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Abstract. We propose a new algorithm for the fast solution of large, sparse, symmetric positive-
definite linear systems, spaND — sparsified Nested Dissection. It is based on nested dissection, spar-
sification and low-rank compression. After eliminating all interiors at a given level of the elimination
tree, the algorithm sparsifies all separators corresponding to the interiors. This operation reduces
the size of the separators by eliminating some degrees of freedom but without introducing any fill-
in. This is done at the expense of a small and controllable approximation error. The result is an
approximate factorization that can be used as an efficient preconditioner. We then perform several
numerical experiments to evaluate this algorithm. We demonstrate that a version using orthogonal
factorization and block-diagonal scaling takes fewer CG iterations to converge than previous similar
algorithms on various kinds of problems. Furthermore, this algorithm is provably guaranteed to never
break down and the matrix stays symmetric positive-definite throughout the process. We evaluate
the algorithm on some large problems and show it exhibits near-linear scaling. The factorization
time is roughly O (N) and the number of iterations grows slowly with N .
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1. Introduction. We are interested in solving large symmetric, positive-definite
(SPD) sparse linear systems

(1.1) Ax = b, A ∈ RN×N .

In particular, we focus on linear systems with similar properties as those arising from
the discretization of elliptic partial differential equations, using finite difference or
finite elements for instance. Solving such systems is a crucial part of many scientific
simulations.

Algorithms for solving Eq. 1.1 are traditionally divided into three categories. On
one hand are direct methods. The naive Cholesky (A = LL>) factorization can lead
to a factorization cost of O

(
N3
)

(with O
(
N2
)

memory use) due to fill-in in the factor
L. When the matrix A comes from the discretization of PDE’s in 2D or 3D space, one
usually uses the Nested Dissection [40] ordering to reduce fill-in. By doing so, the time
complexity is typically reduced to O

(
N3/2

)
(in 2D) and O

(
N2
)

(in 3D), with the

memory complexity reduced to O (N logN) (in 2D) and O
(
N4/3

)
(in 3D) [25, 40].

This is what most state-of-the-art direct solvers are built upon [17, 3, 35]. Those
algorithms work very well for most moderate-size problems. However, the O

(
N2
)

complexity in 3D makes them intractable on large scale problems.
An alternative is to use iterative algorithms like Krylov methods or multigrid.

Multigrid [22, 9, 32] (and its algebraic version, [10, 50]) works very well on fairly
regular elliptic PDEs, usually with a near-constant iteration count and O (N) memory
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use regardless of the problem size. However, it can solve only a fairly limited range
of problems and its iteration count can start growing when the problem becomes ill-
conditioned. Krylov methods, such as CG [36, 53], MINRES [42] or GMRES [47] can
be applied to a very wide range of problems, necessitating only sparse matrix-vector
products. However, to converge at all, one needs to always couple them with an
efficient preconditioner. This is typically a very problem dependent task.

One way, however, to build preconditioners is using incomplete factorizations and
low-rank approximations. Incomplete factorization algorithms are built on top of a
classical matrix factorization algorithm. Incomplete LU (ILU) for instance starts with
a classical LU algorithm and ignores some of the fill-in based on thresholding and on
an artificially prescribed maximum number of non-zeros in every row & column [45].
Block versions [48] are sometimes used because of better robustness (with possible
pivoting) and practical properties (cache-friendly algorithm, use of BLAS, etc.). Once
an incomplete LU factorization has been computed, it can be used as a preconditioner
for a CG of GMRES algorithm for instance.

Matrices arising from PDE discretization also typically have low-rank off-diagonal
blocks [7, 6, 13]. More precisely, the fill-in arising when factoring the matrix typically
has small numerical rank, with weak dependence on N . This is closely related to
the existence of a smooth Green’s function for the underlying PDE and to the Fast
Multipole Method [5, 29, 24]. Matrices built using this property are broadly called
Hierarchical (H) matrices [31]. Many formats exist, depending on when and how off-
diagonal blocks are compressed into low-rank format. The Hierarchical Off-Diagonal
Low Rank (HODLR) [1] format compresses all off-diagonal blocks. If the off-diagonal
are compressed using a nested basis, we obtain Hierarchically Semi-Separable (HSS)
matrices [14, 12, 15, 57]. Finally, the broader category of H2 matrices also uses
nested basis but only compresses well-separated (i.e., far-field) interactions ([33, 34,
60], [43] with LoRaSp and [51] with the “Compress and Eliminate” solver). All of
those representations lead to a data-sparse representation of the matrix with tunable
accuracy (by making the low-rank approximations more or less accurate) and fast
inverse computations. This can then be used to construct preconditioners. These
constructions, while asymptotically efficient, sometimes have fairly large constants.

Attempts to improve the practical performance rely on exploiting sparsity as well
as the low rank structure. Most approaches up to date have focused on incorporating
fast (i.e., H-) algebra into the classical Nested Dissection algorithm [28] in order to
decrease the cost of working with large fronts. Other works have taken the similar
approach of incorporating rank structured matrices into a multifrontal factorization
in order to compress the large dense frontal matrices. HSS is often used to compress
the large frontal matrices [56, 49, 54, 55, 26]. The last one was incorporated into the
Strumpack package. [2] uses Block Low-Rank approximation to compress the frontal
matrices in the MUMPS solver [3]. Finally, [21] studies the use of H-matrices using
HODLR in the PaStiX solver [35].

The Hierarchical Interpolative Factorization (HIF) [37] proposes a different ap-
proach. Instead of storing the full dense fronts in some low-rank format, it uses
low-rank approximation to directly sparsify (i.e., eliminate part of) the Nested Dis-
section separators without introducing any fill-in. As a result, the algorithm never
deals with large edges (in low-rank format or not) but instead constantly reduces the
size of all edges and separators. This is the approach we take.

We finally mention some recent work by J. Xia & Z. Xin [59] and J. Feliu-Fabà
et al. [23] where, in both cases, a scale-then-compress approach is taken. Our al-
gorithm shares similarities with those, as we also scale the matrix block using the
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Cholesky factorization of the pivot. As we will see, this significantly improves the
preconditioner’s accuracy.

1.1. Contribution. Our approach is based on the idea of HIF described in [37].
However, there are several differences, improvements and novel capabilities:

• Our algorithm is completely general and can be applied to any (SPD) matrix.
The only required input is the sparse matrix itself. If geometry information is
available, it can be used to improve the quality of the ordering and clustering.

• We incorporate an additional diagonal block scaling step in the algorithm,
greatly improving the accuracy of the preconditioner for only a small addi-
tional cost;

• We use an orthogonal (instead of interpolative) transformation, improving
stability and guaranteeing that the preconditioner stays SPD when A is SPD;

• We test the algorithm on more and larger test problems.
In a nutshell, our algorithm is based on a couple of key ideas. First, we start

with a nested dissection (ND) ordering. Then following the idea introduced in [37],
after each elimination step, we sparsify the interfaces between just-eliminated interi-
ors, effectively reducing the size of all ND separators. This is done using low-rank
approximation, allowing to sparsify the separators without introducing any fill-in. We
then merge clusters and proceed to the next level.

A natural consequence of the above algorithm is that, if the compression fails to
reduce the size of the separators, the algorithm reverts to a (slower, but still relatively
efficient) Nested Dissection algorithm.

1.2. Contrast with fast algebra based algorithms. We emphasize that the
HIF approach [37] and ours are different from the classical way of accelerating sparse
direct solvers. Consider for instance the top separator of a Nested Dissection elim-
ination. At the end of the elimination, the corresponding (very large) block in the
matrix is typically dense. MUMPS [2] and PaStiX [21] for instance use fast H-algebra
to compress this block. This allows for fast factorization, inversion, etc.

As indicated above, we take a different approach. Instead of storing large blocks
(corresponding to large separators) in low-rank format (typically using H-matrices),
we eliminate part of the separators right from the beginning, effectively reducing their
size. We do so without introducing any fill-in, but at the expense of an approximate
factorization. As a result, the top separator remains dense but is much smaller than
at the beginning.

Both approaches use some sort of hierarchical clustering of the unknowns. The
difference lies in the order of operations. In the first category (large blocks using
fast H-algebra) elimination is delayed until the end. The result are large and dense
but hierarchically low-rank fronts. In our approach (like in [37]), fronts are kept small
throughout the factorization by eliminating unknowns related to low-rank interactions
as soon as possible.

1.3. Organization of the paper. This paper is organized in three sections.
First, section 2 introduces and motivates the algorithm, starting at a high level and
later introducing the details. Then, section 3 proves the stability of the scheme,
discusses the choice of the low-rank approximation and provides a complexity analysis.
Finally, section 4 shows numerical experiments on medium and large scale matrices.

2. Sparsified Nested Dissection. This section describes the algorithm in de-
tail. We start by discussing Nested Dissection and some of its characteristics. Then,
building upon it, we introduce our algorithm, and then detail all the various parts.
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(a) ` = 0 (b) ` = 1 (c) ` = 2 (d) ` = 3

Fig. 2.1: Classical Nested Dissection ordering.

2.1. Classical Nested Dissection Ordering. Nested Dissection (ND) [25] is
an ordering strategy to factor sparse matrices. Consider a sparse symmetric matrix
A ∈ RN×N and its graph GA = (V,E) defined as V = {1, . . . , N} and E = {(i, j) :
Aij 6= 0}. Notice that since A is symmetric, the graph is undirected. The basic
building block of ND is the computation of vertex-separators. Starting with the full
graph, one finds a cluster of vertices, a vertex-separator, separating the graph into
two disconnected clusters (a cluster is a subset of V ).

Fig. 2.1b gives an example of such a separator. The idea is then applied recur-
sively as indicated in Fig. 2.1c and Fig. 2.1d. That is, disconnected clusters are further
sub-divided using separators. This recursive process is repeated until cluster sizes are
small enough to be factored using some direct dense method. A matrix factorization
can begin by eliminating unknowns in all disconnected clusters defined by the last
recursive level of the nested dissection process. Thus, the only non-eliminated un-
knowns correspond to degrees-of-freedom (dofs) associated with all of the separators.
We then proceed to eliminate all dofs associated with the last set of separators (e.g.,
those defined in the ` = 3 level of Fig. 2.1). Once these have been eliminated, we
proceed by eliminating the second to last set of separator unknowns (e.g., those de-
fined on ` = 2 in Fig. 2.1). The process continues eliminating unknowns associated
with successively lower levels. This process can be viewed as an elimination tree,
illustrated in Fig. 2.2.

The elimination tree indicates dependencies between operations. Each node is a
cluster in the graph of A (separator or leaf-interior), and a cluster can only be elimi-
nated once all its descendants have been eliminated. The clusters are then eliminated
from bottom to top. This follows from the fact that eliminating a parent before a child
would create edges between clusters previously separated, breaking the purpose of the
ordering. ND is an ordering that limits fill-in: by eliminating clusters from bottom
to top, one never creates edges (i.e., fill-in) between clusters previously separated.

The elimination procedure can also be represented in matrix form. Denote the
total number of levels by L (where the leaves correspond to ` = L and the root
to ` = 1). Define A(L) as the entire matrix and let A(`) (for ` < L) be the Schur
complement operator (trailing matrix) obtained by eliminating levels `+1, . . . , L. The
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` = 1

` = 2

` = 3

` = 4

Fig. 2.2: The elimination tree associated to the ND ordering on Fig. 2.1

matrix obtained after eliminating the `+ 1 level can be written in a block-arrowhead
form

A(`) =


A

(`)
11 A

(`)
1q

. . .
...

A
(`)
mm A

(`)
mq

A
(`)
q1 . . . A

(`)
qm A

(`)
qq


where m = 2`−1 and q = m + 1. Here, A

(`)
qq refers to the matrix associated with all

separators at levels 1, . . . , `−1. The A
(`)
ii (for i ≤ m) are the matrices associated with

non-eliminated unknowns within the ith disconnected separators on the `th level. The
Schur complement can now be written as

A(`−1) = A(`)
qq −

m∑
i=1

A
(`)
qi

(
A

(`)
ii

)−1

A
(`)
iq .

This new matrix can then be interpreted as another block-arrowhead matrix associ-
ated with level `− 1 and so the elimination procedure can be repeated.

While limited, the fill-in is still significant. For instance, once all descendants of
the top separators have been eliminated, the top separator is typically completely filled
(dense). For problems arising from the discretization of PDE’s in 3D with O (N) =
O
(
n3
)

degrees of freedom (dofs), the top separator typically has size O
(
N2/3

)
=

O
(
n2
)
. For instance in a regular n × n × n cube with N = n3 dofs and a 7-points

stencil (or any other stencil with only “local” connections), the top separator is a
plane (see Fig. 2.3) of size n × n = n2 = N2/3. Hence, its factorization will cost
O
(
N2/3×3

)
= O

(
N2
)
, leading to quadratic or near-quadratic algorithms. While this

is only formally valid on regular cubic-shaped graphs, the issue extends beyond those
problems [40]: the separators in 3D graphs are typically very large, leading to large
Schur complements and an expensive factorization, with complexity well above O (N).

Our algorithm addresses this specific concern by continually decreasing the size of
all separators to keep fill-in to a minimum. It does so using low-rank approximations,
and the factorization is then only approximate. In most cases under consideration,
the separator size is typically decreased to O (n) = O

(
N1/3

)
so that its factorization

costs O (N).

2.2. Sparsified Nested Dissection. As noted, the sub-blocks created by the
repeated Schur complement process become denser. To further limit fill-in, we intro-
duce a sparsification algorithm that is invoked after all eliminations associated with
a particular level have been performed. To motivate the sparsification, let us first
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n

n

Fig. 2.3: Classical ND in 3D with N = n3 nodes: the top separator is of size O
(
n2
)
.

Once the left and right clusters have been eliminated the top separator becomes
completely dense, making its elimination alone cost O

(
(n2)3

)
= O

(
N2
)
.

(a) The separators (b) The interfaces

p

n

(c) Before sparsification

f

c
n

(d) After sparsification

Fig. 2.4: Separator sparsification process. The first picture depicts the usual ND
separator. The grey boxes have been eliminated. The second picture shows the
different interfaces to be sparsified. The third and fourth picture focus on a given
interface defined by p and connected to n. On the fourth picture, we have transformed
p into f and c through a change of basis (not shown here) and up to a small O (ε)
error. f is now disconnected from n and can be eliminated, without introducing any
fill-in. Dark edges are edges updated by the sparsification.

consider a very simple case. Suppose we are about to eliminate level ` and that there

exist a subset of the jth separator such that the corresponding rows in A
(`)
jq are rela-

tively small. An inexact or incomplete factorization can be defined by simply ignoring
these small rows. This effectively decouples those unknowns from the rest of the sys-
tem so that they can be eliminated right away, without causing an increase in the
number of non-zeros in the next recursive Schur complement. We can think of this

as decreasing the size of the jth separator. While A
(`)
jq will not generally have small

rows, we instead seek a transformation that produces the desired small rows without
altering the nonzero structure of the matrix. Further, this transformation will not
only be applied to the off-diagonal blocks in the level ` arrowhead matrix, but to all

the non-eliminated degrees of freedom (dofs) (including those in A
(`)
qq ). This means

we will effectively decrease the size of all remaining separators at levels 1, . . . , `.
To understand the transformation, it is best to switch to a different block structure
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for the matrix. Specifically, consider the matrix

A(`) =


Â

(`)
11 . . . Â

(`)
1M

...
. . .

...

Â
(`)
M1 . . . Â

(`)
MM


This matrix is equivalent to A(`), the use of the hat accent symbol is only to emphasize

the different block structure. Each Â
(`)
ii corresponds to the sub-matrix associated with

an interface (instead of a separator). Specifically, an interface is defined as a subset
of a separator for which the left and right neighbors correspond to a given pair of
separators at level `. These M interfaces are subsets of all the separators associated

with non-eliminated levels (i.e., levels k with k ≤ `). Notice that many of the Â
(`)
ij are

zero as only neighboring interfaces are coupled. Fig. 2.4 shows the distinction between
ND separators (Fig. 2.4a) and interfaces (Fig. 2.4b). The top-level (root) separator
has been cut into 5 pieces, each associated to a pair of left and right neighbors.

Fig. 2.4c and Fig. 2.4d illustrates a typical situation and the effect of the sparsi-
fication. Let p be a subset of a ND separator (in dark grey) at the interface between
two interiors and n be all its neighbors (in light grey). The remaining nodes are
disconnected from p and can be ignored for the purpose of this discussion. In this
situation, the leaf-level interiors (dark grey clusters on Fig. 2.4a and Fig. 2.4b) have
been eliminated and only higher-levels separators are left. The greyed edges represent
connections between degrees of freedom. Notice that edges never cross separators.

Let Âpn denote all the edges from p to n. Assuming Âpp = I (this is not a
restriction, see subsection 2.5), we can then consider this sub-matrix of A(`)[

I Âpn

Ânp Ânn

]
Then, compute a low-rank approximation

Âpn =
[
Qpf Qpc

]︸ ︷︷ ︸
Q

[
Wfn

Wcn

]
with ‖Wfn‖ = O (ε)

and verify that[
Q>

I

] [
Ipp Âpn

Ânp Ânn

] [
Q

I

]
=

 Iff O (ε)
Icc Wcn

O (ε) W>cn Ânn


The matrix Q is a change of variables, transforming p into f (“fine”) and c (“coarse”
— following AMG’s terminology, [50]). If we then ignore the O (ε) edges, we have
effectively decoupled the f variables from the rest, i.e., we have eliminated f . Notice
that this didn’t create any fill-in: Ânn is unchanged. As a result, we effectively
decreased the size of the separator, without altering the nested dissection ordering. In
the following, we will drop the hat notation, as it should be clear from the context
whether we are referring to separators or interfaces.

The algorithm then alternates between classical “interiors” elimination (using
a block Cholesky factorization) and “interfaces” sparsification as explained above.
Algorithm 2.1 presents a high-level version of the algorithm. We name the algorithm
spaND, referring to “sparsified Nested Dissection”.

The subsequent sections explain in detail the ordering & clustering (i.e., how we
define the “interfaces”), the elimination and sparsification.
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Algorithm 2.1 High-level description of the spaND algorithm

Require: Sparse matrix A, SPD, Maximum level L
Compute a ND ordering for A, infer interiors, separators and interfaces (see sub-
section 2.3)
for all ` = L, . . . , 1 do

for all I interior do
Eliminate I (see subsection 2.4)

end for
for all B interface between interiors do

Sparsify B (see subsection 2.5 and subsection 2.6)
end for

end for

I

B

(a) An interior and its boundary before the
modified ND step.

L ∩ I

R ∩ I

M∩ I

R ∩ B

L ∩ B

(b) The resulting left and right interiors and
their boundaries.

Fig. 2.5: The clustering & ordering building block. On the left, an initial interior I
and its boundary B. We then compute a vertex separator separating I ∪ B into left
L, right R and separatorM. On the right, the resulting separated interiors and their
boundaries, as well as the actual ND separator.

2.3. Ordering and Clustering. In addition to ordering, an appropriate clus-
tering of the dofs has to be performed to define the various interfaces between interiors.
That is, a simple ND ordering, by itself, does not give any indication about what the
interfaces between different interiors are. To see this, consider Fig. 2.1 (bottom row).
This figure illustrates a classical ND ordering process. At every step, interiors are
further separated by computing vertex separators. However, there is no clear way
to define interfaces between interiors as shown on Fig. 2.4 for instance. This cannot
readily be calculated or even properly defined with a “usual” ND ordering.

To solve this issue, we have to keep track of the boundary of each interior during
the ordering process. We do so by modifying the usual ND algorithm. In the classical
algorithm, a set of vertices is separated by a vertex-separator, and the algorithm then
recurses on the “left” and “right” clusters (interiors). We modify this by separating
an interior and its boundary using vertex separators. This lets keep track of the
interfaces. Fig. 2.5 shows the high-level idea. For every interior I we keep track of its
boundary B and we then separate their union I ∪ B.

In practice, each node in the graph keeps track of its “left” and “right” neighboring
separators, in addition to keeping track of the separator it belongs to. We encode this
by associating to each vertex v a 3-tuple (S,L,R). S is the usual ND separator (`, k)
where ` is its level and 1 ≤ k ≤ 2`−1. L and R are the ND separators of v’s left and
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right neighbors, respectively. Algorithm 2.2 formalizes this idea. Notice how the only
building block is a vertex-separator routine, as available in Metis [38].

Algorithm 2.2 Ordering and clustering algorithm. The algorithm is similar to a
classical ND algorithm, except that it keeps track of the interfaces between interi-
ors/separators, and recursively dissects interiors and their interfaces. ND separators
are encoded as (`, k) where ` is the level and 1 ≤ k ≤ 2`−1.

Require: V , vertices, E, edges, L levels
% Initialize the top separator (everyone), left and right neighbors (undefined)
C[v] = (S : (1, 1), L : none, R : none) for all v ∈ V
for all ` = 1, . . . , L− 1 do

for all k = 1, . . . , 2`−1 do
% Find interior to separate I and its boundary B
I = {v ∈ V : C[v]S = (`, k)}
B = {v ∈ V : C[v]L = (`, k) or C[v]R = (`, k)}
% Find vertex separator M, left and right interiors L and R
(L,M,R) = vertex-separator(I ∪ B)
% Update separator, left and right interiors
C[v]S = (`, k) for all v ∈M\B
C[v]S = (`+ 1, 2k − 1) for all v ∈ L\B
C[v]S = (`+ 1, 2k) for all v ∈ R\B
% Update neighbors of separator
for all v ∈M∩ I do
C[v]L = (`+ 1, 2k − 1)
C[v]R = (`+ 1, 2k)

end for
% Update neighbors of left and right boundaries
for all v ∈ L ∩ B do

if C[v]L = (`, k) then
C[v]L = (`+ 1, 2k − 1)

else
C[v]R = (`+ 1, 2k − 1)

end if
end for
for all v ∈ R ∩ B do

if C[v]L = (`, k) then
C[v]L = (`+ 1, 2k)

else
C[v]R = (`+ 1, 2k)

end if
end for

end for
end for
return C

Algorithm 2.2 returns C that gives for each vertex v in the graph its ND separa-
tor, C[v]S , as well as a tuple (C[v]L, C[v]R) indicating its left and right neighboring
interiors. We then cluster together vertices v with the same C[v]. This algorithm is
naturally recursive and defines, for each separator, a tree of clusters.

Fig. 2.6 illustrates the effect of Algorithm 2.2 On the top row, we illustrate the
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(a) ` = 0 (b) ` = 1 (c) ` = 2 (d) ` = 3

(e) ` = 0 (f) ` = 1 (g) ` = 2 (h) ` = 3

(i) ` = 1 separator clustering hi-
erarchy

(j) ` = 2 separators clustering
hierarchy

(k) ` = 3 separators clus-
tering hierarchy

Fig. 2.6: A modified ND ordering & clustering (Algorithm 2.2). The top row indicates
the separators computed at each step by separating interiors & boundaries. The
middle row illustrates the clustering of dofs in each separator creating the interfaces
between interiors. The bottom row shows the clusters hierarchy within each ND
separator.

separators at every step (`) of the algorithm. The important distinctions with Fig. 2.1
is that the computed vertex-separators overlap with the boundaries to keep track of
interfaces, and each separator is further divided into clusters. On the middle row,
we illustrate the actual clusters at each level and how the ND separators are broken
into pieces. Separators at each level are depicted in a different color. Each separator
is associated a hierarchy of clusters. The bottom row shows such a hierarchy within
each separator and how those have to be merged when going from a lower to higher
level.

In practice (see section 4), we implement this algorithm in two ways. If geom-
etry information is available, the vertex-separator subroutine of Algorithm 2.2 is
implemented using a recursive coordinate bisection. The subgraph is partitioned into
two equal parts along the dimension with the largest span, and the nodes in the first
part adjacent to the second form the middle separator. If no geometry information is
available, we use the nodeND routine of Metis [38].

2.4. Separators Elimination using Block Cholesky. Now that the matrix
has been ordered and that dofs have been grouped into clusters defining various in-
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terfaces, the next step is to eliminate the interiors or separators at a given level ` of
the ND tree, as in a usual direct solver (see Algorithm 2.1). This section describes
this elimination step, which is simply a standard block Cholesky reinterpreted with
our notation. Consider A into the “block-arrowhead” form following the ND ordering

A =

Ass Asn

Aww Awn

Ans Anw Ann


We indicate the separator or interior of interest by s, its neighbors by n and all
disconnected nodes by w. By symmetry, Aab = A>ba.

Let LsL
>
s = Ass the Cholesky factorization of Ass. Then, define

Es =

 L−1
s

I
−AnsA

−1
ss I


Then, applying Es on the left and right of A leads to

EsAE
>
s =

I Aww Awn

Anw Ann −AnsA
−1
ss Asn

 =

I Aww Awn

Anw Bnn


We notice that this may introduces (potentially many) new ni–nj edges not present
before, a fill-in. However, there was no modification involving w. This is key in the
ND ordering: there are no edges s–w, so no fill-in outside the neighbors.

2.5. Interfaces Scaling. Once that the separators or interiors at a given level
have been eliminated, the algorithm goes through each interface and sparsifies it.
However, a critical step before this is the proper scaling of each of those clusters. The
goal is to scale (what is left of) A such that each diagonal block corresponding to a
given interface is the identity. This provides theoretical guarantees (section 3) and
significantly improves the accuracy of the preconditioner (section 4).

Consider the matrix

A =

[
App Apn

Anp Ann

]
We define the block-scaling operation over p as

Sp =

[
L−1
p

I

]
The result is

SpAS
>
p =

[
I L−1

p Apn

AnpL
−>
s Ann

]
=

[
I Cpn

Cnp Ann

]
2.6. Interface Sparsification using Low-Rank Approximations. Now that

interiors have been eliminated and each interface scaled, the final step is the sparsifi-
cation. At this stage, the algorithm will go through each interface, p, and sparsify it,
using low-rank approximations. Consider again

A =

[
App Apn

Anp Ann

]
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2.6.1. Using orthogonal transformations. Let us assume App = I. This is
not a loss of generality, as it can always be obtained by scaling p, as described in
the previous section. Let us also assume that Apn can be well approximated by a
low-rank matrix, i.e.,

Apn = QpcWcn +QpfWfn, ‖Wfn‖2 = O (ε)

where Qpc is a thin orthogonal matrix and Qpf its complement. This can be computed
using a rank-revealing QR (RRQR) or a singular value decomposition (SVD) [27,
11, 30]. We use the letters c to denote the “coarse” (also known as “skeleton” or
“relevant”, [37]) dofs, and f the “fine” (“redundant” or “irrelevant”) dofs. Let Qpp

be a square orthogonal matrix built as Qpp =
[
Qpf Qpc

]
. This implies

Q>pcApn = Wcn, Q>pfApn = Wfn = O (ε)

Then, define

(2.1) Qp =

[
Qpp

I

]
We see that

Q>p AQp =

 I Wfn

I Wcn

W>fn W>cn Ann

 =

 I O (ε)
I Wcn

O (ε) W>cn Ann


After the orthogonal transformation, f only has very “weak” connections to n. If

we ignore the O (ε) term, this is the same as dropping the n–f edge. This effectively
means f has been eliminated.

However, note that this did not introduce any new edge with any of the neighbors
of p. This is the key difference with a “regular” elimination as described previously:
we can eliminate part of a cluster, here f , without forming new edges between its
neighbors. The n–n edge is unaffected by this operation (i.e., there is no fill-in). A
regular elimination, on the other hand, would have changed the edges n–n.

2.6.2. Variant using Interpolative Transformations. The previous section
details the sparsification process using orthogonal transformations. However, this can
also be done using other transformations. In this section we explain one variant using
interpolative factorization, which was the original idea in [37].

Assume we can partition p = c ∪ f (so in this case c and f are subsets of p) such
that

Anf = AncTcf +O (ε) .

This is often called “interpolative decomposition”. It can be computed for instance
using a rank-revealing QR (RRQR) factorization [18] (note that the RRQR is com-
puted over Anp instead of Apn in subsubsection 2.6.1): computing a RRQR over Anp

leads to (with P the permutation, and R22 = O (ε))

[
Anc Anf

]
= AnpP =

[
Q1 Q2

] [R11 R12

R22

]
⇒ Anf = Q1R11︸ ︷︷ ︸

Anc

R−1
11 R12︸ ︷︷ ︸
Tcf

+Q2R22︸ ︷︷ ︸
=O(ε)
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Note that this factorization can also be computed using randomized methods [39].
This technique is referred to as “interpolative” because it is exact on Anc: only Anf

is approximated and Tcf acts as an interpolation operator (i.e., as a set of Lagrange
basis functions).

Now, consider

Tp =

 I
−Tcf I

I


Notice how Tp is a lower-triangular matrix, while Qp in Eq. 2.1 was orthogonal. Both
can be efficiently inverted; however, working with orthogonal matrices brings stability
guarantees (see section 3). Then,

T>p ATp =

 Cff Cfc O (ε)
Ccf Acc Acn

O (ε) Anc Ann


with

Cff = Aff −AfcTcf − T>cfAcf + T>cfAccTcf , Ccf = Acf −AccTcf , Cfc = C>cf

The final result is the same as using orthogonal transformation. The differences
are that

• App is not required to be identity;
• Acn is simply a subset of Apn.

However, as we will see later on, there is a significant accuracy loss when using this
technique without block scaling as opposed to orthogonal transformations with block
scaling. Furthermore, it does not guarantee that the approximation stays SPD.

2.7. Clusters merge. Finally, once we have eliminated all separators at a given
level, we need to merge the interfaces of every remaining ND separator. Consider for
instance Fig. 2.6. After having eliminated the leaf (level ` = 4) and the level ` = 3
separators, we need to merge the clusters in each separator. This is done following
the cluster trees. Merging children clusters p1, . . . , pk into a parent cluster p simply
means concatenating their dofs:

p =
[
p1 p2 . . . pk

]
.

Then, all block rows and columns corresponding to p1, . . . , pk get concatenated into
p.

2.8. Sparsified Nested Dissection. Now that we have introduced all the re-
quired building blocks (block elimination, scaling and sparsification), we can present
the complete algorithm. Given a matrix A, appropriately ordered and clustered, the
algorithm simply consists of applying a sequence of eliminations Es (subsection 2.4),
scalings Sp (subsection 2.5) and sparsification Qp (subsection 2.6) (plus potentially
some re-orderings and permutations to take care of the fine nodes f and the merge),
at each level `, effectively reducing A to (approximately) I:

M>AM ≈ I with M =

L∏
`=1

∏
s∈S`

E>s
∏
p∈C`

S>p
∏
p∈C`

Qp





14 L. CAMBIER, C. CHEN, E. BOMAN, S. RAJAMANICKAN, R. TUMINARO, E. DARVE

In this expression, S` are all the ND separators at level ` and C` are all the clusters
(interfaces) in the graph right after level ` elimination. Since M is given as a product
of elementary transformations, it can easily be inverted. We refer to this algorithm as
spaND, which stands for “sparsified Nested Dissection”. Algorithm 2.3 presents the
algorithm.

Algorithm 2.3 The spaND algorithm (OrthS).

Require: A � 0; L > 0; ε
M = [] (empty list)
Compute a L-levels modified ND ordering of A using Algorithm 2.2. Infer clusters
hierarchy in each ND separator.
for all ` = L, . . . , 1 do

for all s separator at level ` do {Eliminate separators at level `}
Eliminate s, get Es (subsection 2.4)
Append Es to M

end for
for all p interfaces do {Scale interface}

Scale p, get Sp (subsection 2.5)
Append Sp to M

end for
for all p interface do {Sparsify interfaces}

Sparsify p with accuracy ε, get Qp (subsection 2.6)
Append Qp to M

end for
for all s separator do {Merge clusters}

Merge interfaces of s one level following clusters hierarchy (subsection 2.7)
end for

end for
return M =

∏L
`=1

(∏
s∈S`

E>s
∏

p∈C`
S>p
∏

p∈C`
Qp

)
(such that M>AM ≈ I)

We illustrate the effect of all the Es, Sp and Q>p in A (i.e., the trailing matrix) on
Fig. 2.7. The two top rows show the actual trailing matrix, while the two bottom rows
show the evolution of the matrix graph’s clusters as the elimination and sparsification
proceeds.

3. Theoretical results. We here discuss a couple of facts related to the above
factorizations.

3.1. Sparsification and Error on the Schur Complement. Consider a
framework where

A =

[
App Apn

Anp Ann

]
.

Without loss of generality, we do not include the w–w and w–n blocks, as they are
completely disconnected from p and unaffected by the sparsification. Then, consider
a general low-rank approximation

Apn = X1Y
>
1 +X2Y

>
2
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(a) A (b) After E>1 (c) After S>1 Q1. Grey =
O (ε).

(d) After reordering, bring-
ing f in front.

(e) After merge & E>2 (f) After S>2 Q2. Grey =
O (ε)

(g) A, original
graph

(h) After E>1 (i) After S>1 Q1 (j) After merge

(k) After E>2 (l) After S>2 Q2 (m) After merge (n) After E>3

Fig. 2.7: Illustration of the spaND algorithm. Given A, create a ND tree
of depth 4 and cluster A accordingly, as shown on Fig. 2.7g. This cartoon
shows clusters of vertices of A, where the edges (not shown) should be thought
as connecting close neighbors (like on a regular 2D grid). Denote by E`, S`

and Q` all eliminations, scalings and sparsifications at level `. Then, we have
E4E3(Q>2 S2E2)(Q>1 S1E1)A(E>1 S

>
1 Q1)(E>2 S

>
2 Q2)E>3 E

>
4 ≈ I. The top rows show

the evolution of the trailing matrix; bottom rows show the evolution of the matrix
graph after eliminations, sparsifications and merges. We represent the sparsification
process by shrinking the size of the clusters.
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Version Error on n–n Cost

In O
(
ε2
)
‖C−1

ff ‖2 O (|p||n||c|) Cff arbitrary

InS O
(
ε2
)
‖C−1

ff ‖2 O (|p||n||c|) Cff = I + T>cfTcf

OrthS O
(
ε2
)

O (|p||n||c|)

Table 3.1: Error for various approximations. The left column indicate the sparsifi-
cation variant:In means interpolative and no scaling; InS means interpolative and
scaling; OrthS means orthogonal and scaling.

where ‖Y2‖ = O (ε). Using X =
[
X1 X2

]
as a change of variable, A becomes

[
X−1

I

] [
App Apn

Anp Ann

] [
X−>

I

]
=

[
Bpp Y >

Y Ann

]
=

B11 B12 Y >1
B21 B22 Y >2
Y1 Y2 Ann


The sparsification process then assumes Y2 = 0 and eliminates the 2–2 block. The

true n–n Schur complement is

S = Ann − Y2B
−1
22 Y

>
2

while the approximate one, ignoring Y2, is simply Ann. The error is then

Enn = Y2B
−1
22 Y

>
2 .

We can now consider the different variants proposed in subsection 2.6:
• (In) spaND using interpolative factorization and no diagonal block scaling.

This gives B22 = Cff and Y2 = Anf −AncTcf , so that

‖Enn‖2 ≤ ‖Y2‖22‖B−1
22 ‖2 = O

(
ε2
)
‖C−1

ff ‖.

• (InS) spaND using interpolative factorization and diagonal block scaling.
This leads to

‖Enn‖2 ≤ ‖Y2‖22‖B−1
22 ‖2 = O

(
ε2
)
‖C−1

ff ‖.

However, since Ass = I, Cff = I + T>cfTcf , we can expect, if Tcf is small

(which happens if the right algorithm is employed, see [41]), ‖C−1
ff ‖ to be

much closer to 1.
• (OrthS) spaND using orthogonal factorization and diagonal block scaling. In

this case, we simply have B22 = I and Y2 = W>fn, and so,

‖Enn‖2 ≤ ‖Y2‖22 = O
(
ε2
)
.

Table 3.1 summarizes the results. We notice that those three variants have roughly the
same cost, since they require a RRQR over Apn or Anp, and their cost is proportional
to O (|p||n||c|) with |c| the resulting rank [27, Algorithm 5.4.1]

The key is that the interpolative error bound (without and to some extent with
scaling) includes the potentially large ‖C−1

ff ‖2 term, which is not present with the
OrthS version. This indicates that we can expect the versions with diagonal scaling
to have smaller errors Enn. This will be verified in section 4.
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3.2. Stability of the Block Scaling & Orthogonal Transformations Vari-
ant. In addition to a smaller n–n error as explained previously, the OrthS version
provides stability guarantees.

Theorem 3.1. Let

A =

[
I Apn

A>pn Ann

]
be a SPD matrix. For any low-rank approximation

Apn = QpfWfn +QpcWcn

where Qp =
[
Qpf Qpc

]
is a square orthogonal matrix,

Bp =

[
I Wcn

W>cn Ann

]
is SPD.

Proof. The n− n Schur Complement of Bp (when eliminating c) is

SB = Ann −W>cnWcn.

On the other hand, the n− n Schur Complement of A (when eliminating p) is

SA = Ann −A>npApn = Ann −W>cnWcn −W>fnWfn

which implies
SB = SA +W>fnWfn.

Since A is SPD, so is SA, and since W>fcWfc � 0, we find that SB is SPD. Since the
c− c block of Bp is identity, we conclude that Bp is SPD.

Corollary 3.2. For any SPD matrix and ε ≥ 0, the sparsified matrices of the
spaND algorithm using block diagonal scaling and orthogonal low-rank approximations
(OrthS) remain SPD. In other words, the algorithm never breaks down.

Note that the above corollary does not depend on the quality of the low-rank
approximation, i.e., it works even for ε = 0. It merely relies on the fact that the
truncated error (QpfWfn) is orthogonal to what is retained (QpcWcn) and that the
scheme is using a “weak admissibility” criterion (all edges of p are compressed).
Finally, note that the above proof also shows that

SB = SA +O
(
ε2
)
, SB � SA.

This is a classical result in the case of low-rank approximation using weak admissibility
(see [58, 59] for instance).

3.3. Complexity analysis. We discuss the complexity of spaND and contrast
it with the usual ND algorithm.

Classical ND. Nested dissection leads to a binary tree decomposition of the graph
of A (although n-ary trees are possible). In the literature, the nested dissection tree is
often defined as a tree of separators. Here for convenience, we take a slightly different
viewpoint where each node is a subgraph of G. Both viewpoints are equivalent. We
start with the root node that corresponds to the full graph G of size N . We define the
children nodes as the subgraphs that are disconnected by the separator. This process
is applied recursively to define the entire tree.
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In our complexity analysis, we are going to assume that all the graphs for sparse
matrices satisfy the following nested dissection property. We assume that leaf nodes
contain at most N0 nodes, where N0 ∈ O (1). Consider a node i in the tree, of size
ni. Consider the set Di of all nodes j such that they are descendant of i and they
contain at least ni/2 nodes. We assume that |Di| ∈ O (1), that is the size of this set
is bounded for all i and N . This property is satisfied for β-balanced trees in which
all children subgraphs have size βni, for some 0 < β < 1 independent of i and N . In
that case we have |Di| ≤ 1 + log 2/ log β−1.

We assume that all separators are minimal in the sense that each node in a sepa-
rator is connected to the two children subgraphs in the nested dissection partitioning
(otherwise this node can be moved to one of the subgraphs).

Finally, we assume that a subgraph of size ni is connected to at most O(n
2/3
i )

nodes in G.
As far as the authors know, all matrices that arise in the discretization of partial

differential equations in 3D using a local stencil satisfy this property.
Consider now a node i of size 2−`N ≤ ni < 2−`+1N (see Fig. 2.3). The associated

separator has size at most

c` ∈ O
(

2−2`/3N2/3
)

Further, the fill-in results in at most O
(
2−2`/3N2/3

)
non-zero entries in each row.

The cost of eliminating a separator in that size range is bounded by

el ∈ O
((

2−2`/3N2/3
)3
)

= O
(
2−2`N2

)
From our assumption, the number of clusters of size 2−`N ≤ ni < 2−`+1N is bounded
by 2`. Hence, the overall factorization cost is bounded by

tND,fact ∈ O

(
L∑

`=0

2`e`

)
= O

(
L∑

`=0

2−`N2

)
= O

(
N2
)
, L ∈ Θ(log(N/N0))

We recover the usual computational cost of nested dissection for 3D meshes. Most of
the computational expense is at the top of the nested dissection tree, with the final
separator of size N2/3.

The complexity of applying the factorization can be derived similarly. Since for
each cluster of size ni, its separator has O

(
2−2`/3N2/3

)
fill-in entries in its rows, the

related solve cost is O
(
2−4`/3N4/3

)
and the cost of one solve is

tND,apply ∈ O

(
L∑

`=0

2−`/3N4/3

)
= O

(
N4/3

)
spaND. On the other hand, assume that the sparsification is able to decrease each

separator size before elimination from c` to

s` ∈ O
(

2−`/3N1/3
)

This means that the rank scales roughly like the diameter of the separators. This
is also the rank of the off-diagonal blocks for separators in the original matrix A.
The assumption in some sense is that the rank of far-away fill-ins is O(1). This is
comparable with complexity assumptions in the fast multipole method for example.
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We now discuss a few additional assumptions regarding the construction of the
interfaces, in order to guarantee the final O (N logN) cost. Recall that interfaces are
used for sparsification and correspond to a multilevel partitioning of the separators.
We will say that two nodes (i, j) at the same level in the nested dissection tree are
neighbors if there is a node in G that belongs to a separator at this level or above,
and that is connected to i and j, in the graph G. We will assume that each node
has only O (1) neighbors. Under this assumption, each interface is connected to O (1)
interfaces at the same level.

Considering the computational cost, for all nodes of size 2−`N ≤ ni < 2−`+1N ,
the cost can be divided into:

• eliminating separators. With the same reasoning as previously, and since an
interface is connected to O (1) interfaces, the cost is bounded by

O
(

(2−`/3N1/3)3
)

= O
(
2−`N

)
• scaling and sparsifying the remaining interfaces. By construction the size of

each interface is in O
(
2−`/3N1/3

)
. Since sparsification has cost O

(
m2n

)
for

a matrix block of size m× n, the cost of sparsifying one interface is bounded
similarly by O

(
2−`N

)
.

Hence, under our assumptions, the overall factorization cost for spaND is

tspaND,fact ∈ O

(
L∑

`=1

2` 2−`N

)
= O (N logN)

The complexity of applying the factorization can be derived like previously. A direct
calculation leads to

tspaND,apply ∈ O

(
L∑

`=0

2`
(

2−`/3N1/3
)2
)

= O

(
L∑

`=1

2`/3N2/3

)
= O (N)

Finally, notice that in both cases the memory complexity scales like the factoriza-
tion application. Section 4.2 presents some experimental results regarding separator
sizes as a function of N .

4. Numerical Experiments. This section presents applications of the algo-
rithm on various problems. All matrices are symmetric, real and positive-definite.

We use the following notation throughout this section:
• tF is the factorization time (in seconds), not including partitioning;
• tP is the partitioning time (in seconds);
• tS is the total time (in seconds) required for CG to reach a relative residual
‖Ax−b‖2/‖b‖2 of 10−12. It is the total time to reach convergence. While this
is quite a small value, being able to reach those tolerances is a good indication
of the numerical stability of the algorithm (i.e., that the preconditioner does
not prevent CG from converging to a small tolerance);
• nCG is the associated number of CG steps;
• size Top is the size of the top separator right before elimination;
• memF is the number of non-zero entries in the factorization;

On top of this, at some point we compare spaND to classical “exact” ND (using spaND
with no compression & scaling; “Direct”) and to a classical ILU(0) [46] (“ILU(0)”).

All tests where run on a machine with 300 GB of RAM and a Intel(R) Xeon(R)
Gold 5118 CPU at 2.30GHz. The algorithm is sequential and was written in C++. We
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Fig. 4.1: A quantized high contrast field with lows of ρ−1 and highs of ρ for n = 32
(left) and n = 128 (right). The features sizes are roughly constant as we increase the
mesh size n.

use GCC 8.1.0 and Intel(R) MKL 2019 for Linux for the BLAS & LAPACK operations.
When no geometry information is available, we use Metis 5.1 [38] for the vertex-
separator routine. We use Ifpack2 [44] for ILU(0). Low-rank approximations are
performed using LAPACK’s geqp3 [4]. The truncation uses a simple rule, truncating
based on the absolute value of the diagonal entries of the R factor. This means that,

given R, we select the first r rows, where |Rii|
|R11| ≥ ε for 1 ≤ i ≤ r.

4.1. Impact of Diagonal Scaling & Orthogonal Transformations. In this
first set of experiments we compare, empirically, the three variants of the algorithm:

• (In) spaND using interpolative factorization and no diagonal block scaling;
• (InS) spaND using interpolative factorization and diagonal block scaling;
• (OrthS) spaND using orthogonal factorization and diagonal block scaling.

This should be contrasted with prior work [37] where the algorithm was using the
interpolative only variant (with no scaling).

4.1.1. High contrast 2D Laplacians. We first consider 2D elliptic equations

(4.1) ∇(a(x) · ∇u(x)) = f ∀x ∈ Ω = [0, 1]2, u|∂Ω = 0

where a(x) is a quantized high contrast field with high of ρ and low of ρ−1 and where
4.1 is discretized with a 5-points stencil. This leads to the following discretization

(ai−1/2,j + ai+1/2,j + ai,j−1/2 + ai,j+1/2)uij

− ai−1/2,jui−1,j − ai+1/2,jui+1,j − ai,j−1/2ui,j−1 − ai,j+1/2ui,j+1 = h2fij

The field a is built in the following way:
• create a random (0, 1) array âij ;
• smooth â by convolving it with a unit-width Gaussian;
• quantize â

aij =

{
ρ if âij ≥ 0.5
ρ−1 else

Fig. 4.1 gives an example of high contrast field for n = 32 and n = 128.
We compare the number of iterations CG [36] needs to reach a residual of 10−12.

In all those experiments, a missing value indicates the factorization was not SPD and,
at some point, Cholesky (subsection 2.4) failed. Given that the problem is defined
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Fig. 4.2: 2D n × n Laplacians: each line represent a given variant: In (interpolative
and no scaling), InS (interpolative and scaling) and OrthS (orthogonal and scaling),
at a given accuracy ε. Each dot gives the CG iteration count, and we run the exper-
iments on various problem of size N = n2, for various ρ. The conditioning is roughly
proportional to ρ. A missing data point means Cholesky broke down and the pre-
conditioner is not SPD. This shows that, in general, InS and OrthS are much more
accurate than In at a given ε and OrthS never breaks down. In addition, for small
enough ε, the accuracy is roughly independent from the problem size N . Finally,
when ρ is not too extreme, there is little dependency with the condition number.

on a regular mesh, we use a variant of Algorithm 2.2 where the vertex-separator used
is based on geometry. This leads to a more regular clustering and, in general, to
slightly better performances (in terms of time or memory — CG iterations and the
preconditioner accuracy are usually unaffected).

Fig. 4.2 gives results for ρ = 1 to ρ = 1000. We compare the three variants for var-
ious ε and problem size N = n2. We observe three things from the experiment. First,
the number of iterations, particularly at moderate accuracies (ε = 10−1 or 10−2),
is greatly reduced using InS. Further, the OrthS variant is usually the most accu-
rate. This is likely due to the improved robustness and accuracies of the orthogonal
transformations versus the interpolative ones. Finally, we see that, while the In and
InS variants may fail due to non-SPD approximations, the OrthS never fails and can
always be run, even at ε ≈ 1. We finally note that the small target residual of 10−12

in CG illustrates the good numerical properties of the preconditioner. Previous work
[37] was focused on the interpolative only variant. Both the scaling and orthogonal
transformations greatly improve the algorithm: they reduce the CG iteration count
and guarantee that the preconditioner stays SPD for SPD problems.
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4.1.2. Non-Regular Problems. Fig. 4.3 gives results for three variants on
many1 of the SPD (real & square) problems from the SuiteSparse matrix collection
[20] with more than 50 000 rows and columns.

Most of these problems come from PDE discretization, but not all. G2circuit

for instance comes from a circuit simulation problem and finan512 comes from a
portfolio optimization problem.

For most problems, an accuracy of ε = 10−2 leads to a number of iterations usually
less than 100, while an accuracy of ε = 10−4 leads usually to less than 10 iterations.
Only the Botonakis/thermomech TK problem needs more than 100 iterations for ε =
10−6.

Fig. 4.4 shows a performance profile regarding the CG iteration count. Each plot
compares the three variants for a given accuracy. For a given problem p and a variant
v, let CGp,v be the CG count and CG∗p the best result among the three variants (In,
InS and OrthS), for a problem p. Then each curve is defined as

Tv(t) =
#
{
p ∈ P

∣∣∣CGp,v

CG∗
p
≤ t
}

#P

Each value Tv(t) basically represent the fraction of problems where variant v is within
t times the best algorithm. Problems for which the factorization broke down are given
CGp,v =∞ and for the others the CG count was capped at 500.

On ε = 10−1 and ε = 10−2, InS and In often break down, so OrthS is significantly
better. When InS does not break down however, it has similar performances as OrthS.
On ε = 10−4, InS rarely breaks down, and performances are very similar to OrthS

throughout all the runs. On ε = 10−6, most cases converge in a couples iterations,
so the three variants have similar performances. The plots clearly shows that OrthS

is the optimal strategy, being within at most 2 of the optimal in the worst case, and
being often the winning algorithm.

Further, using orthogonal transformations guarantees that the approximation
stays SPD, allowing the algorithm to not break down even for high ε’s. The number
of iterations of OrthS is not always strictly smaller than the InS variant, while it
is for the regular Laplacian examples. However, the extra robustness (no need for
pivoting) of the orthogonal transformations make them quite attractive in practice
for SPD problems.

We also point out that previous work [37] was restricted to standard elliptic model
problems. To the best of our knowledge, this is the first application of this algorithm
to a wide range of problems.

4.2. Scalings with problem size. We now consider scalings, i.e., how does the
algorithm perform as N grows. Fig. 4.5 shows the evolution of the top separator size
right before elimination (top) and the number of CG iterations (bottom) for ρ = 1 and
ρ = 100 for 3D problems generated as in subsubsection 4.1.1 with a classic 7-points
stencil. From now on, we will only consider the scaling & orthogonal method (OrthS).

This figure shows two properties of the algorithm:
• the top separator size (size Top) typically grows like O

(
N1/3

)
, regardless of ε;

• for small enough ε, the number of CG iterations is roughly O (1).

1We only excluded Queen4147 and Bump2911 (for which the solver ran out of memory) as well
as the Andrews and denormal cases (which are so ill-conditioned that spaND never converges in less
than 500 iterations).
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Fig. 4.3: SuiteSparse matrix collection: result on many SPD problems of the SuiteS-
parse matrix collections with N ≥ 50 000. The partitioning is only graph-based. Each
bar represents the number of CG iterations for a given problem with a given variant of
the algorithm: In (interpolative and no scaling), InS (interpolative and scaling) and
OrthS (orthogonal and scaling) at a given accuracy ε. The absence of a bar means the
algorithm broke down in the face of a non-SPD pivot. This shows that, as ε→ 0, the
algorithm converges on a wide range of problems. This also shows that the scaling
is beneficial in almost all cases. The orthogonal transformations, while not always
better (in terms of accuracy) than the interpolative transformations, do guarantee
that the preconditioner stays SPD and the factorization never breaks down because
of indefinite pivots.

Combining those two properties, we can expect (see subsection 3.3), for small enough
ε,

• a factorization time of O (N logN);
• a solve time of O (N · 1) = O (N),

which implies that the algorithm scales roughly linearly with N .

4.3. Timings and Memory Usage. We now study the efficiency of the algo-
rithm in terms of time (factorization and solve time) and memory usage on “real-life”
problems. To evaluate our algorithm, we use the following two metrics:

• the factorization and solve time (tF and tS);
• the memory footprint (memF, the number of non-zeros in the preconditioner
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Fig. 4.4: Performance profile for all the SuiteSparse experiments (Fig. 4.3). Higher
is better. The performance criterion is #CG, the number of CG iterations. Each
point Tv(t) gives the fraction of problems for which variant v completed with a CG
iterations count less than t times the best variant. An excellent method is one that
starts at t = 1 close to 1 and quickly reaches 1 as t increases. This means that
this method outperforms the other methods in almost all cases. InS and OrthS

typically have the same number of iterations, but InS sometimes leads to a non-
SPD preconditioner, hence the large difference in performances. In typically leads
to a much larger iteration count. Looking at the bottom left figure (ε = 10−4) for
example, we see that for half of the problems In has a CG count more than 10 times
greater than the best variant. For all cases, the OrthS is within a factor of 2 of the
optimal CG count. This shows the importance of both the scaling and the orthogonal
transformations.

M).
SuiteSparse. Table 4.1 shows the results on two specific problems from the SuiteS-

parse collection [20], inline and audikw. For both problems, we see that the “sweet-
spot” in terms of minimal time-to-solution is not for high ε, but for much smaller ε.
For the audikw problem, the optimal is when using ε = 10−2, and for inline, 10−4

gives optimal result. The size Top for inline are overall much smaller than for audikw.
This is usually an indication that the problem is near 2D, for which size Top is typi-
cally O (1). Those problems are of fairly small size and, as such, direct solvers (with
smaller constants and better implementations) remain competitive.
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Fig. 4.5: 3D n × n × n Laplacian results for ρ = 1 (left) and ρ = 100 (right) using
OrthS. We see that size Top (top separator final size, i.e., right before elimination)
scales like O (n), and that increasing the accuracy (decreasing ε) essentially adds a
constant; it does not change the scaling. This should be compared with the classical
ND separator size (solid like), equal to n2. In addition, for a small enough ε, the CG
iteration count becomes virtually constant. Both those facts mean the algorithm can
be expected to have complexity O (N) (see subsection 3.3).

Ice-sheet modeling problem. Table 4.2 gives the result on an ice-sheet modeling
problem [52]. This problem comes from the modeling of ice flows on Antarctica
using a finite-element discretization. The problem is challenging because of the high
variations in background field and the near-singular blocks in the matrix, leading to
a condition number of more than 1011. This problem is nearly 2D. The graph in the
x, y plane is regular but non-square. It is then extruded in the z direction.

We illustrate the partitioning (top-left) and one layer of the solution (top-right,
with a random right-hand side) on a log scale. Note the high variations in scales in the
solution. This makes the problem very ill conditioned and hard to solve with classical
preconditioners. Since the problem is (nearly) 2D and we are given the geometry, we
partition the matrix in the xy plane and extrude the partitioning in the z direction.
The partitioning uses a classical recursive coordinate bisection approach [8].

We use two sequences of matrices with a different number of layers in the z
direction. We see that size Top grows very slowly, close (but not exactly) like O (1) for
each set of problems. This is typical of 2D or near-2D problems. The memory use is
roughly linear for each set of problems, and the factorization time is growing almost
linearly. This validates the effectiveness of the algorithm.

We also compared the algorithm against a direct method (simply using spaND
with no compression but otherwise with the same parameters). The results are in the
“Direct” column. We note the very poor scaling of the direct method; our algorithm,
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Problem (N) ε tP (s.) tF (s.) tS (s.) nCG size Top memF (109)
audikw 1 10−1 96 128 512 277 322 0.46
943 695 10−2 95 268 103 42 606 0.73

10−4 95 500 18 7 1175 1.08
inline 1 10−1 40 8 > 224 > 500 1 0.11
503 712 10−2 41 13 44 80 13 0.13

10−4 41 18 5 8 19 0.16

Table 4.1: Some SuiteSparse performance results using OrthS. Completely general
partitioning (no geometry information used) using Algorithm 2.2 with Metis as a
vertex-separation routine. We see that the algorithm does converge when ε→ 0. The
sweet spot varies for both problems. Notice that inline 1 has a very small size Top,
characteristic of near-2D problems, while the top separator has a much larger size for
audikw 1.

on the other hand, performs much better. In addition, we also compared the algorithm
to out-of-the-box algebraic multigrid (AMG, a classical AMG) and Incomplete LU(0).
On this specific problem, AMG simply did not converge in less than 500 iterations,
the residual stalling around 1.0. While specifically designed AMG can and does
solve this problem well [52], this illustrates that out-of-box algorithms cannot always
efficiently solve very ill-conditioned problems. Because of this, we do not report
those results. We finally tested Ifpack2’s ILU(0) [44] with GMRES. We tested two
orderings, horizontal (layer-wise) and vertical (column-wise). The layer-wise ordering
gave (by far) the best performances and we report only this one. However, while it
is competitive for small problems, it cannot solve large problems because the number
of iterations grows quickly, making the algorithm too expensive. This illustrate the
strong advantage of spaND: with a nearly constant number of iterations, we do not
suffer from this deterioration of the preconditioner and can solve larger problems.

We note that those results can also be compared with recent work using LoRaSp
[43, 16] on the same matrices. Overall, while the scaling with N is similar, spaND
exhibits better constants.

SPE benchmark. Table 4.3 gives the results on a cubic slide of the SPE (Society
of Petroleum Engineering) benchmark [19], a classical benchmark to evaluate oil &
gas exploration codes. This matrix models a porous media flow. This problem is
particularly challenging for direct methods since it resembles a 3D cubic problem and
leads to a high complexity. On the other hand, it can be solved quite efficiently with
classical preconditioners like AMG or ILU.

We use various values of n, and the problem is then of size N = n3. The bottom
pictures show the size Top and memF scaling with N . We see that size Top grows
roughly like O

(
N1/3

)
; this is typical of 3D problems. The memory use grows linearly

with N . Furthermore, the number of CG iterations is constant for all resolutions. This
serves as another validation of the ability of spaND to solve large-scale problems. In
the last column, we show the result using the direct solver. Since it is a direct solver,
the memory use is too great, and we cannot solve the 8M problem. Furthermore, the
time to solve the 2M problem is about 10 times more than using spaND. This shows
the limitations of direct solvers for solving large 3D problems for which the fill-in is
too significant.
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spaND Direct ILU(0)
N tP tF tS nCG sizeTop memF tF + tS tS (nGMRES)

(s.) (s.) (s.) (109) (s.) (s.)

5 layers
629 544 (16 km) 2 7 3 7 78 0.15 19 23 (92)
2 521 872 (8 km) 10 28 14 8 88 0.59 126 286 (182)
10 096 080 (4 km) 50 124 89 10 99 2.40 1036 7137 (720)

10 layers
1 154 164 (16 km) 4 23 7 7 137 0.42 86 42 (93)
4 623 432 (8 km) 20 97 34 8 147 1.73 725 544 (181)
18 509 480 (4 km) 100 538 311 10 159 6.80 — 18680 (745)

16km 8km 4km

101

102

103

t F
+

t S
(s

.)

16km 8km 4km
10−1

100

101

m
em

F
(1

09
)

O (N)
10 layers
5 layers

Table 4.2: Ice Sheet results. Unregular geometric partitioning, ε = 10−2, OrthS. The
top left picture illustrates the separators (for the top 5 levels) and the top right picture
shows the solution (for a random right-hand side b) on log scale. — indicates the direct
method ran out of memory. We run ILU with 2 ordering: layer-wise ordering and
vertical column-wise ordering. The later lead to very poor convergence and is not
shown here. This problem is very ill-conditioned and typically very hard to solve
using out-of-the-box preconditioners. spaND, on the other hand, solves the problem
well and scales near-linearly with the problem size.

4.4. Profiling. Fig. 4.6 shows the (cumulative) memory taken by M in spaND,
compared to the direct method. This shows clearly the effect of the approximation.
At the beginning, memory increases slowly. Then, we keep eliminating and going
up the tree and elimination becomes more and more expansive. The sparsification,
however, allows us to greatly decrease the memory use by reducing the separator’s
sizes. In this specific example, sparsification is skipped for the first four levels. This
can be seen on Fig. 4.6, where spaND’s level 5 memory use is slightly greater than
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spaND Direct.
n N = n3 tP tF tS nCG size Top memF tF + tS

(s.) (s.) (s.) (109) (s.)
128 2 097 152 7 55 18 13 504 0.62 743
160 4 096 000 18 118 44 14 635 1.2 3677
200 8 000 000 40 254 102 16 962 2.5 —
252 16 003 008 87 650 256 14 891 5.0 —

2M 4M 8M 16M
102.5

103

O
(
N2/3

)

O
(
N1/3

)si
ze

T
o
p

2M 4M 8M 16M

109

1010 O
(
N4/3

)
O (N)

m
em

F

Table 4.3: SPE results. Regular geometric partitioning, ε = 10−2, OrthS. “—” in-
dicates the direct method ran out of memory. This problem is a regular cube, and
hence very hard to solve using a direct method, since the separators are very large.
spaND does not suffer from this problem and can solve this problem well, with a near
(but not exactly) linear scaling with the problem size.

the Direct method. After that, however, it remains almost constant.
Fig. 4.7 shows profiling (traces) when solving a larger 16M SPE problem. This

clearly shows the advantage of the algorithm. When using a direct method, elim-
ination becomes excessively slow when reaching the top of the tree, and the time
spent at the last level usually dominates. For instance in this specific problem, the
last elimination would require factoring a matrix of size approximately 2522× 2522 =
63 504×63 504 (approx. 32GB!) that is completely dense. Our algorithm, on the other
hand, spends more time at the early levels in the tree eliminating dofs and sparsifying
separators (see the large brown bar at level 5). As a result, the time actually decreases
as we reach higher levels in the tree. This makes for a much more efficient solver.

Notice that in this example, we start the sparsification at level 5 (i.e., we skip it
for four levels). In our experiments, this gives the best results. Starting earlier leads
to very high ranks (i.e., there is not much to compress), while delaying it too much
leads to too large matrices Apn for which RRQR becomes excessively slow.
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Fig. 4.6: Memory profiling of the SPE 4M problem. Each dot shows the total (cumu-
lative) memory used by the partial preconditioner up to this level in the elimination.
We compare spaND to a direct method using Nested Dissection. Thanks to the spar-
sification (started at level 5), the memory stays well under control, while a direct
method takes more and more memory as the elimination proceeds.
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Fig. 4.7: Time profiling of the SPE 16M problem. Each bar represents the time spent
at each level in the elimination. Unlike direct methods, most of the compute time is
spent at the first levels (near the leaves), where we have to solve many small problems.
A direct method would likely be faster at the beginning, but much slower near the end,
where the fronts become very large and have to be factored exactly. Sparsification time
spikes at level 5 when it is triggered. Starting sparsification sooner is inefficient since
the blocks are not low-rank enough, and the time spent in the low-rank factorizations
is then wasted.

5. Conclusion. In this paper we developed a sparsified Nested Dissection algo-
rithm. The algorithm combines ideas from Nested Dissection (a fast direct method)
and low-rank approximations to reduce the separator sizes. The result is an approxi-
mate factorization that can be computed in near-linear time and results in an efficient
preconditioner.

We note that it differs from the “classical” way of accelerating sparse direct solvers
(like MUMPS with BLR and Pastix with HODLR). Instead of using H-algebra to
compress large fronts, it simply keeps the fronts small throughout the algorithm by
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sparsifying them at each step of the algorithm.
Prior work in this area included the HIF algorithm [37]. While our work resembles

it, HIF is limited to n×n×n regular problems [37] and does not use either the block
diagonal scaling or orthogonal transformations. The LoRaSp algorithm [43] is also
similar. LoRaSp’s performances however may degrade when the ranks at the leaf level
are not small and does not have the same sparsity guarantees [16]. The ordering and
the ability to skip compression for some levels fixes this.

We discuss three variants of the algorithm, depending on the low-rank approxi-
mation methods (interpolative or orthogonal) and the prior use, or not, of scaling. We
showed through extensive numerical experiments that the scaling has a large impact
on the preconditioner’s accuracy. In addition, the use of orthogonal transformation
implies that the algorithm does not break down even when ε ≈ 1.

We then tested the algorithm on both ill-conditioned problems (typically hard for
preconditioners) and “cubic” problems (typically hard for direct methods). On these
problems, spaND is very efficient, with very favorable scaling for the factorization and
near-constant CG iteration count.

Multiple research directions remain unexplored. The compression algorithm used
was a simple (but still quite expensive) RRQR algorithm. Other fast algorithms could
be used, like randomized methods or skeletonized interpolation (where the c of the
interpolative factorization are picked a-priori using some heuristic). These techniques
could greatly accelerate the compression step. The loss of accuracy remains to be
studied.

Expanding the algorithm to non-SPD or non-symmetric systems is conceptually
straightforward. If A is not SPD, one can simply use the LDL> factorization in the
elimination step. Note that in this case, (symmetric) pivoting may be required and
the algorithm may break down. If A is not symmetric, we need to compress Apn

and Anp and use the obtained basis on both the left and the right. The resulting
preconditioner can then be coupled with GMRES instead of CG.

The partitioning algorithm is well-suited for matrices arising from the discretiza-
tion of elliptic PDE’s, where we know that well-separated clusters have low-numerical
rank. It would be interesting to explore other partitioning algorithms, for instance
for indefinite matrices coming from Maxwell’s equations.

Finally, we mention that spaND exhibits more parallelism than direct methods.
Indeed, most of the work occurs near the leaves of the tree. This means less syn-
chronization and more parallelism. This is in contrast with direct methods based on
Nested Dissection where the bottleneck is usually the factorization of the top separator
at the root of the tree.
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