step 2. Assume that there exist two different points a1(ω), a2(ω) ∈ A(ω). Fix t∗ ∈ [m,m+ 1]
and put ω∗ = θ−t∗ω and consider the equation

dx(t) = [Ax(t) + f(x(t))]dt+ Cx(t)dω∗(t). (4.21)

Note that (3.5) holds for ω∗. By the invariance principle there exist two different points b1(ω
∗), b2(ω

∗) ∈
A(ω∗) such that

ai(ω) = x(t∗, ω∗, bi), i = 1, 2.

Put y(t, ω∗) := x(t, ω∗, b1)− x(t, ω∗, b2) then y(t∗, ω∗) = a1(ω)− a2(ω) and we have

dy(t, ω∗) = [Ay(t, ω∗) + F (t, y(t, ω∗))]dt+ Cy(t, ω∗)dω∗(t)

where F (t, y) = f(y + u(t)) − f(u(t)), where u(t) = x(t, ω∗, b2) satisfies also globally linear growth
(3.2) with coefficient cf and condition F (t, 0) ≡ 0.
Now repeating the calculation in Theorem 3.4 in which ω is replaced by ω∗, we obtain

1

t∗
log ‖y(t∗, ω∗)‖ ≤ 1

t∗
log ‖y(0, ω∗)‖ − (hA − cf ) +

K‖C‖
m

m
∑

k=0

|||ω∗|||p−var,∆k

+
4K‖C‖G

m

(

m
∑

k=0

|||ω∗|||p−var,∆k
+

m
∑

k=0

|||ω∗|||2p−var,∆k
+

m
∑

k=0

|||ω∗|||p+1
p−var,∆k

)

,

in which G given in (3.24). Using the fact that A ⊂ B, we have ‖y(0, ω∗)‖ ≤ 4b(ω∗). Now letting
N ∋ t∗ = m → ∞ and using (5.3), we obtain

lim
t∗→∞

1

t∗
log ‖y(t∗, ω∗)‖

≤ −(hA − cf ) +K‖C‖(1 + 4G)
(

E |||ω|||p−var,[0,1] + E |||ω|||2p−var,[0,1] + E |||ω|||p+1
p−var,[0,1]

)

≤ −(hA − cf ) +K(1 + 4G)‖C‖
(

β + β2 + βp+1
)

, (4.22)

in which β is given by (4.9). Hence, there exists ε > 0 such that if we choose ‖C‖ < ε then
y(t∗, θ−t∗ω) converges to zero exponentially. Hence a1(ω) − a2(ω) → 0 which is a contradiction.
This proves that A(ω) ≡ {a(ω)} is a single random point. Finally similar arguments then prove
that ‖x(t, θ−tω, x0(θ−tω)) − a(ω)‖ converges to 0 as t → ∞ in an exponential rate and uniformly
in random points x0(ω) in a tempered random set D̂(ω) ∈ D, which proves the last conclusion of
Theorem 4.4.

18



Example 4.5 (Stochastic SIR model) Following [4], consider a stochastic version of ”susceptible-
infected-recovered” epidemic model (SIR)

dSt =
[

q − aSt + bIt − γ
StIt

St + It +Rt

]

dt+ σ1StdB
H
t

dIt =
[

− (a+ b+ c)It + γ
StIt

St + It +Rt

]

dt+ σ2ItdB
H
t

dRt =
[

cIt − aRt

]

dt+ σ3RtdB
H
t , (4.23)

where q, a, b, c, γ, σ1, σ2, σ3 ≥ 0. System (4.23) can be rewritten in the following form of variable
y = (S, I,R)T ∈ R

3

dyt = [Ayt + F (yt)]dt+ CytdB
H
t

=









−a b 0
0 −a− b− c 0
0 c −a



 yt +





q − γ StIt
St+It+Rt

γ StIt
St+It+Rt

0







 dt+





σ1 0 0
0 σ2 0
0 0 σ3



 ytdB
H
t .(4.24)

It is easy to check that

‖F (y1)− F (y2)‖ ≤ γ
(

|S1 − S2|+ |I1 − I2|+ |R1 −R2|
)

≤ γ
√
3‖y1 − y2‖, ∀y1, y2 ∈ R

3
+,

hence F is globally Lipschitz continuous. The existence and uniqueness, as well as the positiveness
of the solution of (4.23) are investigated in [4] using fractional calculus for Young integral [29, 30].
To study the asymptotic behavior of system (4.23), observe from [4] that A is diagonalizable, which
can be written in the form

A = PDP−1, D =





−a 0 0
0 −a 0
0 0 −a− b− c



 , P =





1 0 b
b+c

0 0 −1
0 1 c

b+c



 , P−1 =





1 b
b+c 0

0 c
b+c 1

0 −1 0



 .

Therefore, by assigning x := P−1y and applying the integration by parts for Young system, we
obtain the equation for x as follows

dxt =
[

P−1APxt + P−1F (Pxt)
]

dt+ P−1CPxtdB
H
t

= [Dxt + F1(xt)]dt+ P−1CPxtdB
H
t , (4.25)

which has the form of (4.1) with

〈x,Dx〉 ≤ −a‖x‖2, ‖F1(x1)−F1(x2)‖ ≤ γ
√
3‖P‖‖P−1‖‖x1−x2‖ ≤ 4

√
3γ‖x1−x2‖, ∀x1, x2 ∈ R

3.

We are now in the situation to apply Theorem 4.4 provided that condition (4.19) is satisfied, i.e.
a− 4

√
3γ, δ > 0 such that a− 4

√
3γeδ − δ > 0, and σmax := max{σ1, σ2, σ3} ≥ 0 small enough such

that

a− 4
√
3γeδ − δ ≥ 2p+1 max{4σmax, (4σmax)

p}max{ 1

δp−1
, 4KG}(β + βp + β2 + βp+1). (4.26)

Under this condition, there exists an one-point pullback attractor for the tranformed system (4.25)
and thus for the original system (4.23) after the transformation y = Px.
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5 Appendix

Proof: [Proof of Lemma 4.2] From (4.11) it follows that

d
(

e−ηt

∫ t

a
z(s)ds

)

= e−ηt
(

− η

∫ t

a
z(s)ds + z(t)

)

≤ e−ηt
(

z0 +

∫ t

a
α(s)ds

)

, ∀t ∈ [a, b].

As a result
∫ t

a
z(s)ds ≤

∫ t

a
eη(t−s)

(

z0 +

∫ s

a
α(u)du

)

ds.

Hence combining with (4.11) and using the integration by parts one gets

z(t) ≤ z0 +

∫ t

a
α(s)ds + η

∫ t

a
eη(t−s)

(

z0 +

∫ s

a
α(u)du

)

ds

≤ z0e
η(t−a) +

∫ t

a
α(s)ds − eηt

∫ t

a

(

∫ s

a
α(u)du

)

d(e−ηs)

≤ z0e
η(t−a) +

∫ t

a
eη(t−s)α(s)ds,

which proves (4.12).

Proof: [Proof of Lemma 4.3] Firstly, since the dynamical system θ is ergodic in (Ω,F ,P), for
almost all ω ∈ Ω

lim
k→∞

(

−h+ c
1

k

k−1
∑

i=0

κ(1, θ−kω)

)

= −h+ cE κ(1, ·)

≤ −h+ cmax{ 1

δp−1
, 4KG}(β + βp + β2 + βp+1) (5.1)

due to (4.10). Set −λ := −h+ cE κ(1, ·). Take and fix a small positive number ε such that

h > εmax{ 1

δp−1
, 4KG}(β + βp + β2 + βp+1). (5.2)

Then for any 0 < c < ε we have lim
k→∞

(

−h+ c 1k
∑k−1

i=0 κ(1, θ−kω)
)

= −λ < 0.

Consequently, the series

∞
∑

k=1

exp
{(

− h+ c
1

k

k−1
∑

i=0

κ(1, θ−iω)
)

k
}

converges or ξ(ω) is finite for almost all ω ∈ Ω.
Next we are going to prove that ξ(ω) is tempered if c is small enough. Using (4.8), it suffices to

prove that

lim
t→±∞
t∈Z

1

t
log
[

ξ(θtω)
]

= 0 (5.3)
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whenever c < ε. Indeed, replacing ω by θ−mω where m ∈ Z
+ in (4.13) we get

ξ(θ−mω)

= 1 +
∞
∑

k=1

exp
{

− hk + c
k−1
∑

i=0

κ(1, θ−(i+m)ω)
}

.

= 1 +

∞
∑

k=1

exp
{

− hk + c

k+m−1
∑

i=m

κ(1, θ−iω)
}

.

= 1 + exp

{(

h− c
1

m

m−1
∑

i=0

κ(1, θ−iω)

)

m

}

∞
∑

k=1

exp

{(

−h+ c
1

k +m

k+m−1
∑

i=0

κ(1, θ−iω)

)

(k +m)

}

.

By (5.1), for each N ∈ N
∗, 1

N < λ there exists n(ω,N) such that for all n > n(ω,N)

−λ− 1

N
≤ −h+ c

1

n

n−1
∑

k=0

κ(1, θ−kω) ≤ −λ+
1

N
,

and

−λ− 1

N
≤ −h+ c

1

n

n−1
∑

k=0

κ(1, θkω) ≤ −λ+
1

N
.

Therefore, with N , ω fixed, if m > n(ω,N) we have

1 ≤ ξ(θ−mω) ≤ 1 + e(−λ+ 1
N
)m

∞
∑

k=1

exp{(−λ+ 1/N)(k +m)} ≤ (D + 1)e2m/N ,

where D =
∑∞

k=1 exp{(−λ+ 1
N )k} < ∞ and D is independent of m. Hence, it follows that

0 ≤ lim
m→+∞
m∈Z

1

m
log
[

ξ(θ−mω)
]

≤ lim
m→∞

2m

mN
=

2

N
,

for any N large enough, which proves (5.3) for the case t → −∞.
Similarly, replacing ω by θmω where m ∈ Z

+ in (4.13) we obtain

ξ(θmω) = 1 +

∞
∑

k=1

exp
{

− hk + c

k−1
∑

i=0

κ(1, θ−i+mω)
}

.

= 1 +
m
∑

k=1

exp
{

− hk + c
k−1
∑

i=0

κ(1, θ−i+mω)
}

+
∞
∑

k=m+1

exp
{

− hk + ‖C‖
k−1
∑

i=0

κ(1, θ−i+mω)
}

,

in which the second term is

m
∑

k=1

exp
{

− hk + c

k−1
∑

i=0

κ(1, θ−i+mω)
}

=
m
∑

k=1

exp
{

− hk + c
m
∑

i=m−k+1

κ(1, θiω)
}

= exp
{

− h(m+ 1) + c

m
∑

i=0

κ(1, θiω)
}

m
∑

k=1

exp
{

hk − c

k−1
∑

i=0

κ(1, θiω)
}
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= exp
{

− h(m+ 1) + c

m
∑

i=0

κ(1, θiω)
}

×





n(ω,N)
∑

k=1

exp
{

hk − c
k−1
∑

i=0

κ(1, θiω)
}

+
m
∑

k=n(ω,N)+1

exp
{

hk − c
k−1
∑

i=0

κ(1, θiω)
}





≤ exp{(−λ+
1

N
)(m+ 1)} ×

×





n(ω,N)
∑

k=1

exp
{

hk − c

k−1
∑

i=0

κ(1, θiω)
}

+

m
∑

k=n(ω,N)+1

exp{(λ+
1

N
)k}





≤ exp{(−λ+
1

N
)(m+ 1)}





n(ω,N)
∑

k=1

exp
{

hk − c

k−1
∑

i=0

κ(1, θiω)
}

+
exp{(λ+ 1

N )(m+ 1)}
eλ+

1
N − 1





≤ e
2
N
(m+1)D(ω),

where

D(ω) =

n(ω,N)
∑

k=1

exp
{

hk − c

k−1
∑

i=0

κ(1, θiω)
}

+
1

eλ+
1
N − 1

and m > n(ω,N).
On the other hand, the third term is

∞
∑

k=m+1

exp
{

− hk + c

k−1
∑

i=0

κ(1, θ−i+mω)
}

=

∞
∑

k=m+1

exp
{

− hk + c

m−1
∑

i=0

κ(1, θ−i+mω) + c

k−1
∑

i=m

κ(1, θ−i+mω)
}

= exp
{

− hm+ c
m
∑

i=1

κ(1, θiω)
}

∞
∑

k=1

exp
{

− hk + c
k−1
∑

i=0

κ(1, θ−iω)
}

≤ e(−λ+ 1
N
)m ×

∞
∑

k=1

exp
{

− hk + c

k−1
∑

i=0

κ(1, θ−iω)
}

when m > n(ω,N). To sum up, for m > n(ω,N) we have

1 ≤ ξ(θmω) ≤ 1 + e
2
N
(m+1)D(ω) + e(−λ+ 1

N
)mξ(ω) ≤ e

2
N
(m+1) (1 +D(ω) + ξ(ω)) .

Since D(ω), ξ(ω) are independent of m, lim
m→+∞
m∈Z

ξ(θmω)
m ≤ 2

N for any N large enough, we conclude

that ξ(ω) is tempered.
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