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ASYMPTOTIC ANALYSIS OF THE MEAN SQUARED DISPLACEMENT

UNDER FRACTIONAL MEMORY KERNELS

GUSTAVO DIDIER1 AND HUNG D. NGUYEN2

Abstract. The generalized Langevin equation (GLE) is a universal model for particle velocity in
a viscoelastic medium. In this paper, we consider the GLE family with fractional memory kernels.
We show that, in the critical regime where the memory kernel decays like 1/t for large t, the
mean squared displacement (MSD) of particle motion grows linearly in time up to a slowly varying
(logarithm) term. Moreover, we establish the well-posedness of the GLE in this regime. This solves
an open question from [33] and completes the answer to the conjecture put forward in [38] on
the relationship between memory kernel decay and anomalously diffusive behavior. Under slightly
stronger assumptions on the memory kernel, we construct an Abelian-Tauberian framework that
leads to robust bounds on the deviation of the MSD around its asymptotic trend. This bridges
the gap between the GLE memory kernel and the spectral density of anomalously diffusive particle
motion characterized in [10].

Keywords: stationary random distributions, Abelian-Tauberian theorems, stochastic differential-
integral equations, anomalous diffusion, mean squared displacement.

1. Introduction

The velocity of freely-moving microparticles embedded in viscous, Newtonian fluids is classically
modeled by means of a Langevin equation. However, unlike in a Langevin framework, the presence
of elasticity in a non-Newtonian fluid induces time correlation between the foreign microparticle
movement and molecular bombardment [9, 10, 25, 27, 32, 39]. The generalized Langevin equation
(GLE) was introduced in [27, 39] and later popularized in [32] as a universal model for particle
velocity in a viscoelastic medium. It is given by the one-dimensional stochastic-integro-differential
equation [7, 15, 18, 19, 33, 54]

mV̇ (t) = −γV (t)− β

∫ t

−∞
K(t− s)V (s)ds+

√
βF (t)dt+

√
2γẆ (t). (1.1)

In (1.1), m is the particle’s mass, γ and β are, respectively, the viscous and elastic drag coefficients,
K(t) is the memory kernel that reflects the drag impact of the surrounding media on the particle
over time, and W (t) is the standard Brownian motion. The term F (t) is a stationary, Gaussian
process satisfying the so-named fluctuation-dissipation relationship

E [F (t)F (s)] = K|t− s|, (1.2)

a balance-of-force condition originally formulated in [27, 42].
The GLE is a model of anomalous diffusion, a topic that has been the focus of intensive research

efforts in the modern biophysical literature (e.g., [46, 47, 31, 37, 49, 34, 13]). The physical defi-
nition of anomalous diffusion is based on the behavior over time of the (ensemble) mean squared

displacement (MSD) E
[
X(t)2

]
of the observed particle. More precisely, let X(t) =

∫ t
0 V (s)ds be
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the particle position process, where V (t) is the particle velocity process in (1.1). Then, the particle
is said to be asymptotically





subdiffusive,

diffusive,

superdiffusive,

if E
[
X(t)2

]
∼ tα as t → ∞ for α





∈ (0, 1),

= 1,

∈ (1,∞),

where we write f(t) ∼ g(t) as t → ∞ whenever f(t)/g(t) → c ∈ (0,∞). While diffusion (α = 1)
is usually observed in single particle tracking experiments in viscous fluids [17], subdiffusion (0 <
α < 1) is often detected in viscoelastic fluids [12, 14, 17, 53].

Since the earliest formulations of the GLE, it was believed that the asymptotic behavior of the
microparticle modeled by (1.1) is entirely determined by the tail decay of the memory kernel K,
and that the GLE has subdiffusive solutions. This conjecture was formally proposed in [38] as

If there existsα > 0 such thatK(t) ∼ t−α, thenE
[
X(t)2

]
∼ tα as t→ ∞. (1.3)

Several authors have tackled the issue of the connection between memory in particle behavior and
the asymptotics of the MSD (e.g., [9, 25, 28]). To the best of our knowledge, the first rigorous
results on (1.3) were obtained in [26] for the memory kernel instance K(t) = t−α, α ∈ (0, 1). Using
the explicit form of the associated Fourier transforms, the results confirm that the GLE solution
exhibits subdiffusive behavior. More recently, it was shown under mild assumptions that, when
K is integrable, the solution of the GLE (1.1) is diffusive; otherwise, if K(t) ∼ t−α, α ∈ (0, 1),
the solution is subdiffusive [33]. This corroborates the conjecture (1.3) for the parameter range
0 < α < 1, but disproves it for α > 1 since superdiffusion is unattainable.

More generally, for a wide range of physically inspired stochastic differential equations, much of
the observed dynamics is based on the relationship between memory kernels and the asymptotic
behavior of autocorrelation functions, as well as that of the MSD. Over the last few decades, several
authors have established key results on this topic for a number of models such as the Kubo-Mori-
Okabe-Langevin equation [20, 40] and the Stokes-Boussinesq-Langevin equation [41]. In [1], the
autocorrelation function for the fractional Stokes-Boussinesq-Klein equation is shown to exhibit
power law decay (see also [35] and [2, 36] on the fractional Fokker-Planck and the fractional Klein-
Kramers equations, respectively).

In this paper, we focus on the distinctively viscoelastic features of (1.1) and consider the GLE
family given by

mV̇ (t) = −β
∫ t

−∞
K(t− s)V (s)ds+

√
βF (t)dt, (1.4)

corresponding to γ = 0 in (1.1) (see also Remark 2.7). In the first set of main results, we tackle
and solve the problem left open in [33] by establishing the asymptotic growth rate of the MSD for
the case where the memory kernel satisfies K(t) ∼ t−1 as t→ ∞. Because of its unique character,
we call this regime critical, in contrast with diffusive and subdiffusive regimes. Conjecture (1.3)
suggests that, in this situation, the MSD grows linearly in time, i.e., E

[
X(t)2

]
∼ t as t → ∞.

However, we show that the MSD is asymptotically linear only up to a slowly varying (logarithm)
factor (Theorem 2.2). Moreover, the peculiar tail behavior of the memory kernel in the critical
regime requires Fourier analysis techniques that are different from those in [33]. In particular, we
draw upon an Abelian-type characterization of the memory kernel in the Fourier domain [21, 44].
We further extend the broad framework developed in [33] to establish the well-posedness of (1.4)
(Theorem 4.2; see also Remark 4.5). The weak solutions are constructed based on the celebrated
theory of stationary random distributions [22], which is rather flexible and naturally well suited for
the GLE framework.
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In the second set of main results, under slightly stronger assumptions we establish the relationship
between the memory kernel decay rates and robust bounds on the deviation of the MSD around its
asymptotic trend. The problem of characterizing the convergence rate of the MSD or its statistical
counterpart, the time-averaged MSD (TAMSD), in different settings has been studied in many
works (e.g., [49, 8, 23, 6, 51, 24, 48]). For a fractional Brownian motion {BH(t)}t∈R (fBm), self-
similarity leads to the MSD exhibiting exact power law scaling EBH(t)2 = σ2|t|α, where α = 2H
and H ∈ (0, 1) is the so-called Hurst parameter [11, 43]. In [10], for a broad class of Gaussian,
stationary increment processes, it is shown that the MSD scales like a power law asymptotically,
and that its finite-time deviation from the fBm MSD is generally controlled by the relation

∣∣∣
E
[
X(t)2

]

2Dtα
− 1

∣∣∣ ≤ C

tδ
, large t, (1.5)

for some diffusivity constant D > 0. In (1.5), the deviation parameter δ > 0 is mostly determined
by the high frequency components of the particle’s motion. Not only does the bound (1.5) provide
a robust characterization of the MSD and its relation to self-similarity, but also it plays a key
role in establishing the weak convergence of TAMSD-based statistics frequently used in biophysical
data analysis (cf. [10, Proposition 1 and Corollary 1]). However, it is not straightforward to
translate the required conditions on the spectral density into conditions on the memory kernel of
the GLE. In this paper, we tackle this problem and construct a comprehensive Abelian-Tauberian
framework that bridges the gap between GLE memory kernel decay and relations of the type
(1.5) (see [30, 29, 52, 5, 30] on the theory and applications of Abelian-Tauberian schemes in one
or multiple dimensions). The results require mild conditions and cover all regimes, i.e., critical,
diffusive and subdiffusive (Theorems 2.5 and 2.6).

The rest of the paper is organized as follows. In Section 2, we state the assumptions and main
results of the paper. In Section 3, we lay out the Fourier analysis framework. In Section 4, we
address the well-posedness of (1.4) in the critical regime. In Section 5, we establish the asymptotic
growth rate of the MSD in the critical regime under minimal assumptions on the memory kernel.
In Section 6, we construct the robust bounds for the deviation of the MSD around its asymptotic
trend. Section 7 contains conclusions and a discussion of open problems.

2. Assumptions and main results

For a given function K : R → R, let Kcos and Ksin be the Fourier-type transforms of K defined
by

Kcos(ω) =

∫ ∞

0
K(t) cos(tω)dt, Ksin(ω) =

∫ ∞

0
K(t) sin(tω)dt, (2.1)

where the integrals above are understood in the sense of improper integrals whenever they converge.
We assume the following conditions on the memory kernel.

Assumption 2.1. Let K : R → R ∪ {∞} be a memory kernel obtained from a solution to (1.4),
where K may only be infinite at t = 0.

(I) (a) K ∈ L1
loc(R) is symmetric around zero and positive for all non-zero t;

(b) K(t) → 0 as t→ ∞ and is eventually decreasing;
(c) The improper integral Kcos(ω) =

∫∞
0 K(t) cos(ωt) dt is positive for all non-zero ω.

(II) K(t) ∼ t−1 as t→ ∞.

Conditions (Ia) and (Ib) are quite standard when studying the asymptotic behavior of Fourier
transforms. Also, they guarantee that Kcos(ω) and Ksin(ω) are well-defined for every non-zero ω as
in Lemma 3.1. Condition (Ic) may seem unusual, but we will see later in the proof of Theorem 4.2
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in Section 4 that it is required to guarantee the existence of stationary solutions for (1.4). Note
that a sufficient condition for (Ic) to hold is that K(t) be convex [50].

We have not yet defined the notion of a solution of (1.4). As explained in the Introduction, in
Section 4 we recap the well-posedness of the framework of [33] and use it to formulate the concept
of a weak solution of the GLE (Theorem 4.2). Hence, for expositional purposes, we can simply
assume a weak solution exists and state the first of the main results of the paper, which describes
the asymptotic growth rate of the MSD in the critical regime. The proof of Theorem 2.2 is carried
out in Section 5.

Theorem 2.2. Suppose that K(t) satisfies (I) and (II). Let V be the weak solution of (1.4) as in
Theorem 4.2 and let X(t) be the position process associated with V as in (4.7). Then,

E
[
X(t)2

]
∼ t

log(t)
, as t→ ∞.

We now turn to the topic of bounds for the growth rate of the MSD. To establish these, we need
stronger conditions, namely, we assume the memory kernel in each regime converges polynomially
fast.

Assumption 2.3. Let K be a memory kernel obtained from a solution to (1.4) and taking values
in [0,∞) for t > 0.

(III) Diffusive regime: K ∈ L1(0,∞) and that there exists a positive β0 > 0 such that

tβ0K(t) ∈ L1(0,∞); (2.2)

(IV) Subdiffusive regime: there exist α ∈ (0, 1), Cα > 0 and βα > 0 such that K(t) ∼ t−α as
t→ ∞ and that

|tαK(t)−Cα| = O(t−βα), t→ ∞; (2.3)

(V) Critical regime: K(t) ∼ t−1 as t→ ∞ and there exist C1 > 0 and β1 > 0 such that

|tK(t)− C1| = O(t−β1), t → ∞. (2.4)

Remark 2.4. Note that, under conditions (III) and (IV), the well-posedness of (1.4) is shown
in [33] under the same notion of weak solution put forth in Definition 4.1.

In the following theorem, we provide bounds for the MSD growth rate in the first two regimes
described in Assumption 2.3, i.e., diffusive and subdiffusive. The proofs for these regimes are similar
and make use of a careful analysis of the convergence rate of Kcos(ω) and Ksin(ω) as ω → 0 (see
Section Section 6).

Theorem 2.5. Suppose that K(t) satisfies (I). Let V be the weak solution of (1.4) as in Defini-
tion 4.1 and let X(t) be the position process associated with V as in (4.7).
(a) If K(t) satisfies condition (III), then

∣∣∣
E
[
X(t)2

]

t
− 2

βKcos(0)

∣∣∣ = O(t−γ0/2), t → ∞, (2.5)

where γ0 = min{β0, 2} and β0 is the constant from (III).
(b) If K(t) satisfies condition (IV), then

∣∣∣
E
[
X(t)2

]

tα
− 2 sin(απ)

απβCα

∣∣∣ = O(t−η/2), t→ ∞, (2.6)

where Cα = limt→∞ tαK(t), η = min{α, 1 − α,αβα} and α, βα are constants from (IV).
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The following theorem is the analog of Theorem 2.5 in the critical regime. Similarly to Theo-
rem 2.5, the proof of Theorem 2.6 draws upon an analysis of the small-frequency asymptotics of
Kcos(ω), i.e., as ω → 0.

Theorem 2.6. Suppose that K(t) satisfies (I) and (V). Let V be the weak solution of (1.4) as in
Definition 4.1 and let X(t) be the position process associated with V as in (4.7). Then,

∣∣∣
E
[
X(t)2

]

t/ log(t)
− 2

βC1

∣∣∣ = O(| log(t)|−1), t→ ∞, (2.7)

where C1 = limt→∞ tK(t) (see (2.4)).

Remark 2.7. Theorems 2.2, 2.5 and 2.6 are only shown for the reduced family (1.4). However,
extensions to the full equation (1.1) can be established by similar arguments.

3. Abelian-Tauberian Fourier analysis of memory

Throughout the rest of the paper, c denotes a generic positive constant. The main parameters
that it depends on will be indicated in parenthesis, e.g., c(T, q) is a function of T and q.

In this section, we introduce and establish the Fourier analysis results that are used in the
subsequent sections. Recall that the usual Fourier transform of a function ϕ ∈ L1(R) is given by

ϕ̂(ω) =

∫

R

eitωϕ(t)dt, ω ∈ R.

First, we state the following lemma, which shows that Kcos and Ksin are well-defined under mild
assumptions. For the sake of brevity, we omit its proof, which is similar to that of [33, Lemma
2.18]. The estimate (3.1) provided in the lemma is useful in establishing Fourier-type results on
Kcos and Ksin (Propositions 3.2, 3.10 and Lemma 3.5).

Lemma 3.1. Suppose that K satisfies (Ia) and (Ib). Then Kcos and Ksin are well-defined, con-
tinuous on ω ∈ (0,∞) and converge to zero as ω → ∞. Furthermore, there exists a constant A
sufficiently large such that for every nonzero ω and t ≥ A,

max
{∣∣∣

∫ ∞

t
K(s) cos(sω)ds

∣∣∣,
∣∣∣
∫ ∞

t
K(s) sin(sω)ds

∣∣∣
}
≤ 4K(t)

|ω| . (3.1)

In Proposition 3.2, stated and proved next, we provide an Abelian result for Fourier-type trans-
forms when K(t) ∼ t−1 as t → ∞. This proposition is, in turn, used in the proof of Theorem 2.2,
where we establish the large-time asymptotic growth of the MSD in the critical regime.

Proposition 3.2 (Abelian direction). Suppose that K ∈ L1
loc
(0,∞) satisfies conditions (Ib)and (II).

Then,

lim
ω→0

Ksin(ω) = C1
π

2
, (3.2)

where C1 = limt→∞ tK(t) (see (2.4)). Moreover,

Kcos(ω) ∼ | log(ω)|, ω → 0. (3.3)

Proof. To show (3.2), we first note that condition (II) implies that tK(t) is bounded for t ∈ [1,∞).
For ω > 0 small and A large, we can re-express

Ksin(ω) =

∫ ∞

0
K(t) sin(ωt)dt =

{∫ 1

0
+

∫ A/ω

1
+

∫ ∞

A/ω

}
K(t) sin(ωt)dt

= I0(ω) + I1(ω) + I2(ω). (3.4)
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Since K is locally integrable, the dominated convergence theorem readily implies that

I0(ω) → 0, ω → 0. (3.5)

In regard to I2(ω), for ω > 0 sufficiently small, K(t) is decreasing for t ∈ [A/ω,∞). Then, we can
invoke (3.1) to obtain

|I2(ω)| =
∣∣∣
∫ ∞

A/ω
K(t) sin(ωt)dt

∣∣∣ ≤ K
(A
ω

) 4

ω
≤ 4

A
sup

z∈[1,∞)
z K(z). (3.6)

Concerning I1(ω), using a change of variable z = tω, we rewrite I1 as

I1 =

∫ A

ω
K
( z
ω

)sin(z)
ω

dz =

∫ A

ω

z

ω
K
( z
ω

)sin(z)
z

dz.

It follows from the dominated convergence theorem that

I1 → C1

∫ A

0

sin(z)

z
dz, ω → 0. (3.7)

Combining (3.4)–(3.7) and [16, p. 423, formula (3.721.1)], we obtain

lim
ω→0

Ksin(ω) = C1

∫ ∞

0

sin(z)

z
dz = C1

π

2
.

This shows (3.2).
Turning to (3.3), note that

Kcos(ω)

| log(ω)| =
Kcos(ω)−

∫ 1/ω
0 K(t)dt

| log(ω)| +

∫ 1/ω
0 K(t)dt

| log(ω)| . (3.8)

However, by [44, Theorem 7],

Kcos(ω)−
∫ 1/ω

0
K(t)dt→ c <∞, ω → 0. (3.9)

Therefore, the first fraction on the right-hand side of (3.8) converges to zero as ω → 0. In regard
to the second fraction, we can write

lim
ω→0

∫ 1/ω
0 K(t)dt

| log(ω)| = lim
x→∞

∫ x
0 K(t)dt

log(x)
= lim

x→∞
xK(x) = C1. (3.10)

Expressions (3.8)–(3.10) imply (3.3), as claimed. �

Under a mild additional assumption on the kernel function K(t), a converse for expression (3.3)
in Proposition 3.2 can be established that is of interest in its own right. To be precise, we have the
following Tauberian-type proposition.

Proposition 3.3 (Tauberian direction). Suppose K ∈ L1
loc
(0,∞) satisfies (Ib), and that

sup
t∈[1,∞)

|tK(t)| <∞. (3.11)

If Kcos(ω) ∼ | log(ω)| as ω → 0+, then

K(t) ∼ t−1, t→ ∞. (3.12)

Remark 3.4. It can be shown that K(t) ∼ t−1 as t→ ∞ if and only if for every λ > 1, Kcos(λω)−
Kcos(ω) → log(λ) as ω → 0 [21]. However, this statement should not be confused with those of
Propositions 3.2 and 3.3.

In order to prove Proposition 3.3, we need the following Lemma.
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Lemma 3.5. Suppose K(t) satisfies the conditions of Proposition 3.3. Then,

lim
ω→0+

Kcos(ω)−
∫ 1/ω
0 K(t)dt

| log(ω)| = 0. (3.13)

Proof. Fix an arbitrary ǫ > 0. We can write

Kcos(ω)−
∫ 1/ω

0
K(t)dt =

{∫ 1

0
+

∫ 1/ω

1

}
K(t)(cos(tω)− 1)dt

+
{∫ 1/ω1+ǫ

1/ω
+

∫ ∞

1/ω1+ǫ

}
K(t) cos(tω)dt.

(3.14)

Concerning the first two integrals on the right-hand side of (3.14), without loss of generality, suppose
0 < ω < 1. Then,

∣∣∣
{ ∫ 1

0
+

∫ 1/ω

1

}
K(t)(cos(tω)− 1)dt

∣∣∣ ≤ 2

∫ 1

0
K(t)dt+

∫ 1/ω

1
K(t) t ωdt

≤ 2

∫ 1

0
K(t)dt+ c ω

( 1

ω
− 1

)
sup

t∈[1,∞)
tK(t)

≤ 2

∫ 1

0
K(t)dt+ c.

(3.15)

where the last inequality follows from condition (3.11). Likewise, with regards to the third integral
on the right-hand side of (3.14),

∣∣∣
∫ 1/ω1+ǫ

1/ω
K(t) cos(tω)dt

∣∣∣ =
∣∣∣
∫ 1/ω1+ǫ

1/ω
tK(t)

cos(tω)

t
dt
∣∣∣ ≤ c

∫ 1/ω1+ǫ

1/ω
t−1dt = c ǫ| log(ω)|. (3.16)

Concerning the last integral on the right-hand side of (3.14), we note that for ω > 0 sufficiently
small, K(t) is decreasing on [1/ω1+ǫ,∞). By (3.1),

∫ ∞

1/ω1+ǫ

K(t) cos(tω)dt ≤ 4

ω
K
( 1

ω1+ǫ

)
= 4ωǫ 1

ω1+ǫ
K
( 1

ω1+ǫ

)
≤ c ωǫ, (3.17)

where the last inequality is a consequence of condition (3.11). Expressions (3.14)–(3.17) imply that

|Kcos(ω)−
∫ 1/ω
0 K(t)dt|

| log(ω)| ≤ c+ c ǫ| log(ω)|+ cωǫ

| log(ω)| ,

whence

lim sup
ω→0+

Kcos(ω)−
∫ 1/ω
0 K(t)dt

| log(ω)| ≤ c ǫ,

where the constant c > 0 is independent of ǫ. Since ǫ > 0 is arbitrary, (3.13) holds. �

With Lemma 3.5 in hand, the proof of Proposition 3.3, provided next, is relatively short.

Proof of Proposition 3.3. Consider the decomposition (3.8). By Lemma 3.5, the first quotient on
the right-hand side vanishes as ω → 0+. It follows that

lim
ω→0+

∫ 1/ω
0 K(t)dt

| log(ω)| = lim
ω→0

Kcos(ω)

| log(ω)| = C1 > 0.

By the same reasoning as in (3.10), C1 = limx→∞ xK(x), which shows (3.12). �
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While Proposition 3.2 is sufficient for determining the large-time asymptotic growth of the MSD
in the critical regime, it does not provide information on the convergence rate of the Fourier-type
transforms (2.1) near the origin. We will see later in the proof of Theorem 2.5 and 2.6 that this
information is crucial in establishing the growth rate of the MSD in all regimes.

We now state and show three auxiliary results (Lemmas 3.6, 3.8 and 3.9) that are used in
Section 6 to establish the convergence rate of the MSD towards its limit in each regime. We start
off with the diffusive regime.

Lemma 3.6 (Diffusive regime). Suppose that K satisfies conditions (Ia), (Ib) and (III). Then, for
constants c1, c2 > 0 and ω ∈ R,

|Kcos(ω)−Kcos(0)| ≤ c1 ω
γ0 (3.18)

and

|Ksin(ω)| ≤ c2 ω
γ0,1 , (3.19)

where γ0 = min{β0, 2}, γ0,1 = min{β0, 1} and β0 is the exponent constant from (III).

Remark 3.7. The bounds γ0 ≤ 2 and γ0,1 ≤ 1 in Lemma 3.6 cannot be improved regardless of how
large β0 is. This seems to be the simplest formulation. To see this, consider the memory kernel
instance K(t) = e−|t|. Then, tβ0K(t) is integrable for every β0 > 0. Moreover, its Fourier-type
transforms are given by

Kcos(ω) =
1

1 + ω2
, and Ksin(ω) =

ω

1 + ω2
.

It is straightforward to verify that, for the above K, γ0 = 2 and γ0,1 = 1.

Proof of Lemma 3.6 . We first show (3.19). In fact, by applying the elementary bound | sin(x)| ≤
xγ0,1 , x ≥ 0 and condition (III),

|Ksin(ω)| =
∣∣∣
∫ ∞

0
K(t) sin(tω)dt

∣∣∣ ≤ ω

∫ 1

0
tK(t)dt+ ωγ0,1

∫ ∞

1
tγ0K(t)dt

≤ ω

∫ 1

0
K(t)dt+ ωγ0,1

∫ ∞

1
tβ0K(t)dt

= O(ωγ0,1).

Next, we prove (3.18). For every ω > 0,

|Kcos(ω)−Kcos(0)| =
∣∣∣
∫ ∞

0
K(t)(1− cos(tω))dt

∣∣∣ ≤ c

∫ ∞

0
K(t)tγ0ωγ0dt,

where we use the inequality 1− cos(x) ≤ c|x|γ0 for any γ0 ∈ [0, 2]. It follows that

|Kcos(ω)−Kcos(0)| ≤ c ωγ0

∫ ∞

0
K(t)tβ0dt,

which implies (3.18). �

In regard to the convergence rate of the Fourier transforms in the subdiffusive regime, we have
the following lemma.

Lemma 3.8 (Subdiffusive regime). Suppose that K satisfies conditions (Ia), (Ib) and (IV). Then,
as ω → 0,

∣∣∣ω1−αKcos(ω)−Cα

∫ ∞

0

cos(z)

zα
dz

∣∣∣ = O(ωγα) (3.20)
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and
∣∣∣ω1−αKsin(ω)− Cα

∫ ∞

0

sin(z)

zα
dz

∣∣∣ = O(ωγα), (3.21)

where Cα = limt→∞ tαK(t), γα = min{1−α,αβα} and α, βα are the exponent constants from (IV).

Proof. We only need to prove (3.20): claim (3.21) can be shown simply by replacing cosines with
sines throughout the argument.

Let δ > 0 be a constant that will be chosen later. For ω ∈ (0, 1), recast

ω1−α

∫ ∞

0
K(t) cos(tω)dt = ω1−α

{∫ 1

0
+

∫ ω−δ−1

1
+

∫ ∞

ω−δ−1

}
K(t) cos(tω)dt. (3.22)

We now proceed to reexpress or construct bounds, in absolute value, for each integral term on the
right-hand side of (3.22). In regard to the first term in (3.22),

ω1−α
∣∣∣
∫ 1

0
K(t) cos(tω)dt

∣∣∣ ≤ ω1−α

∫ 1

0
|K(t)|dt = O(ω1−α). (3.23)

As for the third term in (3.22), assuming ω is sufficiently small, Lemma 3.1 implies that

ω1−α
∣∣∣
∫ ∞

ω−δ−1

K(t) cos(tω)dt
∣∣∣ ≤ c ω1−α |K(ω−δ−1)|

ω

= c ω−α|K(ω−δ−1)|ω−(δ+1)αω(δ+1)α

= O(ωαδ). (3.24)

In (3.24), the last equality is a consequence of the fact that tαK(t) is bounded as t→ ∞. Moreover,
by a change of variable z = tω, the middle (second) integral term in (3.22) can be rewritten as

ω1−α

∫ ω−δ−1

1
K(t) cos(tω)dt =

∫ ω−δ

ω

( z
ω

)α
K
( z
ω

)cos(z)
zα

dz. (3.25)

Expressions (3.23), (3.24) and (3.25) imply that

ω1−α

∫ ∞

0
K(t) cos(tω)dt = O(ω1−α) +

∫ ω−δ

ω

( z
ω

)α
K
( z
ω

)cos(z)
zα

dz +O(ωαδ). (3.26)

Likewise,

Cα

∫ ∞

0

cos(z)

zα
dz = Cα

{∫ ω

0
+

∫ ω−δ

ω
+

∫ ∞

ω−δ

}cos(z)

zα
dz

= O(ω1−α) + Cα

∫ ω−δ

ω

cos(z)

zα
dz +O(ωαδ). (3.27)

By (3.26) and (3.27),

ω1−α

∫ ∞

0
K(t) cos(tω)dt− Cα

∫ ∞

0

cos(z)

zα
dz

= O(ω1−α) +O(ωαδ) +

∫ ω−δ

ω

[( z
ω

)α
K
( z
ω

)
− Cα

]cos(z)
zα

dz. (3.28)

In regard to the integral term on the right-hand side of (3.28), we invoke (IV) to arrive at the
bound

∣∣∣
∫ ω−δ

ω

[( z
ω

)α
K
( z
ω

)
− Cα

]cos(z)
zα

dz
∣∣∣ ≤ c ωβα

∫ ω−δ

ω

1

zα+βα
dz. (3.29)
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Turning back to expression (3.22), set δ = βα. There are two cases pertaining to the sum α + βα
in the bound (3.29). First, if α+ βα = 1, then

c ωβα

∫ ω−δ

ω

1

zα+βα
dz = cωβα | log(ω)| ≤ c ωαβα . (3.30)

Otherwise, i.e., if α+ βα 6= 1, then

c ωβα

∫ ω−δ

ω

1

zα+βα
dz ≤ c(ωβα−δ(1−α−βα) + ω1−α) = c(ωβα−βα(1−α−βα) + ω1−α)

= O(ωαβα + ω1−α). (3.31)

Therefore, by expressions (3.28)–(3.31),
∣∣∣ω1−αKcos(ω)− Cα

∫ ∞

0

cos(z)

zα
dz

∣∣∣ = O(ωαβα + ω1−α).

This establishes (3.20). �

Concerning the critical regime, we have the following result.

Lemma 3.9 (Critical regime). Suppose that K satisfies conditions (Ia), (Ib) and (V). Then,
∣∣∣Kcos(ω)

| log(ω)| − C1

∣∣∣ = O(| log(ω)|−1), ω → 0+,

where C1 = limt→∞ tK(t) (see (2.4)).

Proof. Recast

Kcos(ω)

| log(ω)| − C1 =
Kcos(ω)−

∫ 1/ω
0 K(t)dt

| log(ω)| +

∫ 1/ω
0 K(t)dt

| log(ω)| −C1. (3.32)

To construct a bound for the first ratio on the right-hand side of (3.32), we shall improve upon
the proof of Lemma 3.5. To be precise, we sharpen the estimate (3.16) by making the change of
variable z = tω, i.e.,

∫ 1/ω1+ǫ

1/ω
K(t) cos(tω)dt =

∫ 1/ωǫ

1

( z
ω

)
K
( z
ω

)cos(z)
z

dz

=

∫ 1/ωǫ

1

[( z
ω

)
K
( z
ω

)
− C1

]cos(z)
z

dz + C1

∫ 1/ωǫ

1

cos(z)

z
dz.

(3.33)

It is clear that the second integral on the right-hand side of (3.33) converges to C1

∫∞
1

cos(z)
z dz as

ω → 0. Concerning the first integral, we invoke (V) to arrive at

∣∣∣
∫ 1/ωǫ

1

[( z
ω

)
K
( z
ω

)
− C1

]cos(z)
z

dz
∣∣∣ ≤ ωβ1

∫ 1/ωǫ

1

| cos(z)|
z1+β1

dz ≤ c ωβ1 ,

whence
∣∣∣
∫ 1/ω1+ǫ

1/ω
K(t) cos(tω)dt

∣∣∣ ≤ c(ωβ1 + 1). (3.34)

Combining (3.34), (3.14), (3.15) and (3.17) yields the estimate

∣∣∣
Kcos(ω)−

∫ 1/ω
0 K(t)dt

| log(ω)|
∣∣∣ ≤ c+ c(ωβ1 + 1) + cωǫ

| log(ω)| = O(| log(ω)|−1). (3.35)
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With regards to the second term on the right-hand side of (3.32), it is straightforward to see that

∣∣∣
∫ 1/ω
0 K(t)dt

| log(ω)| − C1

∣∣∣ =
∣∣∣ 1

| log(ω)|

∫ 1

0
K(t)dt+

1

| log(ω)|

∫ 1/ω

1

tK(t)− C1

t
dt
∣∣∣

≤ 1

| log(ω)|

∫ 1

0
K(t)dt+

c

| log(ω)|

∫ 1/ω

1

1

t1+β1
dt

= O(| log(ω)|−1).

(3.36)

The result now follows immediately from (3.35) and (3.36). The proof is thus complete. �

Let S be the Schwartz space of all smooth functions whose derivatives are rapidly decreasing.
Recall that its dual space S ′ is the so-named class of tempered distributions on S. For a given
tempered distribution g ∈ S ′, F [g] ∈ S ′ denotes the Fourier transform of g in S ′. It is well known
that this transformation is a one-to-one relation in S ′. We conclude this section with a proposition
on the Fourier transform of K, in the sense of tempered distributions, in the critical regime. We
make use of Proposition 3.10 later in Section 4 for the analysis on the well-posedness of (1.4).

Proposition 3.10. Suppose that K satisfies (Ia), (Ib) and (II). Then, 2Kcos is the Fourier trans-
form of K in the sense of tempered distributions, i.e., for every ϕ ∈ S,

∫

R

K(t)ϕ̂(t)dt =

∫

R

2Kcos(ω)ϕ(ω)dω. (3.37)

Proof. Since K satisfies (II), then Kcos(ω) ∼ | log(ω)| as ω → 0 by virtue of Proposition 3.2. It
follows that Kcos is integrable about the origin. Also, by Lemma 3.1, it is continuous and converges
to zero as ω → ∞. Thus, for every function ϕ ∈ S,

∫

R

|Kcos(ω)ϕ(ω)|dω <∞.

We now consider a truncation of K by setting Kn(t) = K(t)1[−n,n](t). Since Kn is integrable and
symmetric, then

∫

R

Kn(t)ϕ̂(t)dt =

∫

R

2Kn
cos(ω)ϕ(ω)dω, (3.38)

where Kn
cos(ω) :=

∫∞
0 Kn(t) cos(tω)dt =

∫ n
0 K(t) cos(tω)dt. As n→ ∞, the integral on the left-hand

side of (3.38) converges to
∫
R
K(t)ϕ̂(t)dt. To establish (3.37), it remains to show that

∫

R

Kn
cos(ω)ϕ(ω)dω →

∫

R

Kcos(ω)ϕ(ω)dω, n→ ∞. (3.39)

To this end, note that, by Lemma 3.1, Kcos is well-defined in the sense of improper Riemann
integration. It follows that, for any ω 6= 0, we have

Kn
cos(ω) =

∫ n

0
K(t) cos(tω)dt→

∫ ∞

0
K(t) cos(tω)dt = Kcos(ω), n→ ∞.

On one hand, for every |ω| > 1/n, we have

|Kn
cos(ω)| ≤ |Kn

cos(ω)−Kcos(ω)|+ |Kcos(ω)|.
For n sufficiently large, inequality (3.1) implies that

|Kn
cos(ω)−Kcos(ω)| =

∣∣∣
∫ ∞

n
K(t) cos(tω)dt

∣∣∣ ≤ 4K(n)

|ω| ≤ 4nK(n) < C,
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since K(t) ∼ 1/t as t→ ∞. Thus, when |ω| > 1/n,

1{|ω|>1/n}(ω)|Kn
cos(ω)| ≤ |Kcos(ω)|+ C.

As a consequence of the dominated convergence theorem,∫

R

1{|ω|>1/n}(ω)Kn
cos(ω)ϕ(ω)dω →

∫

R

Kcos(ω)ϕ(ω)dω, n→ ∞. (3.40)

On the other hand, we have that∫

|ω|<1/n
|Kn

cos(ω)ϕ(ω)|dω =

∫

|ω|<1/n

∣∣∣
∫ n

0
K(t) cos(tω)dt

∣∣∣ |ϕ(ω)|dω

≤ 2 supω∈R |ϕ(ω)|
n

[ ∫ 1

0
K(t)dt+

∫ n

1
K(t)dt

]

≤ 2 supω∈R |ϕ(ω)|
n

[ ∫ 1

0
K(t)dt+ c

∫ n

1

1

t
dt
]

=
2 supω∈R |ϕ(ω)|

n

[ ∫ 1

0
K(t)dt+ c log(n)

]
→ 0, (3.41)

as n→ ∞. Relations (3.40) and (3.41) imply (3.39), which completes the proof. �

4. Well-posedness and regularity

We now briefly review the framework of stationary solutions of (1.4) introduced in [33]. Let ν
be a non-negative measure on R satisfying the condition

∫

R

ν(dx)

(1 + x2)k
<∞ (4.1)

for some integer k. Also, let L2(Ω) be the space of squared integrable complex-valued Gaussian
random variables. It is well known that ν is characterized by some g ∈ S ′ – i.e., a tempered
distribution – and a stationary random distribution

F : S → L2(Ω) (4.2)

in the sense that, for ϕ1, ϕ2 ∈ S,

E
[
〈F,ϕ1〉〈F,ϕ2〉

]
= 〈g, ϕ1 ∗ ϕ̃2〉 =

∫

R

ϕ̂1(ω)ϕ̂2(ω)ν(dω), (4.3)

where f̃(x) := f(−x) [22]. In (4.3), 〈F,ϕ〉 and 〈g, ϕ〉 denote the so-named actions of F and g on
ϕ ∈ S, respectively. Moreover, g is called the covariance distribution and ν is called the spectral
measure of F . If ν is absolutely continuous with respect to Lebesgue measure, then we can extend
F in (4.2) to an operator

V : S ′ → L2(Ω) (4.4)

such that, for g1, g2 ∈ S ′ [33],

E
[
〈V, g1〉〈V, g2〉

]
=

∫

R

F [g1](ω)F [g2](ω)ν(dω). (4.5)

The domain of V , denoted by
Dom(V ), (4.6)

consists of those g ∈ S such that F [g] is a complex-valued function and F [g] ∈ L2(ν), the Hilbert
space of ν-squared integrable functions. It is worthwhile noting that, for a generic tempered dis-
tribution g, F [g] is also a tempered distribution, which may not be a function. However, in order
for g to be included in Dom(V ), F [g] has to be a complex-valued function.
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Based on the operator V as in (4.4), we can define the velocity and displacement processes V (t)
and X(t), respectively, as

V (t) = 〈V, δt〉 and X(t) = 〈V, 1[0,t]〉. (4.7)

We now turn to the derivation of weak solutions for the GLE. By formally multiplying the GLE
(1.4) by a test function ϕ in S and integrating by parts, we arrive at the integral equation

−m
∫

R

V (t)ϕ′(t)dt = −β
∫

R

V (t)

∫

R

K+(u)ϕ(t + u)dudt+
√
β

∫

R

F (t)ϕ(t)dt,

where
K+(t) := K(t) 1{t≥0}. (4.8)

Then, for F and V as given by (4.2) and (4.4), respectively, we obtain the weak form of (1.4), i.e.,

〈V,−mϕ′ + βK̃+ ∗ ϕ̃〉 =
√
β〈F,ϕ〉. (4.9)

In this context, F is understood as a stationary random distribution defined by means of the
relation

E
[
〈F,ϕ1〉〈F,ϕ2〉

]
=

∫

R

K(t) (ϕ1 ∗ ϕ̃2) (t)dt.

In view of Proposition 3.10, for the memory kernel K, we have

E
[
〈F,ϕ1〉〈F,ϕ2〉

]
=

∫

R

K(t) (ϕ1 ∗ ϕ̃2) (t)dt =

∫

R

2Kcos(ω)ϕ̂1(ω)ϕ̂2(ω)dω.

In particular, the spectral measure of F is 2Kcos(ω)dω.
We are now in a position to provide the definition of a stationary solution of (1.4) (cf. [33,

Definition 4.1]).

Definition 4.1. [33] Let ν be a nonnegative measure satisfying condition (4.1) and let V be the
operator associated with ν defined in (4.5). Also, consider Dom(V ) and K+(t) as defined by (4.6)
and (4.8), respectively. Then, V is a weak solution of (1.4) if the following conditions are satisfied.

(a) For every ϕ ∈ S, K+ ∗ ϕ belongs to Dom(V );
(b) for any ϕ,ψ ∈ S,

E
[
〈V,−mϕ′ + βK̃+ ∗ ϕ̃〉〈V,−mψ′ + β

˜
K+ ∗ ψ̃〉

]
= E

[
〈
√
βF,ϕ〉〈

√
βF,ψ〉

]
.

Bearing in mind the above definition of a weak solution, we can now state and establish the
well-posedness of (1.4).

Theorem 4.2. Suppose that K(t) satisfies (I) and (II). Then, V is a weak solution for (1.4) (see
Definition 4.1) if and only if the spectral measure ν satisfies ν(dω) = r̂(ω)dω, where r̂ is given by

r̂(ω) :=
βK̂(ω)

2π|miω + βK̂+(ω)|2
. (4.10)

Remark 4.3. Formula (4.10) is also the spectral density of the weak solutions in diffusive and
subdiffusive regimes [33].

Proof. First, we claim that r̂ as given by (4.10) is integrable. In fact, we can recast this expression
as

r̂(ω) =
1

2π

2βKcos(ω)

[βKcos(ω)]
2 + [mω − βKsin(ω)]

2 . (4.11)

Note that r̂(ω) is well-defined, since, by condition (Ic), Kcos(ω) is assumed to be strictly positive
for every ω > 0. Moreover, it is symmetric around zero since the memory kernel K is also so by
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condition (Ia). By virtue of Lemma 3.1, r̂(ω) is continuous for ω ∈ (0,∞). Therefore, we only
need to check integrability at ω → ∞ and around the origin. On one hand, as ω → ∞, Lemma 3.1
implies that Kcos(ω) and Ksin(ω) converge to zero. It follows that r̂(ω) is dominated by ω−2. On
the other hand,

r̂(ω) ≤ 1

πβKcos(ω)
→ 0, ω → 0.

By virtue of Proposition 3.2, Kcos(ω) ∼ | log(ω)| as ω → 0. Therefore, r̂ is integrable, as claimed.
In light of Proposition 3.10, the remaining claims can be established by a simple adaptation of

the proof of [33, Theorem 4.3]. �

In the last result of this section, we characterize the sample path regularity of the velocity process
V (t). Its proof is analogous to that of [33, Theorems 5.4 and 5.6], and thus is omitted.

Proposition 4.4. Under the assumptions of Theorem 4.2, let V (t) be the process defined in (4.7).

(a) Then, there exists a modification Ṽ (t) of V (t) such that Ṽ (t) is a.s. continuous.
(b) Assume, further, that K is a positive definite function and that for some b > 3

|K(0) −K(t)| = O
(
| log t|−b

)
, as t→ 0+. (4.12)

Then, Ṽ (t) as in (a) is a.s. continuously differentiable.

Remark 4.5. Together, Theorem 4.2 and [33, Theorem 4.3] establish the existence of a harmoniz-
able representation

X(t) =

∫

R

eitω − 1

iω
r̂1/2(ω)B̃(dω), t ≥ 0, (4.13)

for the position particle associated with the GLE in all three regimes (critical, diffusive and subd-

iffusive). In (4.13), B̃(dω) is a C-valued Gaussian random measure such that B̃(−dω) = B̃(dω)

and E|B̃(dω)|2 = θ dx for some θ > 0. Representations of the type (4.13) have manifold uses in
Probability theory (e.g., [45, 4]). In particular, a harmonizable representation of the form (4.13)
is the basis for the construction of the asymptotic distribution of the TAMSD for a broad class of
anomalous diffusion models [10].

5. Asymptotics of the MSD in the critical regime

In this section, we establish the asymptotic behavior of the MSD when K(t) ∼ t−1 as t → ∞.
The approach is similar to that in Section 6 of [33]. For the reader’s convenience, we summarize
the method as follows.

step 1: we use Proposition 3.2 to relate the large-time behavior of the memory K to the near-zero
behaviors of Kcos(ω) and Ksin(ω), i.e., as ω → 0;

step 2: we obtain the near-zero behavior of the spectral density r̂(ω) as in (4.11) through that of
Kcos(ω) and Ksin(ω) as ω → 0;

step 3: by the dominated convergence theorem and the near-zero behavior of r̂(ω), we conclude
that E

[
X(t)2

]
∼ t/ log(t).

Proof of Theorem 2.2 . Using the relation (4.5) and (4.7), we note that E
[
X2(t)

]
can be written

explicitly as

E
[
X(t)2

]
=

∫

R

∣∣∣1̂[0,t](ω)
∣∣∣
2
r̂(ω)dω = 4

∫ ∞

0

1− cos(tω)

ω2
r̂(ω)dω, (5.1)
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since r̂ is symmetric. It follows that

log(t)E
[
X(t)2

]

t
=

4 log(t)

t

∫ ∞

0

1− cos(tω)

ω2
r̂(ω)dω

= 4 log(t)

∫ ∞

0

1− cos(z)

z2
r̂
(z
t

)
dz,

(5.2)

where the second equality is a consequence of the change of variable z := tω. Therefore, it suffices
to show that the expression on the right-hand side of (5.2) has a finite and strictly positive limit
as t→ ∞. In fact, we can split the integral on the right-hand side of (5.2) into two parts, i.e.,

∫ ∞

0
log(t)

1− cos(z)

z2
r̂
(z
t

)
dz =

{∫ √
t

0
+

∫ ∞

√
t

}
log(t)

1− cos(z)

z2
r̂
(z
t

)
dz

= I1 + I2.

Concerning I2, recall from the proof of Theorem 4.2 that r̂(ω) is bounded for ω ∈ (0,∞). Therefore,
as t→ ∞,

0 ≤ I2 =

∫ ∞

√
t
log(t)

1− cos(z)

z2
r̂
(z
t

)
dz ≤ c log(t)

∫ ∞

√
t

1− cos(z)

z2
dz

≤ c
log(t)√

t
→ 0.

With regards to I1, by expression (4.11) for r̂, we obtain

log(t)r̂
(z
t

)
=

log(t)

2π

2βKcos

(
z
t

)
[
βKcos

(
z
t

)]2
+

[
m

(
z
t

)
− βKsin

(
z
t

)]2

=
log(t)

2π log
(
t
z

) 2βKcos

(
z
t

)
/ log

(
t
z

)
[
βKcos

(
z
t

)
/ log

(
t
z

)]2
+

[
m

(
z
t

)
− βKsin

(
z
t

)]2
/ log2

(
t
z

) .

Therefore, by Proposition 3.2,

log(t)r̂
(z
t

)
→ 1

πβC1
∈ (0,∞), t → ∞,

where C1 is given by (2.4). Furthermore, assuming t is sufficiently large, for every z ∈ (0,
√
t], we

have the uniform bound

log(t)

log
(
t
z

) 2βKcos

(
z
t

)
/ log

(
t
z

)
[
βKcos

(
z
t

)
/ log

(
t
z

)]2
+

[
m

(
z
t

)
− βKsin

(
z
t

)]2
/ log2

(
t
z

)

≤ log(t)

log
(
t
z

) 2

βKcos

(
z
t

)
/ log

(
t
z

)

≤ log(t)

log(
√
t)

c

Kcos

(
z
t

)
/ log

(
t
z

)

≤ c <∞,

since Kcos(ω) ∼ | log(ω)| as ω → 0, by virtue of Proposition 3.2. The dominated convergence
theorem then implies that

I1 =

∫ √
t

0
log(t)

1− cos(z)

z2
r̂
(z
t

)
dz → 1

πβC1

∫ ∞

0

1− cos(z)

z2
dz ∈ (0,∞), as t→ ∞.

The result now follows from combining the asymptotics of I1 and I2. The proof is thus complete.
�
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6. Robust bounds for the asymptotic behavior of the MSD

In this section, we construct robust bounds on the deviation of the MSD from its asymptotic
trend in all three different regimes. By analogy to Section 5, the general procedure is based on
obtaining bounds for the convergence rate of the spectral density r̂(ω) as ω → 0. We begin by
stating and showing the following auxiliary result, which is used in the proof of the subsequent
Theorem 2.5. Note that expression (4.11) for r̂(ω) holds in the three regimes (cf. [33, expression
(65)]).

Proposition 6.1. Suppose that K(t) satisfies (I). Let r̂(ω) be the spectral density function given
by (4.11).
(a) If K(t) satisfies (III), then

∣∣∣r̂(ω)− 1

πβKcos(0)

∣∣∣ = O(ωγ0), as ω → 0,

where γ0 = min{β0, 2} and β0 is the constant from (III);
(b) if K(t) satisfies (IV), then

∣∣∣ r̂(ω)
ω1−α

−
∫∞
0

cos(z)
zα dz

πβCα

[( ∫∞
0

cos(z)
zα dz

)2
+

( ∫∞
0

sin(z)
zα dz

)2]
∣∣∣ = O(ωγα), as ω → 0,

where Cα = limt→∞ tαK(t) (see (2.3)), γα = min{1 − α,αβα} and α, βα are the constants
from (IV).

Proof. (a) Using formula (4.11), we see that

πr̂(ω)− 1

βKcos(0)
=

βKcos(ω)

[βKcos(ω)]
2 + [mω − βKsin(ω)]

2 − 1

βKcos(0)

=
β2Kcos(ω)[Kcos(0)−Kcos(ω)] + [mω − βKsin(ω)]

2

βKcos(0)
(
[βKcos(ω)]

2 + [mω − βKsin(ω)]
2
)

In view of Lemma 3.1, as ω → 0, Kcos(ω) converges to Kcos(0) =
∫∞
0 K(t)dt > 0. It follows that

for ω > 0 sufficiently small,

∣∣∣πr̂(ω)− 1

βKcos(0)

∣∣∣ ≤ c|Kcos(0)−Kcos(ω)|+ c [mω − βKsin(ω)]
2 .

We now invoke Lemma 3.6 to obtain

∣∣∣πr̂(ω)− 1

βKcos(0)

∣∣∣ ≤ c(ωγ0 + ω2 + ω2γ0,1) = O(ωγ0),

since γ0 = min{β0, 2} ≤ 2γ0,1 = 2min{β0, 1} ≤ 2 as in Lemma 3.6. This concludes the proof of
part (a).

In regard to part (b), to simplify the notation we set

Cα,1 = Cα

∫ ∞

0

cos(z)

zα
dz, and Cα,2 = Cα

∫ ∞

0

sin(z)

zα
dz. (6.1)
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We note that since z−α is concave up and decreasing on (0,∞), two integrals above are positive
(see [50]) and so are Cα,1 and Cα,2. Then, using formua (4.11) again, we have

πr̂(ω)

ω1−α
−

∫∞
0

cos(z)
zα dz

βCα

[( ∫∞
0

cos(z)
zα dz

)2
+

( ∫∞
0

sin(z)
zα dz

)2]

=
βω1−αKcos(ω)

[βω1−αKcos(ω)]
2 + [mω2−α − βω1−αKsin(ω)]

2 − Cα,1

β(C2
α,1 + C2

α,2)
.

After subtraction, the numerator of the right-hand side above is written as

β2
[
Cα,1ω

1−αKcos(ω)− C2
α,2

][
Cα,1 − ω1−αKcos(ω)

]

− Cα,1ω
2−α

[
m2ω2−α − 2mβω1−αKsin(ω)

]
+ β2Cα,1

[
C2
α,2 − (ω1−αKsin(ω))

2
]
.

In view of Lemma 3.8, as ω → 0, ω1−αKcos(ω) and ω
1−αKsin(ω) converge to Cα,1 and Cα,2, respec-

tively. Similar to part (a), we arrive at the following estimate

πr̂(ω)

ω1−α
−

∫∞
0 cos(z)/zαdz

βCα

∫∞
0 (cos(z) + sin(z))/zαdz

≤ c|ω1−αKcos(ω)−Cα,1|+ c|ω1−αKsin(ω)− Cα,2|+O(ω2−α),

whence

πr̂(ω)

ω1−α
−

∫∞
0 cos(z)/zαdz

βCα

∫∞
0 (cos(z) + sin(z))/zαdz

= O(ωγα + ω2−α) = O(ωγα),

where 0 < γα < 2− α is the constant from Lemma 3.8. The proof is thus complete. �

We are now in a position to prove Theorem 2.5.

Proof of Theorem 2.5. We first show (a). By making the change of variable z = tω, recast expres-
sion (5.1) as

E
[
X(t)2

]

t
= 4

∫ ∞

0

1− cos(z)

z2
r̂
(z
t

)
dz. (6.2)

Therefore, for sufficiently small ǫ > 0 and large enough t,

E
[
X(t)2

]

t
− 4

πβKcos(0)

∫ ∞

0

1− cos(z)

z2
= 4

∫ ∞

0

1− cos(z)

z2

[
r̂
(z
t

)
− 1

πβKcos(0)

]
dz

= 4
{∫ 1

0
+

∫ ǫt

1
+

∫ ∞

ǫt

}[
r̂
(z
t

)
− 1

πβKcos(0)

]
dz. (6.3)

We now construct bounds for each integral term on the right-hand side of (6.3). In view of the
proof of Theorem 6.1 [33, p. 5149], when K is integrable, r̂(ω) is bounded on (0,∞). It follows that

∣∣∣
∫ ∞

ǫt

1− cos(z)

z2

[
r̂
(z
t

)
− 1

πβKcos(0)

]
dz

∣∣∣ ≤ c

∫ ∞

ǫt

1

z2
dz = O(t−1). (6.4)

By Proposition 6.1, (a), and the fact that (1− cos(z))/z2 is bounded on R, we obtain
∣∣∣
∫ 1

0

1− cos(z)

z2

[
r̂
(z
t

)
− 1

πβKcos(0)

]
dz

∣∣∣ ≤ c

tγ0

∫ 1

0
zγ0dz = O(t−γ0). (6.5)

Likewise,
∣∣∣
∫ ǫt

1

1− cos(z)

z2

[
r̂
(z
t

)
− 1

πβKcos(0)

]
dz

∣∣∣ ≤ c

tγ0

∫ ǫt

1

1

z2−γ0
dz ≤ c

tγ0/2
, (6.6)
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where the last implication holds for any γ0 ∈ [0, 2]. Expressions (6.3)–(6.6) imply that

∣∣∣
E
[
X(t)2

]

t
− 4

πβKcos(0)

∫ ∞

0

1− cos(z)

z2
dz

∣∣∣ = O(t−1 + t−γ0 + t−γ0/2) = O(t−γ0/2).

Since, in addition, ∫ ∞

0

1− cos(z)

z2
dz =

π

2
(6.7)

[16, p. 447, (3.782.2)], then (2.5) holds.
To show part (b), on the subdiffusive regime, we employ the same technique as the one used in

part (a). In this situation, by analogy to (6.2), we see that

E
[
X(t)2

]

tα
= 4

∫ ∞

0

1− cos(z)

z1+α

r̂
(
z
t

)
(
z
t

)1−αdz.

As in the proof of part (a), fix a small ǫ > 0 and a large enough t. Thus,

E
[
X(t)2

]

tα
− 4Cα,1

πβ(C2
α,1 + C2

α,2)

∫ ∞

0

1− cos(z)

z1+α
dz

= 4

∫ ∞

0

1− cos(z)

z1+α

[
r̂
(
z
t

)
(
z
t

)1−α − Cα,1

πβ(C2
α,1 + C2

α,2)

]
dz

= 4
{∫ 1

0
+

∫ ǫt

1
+

∫ ∞

ǫt

}1− cos(z)

z1+α

[
r̂
(
z
t

)
(
z
t

)1−α − Cα,1

πβ(C2
α,1 + C2

α,2)

]
dz

=: 4(I0 + I1 + I2) (6.8)

We now provide bounds on each term on the right-hand side of (6.8). First note that, by Proposi-
tion 6.1, (b),

I0 = O(t−γα). (6.9)

However, Proposition 6.1, (b), also implies that r̂(ω)/ω1−α is bounded on (0,∞). By a similar
argument to the one used in part (a), we readily obtain

|I2| ≤ c

∫ ∞

ǫt

1

z1+α
dz = O(t−α). (6.10)

In addition, for γα = min{1− α,αβα},

|I1| ≤
c

tγα

∫ ǫt

1

1

z1+α−γα
dz = O(t−γα/2 + t−α/2), (6.11)

where the equality holds for any α, γα ∈ (0, 1). Expressions (6.8)–(6.11) imply that

∣∣∣
E
[
X(t)2

]

tα
− 4Cα,1

πβ(C2
α,1 + C2

α,2)

∫ ∞

0

1− cos(z)

z1+α
dz

∣∣∣

= O(t−α/2 + t−γα/2) = O(t−η/2),

(6.12)

where η = min{α, γα}. To simplify the limiting constant in (6.12), consider again Cα,1 and Cα,2 as
in (6.1). From [16, p. 460, (3.823)],

∫ ∞

0

1− cos(z)

z1+α
dz = −Γ(−α) cos

(απ
2

)
,
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and from [3, p. 10, (1)] and [3, p. 68, (1)], respectively,
∫ ∞

0

cos(z)

zα
dz =

π

2Γ(α) cos(απ/2)
,

∫ ∞

0

sin(z)

zα
dz =

π

2Γ(α) sin(απ/2)
.

Then, by Euler’s reflection formula,

4Cα,1

πβ(C2
α,1 + C2

α,2)

∫ ∞

0

1− cos(z)

z1+α
dz

=

4π
2Γ(α) cos(απ/2)

πβCα

[(
π

2Γ(α) cos(απ/2)

)2
+

(
π

2Γ(α) sin(απ/2)

)2]
(
− Γ(−α) cos(απ/2)

)

=
2 sin(απ)

απβCα
,

which is the constant appearing in expression (2.6). This establishes (b). �

We finish this section by providing the proof of Theorem 2.6 in the critical regime.

Proof of Theorem 2.6 . We recall from (5.2) that

log(t)E
[
X(t)2

]

t
= 4 log(t)

∫ ∞

0

1− cos(z)

z2
r̂
(z
t

)
dz,

whence

log(t)E
[
X(t)2

]

t
− 4

πβC1

∫ ∞

0

1− cos(z)

z2
dz

= 4

∫ ∞

0

[
log(t)r̂

(z
t

)
− 1

πβC1

]1− cos(z)

z2
dz

= 4
{∫ log(t)−2

0
+

∫ log(t)2

log(t)−2

+

∫ ∞

log(t)2

}[
log(t)r̂

(z
t

)
− 1

πβC1

]1− cos(z)

z2
dz

= 4(I0 + I1 + I2). (6.13)

We now construct bounds on each term on the right-hand side of (6.13). We first consider I0 and
I2, as they are easier to handle compared with I1. To derive a bound on I0, recall from the proof
of Theorem 4.2 that r̂(ω) is uniformly bounded on (0,∞). Then,

|I0| =
∫ log(t)−2

0

∣∣∣ log(t)r̂
(z
t

)
− 1

πβC1

∣∣∣1− cos(z)

z2
dz

≤ c(log(t) + 1)

∫ log(t)−2

0
1 dz = O(log(t)−1). (6.14)

Likewise, in regard to I2,

|I2| ≤
∫ ∞

log(t)2

∣∣∣ log(t)r̂
(z
t

)
− 1

πβC1

∣∣∣1− cos(z)

z2
dz

≤ c(log(t) + 1)

∫ ∞

log(t)2

1

z2
dz = O(log(t)−1). (6.15)

Turning to I1, expression (4.11) for r̂(ω) implies that
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log(t)r̂
(z
t

)
− 1

πβC1
=

1

π

[ β log(t)Kcos

(
z
t

)
[
βKcos

(
z
t

)]2
+

[
m

(
z
t

)
− βKsin

(
z
t

)]2 − 1

βC1

]

=
1

πβC1

[ β2C1 log(t)Kcos

(
z
t

)
−

[
βKcos

(
z
t

)]2
[
βKcos

(
z
t

)]2
+

[
m

(
z
t

)
− βKsin

(
z
t

)]2

−
[
m

(
z
t

)
− βKsin

(
z
t

)]2
[
βKcos

(
z
t

)]2
+

[
m

(
z
t

)
− βKsin

(
z
t

)]2
]
. (6.16)

However, Proposition 3.2 implies that lim supω→0Ksin(ω)
2 < ∞ and Kcos(ω) ∼ | log(ω)| as ω → 0.

Therefore, for every z ∈ [log(t)−2, log(t)2] and large enough t, the second term on the right-hand
side of (6.16) is bounded in absolute value by

c∣∣Kcos

(
z
t

)∣∣2 ≤ c∣∣log
(
z
t

)∣∣2 ≤ c

| log(t)− 2 log(log(t))|2 = O(| log(t)|−2).

To obtain a similar bound for the first term on the right-hand side of (6.16), note that

β2C1 log(t)Kcos

(
z
t

)
−

[
βKcos

(
z
t

)]2
[
βKcos

(
z
t

)]2
+

[
m

(
z
t

)
− βKsin

(
z
t

)]2 ≤ β2C1 log(t)Kcos

(
z
t

)
−

[
βKcos

(
z
t

)]2
[
βKcos

(
z
t

)]2

≤
∣∣Kcos

(
z
t

)
− C1 log(t)

∣∣
Kcos

(
z
t

)

≤
∣∣Kcos

(
z
t

)
− C1 log

(
t
z

)∣∣
Kcos

(
z
t

) +
C1| log(z)|
Kcos

(
z
t

) .

Again for z ∈ [log(t)−2, log(t)2] and large enough t, Proposition 3.2 implies that

C1| log(z)|
Kcos

(
z
t

) ≤ c log(z)

log
(
t
z

) ≤ c log(log(t))

log(t)− 2 log(log(t))
= O(log(t)−1),

Also, by Lemma 3.9,
∣∣Kcos

(
z
t

)
− C1 log

(
t
z

)∣∣
Kcos

(
z
t

) ≤ c

Kcos

(
z
t

) =
c

log
(
t
z

) ≤ c

log(t)− 2 log(log(t))
= O(log(t)−1).

Therefore,

|I1| =
∣∣∣
∫ log(t)2

log(t)−2

[
log(t)r̂

(z
t

)
− 1

πβC1

]1− cos(z)

z2
dz

∣∣∣

≤ c

log(t)

∫ log(t)2

log(t)−2

1− cos(z)

z2
dz = O(log(t)−1). (6.17)

Expressions (6.13)–(6.17) imply that

∣∣∣
log(t)E

[
X(t)2

]

t
− 4

πβC1

∫ ∞

0

1− cos(z)

z2
dz

∣∣∣ = 4|I0 + I1 + I2| = O(log(t)−1), (6.18)

as t→ ∞. Relations (6.18) and (6.7) establish (2.7). �
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7. Conclusion

The GLE is a universal model for particle velocity in a viscoelastic medium. In this paper,
we consider the GLE with power law decay memory kernel. We show that, in the critical regime
where the memory kernel decays like 1/t as t → ∞, the MSD of particle motion grows linearly in
time up to a slowly varying (logarithm) term. Moreover, we use the theory of stationary random
distributions to establish the well-posedness of the GLE in this regime. This solves an open problem
from [33] and completes the answer to the conjecture put forward in [38] on the relationship between
memory kernel decay and anomalously diffusive behavior. Under slightly stronger assumptions on
the memory kernel, we construct an Abelian-Tauberian framework to provide robust bounds on
the deviation of the MSD around its asymptotic trend. This bridges the gap between the GLE
memory kernel and the spectral density of anomalously diffusive particle motion characterized in
[10].

The work in this paper leads to a number of future research directions. As mentioned in [33], it is
an open question whether conditions such as (I) and (II) are not only sufficient, but also necessary
for characterizing the growth rate of the MSD. Although sufficient and necessary conditions on
the relationship between the memory kernel K and its Fourier transforms Kcos and Ksin are fully
provided in Propositions 3.2 and 3.3, it remains an open problem to construct analogous necessary
conditions for Kcos, Ksin vis-à-vis the spectral density r̂ in (4.11), or for r̂ vis-à-vis the MSD
E
[
X(t)2

]
in (5.1).

A related research topic that is of direct interest for experimental data analysis is to establish
the asymptotic distribution of the time-averaged mean squared displacement statistic under the
three GLE regimes by drawing upon the analytical framework developed in this paper. This would
clarify or extend the connection between the GLE and the results in [10], and is the topic of future
work.

Acknowledgements

We would like to thank Scott A. McKinley for suggesting the problems. H.N. gratefully acknowl-
edges support through the NSF DMS-1612898 grant. G.D. was partially supported by the prime
award no. W911NF–14–1–0475 from the Biomathematics subdivision of the Army Research Office,
USA. We are also grateful to two anonymous reviewers for their comments and suggestions.

References

[1] V. Anh and N. Leonenko. Fractional Stokes–Boussinesq–Langevin equation and Mittag-Leffler correlation decay.
Theory of Probability and Mathematical Statistics, 98:5–26, 2019.

[2] E. Barkai and R. J. Silbey. Fractional Kramers equation. The Journal of Physical Chemistry B, 104(16):3866–
3874, 2000.

[3] H Bateman. Table of integral transforms, Vol 1(1954), Ed A. Erdélyi.
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