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Uncertainty Quantification for Markov Processes via

Variational Principles and Functional Inequalities

Jeremiah Birrell · Luc Rey-Bellet

Abstract Information-theory based variational principles have proven effec-
tive at providing scalable uncertainty quantification (i.e. robustness) bounds
for quantities of interest in the presence of nonparametric model-form un-
certainty. In this work, we combine such variational formulas with functional
inequalities (Poincaré, log-Sobolev, Liapunov functions) to derive explicit un-
certainty quantification bounds for time-averaged observables, comparing a
Markov process to a second (not necessarily Markov) process. These bounds
are well-behaved in the infinite-time limit and apply to steady-states of both
discrete and continuous-time Markov processes.
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1 Introduction

Information-theory based variational principles have proven effective at provid-
ing uncertainty quantification (i.e. robustness) bounds for quantities of interest
in the presence of nonparametric model-form uncertainty [1,2,3,4,5,6,7,8,9,
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10]. In the present work, we combine these tools with functional inequalities
to obtain improved and explicit uncertainty quantification (UQ) bounds for
both discrete and continuous-time Markov processes on general state spaces.

In our approach, we are given a baseline model, described by a proba-
bility measure P ; this is the model one has ‘in hand’ and that is amenable
to analysis/simulation, but it may contain many sources of error and un-
certainty. Perhaps it depends on parameters with uncertain values (obtained
from experiment, Monte Carlo simulation, variational inference, etc.) or is
obtained via some approximation procedure (dimension reduction, neglecting
memory terms, asymptotic approximation, etc.) In short, any quantity of in-
terest computed from P has (potentially) significant uncertainty associated
with it. Mathematically we chose to express this uncertainty by considering a
(nonparametric) family, U(P ), of alternative models that we postulate contains
the inaccessible ‘true’ model.

Loosely stated, given some observable F , the uncertainty quantification
goal considered here is

Bound the bias EP̃ [F ]− EP [F ] where P̃ ∈ Ur(P ). (1)

The subscript r indicates that the ‘neighborhood’ of alternative models, Ur(P ),
is often defined in terms of an error tolerance, r > 0. For our purposes, the
appropriate notion of neighborhood will be expressed in terms of relative en-
tropy, which can be interpreted as measuring the loss of information due to
uncertainties. We do not discuss in full generality how to choose the tolerance
level r but there are cases where one has enough information about the ‘true’
model to choose an appropriate tolerance; see Section 6.

Remark 1 Note that in Eq. (1), and the remainder of this paper, we consider
the case where the quantity-of-interest is the expected value of some function,
but extensions of these ideas to other quantities of interest are possible [6].

More specifically, here we work with a Markov process (Xt, P
µ) with initial

distribution µ and stationary distribution µ∗, and compare it to an alternative
(not necessarily Markov) process (Xt, P̃

µ̃); we study the problem of bound-
ing the bias when the finite-time averages of a real-valued observable, f , are
computed by sampling from the alternative process:

Bound Ẽµ̃

[
1

T

∫ T

0

f(Xt)dt

]
−
∫

fdµ∗. (2)

Here, Ẽµ̃ denotes the expectation with respect to P̃ µ̃ and similarly for Pµ,
Eµ. (Discrete-time processes will also be considered in Section 5.)

Eq. (2) is a (less studied) variant of the classical problem of the convergence
of ergodic averages to the expectation in the stationary distribution:

Eµ

[
1

T

∫ T

0

f(Xt)dt

]
→
∫

fdµ∗. (3)
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By combining information on the problems Eq. (2) and Eq. (3), one can
also obtain bounds on the finite time sampling error:

errT = Eµ

[
1

T

∫ T

0

f(Xt)dt

]
− Ẽµ̃

[
1

T

∫ T

0

f(Xt)dt

]
. (4)

In this work, we focus on the robustness problem, Eq. (2).

There are classical inequalities addressing Eq. (1) (ex: Csiszar-Kullback-
Pinsker, Le Cam, Scheffé, etc.), but they exhibit poor scaling properties with
problem dimension and/or in the infinite-time limit, and so are inappropriate
for bounding Eq. (2). This problem can be addressed by using tight information
inequalities based on the Gibbs variational principle that are summarized in
Section 2. See [5] for a detailed discussion of these issues.

Other recent works have also focused on robustness bounds for Markov pro-
cesses, often with the goal of providing error bounds for approximate Markov
chain Monte Carlo samplers. Bounds on the difference between the distribu-
tions (finite-time or stationary) of Markov processes have been obtained in
both total-variation [11,12,13,14,15,16] and Wasserstein distances [17,18,19].

One benefit of the approach taken in the present work is that the bounds
naturally incorporate information on the specific observable, f , under inves-
tigation; for instance, the asymptotic variance of f under the baseline model
appears in the bound in Theorem 3, below. When the end goal is robustness
bounds for time-averages of f , this observable specificity has the potential to
yield tighter bounds; see also [18] for bounds that incorporate similar infor-
mation on the observable.

Our method utilizes relative entropy to quantify the distance between mod-
els. A drawback, compared to the total-variation and Wasserstein distance
approaches, is the requirement of absolute continuity; however, this is satis-
fied in many cases of interest. As we will see, one benefit of utilizing relative
entropy is that the alternative model does not have to be a Markov process.
The second main innovation here is the use of various functional inequalities,
in combination with relative entropy, to bound Eq. (2). The end result is com-
putable, finite-time UQ bounds that are also well behaved in the long-time
limit.

1.1 Summary of Results

The basis for all of our bounds is Theorem 1 in Section 2:

±
(
Ẽµ̃

[
1

T

∫ T

0

f(Xt)dt

]
− µ∗[f ]

)
(5)

≤ inf
c>0

{
1

cT
Λf̂T

Pµ∗

T

(±c) +
1

cT
R(P̃ µ̃

T ||P
µ∗

T )

}
, f̂T ≡

∫ T

0

f(Xt)− µ∗[f ]dt,
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along with Corollary 1 in Section 3:

1

T
Λf̂T

Pµ∗

T

(±c) ≤ κ(V±c), (6)

κ(V ) ≡ sup

{
〈A[g], g〉+

∫
V |g|2dµ∗ : g ∈ D(A,R), ‖g‖L2(µ∗) = 1

}
, (7)

V±c(x) ≡ ±c (f(x)− µ∗[f ]) , µ∗[f ] ≡
∫

fdµ∗. (8)

In the above, Λf̂T

Pµ∗

T

(±c) is the cumulant generating function of f̂T (see Eq. (34)

for details), R(P̃ µ̃
T ||P

µ∗

T ) is the relative entropy of the processes up to time T
(see Eq. (15)), 〈·, ·〉 denotes the inner product on L2(µ∗), and (A,D(A,R)) is
the generator of the Markov semigroup for the process (Xt, P

µ) on L2(µ∗).

Again, we emphasize that the alternative process, (Xt, P̃
µ̃), does not need to

be Markov; for an example involving semi-Markov processes, see Section 6.2.
Eq. (5) is derived by employing the Gibbs variational principle (hence the

relation to relative entropy). Eq. (6), which is based on a theorem proven
in [20], results from a connection between the cumulant generating function
and the Feynman-Kac semigroup (hence the appearance of the generator, A).
Also, note that the bound is expected to behave well in the limit T → ∞, as

R(P̃ µ̃
T ||P

µ∗

T )/T converges to the relative entropy rate of the processes, under
suitable ergodicity assumptions.

Eq. (6) allows us to employ our primary new tool for UQ, that is, functional
inequalities. By functional inequalities, we mean bounds on the generator, A,
that will yield bounds on κ(V±c); we will cover Poincaré, log-Sobolev, and
F -Sobolev inequalities, as well as Liapunov functions. Our results rely heavily
on the bounds obtained in [20,21,22,23,24] where concentration inequalities
for ergodic averages were obtained.

The method outlined above leads to explicit UQ bounds, expressed in terms
of the following quantities:

1. Spectral properties of the generator, A, of the dynamics of the baseline
model, P , in the stationary regime (i.e., on L2(µ∗)); see Eq. (5)-Eq. (7).
This term depends on the chosen observable but does not depend on the
alternative model; functional inequalities are only required for the base
model (which is often the simpler model). This is one of the strengths of
the method, though computing explicit, tight constants for these functional
inequalities is still a very difficult problem in general.

2. The path-space relative entropy up to time T , R(P̃ µ̃
T ||P

µ∗

T ), of the alter-
native model with respect to the base. This term depends heavily on the
difference in dynamics between the two models; in particular, a nontrivial
bound requires absolute continuity of the path-space distributions. This
is a drawback of the relative-entropy based method employed here, but it
does hold in many cases of interest; see Section 6 for examples.

While most of our results do not assume reversibility of the base process,
bounds based on Eq. (7) only involve the symmetric part of the generator
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and so are generally less than ideal, or even useless, for many nonreversible
systems. This is a drawback of the approach pursued here.

Remark 2 For certain hypocoercive systems, ergodicity can be proven by work-
ing with an alternative metric; see [25,26,27]. It is possible that the functional-
inequality based UQ techniques developed below could be adapted to this more
general setting; a step in that direction can be found in [28].

For a simple example of the type of result obtained below, consider diffusion
on R

n in a C2 potential, V , i.e. the generator is A = ∆ − ∇V · V and the
invariant measure is µ∗ = e−V (x)dx. Suppose the Hessian of V is bounded
below:

D2V (x) ≥ α−1I, α > 0. (9)

Our results give a Bernstein-type UQ bound for any bounded f :

±
(
Ẽµ̃

[
1

T

∫ T

0

f(Xt)dt

]
− µ∗[f ]

)
≤
√
2σ2η +M±η, (10)

M± = α‖(f − µ∗[f ])±‖∞, σ2 = 2αVarµ∗ [f ], η =
1

T
R(P̃ µ̃

T ||P
µ∗

T ).

(This bound can also be improved by using the asymptotic variance; see Sec-
tion 4.2.) Section 4.4.1 contains further discussion of diffusions.

The remainder of the paper is structured as follows. Necessary background
on UQ for both general measures and processes will be given in Section 2,
leading up to a connection with both the Feynman-Kac semigroup and the
relative entropy rate. Relevant properties of the Feynman-Kac semigroup are
given in Section 3, culminating with the bound Eq. (6). The use of functional
inequalities to obtain explicit UQ bounds from Eq. (6) will be explored in
Section 4. In Section 5 we show how these ideas can be adapted to discrete-
time processes. Finally, the problem of bounding the relative entropy rate will
be addressed in Section 6.

2 Uncertainty Quantification for Markov Processes

2.1 UQ via Variational Principles

In this subsection, we recall several earlier results regarding the variational-
principle approach to UQ, as developed in [1,2,8,10,29]. In particular, Propo-
sition 2, quoted from [2], will be a critical tool in our derivation of UQ bounds
for Markov processes.

Let P be a probability measure on a measurable space (Ω,F). We consider
the class of random variables f : Ω → R with a well-defined and finite moment
generating function in a neighborhood of the origin:

E(P ) =
{
f : Ω → R : EP [e

±c0f ] < ∞ for some c0 > 0
}
. (11)
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It is not difficult to prove (see e.g. [30]) that the cumulant generating function

Λf
P (c) = logEP [e

cf ] (12)

is a convex function, finite and infinitely differentiable in some interval (c−, c+)
with −∞ ≤ c− < 0 < c+ ≤ ∞ and equal to +∞ outside of [c−, c+]. Moreover
if f ∈ E(P ) then f has moments of all orders and we write

f̂ = f − EP [f ] (13)

for the centered observable of mean 0. We will often use the cumulant gener-
ating function for the centered observable f̂ :

Λf̂
P (c) = logEP [e

c(f−EP [f ])] = Λf
P (c)− cEP [f ] . (14)

Recall also the relative entropy (or Kullback-Leibler divergence), defined
by

R(P̃ ||P ) =

{
EP̃

[
log
(

dP̃
dP

)]
if P̃ ≪ P

+∞ otherwise
. (15)

It has the property of a divergence, that is R(P̃ ||P ) ≥ 0 and R(P̃ ||P ) = 0 if

and only if P̃ = P .
A key ingredient in our approach is the Gibbs variational principle which

relates the cumulant generating function and relative entropy; see Proposition
1.4.2 in [31].

Proposition 1 (Gibbs Variational Principle) Let f : Ω → R be bounded
and measurable. Then

logEP [e
f ] = sup

P̃ :R(P̃ ||P )<∞

{
EP̃ [f ]−R(P̃ ||P )

}
. (16)

As shown in [1,2], the Gibbs variational principle implies the following UQ
bounds for the expected values: (a similar inequality is used in the context of
concentration inequalities, see e.g. [29], and was also used independently in [8,
10]). For a proof of the version stated here, see pages 85-86 in [2].

Proposition 2 (Gibbs information inequality) If R(P̃ ||P ) < ∞ and f ∈
E(P ) then f ∈ L1(P̃ ) and

− inf
c>0

{
Λf̂
P (−c) +R(P̃ ||P )

c

}
≤ EP̃ [f ]− EP [f ] ≤ inf

c>0

{
Λf̂
P (c) +R(P̃ ||P )

c

}
.

(17)

Remark 3 Note that even if R(P̃ ||P ) = ∞, the bound Eq. (17) trivially holds
as long as EP̃ [f ] is defined. To avoid clutter in the statement of our results,

when R(P̃ ||P ) = ∞ we will consider the bound to be satisfied for any f ∈ E(P ),
even if EP̃ [f ] is undefined.
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Optimization problems of the form in Eq. (17) will appear frequently, hence
we make the following definition:

Definition 1 Given any Λ : R → [0,∞] and η > 0, let

Ξ±(Λ, η) ≡ inf
c>0

{
Λ(±c) + η

c

}
. (18)

With this, we can rewrite the bound (17) as

− Ξ−
(
Λf̂
P , R(P̃ ||P )

)
≤ EP̃ [f ]− EP [f ] ≤ Ξ+

(
Λf̂
P , R(P̃ ||P )

)
. (19)

Eq. (19) is the starting point for all UQ bounds derived in this paper.
From it, we see which quantities must be controlled in order to make the UQ
bounds explicit: the relative entropy and the cumulant generating function.
The former will be discussed in Section 6. For Markov processes, the latter can
be bounded via a connection with the Feynman-Kac semigroup and functional
inequalities; this connection between functional inequalities and UQ bounds
is the main focus and innovation of the current work, and we begin discussing
it in Section 2.4. First we recall some general properties of the bounds (19).

2.2 Properties of Ξ±

The objects

Ξ(P̃ ||P ;±f) ≡ Ξ±
(
Λf̂
P , R(P̃ ||P )

)
(20)

appearing in the Gibbs information inequality, Eq. (19), have many remarkable
properties, of which we recall a few.

Proposition 3 Assume R(P̃ ||P ) < ∞ and f ∈ E(P ). We have:

1. (Divergence) Ξ(P̃ ||P ; f) is a divergence, i.e. Ξ(P̃ ||P, f) ≥ 0 and

Ξ(P̃ ||P ; f) = 0 if and only if either P = P̃ or f is constant P a.s.

2. (Linearization) If R(P̃ ||P ) is sufficiently small we have

Ξ(P̃ ||P, f) =
√
2VarP [f ]R(P̃ ||P ) +O(R(P̃ ||P )) . (21)

3. (Tightness) For η > 0 consider Uη = {P̃ ; R(P̃ ||P ) ≤ η}. There exists η∗

with 0 < η∗ ≤ ∞ such that for any η < η∗ there exists a measure P η with

sup
P̃∈Uη

{
EP̃ [f ]− EP [f ]

}
= EPη [f ]− EP [f ] = Ξ(P η||P ; f) . (22)

The measure P η has the form

dP η = ecf−Λf

P
(c)dP, (23)

where c = c(η) is the unique nonnegative solution of R(P η||P ) = η.
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Proof Items 1 and 2 are proved in [2]; see also [9] for item 2. Various versions
of the proof of item 3 can be found in in [1] or [2]. See Proposition 3 in [6] for
a more detailed statement of the result; see also similar results in [8,32]. ⊓⊔

The tightness property in Proposition 3 is very attractive and ultimately

relies on the presence of the cumulant generating function Λf̂
P (c), which en-

codes the entire law of f . However, this generally this makes the bound very
difficult or impossible to compute explicitly; we will need to weaken Eq. (19)
to obtain more usable bounds. Functional inequalities are one tool we will
employ (see Section 4). Another ingredient, which we discuss next, will be ex-
plicit bounds on the optimization problem in the definition of Ξ±(Λ, η). Such
an approach was put forward in [7] where various concentration inequalities
such as Hoeffding, sub-Gaussian, and Bennett bounds are discussed. For this
paper we will almost exclusively use the following Bernstein-type bound:

Lemma 1 Suppose there exist σ > 0, M± ≥ 0 such that

Λ(±c) ≤ σ2c2

2(1− cM±)
(24)

for all 0 < c < 1/M±. Then for all η ≥ 0 we have

Ξ±(Λ, η) ≤
√
2σ2η +M±η. (25)

Note that M± = 0 covers the case of a (one-sided) sub-Gaussian concentration
bound.

Proof Bound Λ using Eq. (24) and solve the resulting optimization problem
on 0 < c < 1/M±. ⊓⊔

From the point of view of concentration inequalities, the bound Eq. (24) is

not very tight; indeed it holds for the cumulant generating function Λf̂
P of any

random variable f ∈ E(P ), but explicit constants may be hard to come by.
In the context of Markov process it has however been proved to be extremely
useful, see [20,21,22,23] and in particular [24].

Second, we will need a linearization bound, generalizing Eq. (21):

Lemma 2 Let Λ : R → [0,∞] be C2 on a neighborhood of 0, Λ(0) = Λ′(0) = 0,
and Λ′′(0) > 0. Then

inf
c>0

{
Λ(±c) + η

c

}
≤
√
2Λ′′(0)η + o(

√
η) (26)

as ρ ց 0. If Λ′′ is Lipschitz at 0 then the error bound improves to O(η).

Proof The bound follows from Taylor expansion of Λ(c); see the proof of The-
orem 2.8 in [2]. ⊓⊔
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2.3 UQ for Markov Processes

One of the main advantages of the Gibbs information inequality, Eq. (17),
over classical information inequalities (such as the Kullback-Leibler-Cziszàr
inequality) is how it scales with time when applied to the distributions of
processes on path space. See [5] for a detailed discussion of this issue. This
strength will become apparent as we proceed.

The following assumption details the setting in which we will work for the
remainder of this paper:

Assumption 1 Let X be a Polish space and suppose we have a time ho-
mogeneous, X -valued, càdlàg Markov family (Ω,F ,Ft, Xt, P

x), x ∈ X , with
transition probability kernel pt (see the statement of Theorem C2 in Appendix
C for the precise definition of a Markov family that we use).

Also assume we have a second probability kernel P̃ x, x ∈ X , on (Ω,F)

with (X0)∗P̃
x = δx for each x ∈ X .

Remark 4 We are not assuming (Xt, P̃
x) are Markov processes.

One of of the families, P x or P̃ x, is thought of as the base model, and the
other as some alternative (or approximate) model, but which is which can vary
with the application. From a mathematical perspective, the primary factors
distinguishing P x and P̃ x are:

1. Our methods require information on the spectrum of the generator of the
semigroup associated with pt.

2. (Xt, P
x) must be Markov, but (Xt, P̃

x) can be non-Markovian.

P x and P̃ x should be chosen with these points in mind; in the remainder of
this paper, we will refer to the former as the base model and the latter as the
alternative model.

Definition 2 Given initial distributions µ and µ̃ on X , we also define the
probability measures

Pµ(·) =
∫

P x(·)µ(dx), P̃ µ̃(·) =
∫

P̃ x(·)µ̃(dx). (27)

Note that Assumption 1 implies that Xt is a Markov process for the space
(Ω,Ft, P

µ) with initial distribution µ and time-homogeneous transition prob-
abilities pt.

We will also need the finite-time restrictions, which can be thought of as
the distributions on path space up to some T > 0:

P x
T ≡ P x|FT

, P̃ x
T ≡ P̃ x|FT

, (28)

and similarly for Pµ
T and P̃ µ̃

T . Finally, we let Eµ denote the expected value

with respect to Pµ and similarly for Ẽµ̃.
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Now fix a bounded measurable f : X → R (the boundedness assumption
will be relaxed later) and an invariant measure µ∗ for pt. As mentioned in the
introduction, there are many classical techniques for studying convergence of
the ergodic averages of f under Pµ to the average in the invariant measure,
µ∗[f ]. Therefore, in this paper we consider the much less studied problem of
bounding the bias when the finite-time averages are computed by sampling
from the alternative distribution; see Eq. (2).

2.4 UQ Bounds via the Feynman-Kac Semigroup

Due to our interest in the problem (2), we start the P -process in the invariant

distribution µ∗, while the P̃ -process is started in an arbitrary distribution µ̃.
Given a bounded measurable function f on X and T > 0, define the

bounded and FT -measurable function

fT =

∫ T

0

f(Xt)dt. (29)

Applying the Gibbs information inequality, Eq. (17), to fT , P̃
µ̃
T , P

µ∗

T and di-
viding by T yields:

Theorem 1

±
(
Ẽµ̃

[
1

T

∫ T

0

f(Xt)dt

]
− µ∗[f ]

)
≤ Ξ±

(
1

T
Λf̂T

Pµ∗

T

,
1

T
R(P̃ µ̃

T ||P
µ∗

T )

)
, (30)

where

µ∗[f ] ≡
∫

fdµ∗, f̂T ≡
∫ T

0

f(Xt)− µ∗[f ]dt. (31)

Remark 5 Recall the definition

Ξ±(Λ, η) = inf
c>0

{
Λ(±c) + η

c

}
. (32)

All of the UQ bounds we obtain will be of the form

±
(
Ẽµ̃

[
1

T

∫ T

0

f(Xt)dt

]
− µ∗[f ]

)
≤ Ξ±(Λ, η) (33)

for some Λ : R → [0,∞] and η > 0; we will refer back to these equations often.

To produce a more explicit bound from Eq. (30), one needs to bound the
cumulant generating function as well as the relative entropy. The latter will be
addressed in Section 6. As for the former, observe that the cumulant generating
function can be written

Λf̂T

Pµ∗

T

(±c) = log

(∫
Ex

[
exp

(
±c

∫ T

0

f(Xt)− µ∗[f ]dt

)]
µ∗(dx)

)
. (34)
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Eq. (34) is related to the Feynman-Kac semigroup on L2(µ∗) with potential
V :

PV
t [g](x) = Ex

[
g(Xt) exp

(∫ t

0

V (Xs)ds

)]
. (35)

More specifically,

Λf̂T

Pµ∗

T

(±c) ≤ log
(
‖PV±c

T [1]‖L2(µ∗)

)
, (36)

V±c(x) ≡± c (f(x)− µ∗[f ]) , (37)

and so we obtain:

Lemma 3 Under Assumption 1, for any bounded measurable f : X → R,
Eq. (33) holds with

Λ(±c) =
1

T
log
(
‖PV±c

T [1]‖L2(µ∗)

)
, η =

1

T
R(P̃ µ̃

T ||P
µ∗

T ). (38)

In the following two sections, we discuss how functional inequalities can be used
to obtain more explicit bounds on the norm of the Feynman-Kac semigroup.

3 Bounding the Feynman-Kac Semigroup

The Lumer-Phillips theorem (a variant of the Hille-Yosida theorem) is our tool
of choice for bounding the Feynman-Kac semigroup; see Chapter IX, p. 250 in
[33] or Corollary 3.20 in Chapter II of [34]. This is the same strategy used in
[20,22,24] to obtain concentration inequalities.

First we state some of the basic properties of the Feynman-Kac semigroup,
adapted from [20,22].

Proposition 4 Let V : X → R be bounded and measurable and µ∗ be an
invariant probability measure for pt. The operators PV

t , t ≥ 0, defined in
Eq. (35), are bounded linear operators on L2(µ∗) that form a strongly contin-
uous semigroup.

If (A,D(A)) denotes the generator of Pt ≡ P0
t on L2(µ∗) then the generator

of PV
t on L2(µ∗) is (A+ V,D(A)).

Remark 6 D(A) consists of complex-valued functions. We will use D(A,R) to
denote the real-valued functions in the domain of A.

To bound the norm of the Feynman-Kac semigroup, we use the following
Hilbert space version of the Lumer-Phillips theorem (again, see [33,34], as well
as Theorem II.3.23 in [34] for a proof that Eq. (39) implies A−α is dissipative):
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Proposition 5 Let H be a Hilbert space and Q(t) be a strongly continuous
semigroup on H with generator (A,D(A)). Suppose that there is an α ∈ R

such that

Re(〈Ax, x〉) ≤ α (39)

for all x ∈ D(A) with ‖x‖ = 1. Then ‖Q(t)‖ ≤ eαt for all t ≥ 0.

Propositions 4 and 5 together yield a bound on the Feynman-Kac semi-
group, in terms of the generator; this result, and generalizations, were proven
in [20] (see Case I in the proof of Theorem 1).

Proposition 6 Let V : X → R be bounded and measurable, and for t ≥ 0
consider the Feynman-Kac semigroup PV

t : L2(µ∗) → L2(µ∗) with generator
(A+ V,D(A)).

Define

κ(V ) = sup
{
Re(〈(A + V )[g], g〉) : g ∈ D(A), ‖g‖L2(µ∗) = 1

}
(40)

= sup

{
〈A[g], g〉+

∫
V |g|2dµ∗ : g ∈ D(A,R), ‖g‖L2(µ∗) = 1

}
, (41)

where 〈·, ·〉 denotes the inner product on L2(µ∗).
Then the operator norm satisfies the bound

‖PV
t ‖ ≤ etκ(V ) (42)

for all t ≥ 0.

Combining Eq. (42) with Eq. (36) and Eq. (30), we obtain UQ bounds that
are expressed in terms of the generator of the dynamics of the baseline process
and the relative entropy of the alternative process with respect to the base:

Corollary 1 Under Assumption 1, for any bounded measurable f : X → R,
the UQ bound Eq. (33) holds with

Λ(±c) = κ(V±c), η =
1

T
R(P̃ µ̃

T ||P
µ∗

T ). (43)

From Eq. (33) we see that functional inequalities, by which we mean bounds
on the generator A that lead to bounds on κ(V±c), can be used to produce UQ
bounds. Also, note that the only remaining T -dependence is in the relative

entropy term, R(P̃ µ̃
T ||P

µ∗

T )/T . This will often have a finite limit (the relative
entropy rate) as T → ∞; for examples, see Section 6.2, as well as [35], the
supplementary materials to [2], and Appendix 1 of [36]. Hence Corollary 1
shows that one can expect UQ bounds that are well behaved as T → ∞.

Remark 7 Proposition 6 is stated for bounded V , but it can be extended to
certain unbounded V under the additional assumption that the symmetrized
Dirichlet form is closable; see Theorem 1 in [20]. However, as noted in Corollary
3 in this same reference (and outlined in Proposition 7 below), that assump-
tion can be avoided in the presence of functional inequalities by working with
bounded V and then taking limits; this is the strategy we employ here.



Uncertainty Quantification for Markov Processes 13

4 UQ Bounds From Functional Inequalities

In this section, we explore the consequences of several important classes of
functional inequalities: Poincaré, log-Sobolev, and Liapunov functions. Dis-
cussion of F -Sobolev inequalities, a generalization of the classical log-Sobolev
case, can be found in Appendix B.

4.1 Poincaré Inequality

First we consider the case where the generator satisfies a Poincaré inequality
with constant α > 0, meaning:

Varµ∗ [g] ≤ −α〈A[g], g〉 (44)

for all g ∈ D(A,R). This can equivalently be written

Re(〈A[g], g〉) ≤ −α−1‖P⊥g‖2 (45)

for all g ∈ D(A), where P⊥ is the orthogonal projector onto 1⊥.
In the presence of a Poincaré inequality, Proposition 6 is most useful when

combined with the following perturbation result. A version of this result is
contained in [20], but we present it here in a slightly more general form. The
proof is given in Appendix A.

Lemma 4 Let H be a Hilbert space, A : D(A) ⊂ H → H be a linear operator,
and B : H → H be a bounded self-adjoint operator. Suppose there exist D > 0
and x0 ∈ H with ‖x0‖ = 1 such that

〈Bx0, x0〉 = 0 and Re(〈Ax, x〉) ≤ −D‖P⊥x‖2 (46)

for all x ∈ D(A), where P⊥ is the orthogonal projector onto x⊥
0 .

Define

B+ ≡ max

{
sup

‖y‖=1

〈By, y〉, 0
}
. (47)

Then for any 0 ≤ c < D/B+ we have

sup
x∈D(A),‖x‖=1

Re(〈(A + cB)x, x〉) ≤ c2‖Bx0‖2
D − cB+

. (48)

Remark 8 The above lemma applies to a general Hilbert space. In this paper,
we will apply it to H = L2(µ∗) (with the associated L2-inner product), and
x0 = 1 (constant function), in which case P⊥[f ] = f − µ∗[f ].

The multiplication operator by V±1 is a bounded self-adjoint operator and
〈V±11, 1〉 = 0. Therefore Lemma 4 implies:
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Lemma 5 For all 0 ≤ c < 1/(α‖(f − µ∗[f ])±‖∞) we have

κ(V±c) ≤
αVarµ∗ [f ]c2

1− α‖(f − µ∗[f ])±‖∞c
. (49)

From this, combined with Corollary 1, we obtain the following UQ bound:

Theorem 2 Under Assumption 1, if A satisfies the Poincaré inequality, Eq. (44),
then for any bounded measurable f : X → R the bounds Eq. (33) and Eq. (25)
hold with

M± = α‖(f − µ∗[f ])±‖∞, σ2 = 2αVarµ∗ [f ], η =
1

T
R(P̃ µ̃

T ||P
µ∗

T ). (50)

4.2 Poincaré Inequality for Reversible Processes

When the combination of µ∗ and pt are reversible, i.e. the generator A is
self-adjoint on L2(µ∗), and if a Poincaré inequality, Eq. (44), also holds with
constant α > 0, then one can obtain a UQ bound in terms of the asymptotic
variance of f , instead of the variance of f under µ∗.

First, define the Poisson operator

L : f →
∫ ∞

0

Pt[f ]dt, (51)

a bounded linear operator on L2
0(µ

∗) ≡ {f ∈ L2(µ∗) : µ∗[f ] = 0} with norm
bound ‖L‖ ≤ α. The asymptotic variance of f ∈ L2(µ∗,R) is defined by

σ2(f) ≡ 〈2L[f − µ∗[f ]], f − µ∗[f ]〉 = 2

∫ ∞

0

(∫
Pt[f ]fdµ

∗ − (µ∗[f ])
2

)
dt.

(52)

Note that 0 ≤ σ2(f) ≤ 2αVarµ∗ [f ].
Using these objects, one can obtain the following Bernstein-type bound. A

simple proof appears below Remark 2.3 in [24]; we outline the essential ideas
below. See [21] and [23] for similar earlier results.

Lemma 6 For all 0 < c < 1/(α‖(f − µ∗[f ])±‖∞) we have

κ(V±c) ≤
σ2(f)c2

2(1− α‖(f − µ∗[f ])±‖∞c)
. (53)

Proof The cases where σ2(f) = 0 or one of ‖(f − µ∗[f ])±‖∞ = 0 are trivial,
so suppose not. Using the self-adjoint functional calculus, one can see that L
inverts A on D(A) ∩ L2

0(µ
∗) and

∣∣∣∣
∫

fgdµ∗

∣∣∣∣ ≤
(∫

−A[g]gdµ∗

)1/2(∫
−L[f ]fdµ∗

)1/2

(54)
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for all real-valued f ∈ L2
0(µ

∗), g ∈ D(A,R).
Hence, for any g ∈ D(A,R) with ‖g‖L2(µ∗) = 1 and any bounded, measur-

able V (not necessarily related to f at this point):
∫

V g2dµ∗=

∫
V (g − µ∗[g])2dµ∗+ 2µ∗[g]

∫
(V − µ∗[V ])gdµ∗+ µ∗[V ]µ∗[g]2

≤‖V +‖∞Varµ∗ [g] +
√
2σ2(V )

√
〈−A[g], g〉+ µ∗[V ]. (55)

Using the Poincaré inequality and solving for 〈−A[g], g〉 gives

〈−A[g], g〉 ≥ h

(∫
(V − µ∗[V ])g2dµ∗

)
, (56)

h(r) ≡ 1r≥0
σ2(V )

2(M±)2

((
1 +

2M+

σ2(V )
r

)1/2

− 1

)2

, M+ ≡ α‖V +‖∞.

Letting V = V±1 = ±(f − µ∗[f ]) in Eq. (56) and using the result to bound κ,
Eq. (41), results in

κ(V±c) ≤ sup
r∈R

{cr − h(r)}. (57)

Eq. (53) then follows from solving the optimization problem. ⊓⊔

As with Theorem 2, the Bernstein-type bound, Eq. (53), implies a UQ
bound:

Theorem 3 Under Assumption 1, if the generator satisfies the Poincaré in-
equality Eq. (44) and is self-adjoint on L2(µ∗) then for any bounded measurable
f : X → R the bounds Eq. (33) and Eq. (25) hold with

M± = α‖(f − µ∗[f ])±‖∞, σ2 = σ2(f), η =
1

T
R(P̃ µ̃

T ||P
µ∗

T ). (58)

Other variations can be derived using a Liapunov function. First we need
a couple of definitions, taken from Section 4 of [24]. Also, see this reference for
further Liapunov function results that could likely be adapted to produce UQ
bounds.

Definition 3 A measurable function G : X → R is in the µ∗-extended domain
of the generator, De,µ∗(A), if there is some measurable g : X → R such that∫ t

0
|g|(Xs)ds < ∞ Pµ∗

-a.s. and one Pµ∗

-version of

Mt(G) ≡ G(Xt)−G(X0)−
∫ t

0

g(Xs)ds (59)

is a local Pµ∗

-martingale.
U ∈ De,µ∗(A) is called a Liapunov function if U ≥ 1 and there exist a

measurable φ : X → (0,∞) and b > 0 such that

−A[U ]

U
≥ φ− b µ∗-a.s. (60)
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As shown in [24], given a Liapunov function one can derive a bound on
κ(V±c); our method then produces a corresponding UQ bound:

Theorem 4 In addition to Assumption 1, assume the generator, A, is self-
adjoint on L2(µ∗) and satisfies the Poincaré inequality Eq. (44), and that we
have a Liapunov function U with −A[U ]/U ≥ φ− b.

Given an observable f ∈ L2(µ∗,R) with ‖(f − µ∗[f ])±/φ‖∞ < ∞, we have
the UQ bounds Eq. (33) and Eq. (25), where

M± = (1 + αb)‖(f − µ∗[f ])±/φ‖∞, σ2 = σ2(f), η =
1

T
R(P̃ µ̃

T ||P
µ∗

T ). (61)

Proof First let V be a bounded measurable function. This part of the proof
proceeds similarly to that of Lemma 6, but rather than taking the supremum
of V + in Eq. (55), one instead uses Eq. (60) to compute the following bound,
where g ∈ D(A,R) with ‖g‖L2(µ∗) = 1:

∫
V g2dµ∗ ≤µ∗[V ] +

√
2σ2(V )

√
〈−A[g], g〉 (62)

+ ‖V +/φ‖∞
∫ (

−A[U ]

U
+ b

)
(g − µ∗[g])2dµ∗.

Next, use the bound found in Lemma 5.6 in [23],
∫

−A[U ]

U
(g − µ∗[g])2dµ∗ ≤ 〈−A[g], g〉, (63)

and proceed as in Lemma 6 to obtain

κ(±cV ) ≤ ±cµ∗[V ] +
σ2(V )c2

2(1− (1 + αb)‖V ±/φ‖∞c)
(64)

for all 0 < c < 1/((1 + αb)‖V ±/φ‖∞). If f is bounded then applying this
to V = f − µ∗[f ] and using Corollary 1 and Lemma 1 gives the claimed UQ
bound.

For general f ∈ L2(µ∗,R) with ‖(f − µ∗[f ])±/φ‖∞ < ∞, we employ a
similar method to Corollary 3 in [20]: Define V = f−µ∗[f ] and V n = V 1|V |<n

(not to be confused with the nth power of V ). Applying the above result to V n

and then using Fatou’s lemma and L2-continuity of the asymptotic variance
gives

1

T
Λf̂T

Pµ∗

T

(±c) ≤ 1

T
log
(
‖PV±c

T [1]‖
)
≤ lim inf

n→∞

1

T
log
(
‖P±cV n

T [1]‖
)

(65)

≤ lim inf
n→∞

(
±cµ∗[V n] +

σ2(V n)c2

2(1− (1 + αb)‖(f − µ∗[f ])±/φ‖∞c)

)

=
σ2(f)c2

2(1− (1 + αb)‖(f − µ∗[f ])±/φ‖∞c)
.

Having extended the bound on the cumulant generating function to such f ,
the claimed UQ bound follows from Proposition 2. ⊓⊔
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4.3 Poincaré Inequality Examples

The study of Poincaré inequalities has a long history which we do not attempt
to recount here. For a detailed discussion, see [37], which covers Poincaré
inequalities for both continuous-time Markov chains and diffusions. Criteria
for diffusions can also be found, for example, in [38,39].

The following example illustrates that the Bernstein-type bounds used in
this paper can be sharp for Markov processes.

4.3.1 A simple Liapunov example: the M/M/∞ queue.

Following [24], let us consider the (simple) example of an M/M/∞ queuing
system which has infinitely many servers, each with a service rate ρ and an
arrival rate λ. The state space is N and the generator is given by

A[f ](n) = λf(n+ 1)− (λ+ ρn)f(n) + ρnf(n− 1). (66)

The invariant measure µ∗ is a Poisson distribution with parameter λ/ρ. An
explicit computation shows (see e.g. [40]) that Varµ∗ [Ptf ] ≤ e−2ρt Varµ∗ [f ]
and thus the Poincaré constant is 1/ρ.

To construct a Liapunov function take U(n) = κn with κ > 1; we then
have

− A[U ]

U
(n) = ρn(1− κ−1)− λ(κ− 1) , (67)

and we can apply Theorem 4 to any function f with |f | ≤ C(n+ δ) for some
δ > 0.

It is instructive to consider further the case of the mean number of cus-
tomers in the queue, i.e., f = n and f̂ = f − µ∗[f ] = n− λ/ρ. From Eq. (66)
we obtain

(A+ ρ(1 − κ−1)f̂)[U ](n) = λ
(κ− 1)2

κ
U(n) (68)

and thus U is an eigenvector for A+ ρ(1− κ−1)f̂ with eigenvalue λ (κ−1)2

κ . By
the Perron-Frobenius theorem and Rayleigh’s principle we obtain that

Λ(c) ≡ lim
T→∞

T−1Λf̂T

Pµ∗

T

(c) (69)

is the maximal eigenvalue of A + cf̂ and thus Λ
(
ρ(1− κ−1)

)
= λ (κ−1)2

κ or

equivalently Λ(c) = λc2

ρ2(1−cρ−1) . Since Af̂(n) = λ − ρn we can solve the Pois-

son equation: (−A)−1f̂ = f̂/ρ and thus the asymptotic variance is σ2(f) =

2〈(−A)−1f̂ , f̂〉 = 2ρ−1Varµ∗ [f ] = 2λ/ρ2. As a consequence we have

Λ(c) =
σ2(f)c2

2(1− cρ−1)
, (70)

which shows that Bernstein bounds can be sharp in the context of Markov
processes, contrary to the IID setting.
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4.3.2 Poincaré Inequality from Exponential Convergence

It is well-known that, when the generator, A, is self-adjoint, a Poincaré in-
equality is equivalent to exponential convergence in the L2(µ∗)-norm. Here,
we discuss a method for deriving a Poincaré inequality from exponential con-
vergence in alternative norms.

First, note that one only needs exponential L2-convergence on a subset
with dense span to conclude a Poincaré inequality (see Lemma 1.2 in [41]):

Lemma 7 Suppose (A,D(A)) is self-adjoint, F ⊂ L2(µ∗) has dense span, and
there exists α > 0 such that the following holds:
For every f ∈ F there exists Cf ≥ 0 such that

‖Pt[f ]− µ∗[f ]‖2 ≤ Cfe
−t/α for all t ≥ 0. (71)

Then a Poincaré inequality, Eq. (44), holds with constant α.

The following result shows how to obtain a Poincaré inequality (with an
explicit constant) from exponential convergence in a pair of weighted norms.

Theorem 5 Suppose (A,D(A)) is self-adjoint, and W : X → [1,∞) is mea-
surable. Define the following norms on measurable functions φ : X → R and
signed measures π on X :

|φ|W = sup
x∈X

|φ(x)|
W (x)

, |π|W =

∫
Wd|π|. (72)

Suppose we have λ ≥ 0, ρ ≥ 0 with at least one nonzero, and that for every
bounded measurable h : X → [0,∞) with

∫
hdµ = 1 there exist Ch, Dh ∈ [0,∞)

such that for all t ≥ 0:

|Pt[h]− 1|W ≤ Dhe
−ρt (73)

and the measure dν = hdµ∗ satisfies

|P†
t [ν]− µ∗|W ≤ Che

−λt, (74)

where P†
t denotes the action of the semigroup pt on measures.

Then A satisfies the Poincaré inequality

Varµ∗ [g] ≤ − 2

λ+ ρ
〈A[g], g〉 for all g ∈ D(A,R). (75)

Proof The proof is similar to that of Theorem 2.1 in [39]. The key is to take
h as above, let dν = hdµ∗, use symmetry of Pt to compute

‖Pt[h]− 1‖22 =
∫ |Pt[h]− 1|

W
W |Pt[h]− 1|dµ∗ ≤ |Pt[h]− 1|W |P†

t [ν]− µ∗|W ,

(76)

and then apply Lemma 7. ⊓⊔
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Exponential convergence in norms of the form | · |W can be obtained from the
existence of an appropriate Liapunov function (see [42,43]), making Theorem
5 a practical method for obtaining Poincaré inequalities.

Remark 9 The proof of Lemma 7 can be generalized to only require Eq. (71)
to hold along a sequence tfn converging to ∞. Hence, Theorem 5 can also be
generalized to only require Eq. (73) and Eq. (74) along a common sequence
thn → ∞.

4.4 log-Sobolev Inequalities

Next consider the log-Sobolev inequality with constant β > 0:

∫
g2 log(g2)dµ∗ ≤ −β

∫
A[g]gdµ∗ (77)

for all g ∈ D(A,R) with ‖g‖L2(µ∗) = 1.

We will employ the following generalization of the Feynman-Kac semigroup
for (possibly) unbounded potentials. The subsequent proposition was shown
in Corollary 4 in [20]. For completeness purposes, we outline the proof.

Proposition 7 Let A be the generator of Pt and µ∗ be an invariant mea-
sure for the adjoint semigroup, β > 0, and assume the log-Sobolev inequality,
Eq. (77), holds for µ∗ with constant β.

Finally, suppose that V ∈ L1(µ∗) with
∫
eβV dµ∗ < ∞. Then PV

t : L2(µ∗) →
L2(µ∗), defined by

PV
t [g](x) = Ex

[
g(Xt) exp

(∫ t

0

V (Xs)ds

)]
, (78)

are well-defined linear operators and the operator norm satisfies the bound

‖PV
t ‖ ≤

(∫
eβV dµ∗

)t/β

. (79)

Proof First assume V is bounded. Eq. (42) gives ‖PV
t ‖ ≤ etκ(V ). Applying the

log-Sobolev inequality together with the Gibbs variational principle, Eq. (16),
we obtain

κ(V ) ≤β−1 sup

{
−
∫

g2 log(g2)dµ∗ +

∫
βV |g|2dµ∗ : ‖g‖L2(µ∗) = 1

}
(80)

=β−1 sup
dν=g2dµ∗:‖g‖2=1

{Eν [βV ]−R(ν||µ∗)} = β−1 log

(∫
exp (βV ) dµ∗

)
,

which proves the claim.
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The case of unbounded V satisfying the assumptions of the theorem is
obtained by letting V n = V 1|V |≤n, and then using Fatou’s lemma, the result
for bounded V , and dominated convergence to compute

‖PV
t ‖ ≤ lim inf

n→∞
‖PV n

t ‖ ≤ lim inf
n→∞

(∫
eβV

n

dµ∗

)t/β

=

(∫
eβV dµ∗

)t/β

.

⊓⊔

Using Proposition 7, a UQ bound of the form Eq. (33) can be derived that
covers a class of unbounded observables:

Theorem 6 In addition to Assumption 1, assume the log-Sobolev inequality,
Eq. (77), holds and we have an observable f ∈ L1(µ∗,R) and c− < 0 < c+
such that for all c ∈ (c−, c+):

∫
exp (βVc) dµ

∗ < ∞. (81)

Then a UQ bound of the form Eq. (33) holds with

Λ(c) =

{ 1
β log

(∫
eβVcdµ∗

)
if c ∈ (c−, c+)

+∞ otherwise
. (82)

In addition, the asymptotic result Eq. (26) holds with

Λ′′(0) = βVarµ∗ [f ], η =
1

T
R(P̃ µ̃

T ||P
µ∗

T ). (83)

Proof The bound Eq. (79) implies Eµ∗

[exp(cfT )] < ∞ for c ∈ (c−, c+), hence

fT ∈ E(Pµ∗

T ) and the Gibbs information inequality, Eq. (17), applies. As in
Eq. (36), the cumulant generating function can be bounded using the Feynman-
Kac semigroup bound, Eq. (79). Combining this with Eq. (17) yields a bound
of the form Eq. (33), with Λ as defined in Eq. (82). ⊓⊔

The ideas in this section can be extended to F -Sobolev inequalities; see Ap-
pendix B.

4.4.1 Example: Diffusions

Let V be a C2 potential, bounded below, and growing sufficiently fast at
infinity. Consider the diffusion with generator A = ∆−∇V · ∇ and invariant
measure µ∗(dx) = e−V (x)dx. First, it is useful to note that a log-Sobolev
inequality with constant β implies a Poincaré inequality with constant α = β/2
[44]. In [45], the following sufficient condition for a log-Sobolev inequality was
obtained:

Suppose A satisfies a Poincaré inequality with constant α (references on
Poincaré inequalities can be found in Section 4.3) and that

−C ≡ inf
x

{
1

4
|∇V (x)|2 − 1

2
∆V (x)− πe2V (x)

}
> −∞. (84)
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Then A satisfies a log-Sobolev inequality with constant

β = 3α+
1

(1 + α|C|)πe2 . (85)

As a second example, if the Hessian of V is bounded below,

D2V (x) ≥ 2β−1I, (86)

for some β > 0 (unrelated to the β in Eq. (85)) then a log-Sobolev inequal-
ity holds with constant β [46]. A UQ bound corresponding to the associated
Poincaré inequality with constant α ≡ β/2 was given in the introduction in
Eq. (10).

5 Functional Inequalities and UQ for Discrete-Time Markov
Processes

In this section we show how the above framework can be applied to obtain
UQ bounds for invariant measures of discrete-time Markov processes.

Again, let X be a Polish space, and suppose we have one-step transition
probabilities p(x, dy) and p̃(x, dy) on X with invariant measures µ∗ and µ̃∗

respectively. Assume that R(µ̃∗||µ∗) < ∞.
Define the bounded linear operator P on L2(µ∗),

P [f ](x) ≡
∫

f(y)p(x, dy), (87)

and similarly for P̃ on L2(µ̃∗).
We obtain UQ bounds for expectations in µ∗ and µ̃∗ by constructing

continuous-time processes with these same invariant distributions. Specifi-
cally, in Appendix C (see Theorem C2) we obtain càdlàg Markov families

(Ω,F ,Ft, Xt, {P x}x∈X ) and (Ω,F ,Ft, Xt, {P̃ x}x∈X ), whose transition prob-
abilities pt and p̃t, respectively, (not to be confused with p and p̃) satisfy the
following:

1. µ∗ is invariant for pt for all t ≥ 0, and similarly for µ̃∗ and p̃t (see Theorem
C3).

2. The continuous-time semigroup, Pt, on L2(µ∗) constructed from pt is

Pt = exp(t(P − I)). (88)

Specifically, Pt has bounded generator A = P − I (see Theorem C3). Note
that we will also refer to A as the generator of the discrete-time Markov
process.

3. The relative entropy rate of the continuous-time process can be bounded
by the relative entropy of the discrete-time process as follows:

R(P̃ µ̃∗

T ||Pµ∗

T ) ≤ R(µ̃∗||µ∗) + T

∫
R(p̃(x, ·)||p(x, ·))µ̃∗(dx) (89)

for all T > 0 (see Theorem C5 and Corollary C1).
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Remark 10 While the above construction, and the computation of the relative
entropy, is standard for countable state spaces (see the discussion in Section
6.1), for our purposes it is necessary to work with general state spaces; to the
best of our knowledge, the relative entropy bound Eq. (89) is new in this case.

General state spaces are of interest, for example, when one is working with
Markov chain Monte Carlo samplers, p(x, dy) and p̃(x, dy), for measures, µ∗

and µ̃∗ respectively, on R
n. In this setting, to use our UQ method, one can

construct the ancillary continuous-time Markov chain on R
n, as outlined in

Appendix C, and then apply the relative entropy bound Eq. (89).

The Markov families P x and P̃ x, obtained via the above construction, sat-
isfy Assumption 1. Hence, if the generator P− I satisfies any of the functional
inequalities covered in Section 3 then the general results therein imply UQ
bounds for expectations in the invariant measures µ∗ and µ̃∗, with Eq. (89)
providing a bound on the relative entropy rate.

Remark 11 Note that here, we must take µ̃ = µ̃∗ for the bounds to apply
to the original discrete-time process, otherwise one obtains UQ bounds for
ergodic averages of f(Xt) under the auxiliary continuous-time Markov family.

For example, a Poincaré inequality for the generator P − I,

Re(〈(P − I)g, g〉) ≤ −α−1‖P⊥g‖2L2(µ∗), g ∈ L2(µ∗), α > 0, (90)

implies that for any bounded measurable f : X → R, we have

± (µ̃∗[f ]− µ∗[f ]) ≤
√
2σ2η +M±η, (91)

σ2 = 2αVarµ∗ [f ], M± = α‖(f − µ∗[f ])±‖∞,

η =

∫
R(p̃(x, ·)||p(x, ·))µ̃∗(dx).

This follows from Theorem 2, after taking T → ∞ (recall the assumption
R(µ̃∗||µ∗) < ∞).

We illustrate these discrete-time UQ bounds with a pair of examples:

5.1 Example: Random Walk on a Hypercube

Consider the symmetric random walk on the d-dimensional hypercube X =
{−1, 1}d i.e. the transition probabilities are defined by uniformly randomly
selecting a coordinate, i ∈ {1, ..., d}, and then independently and uniformly
selecting the sign, 1 or −1, with which to update the selected component.

The uniform measure, µ∗, on X is invariant and the process is reversible
on (X , µ∗). The eigenvalues and eigenvectors of the transition matrix can be
found explicitly; see Example 12.15 in [47]. In particular, the second largest
eigenvalue is λ2 = 1− 1/d, hence we obtain the following Poincaré inequality:

Re(〈(P − I)g, g〉) ≤ −1

d
‖P⊥g‖2L2(µ∗), g ∈ L2(µ∗). (92)

Assuming R(µ̃∗||µ∗) < ∞, we then obtain the UQ bound Eq. (91) with α = d.



Uncertainty Quantification for Markov Processes 23

5.2 Example: Exclusion Chain

Derivation of functional inequalities for many discrete-time Markov processes
can be found in [48]. Here we investigate the resulting UQ bounds for one of
these examples; see Section 4.6 in the above reference and also [49] for further
details and proofs regarding this example.

Let (V,E) be a symmetric, connected graph with n vertices. Let d(x) be
the degree of a vertex x ∈ V and d0 = maxx d(x). Fix r ≤ n. The r-exclusion
process is a Markov chain with state space being the set of cardinality r subsets
of V . Informally stated, the transition probabilities are defined as follows:
Given an r-subset A (i.e., state of the chain), pick an element x ∈ A with
probability proportional to its degree. Uniformly randomly pick a vertex y out
of all those connected with x. If y is not in A then transition to the new state
(A \ {x}) ∪ {y}. Otherwise, the chain remains at the set A.

For each (x, y) ∈ V × V , fix a path γx,y from x to y in the graph and let
|γx,y| be its length. Define

∆0 =max
e0∈V





∑

(x,y):e0∈γx,y

|γx,y|



 , dr = max

A⊂V :|A|=r

{
1

r

∑

a∈A

d(a)

}
. (93)

The generator of this Markov chain satisfies both a Poincaré inequality and a
log-Sobolev inequality with respective constants being

α = rdr∆0/n, β = 3rdr∆0 log(n)/n. (94)

Then, assuming R(µ̃∗||µ∗) < ∞, the above Poincaré inequality implies the
UQ bound Eq. (91) with α as in Eq. (94), and the log-Sobolev inequality results
in

± (µ̃∗[f ]− µ∗[f ]) ≤ inf
c>0

{
1

cβ
log

(∫
exp (±βc(f − µ∗[f ])) dµ∗

)
+

η

c

}
, (95)

with β and η as in Eq. (94) and Eq. (91) respectively.

6 Bounding the Relative Entropy Rate

For any η > 0, the results derived in the previous sections provide UQ bounds
over the class of all alternative models that satisfy a relative entropy bound
of the form

HT (P̃
µ̃||Pµ∗

) ≡ 1

T
R(P̃ µ̃

T ||P
µ∗

T ) ≤ η. (96)

In this section, we study in more detail the dependence of HT on T and on the
models P̃ µ̃ and Pµ∗

. Specifically, we derive upper bounds on HT in various
settings that can be substituted forHT in the general UQ bound Eq. (33). Here,
it will make little difference whether the initial distribution for the P -process
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is invariant or not, so we no longer make that assumption when deriving the
relative entropy bounds; µ will denote an arbitrary initial distribution.

Deriving bounds on the relative entropy is a very application-specific prob-
lem. We will cover several examples in detail: continuous-time Markov chains,
semi-Markov processes, change of drift in SDEs, and numerical methods for
SDEs with additive noise.

6.1 Example: Continuous-Time Markov Chains

Let X be a countable set, Pµ, P̃ µ̃ be probability measures on (Ω,F) and

Xt : Ω → X such that Pµ (resp. P̃ µ̃) makes (Ω,F , Xt) a continuous-time
Markov chain (CTMC) with transition probabilities a(x, y) (resp. ã(x, y)),

jump rates λ(x) (resp. λ̃(x)), and initial distribution µ (resp. µ̃). Let Ft be
the natural filtration for Xt and XJ

n be the embedded jump chain with jump
times Jn.

Suppose µ̃ ≪ µ, λ and λ̃ are positive and bounded above, and for all
x, y ∈ X we have a(x, y) = 0 iff ã(x, y) = 0. Then for any T > 0 we have

P̃ µ̃|FT
≪ Pµ|FT

and

R(P̃ µ̃|FT
||Pµ|FT

) (97)

=R(µ̃||µ) + Ẽµ̃

[∫ T

0

F̃ (Xs)λ̃(Xs)ds

]
− Ẽµ̃

[∫ T

0

λ̃(Xs)− λ(Xs)ds

]
,

F̃ (x) ≡
∑

z∈X

ã(x, z) log

(
λ̃(x)ã(x, z)

λ(x)a(x, z)

)
.

To simplify further, if µ̃ = µ̃∗ is an invariant measure then

R(P̃ µ̃∗ |FT
||Pµ|FT

) = R(µ̃∗||µ) (98)

+ T

(
∑

x∈X

∑

z∈X

µ̃∗(x)λ̃(x)ã(x, z) log

(
λ̃(x)ã(x, z)

λ(x)a(x, z)

)
−
∑

x∈X

µ̃∗(x)
(
λ̃(x)− λ(x)

))
.

See the supplementary materials to [2] and Proposition 2.6 in Appendix 1 of
[36] for details regarding these results.

6.2 Example: Semi-Markov Processes

As we have noted previously, our results require (Xt, P
x) to be Markov, but do

not require the alternative model (Xt, P̃
x) to be Markov. Here we discuss one

such class of examples, that of a semi-Markov perturbation of a continuous-
time Markov chain.

Semi-Markov processes are continuous-time jump processes with memory
(i.e., with nonexponential waiting times). Such a process is defined by a jump
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chain, XJ
n , jump times, Jn, and waiting times (i.e. jump intervals), ∆n+1 ≡

Jn+1 − Jn, that satisfy

P̃ µ̃(XJ
n+1 = y,∆n+1 ≤ t|XJ

1 , ..., X
J
n−1, X

J
n , J1, ..., Jn)

= P̃ µ̃(XJ
n+1 = y,∆n+1 ≤ t|XJ

n ) ≡ Q̃XJ
n ,y(t).

Q̃x,y(t) is called the semi-Markov kernel; see, for example, [50,51] for fur-
ther details. Note that a continuous-time Markov chain with embedded jump
Markov-chain transition probabilities a(x, y) and jump rates λ(x) is described
by the semi-Markov kernel

Qx,y(t) = a(x, y)

∫ t

0

λ(x)e−λ(x)sds. (99)

A semi-Markov perturbation of Eq. (99) with the same embedded jump
Markov-chain but with modified (nonexponential) waiting times is described
by a kernel of the form

Q̃x,y(t) = a(x, y)H̃x(t). (100)

Remark 12 Phase-type distributions constitute a useful semiparametric de-
scription of such alternative waiting-time distributions, going beyond the ex-
ponential case to describe systems with memory; see [52,53] for details.

The relative entropy rate,

η ≡ lim sup
T→∞

1

T
R(P̃ µ̃|FT

||P µ̃∗ |FT
), (101)

between semi-Markov processes was obtained in [35] under the appropriate
ergodicity assumptions. When the base process has the form Eq. (99) and the
alternative process has the form Eq. (100), the relative entropy rate can be
expressed in terms of the relative entropy of the waiting-time distributions:

η =
1

m̃π

∑

x

π(x)R(H̃x||Hx), m̃π ≡
∑

x

π(x)

∫ ∞

0

(1− H̃x(t))dt, (102)

where π is the invariant distribution for the Markov chain a(x, y).

Remark 13 The quantity m̃π is the mean sojourn time under the invariant
distribution, π, and

∑
x π(x)R(H̃x||Hx) can be thought of as the mean relative

entropy of a single jump (comparing the alternative and base model waiting-
time distributions). The formula for η, Eq. (102), therefore has the intuitive
meaning of an information loss per unit time.
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6.2.1 Semi-Markov Perturbations of a M/M/∞-Queue

As a concrete example, we consider semi-Markov perturbations of anM/M/∞-
queue with service rate ρ and with an arrival rate λ. The embedded jump
Markov-chain is given by

a(x, x + 1) = λ/(λ+ ρx), a(x, x − 1) = ρx/(λ+ ρx) (103)

and the waiting-times are exponentially distributed with jump rates

λ(x) = α+ ρx. (104)

Eq. (103), has invariant distribution

π(x) =
(α+ ρx)(α/ρ)x

2αx!
e−α/ρ. (105)

Taking T → ∞ in Eq. (30) and using Eq. (69), Eq. (70), and Eq. (102) we
therefore obtain the following asymptotic upper bound on the average queue
length in the alternative model:

lim sup
T→∞

(
Ẽµ̃

[
1

T

∫ T

0

Xtdt

]
− α/ρ

)
(106)

≤ inf
0<c<ρ

{
1

c

αc2

ρ2(1− c/ρ)
+

1

c
η

}
=
(
2
√
η/α+ η/α

) α

ρ
,

where

η =
1

m̃π

∑

x

π(x)R(H̃x||Hx), (107)

m̃π =
∑

x

π(x)

∫ ∞

0

(1− H̃x(t))dt, Hx(t) =

∫ t

0

λ(x)e−λ(x)sds.

Note that the only ingredient from the alternative model that is needed in
Eq. (106) is H̃x, and given this, the bounds are generally straightforward to
evaluate.

6.3 Example: Change of Drift for SDEs

Next, consider the case where P x and P̃ x are the distributions on C([0,∞),Rn)

of the solution flows Xx
t and X̃x

t of a pair of SDEs. More precisely:

Assumption 2 Assume:
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1. Xx
t and X̃x

t are weak solutions to the Rn-valued SDEs, on filtered probability
spaces satisfying the usual conditions [54]:

dXx
t = b(Xx

t )dt+ σ(Xx
t )dWt, Xx

0 = x, (108)

dX̃x
t = b̃(X̃x

t )dt+ σ(X̃x
t )dW̃t, X̃x

0 = x, (109)

where Wt and W̃t are m-dimensional Wiener processes. We let P and P̃
denote the probability measures of the respective spaces where the SDEs are
defined.
Here we think of b : Rn → R

n and σ : Rn → R
n×m as the measurable drift

and diffusion for the base process, and we assume the modified drift has
the form b̃ = b+ σβ for some measurable β : Rn → R

m.
2. Xx

t and X̃x
t are jointly continuous in (t, x).

3. Xx
t satisfies the following flow property:

For any bounded, measurable G : C([0,∞),Rn) → R, we have

EP (G(Xx
t+·)|Ft) = EP

[
G
(
X(·)

)]
◦Xx

t . (110)

4. Xx
t and β satisfy the Novikov condition

EP

[
exp

(
1

2

∫ T

0

‖β(Xx
s )‖2ds

)]
< ∞ (111)

for all x ∈ R
n, T > 0.

5. For every T > 0, solutions to Eq. (109) satisfy uniqueness in law, up to
time T .

Given this, we define P x = (Xx)∗P and P̃ x = (X̃x)∗P̃ i.e. the distributions
on path space, with the Borel sigma algebra:

(Ω,F ,Ft) = (C([0,∞),Rn),B(C([0,∞),Rn)), σ(πs, s ≤ t)), (112)

where πt is evaluation at time t. Finally, define Xt ≡ πt. One can easily show
that the above properties are sufficient to guarantee that Assumption 1 holds.

Remark 14 The existence of flows of solutions Xx
t and X̃x

t that satisfy the
above conditions is guaranteed, for example, if b and σ satisfy a linear growth
bound

‖b(x)‖2 + ‖σ(x)‖2 ≤ K2(1 + ‖x‖2), (113)

and the following local Lipschitz bound:
For each ℓ there exists Kℓ such that

‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤ Kℓ‖x− y‖ (114)

on ‖x‖, ‖y‖ ≤ ℓ, and if β : Rn → R
m is also bounded and locally Lipschitz.

Fixing T > 0, Girsanov’s theorem allows one to bound the relative entropy,
R(P̃ x

T ||P x
T ), that appears in the UQ bound Eq. (33). See the supplementary

materials to [2] for more details:
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Lemma 8 Under Assumption 2, and given initial distributions µ and µ̃ for
the base and alternative models respectively, we have

HT (P̃
µ̃||Pµ) ≤ 1

T
R(µ̃||µ) +

∫ (
1

2T

∫ T

0

EP̃

[
‖β(X̃x

s )‖2
]
ds

)
µ̃(dx).

6.4 Example: Euler-Maruyama Methods for SDEs with Additive Noise

As the final example, we consider SDEs with additive noise, approximated by
a (generalized) Euler-Maruyama (EM) method.

Assumption 3 Let Wt be an n-dimensional Wiener process on filtered prob-
ability spaces satisfying the usual conditions, b : Rn → R

n satisfy the linear
boundedness and local Lipschitz properties as described in Remark 14, and Xx

t

be the strong solutions to the SDEs

dXx
t = b(Xx

t )dt+ dWt, Xx
0 = x. (115)

Recall that versions can be chosen so that Xx
t is jointly continuous in (t, x)

and Xx
t satisfies the flow property Eq. (110).

We fix ∆t > 0 and assume we are given a measurable vector field b̃∆t :
R

n → R
n (the drift for the generalized EM method). We define the approxi-

mating process X̃x
0 = x,

X̃x|(j∆t,(j+1)∆t](t) = X̃x
j∆t + b̃∆t(X̃

x
j∆t)(t− j∆t) +Wt −Wj∆t for j ∈ Z0.

(116)

We emphasize that, for the purposes of employing the theory we have de-
veloped (i.e., to employ functional inequalities satisfied by the generator of

Eq. (115)), it is necessary to extend X̃x
t to all t ≥ 0, and not just define it at

the mesh points j∆t.
Let P denote the probability measure on the space where the SDE is

defined. Similarly to the previous example, we define P x = (Xx)∗P and

P̃ x = (X̃x)∗P , probability measures on

(Ω,F ,Ft) = (C([0,∞),Rn),B(C([0,∞),Rn)), σ(πs, s ≤ t)). (117)

Assumption 3 is sufficient to guarantee that Assumption 1 holds. The chain
rule for relative entropy (see Theorem C.3.1 in [31]) can be used to obtain

R(P̃ µ̃
T ||P

µ
T ) ≤ R(µ̃||µ) +

∫
R(P̃ x

T ||P x
T )µ̃(dx). (118)

Let T = N∆t for N ∈ Z
+. For the purposes of bounding the relative

entropy term

R(P̃ x
T ||P x

T ) = R((X̃x|[0,N∆t])∗P ||(Xx|[0,N∆t])∗P ), (119)
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it will be useful to define the Polish space Y ≡ C([0, ∆t],Rn) and the following
one-step transition probabilities for a discrete-time Markov process on Y:

q(y,B) = P
(
Xy(∆t)|[0,∆t] ∈ B

)
, q̃(y,B) = P

(
X̃y(∆t)|[0,∆t] ∈ B

)
. (120)

Letting ⊗N
1 q denote the composition on YN , the Markov property implies

⊗N
1 q(x, ·) =

(
Xx|[0,∆t], X

x|∆t+[0,∆t], ..., X
x|(N−1)∆t+[0,∆t]

)
∗
P (121)

for all x ∈ R
n, and similarly for q̃, X̃x.

Therefore, using the chain rule for relative entropy again, we obtain

R(P̃ x
N∆t||P x

N∆t) =
N−1∑

j=0

∫
R (q̃(y, ·)||q(y, ·)) q̃j(x, dy). (122)

for all x ∈ R
n. Hence we arrive at:

Lemma 9

R(P̃ x
N∆t||P x

N∆t) =
N∑

j=1

EP

[
R
(
P̃

(·)
∆t ||P

(·)
∆t

)
◦ X̃x

(j−1)∆t

]
. (123)

The one-step relative entropy can be bounded via Girsanov’s theorem,
similarly to Lemma 8; on each time interval of length ∆t, the tilde process is
simply the solution to an SDE with constant drift and additive noise.

Lemma 10 Under Assumption 3

HN∆t(P̃
µ̃||Pµ) ≤ 1

N∆t
R(µ̃||µ) (124)

+
1

N

N∑

j=1

∫ ∫
EP

[
1

2∆t

∫ ∆t

0

‖b̃∆t(y)− b(X̃x
s )‖2ds

]
p̃∆t
j−1(x, dy)µ̃(dx),

where p̃∆t
j (x, dy) = (X̃x

j∆t)∗P .

6.4.1 Euler-Maruyama Error Bounds

We end this section by specializing the results to the Euler-Maruyama method,
b̃∆t ≡ b.

If we assume b is C1 with bounded first derivative and Db is L-Lipschitz
then Taylor expanding b gives

∫ ∆t

0

EP

[
‖b̃∆t(y)− b(X̃y

s )‖2
]
ds ≤ tr

(
Db(y)Db(y)T

) ∆t2

2
(125)

+ ‖Db(y)b(y)‖2∆t3

3
+

16
√
2Γ ((n+ 3)/2)

5Γ (n/2)
L‖Db‖∞∆t5/2

+
2n(n+ 2)L2

3
∆t3 + L‖Db‖∞‖b(y)‖3∆t4 +

2L2

5
‖b(y)‖4∆t5,
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and therefore

HN∆t ≤
1

N∆t
R(µ̃||µ) + ∆t

4

1

N

N∑

j=1

∫
EP

[
‖Db(X̃x

(j−1)∆t)‖2F
]
µ̃(dx) (126)

+∆t3/2
(
8
√
2Γ ((n+ 3)/2)

5Γ (n/2)
L‖Db‖∞ +

n(n+ 2)L2

3
∆t1/2

+
1

N

N∑

j=1

∫
EP

[
∆t1/2

6
‖Db(X̃x

(j−1)∆t)b(X̃
x
(j−1)∆t)‖2

+
L‖Db‖∞

2
‖b(X̃x

(j−1)∆t)‖3∆t3/2 +
L2

5
‖b(X̃x

(j−1)∆t)‖4∆t5/2
]
µ̃(dx)

)
,

where ‖ · ‖F denotes the Frobenius matrix norm.
This is not the tightest possible bound and alternatives can be obtained

by Taylor expanding further, but it gives an idea of the type of result that can
be obtained under various smoothness assumptions on b.

If the initial distributions have the form dµ̃ = e−φ̃dx and dµ = e−φdx,
where φ̃ and φ are known functions, then the relative entropy term takes the
form

R(µ̃||µ) =
∫
(φ(x) − φ̃(x))e−φ̃(x)dx. (127)

If one can efficiently sample from µ̃ then Eq. (126) and Eq. (127) can be esti-
mated via Monte Carlo methods, providing UQ bounds that involve a mixture
of a priori and a posteriori data.

A Proof of the Perturbation Bound

Lemma A1 Let H be a Hilbert space, A : D(A) ⊂ H → H be a linear operator, and
B : H → H be a bounded self-adjoint operator. Suppose there exist D > 0 and x0 ∈ H with
‖x0‖ = 1 such that

〈Bx0, x0〉 = 0 and Re(〈Ax, x〉) ≤ −D‖P⊥x‖2 (128)

for all x ∈ D(A), where P⊥ is the orthogonal projector onto x⊥
0 .

Define

B+ ≡ max

{
sup

‖y‖=1
〈By, y〉, 0

}
. (129)

Then for any 0 ≤ c < D/B+ we have

sup
x∈D(A),‖x‖=1

Re(〈(A + cB)x, x〉) ≤
c2‖Bx0‖2

D − cB+
. (130)

Proof Let x ∈ D(A) with ‖x‖ = 1. Define a = 〈x0, x〉. (Here we will use the convention of
linearity in the second argument). We have ‖P⊥x‖2 = 1−|a|2, and so |a| ≤ 1 with equality
if and only if P⊥x = 0.



Uncertainty Quantification for Markov Processes 31

We can decompose x = ax0 +
√

1− |a|2v, where either v = 0 and |a| = 1 if P⊥x = 0 or

v = P⊥x/
√

1− |a|2 and ‖v‖ = 1 if P⊥x 6= 0. In either case, v ⊥ x0.
With this, we have

sup
x∈D(A),‖x‖=1

Re(〈(A + cB)x, x〉) = sup
x∈D(A),‖x‖=1

{Re(〈Ax, x〉) + cRe(〈Bx, x〉)} (131)

≤ sup
β∈[0,1]

{
−D(1− β2) + 2cRe(〈

√
1− β2v, aBx0〉) + c(1− β2)〈Bv, v〉

}

≤ sup
β∈[0,1]

{
2cβ

√
1− β2‖Bx0‖ −

(
D − cB+

)
(1− β2)

}
,

where B+ is given by Eq. (129).
Restricting to 0 ≤ c < D/B+, if ‖Bx0‖ = 0 then the supremum is 0 and we have

the result. Otherwise, the supremum is positive and we can use β ≤ 1/β and then change

variables in the supremum to r =
√

1− β2/β, thereby obtaining

sup
x∈D(A),‖x‖=1

Re(〈(A + cB)x, x〉) (132)

≤ sup
β∈(0,1]

{
β
√

1− β2
(
2c‖Bx0‖ −

(
D − cB+

)√
1− β2/β

)}
,

≤ sup
r≥0

{
2c‖Bx0‖r −

(
D − cB+

)
r2

}
=

‖Bx0‖2c2

D − cB+
.

⊓⊔

The previous lemma is closest in spirit to the probabilistic application, as ‖Bx0‖2 plays
the role of the variance. However, one can work with non-self-adjoint perturbations, if one
instead uses the definition

B+ ≡ max

{
sup

‖y‖=1
Re(〈By, y〉), 0

}
(133)

and makes the replacement ‖Bx0‖ → ‖(B + B∗)x0/2‖ in Eq. (130). The proof is similar.

B F -Sobolev Inequalities

Proposition 7 can be generalized to the F -Sobolev case; see the proof of Theorem 2.3 in [22]:

Proposition B1 Let A be the generator of Pt and µ∗ be an invariant measure. Suppose
we have a function F : (0,∞) → R satisfying the following:

1. F is strictly increasing,
2. F is concave (hence continuous),
3. F (1) = 0,
4. F (x) → ∞ as x → ∞,
5. F (xy) ≤ F (x) + F (y) for all x, y ≥ 0.

(Note that this implies F−1 : (F (0+),∞) → (0,∞) exists, is increasing, convex, and con-
tinuous.)

Assume the F -Sobolev inequality holds for µ∗:

∫
g2F (g2)dµ∗ ≤ −

∫
A[g]gdµ∗ for all g ∈ D(A,R) with ‖g‖L2(µ∗) = 1. (134)
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Finally, suppose that V ∈ L1(µ∗) with V > F (0+) and
∫
F−1(V )dµ∗ < ∞. Then

PV
t : L2(µ∗) → L2(µ∗), defined by

PV
t [g](x) = Ex

[
g(Xt) exp

(∫ t

0
V (Xs)ds

)]
, (135)

are well-defined linear operators and the operator norm satisfies the bound

‖PV
t ‖ ≤ exp

[
tF

(∫
F−1(V )dµ∗

)]
. (136)

Note that if F (0+) = −∞ then certain unbounded observables are allowed, namely those
that satisfy the integrability condition Eq. (81).

This proposition leads to a UQ bound of the form, Eq. (33). The proof is analogous to
the log-Sobolev case from Section 4.4.

Theorem B1 In addition to Assumption 1, assume the F -Sobolev inequality, Eq. (134),
holds for some function, F , having the properties listed in Proposition B1, f ∈ L1(µ∗,R),
and there exists c− < 0 < c+ such that, for all c ∈ (c−, c+):

F (0+) < ±c(f − µ∗[f ]),

∫
F−1 (±c (f − µ∗[f ])) dµ∗ < ∞. (137)

Then a UQ bound of the form Eq. (33) holds with

Λ(c) =

{
F
(∫

F−1(Vc)dµ∗
)

if c ∈ (c−, c+)
+∞ otherwise

. (138)

In addition, if Varµ∗ [f ] > 0, F and F−1 are smooth, F ′(1) > 0, (F−1)′′(0) > 0, and
c → µ∗[F−1(Vc)] is smooth on a neighborhood of 0 and can be differentiated under the
integral then Eq. (26) holds with

Λ′′(0) = F ′ (1) (F−1)′′(0) Varµ∗ [f ], η =
1

T
R(P̃ µ̃

T ||Pµ∗

T ). (139)

C Continuous-Time Jump Processes on General State Spaces

As discussed in Section 5, to apply our UQ bounds to the invariant measure of discrete-time
Markov processes, P and P̃ , one needs to construct an ancillary continuous-time Markov
process with generators P − I and P̃ − I, and also compute the associated relative entropy.
While the construction of continuous-time Markov processes from their generators is well
known (see, for example, Chapter 4.2 in [55] or Chapter 3.3 in [56]), and the relative entropy
computation is known in the countable-state-space case (see Section 6.1), we require a
formula for the relative entropy in the general case of a Polish state space. To the best of
our knowledge, this computation is new, though it closely mirrors the established results;
hence we present only a short outline.

In order to obtain an explicit formula for the Radon-Nikodym derivative, and thereby
compute the relative entropy, it is useful to utilize an explicit construction, as in the
countable-state-space case (see, for example, Appendix 1 of [36]), rather than invoking more
general existence theorems:

Let (X ,BX ) be a Polish space and p(x, dy) be a probability kernel on X . Given λ > 0
define the probability kernel, pJ , on the Polish space (X × (0,∞),BX

⊗
B(0,∞)):

pJ((x, s), ·) = p(x, dy) × λe−λtdt. (140)

For any probability measure π on (X ,BX ), let Pπ (for π = δx we simply write Px) be
the unique probability measure on (Ω,F) ≡ (

∏∞
n=0(X × (0,∞)),

⊗∞
n=0(BX

⊗
B(0,∞)))
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generated by the transition probabilities pJ and initial distribution π × (λe−λtdt). Also,
define the jump process, jump intervals, and jump times:

XJ
n ≡ π1 ◦ πn, ∆n ≡ µ ◦ πn, for n ∈ Z0, J0 ≡ 0, Jn ≡

n−1∑

k=0

∆k for n ∈ Z
+, (141)

where πi denote projections onto components. The jump rates are positive constants, so one
obtains Jn(ω) → ∞ a.s. as n → ∞.

(XJ
n ,∆n) is a Markov process under Pπ with transition probabilities pJ and initial

distribution π × (λeλtdt). Use this to define the associated càdlàg process

Xt(ω) = XJ
n , where t ∈ [Jn(ω), Jn+1(ω)) (142)

and the probability kernels on X ,

pt(x,A) ≡ Px(Xt ∈ A), t ≥ 0, x ∈ X . (143)

Finally, let Ft be the natural filtration for Xt.
With this setup, we have the following theorem:

Theorem C2 (Ω,F ,Ft, Xt, Px), x ∈ X , is a càdlàg Markov family with transition prob-
abilities pt. More specifically:

1. (Ω,F ,Ft), t ≥ 0 is a filtered probability space and Xt is an X -valued, Ft-adapted,
càdlàg process.

2. pt(x, dy), t ≥ 0, are time homogeneous transition probabilities on X .
3. Px, x ∈ X are probability measures with (X0)∗Px = δx for each x ∈ X .
4. For every measurable set F , x → Px(F ) is universally measurable.
5. For each x ∈ X , Px(Xt+s ∈ B|Fs) = pt(Xs, B) Px-a.s. In particular, pt(x,B) =

Px(Xt ∈ B).

One also obtains realizability of the semigroup exp(tλ(P − I)) by a probability kernel:

Theorem C3 If µ∗ is an invariant measure for p then µ∗ is invariant for pt for all t ≥ 0
and the bounded linear operators on L2(µ∗),

P[f ](x) ≡

∫
f(y)p(x, dy), Pt[f ](x) ≡

∫
f(y)pt(x, dy), (144)

satisfy

Pt = exp(tλ(P − I)), (145)

for all t ≥ 0, where the right-hand side is the operator exponential for bounded operators
on L2(µ∗).

These results are all straightforward to prove by using the same strategy as the discrete-
state-space case.

The formula for the Radon-Nikodym derivative for two measures constructed as above
is also straightforward; the only complication is that here, the jump chain (XJ

n ,∆n) is
generally not recoverable from Xt; specifically, the Jn are not Ft-stopping times (this is
because ‘jumps’ do not necessarily change the state, unlike the construction commonly used
when the state space is discrete). Hence, we must derive a formula for the Radon-Nikodym
derivative on the enlarged filtration

Gt ≡ σ(1Jn≤s, XJn∧s : s ≤ t, n ≥ 0). (146)

Otherwise, the computation closely mirrors the discrete case (again, see [36]) and one arrives
at:
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Theorem C4 Suppose we have probability measures µ̃, µ and probability kernels p̃(x, dy),
p(x, dy) on X . Assume that µ̃ ≪ µ and p̃(x, ·) ≪ p(x, ·) for µ̃ a.e. x. In particular, we have
h ∈ L+(X ×X ) such that

p̃(x, dy) = h(x, y)p(x, dy) for µ̃ a.e. x. (147)

Given λ > 0, construct the probability measures P̃ µ̃ and Pµ on Ω from p̃ and p respec-
tively, and define the process Xt as in Eq. (142).

Suppose (P̃†)n[µ̃] ≪ µ̃ for all n (in particular, if µ̃ is invariant for p̃). Then for any

t ≥ 0 we have P̃ µ̃|Gt ≪ Pµ|Gt and

dP̃ µ̃|Gt

dPµ|Gt

=
dµ̃

dµ
(X0)

∏

n≥1:Jn≤t

h(XJn−1∧t, XJn∧t). (148)

By an analogous computation to the CTMC case, Eq. (97), the formula for the Radon-
Nikodym derivative (148) leads to the following formula for the relative entropy:

Theorem C5 Suppose we have probability measures µ̃, µ and probability kernels p̃(x, dy),
p(x, dy) on X . Assume that µ̃ ≪ µ and p̃(x, ·) ≪ p(x, ·) for µ̃ a.e. x.

Suppose (P̃†)n[µ̃] ≪ µ̃ for all n (in particular, if µ̃ is invariant for p̃). Then for any
t ≥ 0 we have

R(P̃ µ̃|Gt ||P
µ|Gt) = R(µ̃||µ) + λ

∫ t

0
Ẽµ̃

[∫
log(h(Xs, z))h(Xs, z)p(Xs, dz)

]
ds, (149)

where h is as defined in Eq. (147).

It is also useful to note that, by the data processing inequality (see Theorem 14 in [57]),
Ft ⊂ Gt implies

R(P̃ µ̃|Ft ||P
µ|Ft) ≤ R(P̃ µ̃|Gt ||P

µ|Gt). (150)

When µ̃ is an invariant measure we obtain the following simpler formula:

Corollary C1 Suppose we have probability measures µ̃∗, µ and probability kernels p̃(x, dy),
p(x, dy) on X . If µ̃∗ is invariant for p̃ then for all t > 0

R(P̃ µ̃∗

|Ft ||P
µ|Ft) ≤ R(µ̃∗||µ) + λt

∫
R(p̃(x, ·)||p(x, ·))dµ̃∗. (151)

This is the relative entropy bound that was used in Section 5, when applying our UQ
results to invariant measures of discrete-time Markov processes.
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52. M. J. Faddy. Examples of fitting structured phasetype distributions. Applied Stochastic
Models and Data Analysis, 10(4):247–255, 1994.

53. M. Bladt and B.F. Nielsen. Matrix-Exponential Distributions in Applied Probability.
Probability Theory and Stochastic Modelling. Springer US, 2017.



Uncertainty Quantification for Markov Processes 37

54. I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Graduate Texts
in Mathematics. Springer New York, 2014.

55. S.N. Ethier and T.G. Kurtz. Markov Processes: Characterization and Convergence.
Wiley Series in Probability and Statistics. Wiley, 2009.

56. T.M. Liggett. Continuous Time Markov Processes: An Introduction. Graduate studies
in mathematics. American Mathematical Society, 2010.

57. F. Liese and I. Vajda. On divergences and informations in statistics and information
theory. IEEE Transactions on Information Theory, 52(10):4394–4412, Oct 2006.


	1 Introduction
	2 Uncertainty Quantification for Markov Processes
	3 Bounding the Feynman-Kac Semigroup
	4  UQ Bounds From Functional Inequalities
	5 Functional Inequalities and UQ for Discrete-Time Markov Processes
	6 Bounding the Relative Entropy Rate
	A Proof of the Perturbation Bound
	B F-Sobolev Inequalities 
	C Continuous-Time Jump Processes on General State Spaces

