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THE TROPICAL CAYLEY-MENGER VARIETY

DANIEL IRVING BERNSTEIN AND ROBERT KRONE

Abstract. The Cayley-Menger variety is the Zariski closure of the set of vectors specifying
the pairwise squared distances between n points in Rd. This variety is fundamental to
algebraic approaches in rigidity theory. We study the tropicalization of the Cayley-Menger
variety. In particular, when d = 2, we show that it is the Minkowski sum of the set of
ultrametrics on n leaves with itself, and we describe its polyhedral structure. We then give
a new, tropical, proof of Laman’s theorem.

Tropicalization is a process that transforms a variety into a polyhedral complex in a way
that preserves many essential features. One of our main results is a combinatorial description
of the tropicalization of the Pollaczek-Geiringer variety, i.e. the Zariski closure of the set
of vectors specifying the pairwise squared distances between n points in R2. We show that
this tropical variety has a simplicial complex structure that we describe in terms of pairs of
rooted trees. Another main result is a new proof of Laman’s theorem from rigidity theory
via our combinatorial description of the tropicalization of the Pollaczek-Geiringer variety.

Laman’s theorem can be seen as a combinatorial description of the algebraic matroid un-
derlying the Pollaczek-Geiringer variety. Our proof of Laman’s theorem takes this viewpoint
and uses a lemma of Yu from [25], saying that tropicalization preserves algebraic matroid
structure. A similar strategy was adopted by the first author in [4], wherein he characterized
the algebraic matroids underlying the Grassmannian Gr(2, n) of planes in affine n-space, and
the determinantal variety of m × n matrices of rank at most two. A key ingredient was a
result of Speyer and Sturmfels [23] describing the tropicalization of Gr(2, n).

Loosely speaking, a graph is said to be generically rigid in Rd if when its vertices are
embedded in Rd at generic points and its edges are treated as rigid struts that are free to
move about the vertices, the resulting structure cannot be continuously deformed. Laman’s
theorem is an elegant characterization of the graphs that are minimally generically rigid in R2,
and such graphs are said to be Laman. In spite of the name, Laman’s theorem was originally
proved by Hilda Pollaczek-Geiringer in 1927 [20], though this was evidently forgotten when
Laman rediscovered it in 1970 [14]. Pollaczek-Geiringer’s work on this topic seems only to
have resurfaced recently, so the terms “Laman’s theorem” and “Laman graphs” have become
quite deeply embedded in the rigidity theory literature, and we stick with them in this paper.

Capco, Gallet, Grasegger, Koutschan, Lubbes, and Schicho recently used tropical geometry
in [7] to compute upper bounds on the number of realizations of a given Laman graph
with generic prescribed edge lengths. Perhaps the most important open problem in rigidity
theory is to characterize the graphs that are minimally generically rigid in R3, and no
currently known technique for proving Laman’s theorem seems likely to extend. Therefore,
one motivation for our tropical proof is hope that it may one day extend to the R3 case.

In addition to being an interesting mathematical subject, rigidity theory of graphs has
diverse applications. It can be used to discover the structure of molecules [16] which is
particularly useful when studying proteins [13, 21] and materials at the nano scale [3, 18].
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2 DANIEL IRVING BERNSTEIN AND ROBERT KRONE

Macro-scale applications include coordinating groups of autonomous vehicles [1, 8, 9, 19]
and sensor network localization [10, 26].

We give the necessary technical background on rigidity theory and tropical geometry in
Section 1. Among other things, we define the Cayley-Menger variety, a generalization of
the Pollaczek-Geiringer variety, which is the Zariski closure of the set of vectors specifying
the pairwise squared distances between n points in Rd. In Section 2, we show that the
tropicalization of the Cayley-Menger variety in the case d = 1 is the space of ultrametrics on
n leaves. We also set some notation that will be used in later sections. We begin Section 3
by showing that the tropicalization of the Pollaczek-Geiringer variety is the Minkowski sum
of the set of ultrametrics with itself. Then, we show that this tropical variety admits a
particular simplicial complex structure. In Section 4, we use our previous results to give a
new proof of Laman’s theorem.

1. Preliminaries

LetK be R or C. Let S be a finite set, and letX ⊆ KS be an irreducible affine variety. Each
E ⊆ S defines a coordinate projection πE : KS → KE . The algebraic matroid underlying X is
the matroid on ground set S whose independent sets are the E ⊆ S such that dim πE(X) =
|E|. To see that this construction yields a matroid, see e.g. [5, Proposition 1.2.9].

A bar and joint framework consists of a graph G = (V,E) along with an injection
p : V → Rd. We denote such a framework by (V,E,p) and say that it is rigid if there exists
an ε > 0 such that for any other injection q : V → Rd satisfying

∑

u∈V ‖p(u)− q(u)‖2 ≤ ε
and ‖q(u)− q(v)‖ = ‖p(u)− p(v)‖ for all uv ∈ E, then the images of p and q are related
by a Euclidean isometry of Rd. A graph G = (V,E) is said to be generically rigid in Rd if
every framework (V,E,p) is rigid when p is generic. We will identify injections p : V → Rd

with point configurations in (Rd)|V |.
The Cayley-Menger variety of n points in Rd, denoted CMd

n, is the affine variety embedded

in C(
[n]
2 ) given as the Zariski closure of the set of pairwise squared euclidean distances between

n points in Rd. When d = 2, we will call the corresponding Cayley-Menger variety CM2
n

the Pollaczek-Geiringer variety. The following lemma gives three folklore results, the first of
which is called Laman’s condition in [11]. They are well-known, but we give proofs as they
are not generally phrased in our algebraic-geometric language.

Lemma 1.1. Let n ≥ d and let E ⊆
(

[n]
d

)

. Then:

(1) if E is independent in the algebraic matroid of CMd
n, then for all V ⊆ [n] with |V | ≥ d,

the induced subgraph of ([n], E) on vertex set V has at most d|V | −
(

d+1
2

)

edges,

(2) the dimension of the Cayley-Menger variety CMd
n is dn−

(

d+1
2

)

, and
(3) the graph ([n], E) is generically rigid if and only if E is spanning in the algebraic

matroid underlying CMd
n.

Proof. The first statement follows from the second by the observation that the coordinate
projection of CMd

n onto the coordinates indexed by
(

V
2

)

is CMd
|V |.

We now prove the second statement. Let φ : (Rd)n → R(
[n]
2 ) be the map sending a

configuration of n points in Rd to the set of pairwise squared distances among them. Then
CMd

n is the Zariski closure of the image of φ. The map φ is algebraic, so

dim(CMd
n) = dim((Rd)n)− dim(φ−1(φ(p))),
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where p is a generic point configuration in (Rd)n.
Let E(d) denote the group of euclidean isometries of Rd. Fiber φ−1(φ(p)) is equal to the

E(d)-orbit of p. Since p was chosen generically, the points affinely span Rd if n > d, and
so the only element of E(d) that stabilizes p is the identity transformation. If n = d then
the points in p affinely span a hyperplane H ⊆ Rd, and the only two elements of E(d) that
stabilize p are the identity and the reflection acrossH . It follows from [15, Theorem 9.24] that
dim(φ−1(φ(p))) = dim(E(d)). To see that dim(E(d)) =

(

d+1
2

)

, note that each translation

is specified by d independent parameters, and each rotation or reflection is specified by
(

d
2

)

independent parameters.
We now prove the third statement. Note that E is spanning in CMd

n if and only if
dim(πE(CM

d
n)) = dim(CMd

n). Equivalently, for a generic point configuration p ∈ (Rd)n, the
set π−1

E (πE(φ(p))) is zero-dimensional, i.e. a finite set. Thus φ−1(π−1
E (πE(φ(p)))) consists of

finitely many orbits of E(d)’s diagonal action on (Rd)n. Taking ε to be half the minimum
distance between any two such orbits, we see that the framework ([n], E,p) is rigid. �

For d = 1 and d = 2, the necessary condition from Lemma 1.1 for independence is known
to be sufficient. The d = 1 case is trivial and the d = 2 case is known as Laman’s Theorem.

What follows is a very brief introduction to tropical geometry. The theory of tropical
geometry can be developed using either the max convention or min convention. Both give
exactly the same theorems, modulo some sign changes and the substitution of “maximum”
with “minimum” or vice versa. One often chooses the convention that minimizes the number
of negative signs that appear. In this paper, that happens to be the max convention so that
is what we choose. See [17] for a more detailed introduction to tropical geometry (but note
that it is written in the min convention).

A valuation on a field K is a function val : K → R ∪ {−∞} satisfying:

(1) val(a) = −∞ if and only if a = 0,
(2) val(ab) = val(a) + val(b),
(3) val(a + b) ≤ max{val(a), val(b)} with equality if val(a) 6= val(b).

One should think of val(a) as a measure of the magnitude of a ∈ K that behaves roughly like
a logarithm, as reflected by rules (1) and (2). If a ∈ K has smaller valuation than b ∈ K,
then a should be considered insignificant compared to b so val(a+ b) = val(b). On the other
hand, if a and b have the same valuation, adding them may cancel the largest magnitude
components of each, so val(a + b) ≤ val(b), as described by rule (3). The pair (K, val) is
called a valuated field.

For our purposes, we require a valuated field K that extends C, is algebraically closed, and
with valuation that maps densely into R ∪ {−∞}. Therefore we will take K = C{{t}}, the
field of complex Puiseux series. The elements of C{{t}} are formal series in indeterminant t
of the form

a =
∞
∑

i=m

cit
i/k

for some integer m and some positive integer k, with each ci in C and cm 6= 0. The valuation
is defined by val(a) = −m/k, the negative of the smallest exponent of t.

For Y an algebraic variety in KS, the tropicalization, trop(Y ), of Y is the closure in the
Euclidean topology of the image of Y under the map val,

trop(Y ) := {val(x) : x ∈ Y } ∩ RS.
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Note that we discard the points with coordinates −∞.
To tropicalize an algebraic variety X ⊆ CS with defining ideal I ⊆ C[xi : i ∈ S], we

extend scalars from C to the valuated field K to get a variety in KS. Let X ′ ⊆ KS denote
the vanishing set of ideal IK[xi : i ∈ S]. We then define trop(X) to be equal to trop(X ′).

In this case, trop(X) is a pure polyhedral fan of the same dimension as X [6]. By studying
trop(X), we can apply tools from polyhedral geometry and combinatorics to questions about
X . Of particular interest for this paper, the following lemma tells us that tropicalization
preserves the algebraic matroid structure.

Lemma 1.2 ([25, Lemma 2]). Let X ⊆ CS be an irreducible variety and let E ⊆ S. Then
the projection of X to CE has the same dimension as the projection of trop(X) to RE.

We now review the results from the literature that we will need to obtain our combinatorial
description of trop(CM2

n). Recall that a monomial map α : Cn → Cd is an algebraic map with
the property that each coordinate of the image is given by a monomial in the coordinates of
Cn. Such a map can be represented by a matrix A where the ith column of A is the exponent
vector of the ith coordinate of α.

Theorem 1.3 ([24], Theorem 1.1). Let A ∈ Zn×d be an integer matrix representing a mono-
mial map α : Cn → Cd and let X ∈ Cn be a variety. Then trop(α(X)) = A trop(X).

We denote the coordinates of points δ ∈ R(
[n]
2 ) by δuv where u < v. We say that δ ∈ R(

[n]
2 )

is an ultrametric if δuv ≤ max{δuw, δvw} for all triples u, v, w of distinct elements of [n].
Note that we do not require nonnegativity of any coordinates.

We now recall the well-known way that ultrametrics can be represented on rooted trees
(see e.g. [22, Chapter 7]). Given a rooted tree T with leaves labeled by [n], the most recent
common ancestor of a pair of leaves u, v ∈ [n] is the unique internal node in the unique path in
T from u to v that is closest to the root in the graph-theoretic distance. Given an ultrametric
δ on [n], there exists a unique tree T , whose internal nodes are assigned real-valued weights
that increase along any path towards the root, such that δ(u, v) is the weight assigned to
the most recent common ancestor of u and v. Given an ultrametric δ, the associated tree T
(disregarding the weights on the internal vertices) is called the topology of δ. See Figure 1
for an example displaying the ultrametric (δ12, δ13, δ14, δ23, δ24, δ34) = (−2, 1, 4, 1, 4, 4) on its

topology. We denote the set of all ultrametrics in R(
[n]
2 ) by Un.

Now, let
√

CM1
n ⊆ R(

[n]
2 ) denote the linear space parameterized by δuv = xu − xv. Our

results all rest on the following theorem of Ardila and Klivans.

Theorem 1.4 ([2], Theorem 3). The tropicalization of the linear space
√

CM1
n is the set of

ultrametrics on [n]. That is, trop(
√

CM1
n) = Un.

2. The tropical Cayley-Menger variety in dimension 1

Proposition 2.1. The tropicalization of the Cayley-Menger variety of n points in R1 is the
set of ultrametrics on [n]. That is, trop(CM1

n) = Un.

Proof. Let α : C(
[n]
2 ) → C(

[n]
2 ) denote the monomial map that squares each coordinate. The

matrix A representing α is twice the identity matrix. Since CM1
n = α(

√

CM1
n), Theorem 1.3

implies that trop(CM1
n) = A trop(

√

CM1
n). Theorem 1.4 says that trop(

√

CM1
n) = Un and

it is easy to see that AUn = Un. �
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12 123 1234

12 1 0 0
13 0 1 0
14 0 0 1
23 0 1 0
24 0 0 1
34 0 0 1















Figure 1. On the left is a rooted tree displaying the ultrametric
(−2, 1, 4, 1, 4, 4). Letting T denote the topology of this tree, the corresponding
matrix MT is displayed on the right. Its columns span the linear hull of the
set of ultrametrics whose topology is T .

For any ultrametric δ ∈ Un, the point δ′ = δ + a(1, . . . , 1)T is also an ultrametric for any
real number a since δuv + a ≤ max{δuw + a, δvw + a} for all triples u, v, w ∈ [n]. Therefore

trop(CM1
n) can be considerd as a subset of tropical projective space TP(

[n]
2 )−1 defined as the

quotient R(
[n]
2 )/R(1, . . . , 1)T .

Ultrametrics on [n] can be classified by their topology T . Let T be a rooted tree with
leaves labeled by [n]. A clade of T is the set of leaves below a given internal vertex. A
descendant of an internal vertex v of T is a vertex u in T such that the unique path from
u to the root of T contains v. The trivial clade is [n], the set of all leaves. Let clade(T )
denote the set of clades of T and clade◦(T ) the set of clades excluding the trivial clade. Each
rooted tree T is completely determined by clade◦(T ) (one can build a tree given its clades by
first adding an internal node above all the leaves in each minimal clade, then treating each
minimal clade as a single leaf and proceeding inductively). As a shorthand for a nonempty
subset {i1, . . . , ir} ⊆ [n], we will also write i1 · · · ir.

Example 2.2. Let T1 and T2 be the trees in Figure 2. Then clade◦(T1) = {12, 123} and
clade◦(T2) = {13, 24}.

Let KT denote the closed cone consisting of all ultrametrics with topology T . Like Un,
it has lineality space spanned by (1, . . . , 1)T , so it can be considered as a subset of tropical
projective space.

Theorem 2.3 ([2], Proposition 3). The tropical Cayley-Menger variety of points in R1,

trop(CMn
1 ) = Un ⊆ TP(

[n]
2 )−1, admits a simplicial fan structure with cones KT for each

rooted tree T on leaves [n], where KT1 is a face of KT2 if and only if clade(T1) ⊆ clade(T2).

We now introduce some notation for giving two different bases of the linear hull of KT .

Definition 2.4. For each C ∈ clade(T ), we define two vectors, vC and mc
T , in R(

[n]
2 ) as

follows. Let vC ∈ R(
[n]
2 ) be the characteristic vector of

(

C
2

)

. Let mC
T ∈ R(

[n]
2 ) be the charac-

teristic vector of the set of pairs ij in [n] such that C is the smallest clade containing ij. Let
MT be the matrix with columns mC

T . See Figure 1 for an example.

A given ultrametric δ with topology T can be expressed as

δ =
∑

C∈clade(T )

δCm
C
T
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where δC is the label assigned to clade C. Thus, the columns of MT are a basis of the
linear hull of KT . Within its linear span, the cone KT is cut out by the set of inequalities
{δC ≤ δC′ |C ′ ∈ clade(T ), C ⊆ C ′}. The following lemma implies that another basis for the
linear hull of KT is the set {vC}C∈clade(T ).

Lemma 2.5. The cone KT of Un ⊆ TP(
[n]
2 )−1 containing all ultrametrics with a given topology

T is generated by {−vC}C∈clade◦(T ) (modulo lineality space).

Proof. Let δ be an ultrametric with topology T and letm = max(δ). Let δ′ be the ultrametric
obtained by labeling all internal vertices of T by m. So δ′ = m(1, . . . , 1)T = mv[n]. The
ultrametric δ′ can be turned into δ by iteratively decreasing the labels on each internal vertex
and all its descendants. This corresponds to subtracting vectors of the form vC . Concretely,

δ = mv[n] +
∑

C∈clade◦(T )

−tCvC

where tC = δC′−δC for all C ∈ clade◦(T ) where C ′ is the parent of C. The condition δC ≤ δC′

gives tC ≥ 0, so KT consists of all nonnegative combinations of {−vC}C∈clade◦(T ). �

3. The tropical Pollaczek-Geiringer variety

Theorem 3.1. The tropicalization of the Pollaczek-Geiringer variety is the Minkowski sum
of two copies of the set of ultrametrics on [n]. That is, trop(CM2

n) = Un + Un.

Proof. As noted in [7], the usual parameterization of CM2
n given by δuv = (xu−xv)

2+(yu−yv)
2

becomes δuv = (xu − xv)(yu − yv) after applying the following change of variables

xu 7→ xu + iyu yu 7→ xu − iyu.

Now let α : C(
[n]
2 )×C(

[n]
2 ) → C(

[n]
2 ) be the monomial map sending (δ1uv, δ

2
wx)uv,wx to (δ1uvδ

2
uv)uv.

Under this new parameterization, it is clear that CM2
n = α(

√

CM1
n ×

√

CM1
n). The rows of

the integer matrix A representing α are {euv+fuv}uv where {euv}uv, {fuv}uv are the canonical

bases of each copy of C(
[n]
2 ). Theorems 1.3 and 1.4 then imply the proposition. �

Remark 3.2. Proposition 2.1 and Thoerem 3.1 describe trop(CMd
n) for d = 1 and 2, and

suggest a pattern that perhaps trop(CMd
n) might be equal to the sum of d copies of Un

for general d. However we were not able to make such a generalization for d ≥ 3. The
key observation in the d = 2 case is the factorization of the Euclidean distance δuv =
(xu−xv)

2+(yu−yv)
2 into a product of a term involving only x-distance and a term involving

only y-distnace. We could not find an analogous factorization for δuv = (xu − xv)
2 + (yu −

yv)
2 + (zu − zv)

2, the Euclidean distance in R3.

Our goal for the rest of this section is to prove Theorem 3.4 which describes a polyhedral
fan structure on trop(CMn

2 ).

Definition 3.3. The tree pair complex on n leaves, denoted tp(n), is the abstract simplicial
complex on ground set 2[n] whose faces are all subsets of the form clade(T1)∪clade(T2) where
T1 and T2 are rooted trees on leaf set [n].

Note that any subset of clade(T ) can be realized as clade(T ′) where T ′ is obtained from
T by contracting internal edges. Thus the tree pair complex is indeed an abstract simplicial
complex. Definition 3.3 allows T1 = T2, so tp(n) contains the simplicial complex implicit in
Theorem 2.3 as a sub-complex. We now state, but do not yet prove, our main theorem.
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Theorem 3.4. The tropical Pollaczek-Geiringer variety trop(CMn
2 ) admits a simplicial fan

structure isomorphic to tp(n).

Definition 3.5. Let T1, T2 be rooted trees on leaf set [n]. The clade graph of T1 and T2 is
the bipartite graph GT1,T2 = (V1, V2, E) whose partite vertex set Vi is the set of clades of Ti

and whose edge set E = {eij : 1 ≤ i < j ≤ n} has eij connecting the minimal clades of T1

and T2 that contain both leaves i and j.

Proposition 3.7 uses clade graphs to derive the dimension of the cone KT1 +KT2 from the
combinatorics of T1 and T2. Subgraphs of clade graphs will play a crucial role in our tropical
proof of Laman’s theorem in the next section.

Example 3.6. Figure 2 shows two rooted trees on vertex set {1, 2, 3, 4} alongside their clade
graph. In both trees, the trivial clade 1234 is the minimal clade containing the leaf pairs 14
and 34 and so there is a double edge between both copies of the trivial clade.

1 2 3 4 1 3 2 4 12

123

1234

24

13

1234

Figure 2. Two rooted trees and their clade graph.

We now note that our tropical proof of Laman’s theorem does not require any of the
remaining results in this section. Hence, the reader who is only interested in our tropical
proof of Laman’s theorem could skip to Section 4 now.

Proposition 3.7. For rooted trees T1, T2, the following values are equal:

(1) the dimension of KT1 +KT2,
(2) the rank of the graphic matroid of GT1,T2 (the number of vertices minus the number

of connected components),
(3) the cardinality of clade(T1) ∪ clade(T2).

Proof. Recall that the rank of the vertex-edge incidence matrix of a bipartite graph is equal
to the rank of its graphic matroid. Equivalence of (1) and (2) then follows from the fact
that

(

MT1 MT2

)

(see Definition 2.4) is the vertex-edge incidence matrix of GT1,T2 and that
its column span is the linear hull of KT1 +KT2 .

Now we show that (1) and (2) are equivalent to (3). The linear hull of KT1 +KT2 is also
spanned by {vC}C∈clade(T1) ∪ {vC}C∈clade(T2), so

dim(KT1 +KT2) ≤ | clade(T1) ∪ clade(T2)|.

We proceed by showing that | clade(T1)∪clade(T2)| ≤ rank(GT1,T2). Note that the number of
vertices of GT1,T2 is | clade(T1)|+ | clade(T2)| so we must prove that the number of connected
components of GT1,T2 is at most | clade(T1) ∩ clade(T2)|.

We first show that that each clade C of T1 (without loss of generality) connects to the
smallest clade of T2 containing C. Let D be the set of clades in T2 that are adjacent to C
in GT1,T2. Suppose E1, E2 ∈ D are disjoint and let eij and ekl be the edges connecting them
to C respectively. Among the set {i, j, k, l} there are at least two other pairs besides {i, j}



8 DANIEL IRVING BERNSTEIN AND ROBERT KRONE

and {k, l} for which C is the smallest clade in T1 containing both. Without loss of generality
suppose {i, k} is such a pair. Then eik connects C to clade E3 ∈ D that contains both E1

and E2. It follows that D has a unique maximal element by inclusion, D. For any i ∈ C,
there exists j ∈ C such that eij is incident to C. Therefore i ∈ D, so then C ⊆ D. So D
must be the smallest clade of T2 containing C.

If C ∈ clade(T1)∩clade(T2) then the two vertices in GT1,T2 corresponding to C are adjacent.
If C ∈ clade(T1) \ clade(T2), then its vertex is adjacent to the vertex of a clade D that
strictly contains C. Therefore there is a path from vertex C through an ascending chain
of clades that eventually reaches a shared clade. Every vertex is connected to the vertex
pair of a shared clade, so the number of connected components of GT1,T2 is bounded by
| clade(T1) ∩ clade(T2)|. �

Corollary 3.8. The pairs of trees T1, T2 for which KT1 +KT2 has maximal dimension are
those such that T1 and T2 are binary and have no nontrivial common clade.

Corollary 3.9. For any pair of trees T1, T2, the cone KT1 +KT2 ⊆ TP(
[n]
2 )−1 is a simplicial

cone generated by {−vC}C∈clade◦(T1)∪clade
◦(T2).

Proof. By Lemma 2.5,KTi
has lineality space (1, . . . , 1)T and is generated by {−vC}C∈clade◦(Ti)

in TP(
[n]
2 )−1. Therefore KT1 +KT2 has (1, . . . , 1)T in its lineality space and is generated by

{−vC}C∈clade◦(T1)∪clade
◦(T2) in TP(

[n]
2 )−1. By Proposition 3.7,

dim(KT1 +KT2) = | clade(T1) ∪ clade(T2)| = | clade◦(T1) ∪ clade◦(T2)|+ 1.

Modulo (1, . . . , 1)T , the dimension of the cone is equal to the number of generators, so it
must be simplicial. �

Corollary 3.9 describes the cone KT1 +KT2 in terms of its rays, i.e. a v-description. This
descirption implies that the cone depends only on clade(T1) ∪ clade(T2), and not any other

properties of the trees. For S ⊆ 2[n], let S◦ denote S\{[n]} and let KS ⊆ TP(
[n]
2 )−1 denote the

cone generated by {−vC}C∈S◦ (with lineality space (1, . . . , 1)T ). Therefore KT1 +KT2 = KS

for S = clade◦(T1) ∪ clade◦(T2).
In addition to a v-description of cone KS , we would like an h-description: a system of

linear equations and inequalties that cut out the cone. This result is given in Proposition
3.12. From the h-description we can say how the cones in trop(CMn

2 ) intersect, which will
complete the proof of Theorm 3.4.

Suppose S ∈ tp(n), so that S = clade(T1) ∪ clade(T2) for a pair of trees T1, T2, and
KS = KT1 + KT2 . The clade intersection poset of S, denoted cip(S), will consist of S and
all intersections of elements of S containing two or more elements, and be partially ordered
by inclusion. In the h-description of KS , there will be one equation or inequality for each
element of cip(S)◦ plus some additional equations coming from pairs of leaves within the
same elements of cip(S), as we show below. This construction guarantees that for any pair
ij ⊆ [n], there is a unique smallest set C ∈ cip(S) that contains ij. Denote this set ij. Given
C ∈ cip(S), the parents of C are the elements of cip(S) that cover C, and the children of
C are the elements of cip(S) that C covers (recall that a is said to cover b in a poset if a is
greater than b, and there is no element strictly between a and b). We claim that cip(S) is a
join-semilattice. Otherwise, if the join of A and B does not exist, then there exist mutually
incomparable C1, C2 ∈ cip(S) that are both minimal elements of cip(S) containing A ∪ B.
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But this is a contradiction since then C1 ∩ C2 ∈ cip(S) also contains A ∪ B. The join of A
and B will be denoted A ∨ B.

Lemma 3.10. For S ∈ tp(n), and C ⊆ [n] with |C| ≥ 2, let D be the minimal element of
cip(S) that contains C. Then there exists a pair i, j ∈ C such that ij = D.

Proof. Suppose no such pair ij exists, so every pair in C appears in some child ofD. We claim
that there exist three children E1, E2, E3 of D that have nontrivial pair-wise intersection.
Let E1 be a child of D that has maximal intersection with C among the children of D and
let a ∈ E1 ∩ C. Since E1 does not contain C, there is some b ∈ C \E1. Let E2 be a child of
D that contains the pair ab. By how E1 was chosen, E2 does not contain E1 ∩ C, so there
is c ∈ (E1 ∩C) \E2 and E1 contains ac. Finally take E3 to be a child of D that contains bc.

We note that for any three sets in S, at least two of the sets must be clades in the same
tree, implying that either one contains the other, or they are disjoint. Therefore there cannot
be three sets in S with nontrivial pair-wise intersection and none containing another. This
implies that any element of cip(S) \ S is the intersection of exactly two elements of S.

Now, for each k = 1, 2, 3, if Ek /∈ S then it is the intersection of D and one other set
E ′

k ∈ S. If Ek ∈ S then let E ′
k = Ek. The sets E ′

1, E
′
2, E

′
3 are all in S and have nontrivial

pair-wise intersection. If E ′
1 contains E ′

2, then E2 is a descendant of both E ′
1 and D. This

implies E2 ⊆ E ′
1 ∩D = E1, which is a contradiction since E1 and E2 are both children of D.

Therefore the sets E ′
1, E

′
2, E

′
3 do not satisfy any containment relations with each other and

no two are disjoint. But we have already seen that this cannot happen. �

Modulo lineality space, any point δ ∈ KS can be written uniquely as

δ =
∑

C∈S◦

−tCvC

with each tC ∈ R≥0. Therefore the ij coordinate has the form

δij =
∑

C∈S◦

C⊇ij

−tC .

It follows that if ij = kl then

(1) δij = δkl.

With this in mind, we will write δC to denote some δij with C = ij. By Lemma 3.10, for
every C ∈ cip(S) there is some ij with ij = C, so δC is well-defined.

We can also express each tC in terms of d. For C ∈ cip(S)◦, let D1, . . . , Dr be the parents
of C. For I ⊆ [r], let DI =

∨

i∈I Di for I 6= ∅ and D∅ = C. Inclusion-exclusion gives

(2) −
∑

I⊆[r]

(−1)|I|δDI
=

∑

I⊆[r]

(−1)|I|
∑

E∈S◦

E⊇DI

tE =

{

tC if C ∈ S◦

0 otherwise
.

For C ∈ S◦, rewriting the known inequality tC ≥ 0 in terms of δ gives

(3)
∑

I⊆[r]

(−1)|I|δDI
≤ 0.
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Statement (2) also gives an equation on δ for each C ∈ cip(S) \ S with parents D1, . . . , Dr,

(4)
∑

I⊆[r]

(−1)|I|δDI
= 0.

Let FS denote the system of inequalties and equations on δ from lines (1),(3),(4). We will
prove in Proposition 3.12 that FS is sufficient to cut out KS , but first an example.

Example 3.11. We will construct the system FS when S = clade(T1) ∪ clade(T2) where T1

and T2 are the rooted trees shown below. (i.e. S = {12, 123, 56, 456, 14, 134, 26, 256, 123456})

1 2 3 4 5 6 1 4 3 5 2 6 .

Then cip(S) = S ∪ {13} since 13 = 123 ∩ 134 and no other non-singleton non-empty sets
arise as intersections of elements in S. The Hasse diagram of cip(S) is as follows

12 13 14 56 26

123 134 456 256

123456

.

Considering C ∈ S with |C| > 2, we have

δ123456 := δ15 = δ16 = δ24 = δ35 = δ36 δ456 := δ45 = δ46

δ123 := δ23 δ134 := δ34 δ256 := δ25.

One more equality comes from 13 ∈ cip(S) \ S, namely

δ13 − δ123 − δ134 + δ123456 = 0.

Finally, we have the inequalities

δ12 ≤ δ123 δ14 ≤ δ134 δ56 − δ456 − δ256 + δ123456 ≤ 0 δ26 ≤ δ256

δ123 ≤ δ123456 δ134 ≤ δ123456 δ456 ≤ δ123456 δ256 ≤ δ123456.

Proposition 3.12. For S ∈ tp(n), the polyhedral cone defined by the system FS is KS .

Proof. It has already been observed that δ ∈ KS satisfies the system FS . The inequalities in
FS are facet-defining, and define all facets of KS , because for each given C ∈ S◦, (3) achieves
equality at all extreme rays of KS aside from vC .

It remains to show that the linear space defined by the equations of FS is the linear hull of
KS . For each pair ij, δij = δC for some C ∈ cip(S). If C /∈ S then δC can be rewritten as a
sum and difference of {δD}D)C using the equality in FS associated to C. Since the maximal
element of cip(S) is [n] ∈ S, by induction δC can be written in terms of {δD}D∈S, D⊇C .
Therefore the linear space defined by FS is parameterized by {δC}C∈S so it has dimension
at most |S| including the lineality space. We know this linear space contains KS , which also
has dimension |S| by Proposition 3.7, so it must be equal to the linear hull of KS . �
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Proposition 3.13. For S,S ′ ∈ tp(n),

KS ∩KS′ = KS∩S′.

Proof. The generators of KS∩S′ in TP(
[n]
2 )−1 are the intersection of the generators of KS and

K ′
S . This implies that KS∩S′ ⊆ KS ∩KS′ .
To show that KS ∩ KS′ ⊆ KS∩S′, we work by induction on m = |S \ S ′|. For m = 0,

S ⊆ S ′ and KS ⊆ KS′, so the result follows. For m > 0 assume the statement is true for all
smaller values of m and then choose C ∈ S \ S ′. Let D be the smallest element of cip(S ′)
such that C ⊆ D.

First suppose that C ( D. By Lemma 3.10 there exists a pair ij ⊆ C such that D is the
smallest element of cip(S ′) containing ij. Fix k ∈ D \ C. If δ ∈ KS with δ =

∑

E∈S◦ −tEvE
such that tC > 0, then δik > δC ≥ δij . However if δ ∈ KS′ , then δik ≤ δD = δij . Therefore
δ ∈ KS ∩KS′ has tC = 0, so KS ∩KS′ is contained in a facet of KS .

If D = C then D ∈ cip(S ′)\S ′. Let E1, . . . , Er be the parents of D in cip(S ′). For a point
δ ∈ KS′, δD = δE∅

satisfies
∑

I⊆[r]

(−1)|I|δEI
= 0.

Each EI = iIjI in cip(S ′) for some pair iI , jI . Note that for I 6= ∅, the pair iIjI is not
contained in C. For δ ∈ KS , δi∅j∅ depends on the value of parameter tC since i∅j∅ is
contained in C, while every other δiI jI does not. Therefore if δ ∈ KS is generic, the equation

δij = −
∑

I⊆[r]
I 6=∅

(−1)|I|δiIjI

is not satisfied. Therefore KS ∩ KS′ has strictly lower dimension than KS , so it must be
contained in a facet of KS .

In either case let KS′′ be the facet of KS containing KS ∩KS′ so that S ∩ S ′ ⊆ S ′′ ( S.
Since |S ′′ \ S ′| < m, by the induction hypothesis,

KS ∩KS′ = KS′′ ∩KS′ ⊆ KS′′∩S′ = KS∩S′. �

Theorem 3.4 follows from Proposition 3.13 and Corollary 3.9 by sending S ∈ tp(n) to KS .

4. A tropical proof of Laman’s Theorem

We now give our tropical proof of Laman’s theorem. Lemma 1.2 allows us to determine
the algebraic matroid underlying CM2

n via projections of the tropicalization of CM2
n. Theo-

rem 3.1 allows us to translate geometric properties of this tropical variety into combinatorial
statements about pairs of rooted trees.

Given a graph H , let V (H) and E(H) denote the vertex and edge sets of H . Each graph

H on vertex set [n] describes a coordinate projection πH : R(
[n]
2 ) → RE(H). Moreover, Lemma

1.1(3) and Lemma 1.2 imply thatH is generically rigid in Rd if and only if πH(trop(CM
d
n)) has

the maximal dimension, dn−
(

d+1
2

)

. For a tree T , define the matrix MH
T to be the submatrix

ofMT obtained by taking only the rows corresponding to E(H). The cone πH(KT ) ⊆ πH(Un)
has linear hull equal to the span of MH

T . Define the restricted clade graph of T1 and T2 to be
the subgraph GH

T1,T2
of GT1,T2 on the same vertex set whose edge set E = {eij : {i, j} ∈ E(H)}

has eij connecting the minimal clades of T1 and T2 that contain ij. For S ⊆ [n], let cTi
(S)
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denote the smallest clade of Ti containing S. For each edge ij ∈ E(H), note that eij connects
cT1(ij) to cT2(ij). Now we give the analog of Proposition 3.7 for coordinate projections.

Proposition 4.1. A graph H is minimally generically rigid in R2 if and only if there is a
pair of rooted binary trees T1, T2 such that GH

T1,T2
is a tree.

Proof. By Lemma 1.2, it suffices to show that |E(H)| = 2n − 3 and πH(trop(CM
2
n)) has

dimension 2n− 3 if and only if there are rooted binary trees T1, T2 such that GH
T1,T2

is a tree.

A rooted binary tree has exactly n − 1 clades, so GH
T1,T2

has 2n − 2 vertices. It is a tree if
and only if it is connected and has 2n− 3 edges.

The edge sets of H and GH
T1,T2

are in bijection, so one has size 2n − 3 if and only if the

other does. The dimension of πH(trop(CM
2
n) will be 2n− 3 if and only if there exists a cone

KT1 +KT2 of trop(CM2
n) such that πH(KT1 +KT2) has dimension 2n− 3. The linear hull of

πH(KT1 +KT2) is the column span of the adjacency matrix of GH
T1,T2

and so the dimension
πH(KT1 + KT2) is the rank of this adjacency matrix. The rank of the adjacency matrix
of a bipartite graph is the number of vertices minus the number of connected components.
Therefore the adjacency matrix of GH

T1,T2
has rank 2n−3 if and only if GH

T1,T2
is connected. �

To reprove Laman’s theorem, it remains to show that the graphsH satisfying the condition
of Proposition 4.1 are precisely the Laman graphs. We will do this via the Henneberg moves,
which were shown by Henneberg in 1911 [12] to generate precisely the graphs which are
minimally generically rigid in the plane. We now define two conditions a graph can satisfy,
then use our combinatorial description of trop(CM2

n) to show they are both equivalent to
the property of being generically minimally rigid in the plane.

Definition 4.2. Let H be a graph with vertex set [n] and edge set E. We say that H is

• Laman if H has 2n − 3 edges and every subgraph of H with v vertices has at most
2v − 3 edges,

• Henneberg if H is the complete graph K2, or H can be obtained from a smaller
Henneberg graph by either of the two Henneberg moves, which are
(1) adding a new vertex adjacent to two existing vertices, and
(2) removing an edge ij and adding a new vertex that is adjacent to i and j and

some other vertex.

Lemma 4.3. If H is Laman, then H is Henneberg.

Proof. This is well-known (see e.g. [11]) but we provide a proof anyway to keep our proof of
Laman’s theorem self-contained. So let H be a Laman graph. We work by induction on n.
If n = 2 then H = K2 which is Henneberg, so assume H has at least three vertices. It is easy
to check that since H is Laman, each vertex has degree at least 2. Assume H has a vertex
v of degree exactly 2. Then H \ {v} is Laman, and therefore Henneberg by the induction
hypothesis. H can be obtained from H \ {v} by attaching v via the first Henneberg move.

Now assume the minimum degree of H is at least 3. Since H has 2n − 3 edges, some
vertex v must have degree 3. Denote the neighbors of v by 1, 2, 3. If 123v is a clique then
H is not Laman, so there must be at least one edge missing which we take to be 12. Let
H ′ be the graph obtained from H \ {v} by adding the edge 12. If H ′ it not Laman, it has a
strict subgraph H ′′ with k vertices and 2k − 2 edges that includes the edge 12. But then H
would violate the Laman condition as well, since the graph obtained from H ′′ by removing
the edge 12 and connecting v to 1, 2, 3 would be a subgraph of H containing k + 1 vertices
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and 2(k + 1) − 2 edges. So by the induction hypothesis, H ′ is Henneberg and H can be
obtained from H ′ via the second Henneberg move. �

Given a rooted tree T on leaf set [n], the restriction of T to S ⊆ [n] is the rooted tree T ′

obtained from the induced subtree of T with leaves S and their ancestors, contracting away
degree 2 vertices. If d is an ultrametric with tree topology T , then the restriction of T to
S is the topology of the restriction of d to the coordinates

(

S
2

)

. Now let H be a graph on
vertex set [n], let T1, T2 be rooted trees on leaf set [n], and let H ′ be a subgraph of H . If
T ′
1, T

′
2 are the restrictions of T1, T2 to V (H ′), the natural inclusion map η : H ′ → H induces

an injective graph homomorphism

η̃ : GH′

T ′
1,T

′
2
→ GH

T1,T2

by sending clade C of T ′
i to cTi

(C). To see that η̃ maps edges to edges, note that for each
jk ∈ E(H ′), η̃(cT ′

i
(jk)) = cTi

(jk), so the edge ejk of GH′

T ′
1,T

′
2
goes to ejk of GH

T1,T2
.

Example 4.4. Let H be the graph on vertex set {1, 2, 3, 4} pictured below and let T1 and
T2 be as in Example 3.6. Let H ′ be the subgraph of H induced on vertex set {2, 3, 4}. Then
η is the inclusion of H ′ in H , and η̃ maps each vertex labeled 234 in GH′

T ′
1,T

′
2
to the vertex on

the corresponding side labeled 1234 in GH
T1,T2

, maps the vertex labeled 23 in GH′

T ′
1,T

′
2
to the

vertex labeled 123 in GH
T1,T2

, and maps the vertex labeled 24 in GH′

T ′
1,T

′
2
to the vertex with the

same label in GH
T1,T2

. Note that η̃ is a graph homomorphism.

H =
1 4

23
H ′ =

4

23 T ′
1 =

2 3 4

T ′
2 =

3 2 4

GH′

T ′
1,T

′
2
=

23

234

24

234

GH
T1,T2

=

12

123

1234

24

13

1234

Lemma 4.5. If H is not a Laman graph, then GH
T1,T2

is not a tree for any choice of pair of
rooted trees T1, T2.

Proof. If H has n vertices but does not have 2n− 3 edges, then H is not Laman and GH
T1,T2

has the wrong number of edges to be a tree. Suppose then that H has 2n − 3 edges but is
not Laman. Then H has a subgraph H ′ with n′ vertices such that H ′ has more than 2n′ − 3
edges. For any choice of trees T1, T2, let T

′
1, T

′
2 be the respective restrictions to V (H ′). Since

GH′

T ′
1,T

′
2
has 2n′ − 2 vertices and more than 2n′ − 3 edges, it must contain a cycle. The graph

homomorphism η̃ : GH′

T ′
1,T

′
2
→ GH

T1,T2
shows that GH

T1,T2
must also contain a cycle. �

Lemma 4.6. If H is Henneberg, then there exists a pair of rooted binary trees T1, T2 such
that GH

T1,T2
is a tree.

Proof. If H is Hennberg with n vertices, then it has 2n − 3 edges, and so GH
T1,T2

also has

2n − 3 edges. Then to prove that GH
T1,T2

is tree, we show that it has 2n− 2 vertices and is
connected.
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We work by induction on n. In the base case n = 2, the only Henneberg graph is H = K2.
Let T1 = T2 be the unique rooted binary tree on two leaves. Then GH

T1,T2
has two vertices,

one for the clade 12 in each tree, connected by edge e12. For n > 2, H can be obtained (after
relabeling) from a Henneberg graph H ′ on [n − 1] by one of the Henneberg moves. By the
induction hypothesis, there are rooted binary trees T ′

1, T
′
2 such that GH′

T ′
1,T

′
2
is connected.

First suppose that H is obtained from H ′ by a Henneberg move of type (1) by adding
vertex n and connecting it to vertices 1 and 2 (without loss of generality). Let T1 be the tree
obtained from T ′

1 attaching n so that 1n becomes a clade. Let T2 be obtained from T ′
2 by

attaching n so that 2n becomes a clade. Since H ′ is a subgraph of H and T ′
i is the restriction

of Ti to [n−1], there is graph homomorphism η̃ : GH′

T ′
1,T

′
2
→ GH

T1,T2
defined as above. Therefore

η̃(GH′

T ′
1,T

′
2
) is connected. GH

T1,T2
has exactly two new clades not in the image of η̃, which are

1n in T1 and 2n in T2. It also has two new edges, e1n connecting 1n to cT2(1n) = η̃(cT ′
2
(12))

and e2n connecting 2n to cT1(2n) = η̃(cT ′
1
(12)). Therefore the two new vertices are connected

to η̃(GH′

T ′
1,T

′
2
), so GH

T1,T2
is connected.

Now suppose that H is obtained from H ′ by a Henneberg move of type (2) by removing
edge 12, adding vertex n and adding edges 1n, 2n, 3n (without loss of generality). We will
construct Ti from T ′

i by adding leaf n and a new clade Ci ∪ {n} for some chosen clade or
singleton set Ci of T ′

i . Let H ′′ be H ′ minus the edge 12, so it is a subgraph of H , and
there is graph homomorphism η̃ : GH′′

T ′
1,T

′
2
→ GH

T1,T2
. The graph GH′′

T ′
1,T

′
2
has two connected

components with cT ′
1
(12) and cT ′

2
(12) in different ones. Therefore η̃(GH′′

T ′
1,T

′
2
) also has two

connected components. Thus we must choose C1 and C2 so that the edges e1n, e2n, e3n
connect the two connected components of η̃(GH′′

T ′
1,T

′
2
) and the two new clades C1 ∪ {n} and

C2 ∪ {n}. The way C1 and C2 are chosen will depend on the relative positions of 1, 2, 3 in
T ′
1 and T ′

2. We divide the situations into three cases, listed below and pictured in Figure 3.
Case 1: Suppose 1 and 2 are closer to each other than to 3 in both T ′

1 and T ′
2 and that

cT ′
1
(123) and cT ′

2
(123) are in different connected components of GH′′

T ′
1,T

′
2
. Let C1 = {1} and

C2 = cT ′
2
(12).

• e1n connects C1 ∪ {n} to C2 ∪ {n}.
• e2n connects η̃(cT ′

1
(12)) to C2 ∪ {n}.

• e3n connects η̃(cT ′
1
(123)) to η̃(cT ′

2
(123)).

Therefore GH
T1,T2

is connected.
Case 2: Suppose 1 and 2 are closer to each other than to 3 in both T ′

1 and T ′
2 and that

cT ′
1
(123) and cT ′

2
(123) are in the same component of GH′′

T ′
1,T

′
2
. Either cT ′

1
(12) or cT ′

2
(12) are in

the opposite component, so without loss of generality take it to be cT ′
1
(12). Let C1 = {1}

and C2 = {3}.

• e1n connects C1 ∪ {n} to η̃(cT ′
2
(123)).

• e2n connects η̃(cT ′
1
(12)) to η̃(cT ′

2
(123)).

• e3n connects η̃(cT ′
1
(123)) to C2 ∪ {n}.

Therefore GH
T1,T2

is connected.
Case 3: Suppose 3 is closer to 1 or 2 than to the other in one of T ′

1 or T
′
2. Without loss of

generality, take 3 and 1 closer to each other than to 2 in T ′
2. Let C1 = {1} and C2 = cT ′

2
(13).

• e1n connects C1 ∪ {n} to C2 ∪ {n}.
• e2n connects η̃(cT ′

1
(12)) to η̃(cT ′

2
(12)).
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• e3n connects η̃(cT ′
1
(13)) to C2 ∪ {n}.

Therefore GH
T1,T2

is connected. �

Theorem 4.7 (Laman’s Theorem). Given a graph H, the following are equivalent:

(1) H is Laman,
(2) H is Henneberg,
(3) there exist rooted binary trees T1 and T2 such that GH

T1,T2
is a tree, and

(4) H is generically minimally rigid in the plane.

Proof. Proposition 4.1 tells us that (3) and (4) are equivalent. The implications (1) =⇒
(2), (2) =⇒ (3), and (3) =⇒ (1) are Lemmas 4.3, 4.6, and 4.5, respectively. �
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Figure 3. For T1 and T2 trees as in the proof of Lemma 4.6, on the left are the
restrictions of T1 and T2 to the leaf set 123n and on the right is the restricted
clade graph GH

T1,T2
. Each label on GH

T1,T2
indicates the clade that is the smallest

containing those elements in T1 and T2 on the left and right respectively. Solid
outlines represent connected components of GH′′

T ′
1,T

′
2
. The leaf n in each tree T1, T2 is

placed such that the new edges e1n, e2n, e3n reconnect the graph, including the two
new vertices, labeled n.
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(a) Case 1: 1 and 2 are closest in both T ′
1 and T ′

2, and the vertices labeled 123 are in opposite
components. The components detached by deleting e12 are reconnected by e3n. The pairing of the
top and middle vertices into components could also be reversed from what is pictured.
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(b) Case 2: 1 and 2 are closest in both T ′
1 and T ′

2, and the vertices labeled 123 are in the same
components. The components detached by deleting e12 are reconnected by e2n.
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(c) Case 3: 1 and 3 are closest in T ′
2. There are three subcases depending on T ′

1. The pair of
vertices detached by e12 are reconnected by e2n. Thus the precise grouping of the two components
of GH′′

T ′
1,T

′
2
doesn’t matter.
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