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Abstract. An operator analogue of the FEAST matrix eigensolver is developed to compute the
discrete part of the spectrum of a differential operator in a region of interest in the complex plane.
Unbounded search regions are handled with a novel rational filter for the right half-plane. If the
differential operator is normal or self-adjoint, then the operator analogue preserves that structure
and robustly computes eigenvalues to near machine precision accuracy. The algorithm is particularly
adept at computing high-frequency modes of differential operators that possess self-adjoint structure
with respect to weighted Hilbert spaces.
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1. Introduction. In this paper, we consider differential eigenvalue problems
posed on the interval [−1, 1], i.e.,

(1.1) Lu = λu, u(±1) = · · · = u(N/2)(±1) = 0.

Here, L is a linear, ordinary differential operator of even order N . A complex number
λ and a function u satisfying (1.1) are called an eigenvalue and eigenfunction of L,
respectively. We focus on computing the eigenvalues of L contained in a simply con-
nected region Ω ⊂ C. Throughout, we assume that the boundary ∂Ω is a rectifiable,
simple closed curve and that the spectrum λ(L) of L is discrete, does not intersect
∂Ω, and only finitely many eigenvalues counting multiplicities are in Ω. To simplify
discussion about the eigenfunctions of (1.1), we assume that there are eigenfunctions
of L that form a basis for the invariant subspace of L associated with Ω.

Since the development of the QR algorithm in the 1960s, the standard methods for
solving (1.1) have adopted a “discretize-then-solve” paradigm. These algorithms first
discretize L to obtain a finite matrix eigenvalue problem and then solve the matrix
eigenvalue problem with algorithms from numerical linear algebra [18,22,26,40]. Moti-
vated by mathematical software for highly adaptive computations with functions [19],
we propose an alternative strategy: an algorithm that solves (1.1) by directly ma-
nipulating L at the continuous level and only discretizes functions, not operators.
By designing an eigensolver for L rather than intermediate discretizations, we are
able to leverage spectrally accurate approximation schemes for functions while avoid-
ing several pitfalls that plague spectral discretizations of (1.1) (see [61], [23, Ch. 2],
and [60, Ch. 30]). For this reason, we view our proposed algorithms as adopting a
“solve-then-discretize” paradigm. This paradigm has been applied to Krylov meth-
ods [24], iterative eigensolvers [29], and contour integral projection eigensolvers [8] for
differential operators. Related techniques for computing with operators on infinite
dimensional spaces have been proposed and studied in [15,38].

As an example of the advantages of our methodology, consider the simplest pos-
sible differential eigenvalue problem given by

(1.2) − d2u

dx2
= λu, u(±1) = 0.
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Figure 1.1. Left: The eigenvalue condition numbers [5] for 4000×4000 discretizations of (1.2)
obtained by collocation (blue dots), tau (red dots), Chebyshev–Galerkin (black dots), and ultraspheri-
cal (yellow dots) spectral methods are compared to the eigenvalue condition numbers (magenta dots)
of (1.2), which are preserved by the operator analogue of FEAST. Right: The relative errors in
the first 2000 eigenvalues of each spectral discretization of (1.2), computed with a backward stable
eigensolver [25, p.385]. We observe fluctuations in the relative errors due to the ill-conditioning
introduced by using nonsymmetric spectral discretizations of L. In contrast, the relative errors (ma-
genta dots) in the eigenvalues computed by contFEAST, a practical implementation of the operator
analogue of FEAST (see section 4), are on the order of machine precision.

The eigenvalues of (1.2) are λk = (kπ/2)2, for k ≥ 1, and are well-conditioned due to
the fact that the eigenfunctions form a complete orthonormal set in the Hilbert space
L2([−1, 1]) [32, p. 382]. However, spectral discretizations of (1.2) lead to highly non-
normal matrices with eigenvalues that are far more ill-conditioned than expected. Due
to this ill-conditioning, the accuracy in the computed eigenvalues can be extremely
variable and difficult to predict, ranging from a few digits to nearly full precision
(see Figure 1.1). It is possible to use structure-preserving spectral discretizations to
solve (1.2) accurately [14,50]. However, there is a lack of literature on designing spec-
tral discretizations of (1.1) when L is self-adjoint or normal with respect to an inner
product other than L2([−1, 1]). On the other hand, our solve-then-discretize method-
ology automatically preserves the normality or self-adjointness of L with respect to a
relevant Hilbert space H, provided that the inner product (·, ·)H can be evaluated.

At the heart of our approach is an operator analogue of the FEAST matrix
eigensolver, which we briefly outline:

(1) We construct a basis for the eigenspace V corresponding to Ω by sampling the range
of the associated spectral projector PV .

(2) We extract an H-orthonormal basis for V with a continuous analogue of the QR
factorization [58].

(3) We perform a Rayleigh–Ritz projection [47, p. 98] of L onto V with the orthonormal
basis in (2). We solve the resulting matrix eigenvalue problem to obtain approxi-
mations to the eigenvalues of L in Ω.

As with the FEAST matrix eigensolver, the spectral projector PV is applied ap-
proximately via a quadrature rule approximation. For matrices, this involves solving
shifted linear systems, while for differential operators one needs to solve shifted lin-
ear differential equations. We solve these differential equations with the ultraspherical
spectral method, which is a well-conditioned spectral method that is capable of resolv-
ing solutions that exhibit layers, rapid oscillations, and weak corner singularities [37].

Critically, we discretize basis functions for V as opposed to discretizing the dif-
ferential operator L when solving (1.1). While discretizations of a normal operator
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Figure 2.1. Left: FEAST uses an approximation to the spectral projector to compute the
eigenvalues that lie inside Ω (red dots) and project away the eigenvalues outside of Ω (blue dots).
Right: The rational map in (2.2) that approximates the characteristic function on Ω.

L can lead to non-normal matrices, the Rayleigh–Ritz projection described in (3)
always leads to a normal matrix eigenvalue problem when L is normal (see Theo-
rems 3.1 and 3.2). In fact, we prove that using a sufficiently good approximate basis
for V does not significantly increase the sensitivity of the eigenvalues when L is normal
(see subsection 5.2 for a precise statement). The result is a highly accurate eigensolver
for normal differential operators L, requiring O(mMN log(N) +m2N +m3) floating
point operations, where m = dim(V) and M and N are the polynomial degrees used
to resolve the variable coefficients in L and the eigenfunctions in V, respectively.

The eigensolver we develop is competitive in the high-frequency regime because it
efficiently resolves oscillatory basis functions in V. Furthermore, it handles operators
that are self-adjoint or normal with respect to non-standard Hilbert spaces. Finally,
our algorithm is parallelizable like the FEAST matrix eigensolver [44]. This work is
a step towards closing the gap between the frequency regimes that are accessible to
computational techniques and asymptotic methods for differential eigenvalue problems
posed on higher dimensional domains [10,11].

The paper is organized as follows. We begin in section 2 by reviewing FEAST
for matrix eigenvalue problems. In section 3 we introduce an analogue of FEAST for
differential operators and show that the operator analogue preserves eigenvalue sen-
sitivity. In section 4 we discuss a practical implementation of the operator analogue
and provide two examples from Sturm–Liouville theory to illustrate its capabilities
in the high-frequency regime. We analyze the convergence and stability of this im-
plementation in section 5. Sections 6 and 7 develop further applications of the solve-
then-discretize paradigm, including an operator analogue of the Rayleigh Quotient
iteration and an extension of FEAST to unbounded search regions.

2. The FEAST matrix eigensolver. The FEAST matrix eigensolver uses
approximate spectral projection to compute the eigenvalues of a matrix A ∈ Cn×n in
a region of interest Ω ⊂ C [33] (see Figure 2.1). It is usually more computationally
efficient than standard eigensolvers when the number of eigenvalues in Ω is much
smaller than n. The dominating computational cost of FEAST is solving several
independent shifted linear systems, but these can be performed in parallel [33].

There are three essential ingredients to FEAST:
(i) Spectral projector. Let λ1, . . . , λm be the eigenvalues of A in Ω and let V be the

associated invariant subspace of A, i.e., AV = V. The spectral projector onto V is
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Algorithm 2.1 The FEAST algorithm for matrix eigenvalue problems [44]. This
is often viewed as a single iteration that is repeated to improve the accuracy of the
computed eigenvalues and eigenvectors [54].

Input: A ∈ Cn×n, Ω ⊂ C containing m eigenvalues of A, Y : Cn×m.

1: Compute V = PVY .
2: Compute the QR factorization V = QR.
3: Compute AQ = Q∗AQ and solve the eigenvalue problem AQX = ΛX for Λ =

diag (λ1, . . . , λm) and X ∈ Cm×m.

Output: Eigenvalues λ1, . . . , λm in Ω and eigenfunctions U = QX.

defined as

(2.1) PV =
1

2πi

∫
∂Ω

(zI −A)−1 dz.

The important fact here is that range(PV) = V and so PV is a projection onto the
invariant subspace of A [32].

(ii) Basis for V. FEAST uses the spectral projector to construct a basis for V. It
begins with a matrix Y ∈ Cn×m with linearly independent columns that are not
in ker(PV), then it computes Z = PVY . The columns of Z span V and a QR
factorization of Z provides an orthonormal basis, Q, for V.

(iii) Rayleigh–Ritz projection. Having obtained an orthonormal basis for V, FEAST
solves AQx = λx using a dense eigensolver [44], where AQ = Q∗AQ. Since
range(Q) = V, the eigenvalues of AQ are the eigenvalues of A that lie inside Ω.
When AQ is diagonalizable, the eigenvectors of A are given by ui = Qxi, for
i = 1, . . . ,m, where x1, . . . , xm are the corresponding eigenvectors of AQ.

For practical computation, FEAST approximates the contour integral in (2.1)
with a quadrature rule. Given a quadrature rule with nodes z1, . . . , z` and weights
w1, . . . , w`, one can approximate PVY by

(2.2) PVY ≈
1

2πi

∑̀
k=1

wk(zkI −A)−1Y.

In this case, the eigenpairs of AQ provide approximations to the eigenpairs of A,
known as Ritz values and vectors [54]. To refine the accuracy of the Ritz values and
vectors, a more accurate quadrature rule can be used to compute PVY [54]. FEAST
also refines the approximate eigenvalues and eigenvectors by applying PV to the n×m
block of approximate eigenvectors using a quadrature rule and iterating (ii) and (iii)
until convergence. To fully understand this refinement process, one must examine
FEAST through the lens of rational subspace iteration [54].

When the dimension m of the invariant subspace V is unknown, there are several
techniques for estimating m and selecting an appropriate value [33, 36, 54]. Most of
these techniques can be incorporated into the operator analogue of FEAST. Conse-
quently, we assume that m is known throughout the paper and focus on the algorith-
mic and theoretical aspects of FEAST that are relevant in the operator setting.

Curiously, the originally proposed FEAST algorithm does not compute an or-
thonormal basis for V before performing the Rayleigh–Ritz projection [33,44].1 How-
ever, when Q has orthonormal columns and range(Q) is an invariant subspace of A,

1The FEAST algorithm for non-Hermitian matrices utilizes dual bases for the left and right
eigenspaces to improve stability [33].



FEAST FOR DIFFERENTIAL EIGENPROBLEMS 5

then the eigenvalues of the small matrix Q∗AQ are no more sensitive to perturbations
than the original eigenvalues of A. This highly desirable property follows from an
examination of the structure of the left and right invariant subspaces of Q∗AQ or,
alternatively, from the ε-pseudospectra of Q∗AQ [60, p. 382].

3. An operator analogue of FEAST. The FEAST matrix algorithm provides
a natural starting point for an operator analogue because it provides a recipe to con-
struct a small matrix Q∗AQ whose eigenvalues coincide with those of A inside Ω and
have related invariant subspaces. Moreover, the eigenstructure of Q∗AQ reflects the
eigenstructure of A when the columns of Q are orthonormal. As the sensitivity of the
eigenvalues of A depends intimately on the structure of the associated eigenvectors,
Q∗AQ may be used to compute the desired eigenvalues of A efficiently without sac-
rificing accuracy. Here, we generalize FEAST so that it constructs a matrix whose
eigenvalues coincide with those of a differential operator inside Ω.

3.1. FEAST for differential operators. In place of a matrix A acting on
vectors from Cn, we now consider a differential operator L acting on functions from
a Hilbert space H. As described in section 2, the FEAST recipe prescribes a spectral
projection to compute a basis for V, which is then used for the Rayleigh–Ritz projec-
tion to construct a matrix representation on V. Throughout, we require that L be a
closed operator2 and that its domain D(L) is dense in H.

(i) Spectral projector. Although L is unbounded, the resolvent (zI − L)−1 is
bounded when z 6∈ λ(L) and the spectral projector onto V may be defined via
contour integral [32, p. 178]. It is given by

(3.1) PV =
1

2πi

∫
∂Ω

(zI − L)−1 dz.

(ii) Basis for V. With the spectral projector at our disposal, we apply PV to func-
tions f1, . . . , fm in H \ ker(PV) to obtain a basis of functions v1, . . . , vm for V.
Orthonormalizing v1, . . . , vm with respect to the inner product (·, ·)H on H gives us
an H-orthonormal basis q1, . . . , qm for V.

(iii) Rayleigh–Ritz projection. To compute a matrix representation L of L on V, the
Rayleigh–Ritz projection is performed using the inner product on H. The elements
of L are given by Lij = (qi,Lqj)H for 1 ≤ i, j ≤ m. The eigenvalues of L are
precisely the eigenvalues λ1, . . . , λm of L that lie inside Ω. The eigenfunctions of L
are recovered from the eigenvectors x1, . . . , xm of L by computing ui =

∑m
k=1 x

(k)
i qk,

for i = 1, . . . ,m, where x
(k)
i is the kth component of xi.

To avoid a clutter of indices, we employ the notation of quasimatrices.3 If Q
is the quasimatrix with columns q1, . . . , qm, then the matrix L whose elements are
Lij = (qi,Lqj)H in (iii) is expressed compactly in quasimatrix notation as L = Q∗LQ.
Here, Q∗ is the conjugate transpose of the quasimatrix Q so its rows are complex
conjugates of the functions q1, . . . , qm.

The analogue of FEAST for differential operators is summarized in Algorithm 3.1
using quasimatrix notation so that it resembles its matrix counterpart. Keep in mind
that Algorithm 3.1 is a formal algorithm. In general, we cannot apply the spectral
projector exactly, nor represent the basis V exactly with finite memory. A practical
implementation is discussed in section 4.

2An operator A : D(A)→H is closed if its graph is a closed linear subspace of H×H [32, p. 165].
3A quasimatrix is a matrix whose columns (or rows) are functions defined on an interval [a, b],

in contrast to matrices whose columns (or rows) are vectors [19, Ch.6].
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Algorithm 3.1 An operator analogue of FEAST for differential operators.

Input: L : D(L)→ H, Ω ⊂ C containing m eigenvalues of L, F : Cm → H.

1: Compute V = PVF .
2: Compute V = QR, where Q : Cm → D(L) ⊂ H has H-orthonormal columns and
R ∈ Cm×m is upper triangular.

3: Compute L = Q∗LQ and solve LX = ΛX for Λ = diag[λ1, . . . , λm] and X ∈
Cm×m.

Output: Eigenvalues λ1, . . . , λm in Ω and eigenfunctions U = QX.

3.2. Condition number of the Ritz values. As illustrated in Figure 1.1, the
eigenvalues of matrix discretizations of L can be more sensitive to perturbations than
the eigenvalues of L. The advantage of our FEAST approach in subsection 3.1 is that
the Ritz values, i.e., the eigenvalues of Q∗LQ, are no more sensitive to perturbations
than the original eigenvalues of L when range(Q) is an invariant subspace of L.

To see this, let λ be a simple eigenvalue of a differential operator L. Let u,w ∈ H
satisfy Lu = λu and L∗w = λw, where λ denotes the complex conjugate of λ. The
condition number4 of λ is given by [6, Theorem 2.3]

(3.2) κH(λ) =
‖u‖H‖w‖H

(w, u)H
.

The condition number κH(λ) quantifies the worst-case first-order sensitivity of λ to
perturbations of L. For instance, if we compute λ using a backward stable algorithm
in floating point arithmetic, we expect to achieve an accuracy of at least κH(λ)εmach,
where εmach is machine precision [59, Theorem 15.1].

Theorem 3.1. Let L : D(L) → H be a closed and densely defined operator on a
Hilbert space H, Q : Cm → H be an invariant subspace of L satisfying Q∗Q = I, and
L = Q∗LQ. Suppose that u ∈ range(Q) satisfies Lu = λu and w satisfies L∗w = λw,
where L∗ denotes the adjoint of L and λ is a simple eigenvalue of L with condition
number κH(λ). Then,

1) LQ∗u = λQ∗u and L∗Q∗w = λQ∗w,
2) (Q∗w,Q∗u)Cm = (w, u)H, and
3) κCm(λ) ≤ κH(λ).

Proof. Denote x = Q∗u and y = Q∗w. We prove the statements of the theorem
in order. 1) Since u ∈ range(Q), we can write u = Qx. Then, L(Qx) = λ(Qx) implies
that Q∗LQx = λx using the fact that Q∗Q = I. For the left eigenvector, we write
w = Qy+v for some v ∈ range(Q)⊥. Rewriting the adjoint equation for w, we find that
L∗(Qy + v) = λ(Qy + v) and multiplying by Q∗ on both sides yields Q∗L∗Qy = λy.
Here, we have used the fact that Q∗L∗v = 0, which holds because v∗LQ = 0. 2)
By calculating (w, u)H = (Qy + v,Qx)H, we find that (w, u)H = (Qy,Qx)H because
v ∈ range(Q)⊥. Moreover, since Q∗Q = I we conclude that (w, u)H = (y,Q∗Qx)Cm =
(y, x)Cm . 3) We know that ‖u‖H = (Qx,Qx)H = (x, x)Cm = ‖x‖Cm and ‖w‖H =
(Qy + v,Qy + v)H = ‖y‖Cm + ‖v‖H. Therefore,

‖u‖H‖w‖H = ‖x‖Cm (‖y‖Cm + ‖v‖H) ≥ ‖x‖Cm‖y‖Cm .

4Although this formula is usually associated with the condition number for a simple eigenvalue
of a matrix, its proof extends to our general setting [55, Theorem 5].
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Referring to 2) for equality of the inner products in the denominator, we have

κCm(λ) =
‖x‖Cm‖y‖Cm

(y, x)Cm

≤ ‖u‖H‖w‖H
(w, u)H

= κH(λ),

which concludes the proof.

Theorem 3.1 shows that if L is a normal operator, then u = w and we have
κCm(λ) = κH(λ) = 1. For non-normal operators, item 3) of Theorem 3.1 may seem to
erroneously indicate that ill-conditioning in the eigenvalues of L can be overcome by a
Rayleigh–Ritz projection. However, when L is non-normal the spectral projector PV
is an oblique projection and computing the basis Q may be itself an ill-conditioned
problem. Theorem 3.1 also illustrates why the operator analogue of FEAST leads to a
well-conditioned matrix eigenvalue problem when the differential eigenvalue problem
is well-conditioned. By computing an H-orthonormal basis for the Rayleigh–Ritz pro-
jection, the relevant structure in the eigenspaces of L and L∗ is preserved. However,
the first-order analysis above is limited to simple eigenvalues.

3.3. Pseudospectra of Q∗LQ. To go beyond first-order sensitivity analysis, we
compare the ε-pseudospectra of L and Q∗LQ. Fix any ε > 0 and let L : D(L) → H
be a closed operator with a domain D(L) that is dense in H. The ε-pseudospectrum
of L is defined as the set [60, p. 31]

(3.3) λε(L) = {z ∈ C : ‖(zI − L)−1‖H > 1/ε}.

Here, we adopt the usual convention that ‖(zI − L)−1‖H = ∞ when z ∈ λ(L) so
that λ(L) ⊂ λε(L). The ε-pseudospectrum set of L bounds the region in which the
eigenvalues of the perturbed operator L+ E with ‖E‖H < ε can be found [60, p. 31].
This means that λ(L+ E) ⊂ λε(L). In fact, there is an equivalence so that [60, p. 31]

(3.4)
⋃

‖E‖H<ε

λ(L+ E) = λε(L).

This allows us to relate the sensitivity of the eigenvalues of L and Q∗LQ by comparing
the resolvent norms ‖(zI − L)−1‖H and ‖(zI −Q∗LQ)−1‖Cm , respectively.

A useful generalization of Theorem 3.1 is that the ε-pseudospectrum of Q∗LQ is
contained in the ε-pseudospectrum of L. Since this holds for any ε > 0, it demon-
strates that the eigenvalues (even those with multiplicity) of Q∗LQ are no more
sensitive to perturbations than those of L. This inclusion result is well-known in the
matrix case where projection methods are a popular method for approximating the
ε-pseudospectra of large data-sparse matrices [60, p. 381].

Theorem 3.2. Let L : D(L) → H be a closed and densely defined operator on a
Hilbert space H. For a fixed ε > 0, suppose that Q : Cm → H satisfies Q∗Q = I and
that range(Q) is an invariant subspace of L. Then, λε(Q

∗LQ) ⊂ λε(L).

Proof. We follow the proof of Proposition 40.1 in [60, p. 382] for matrices, but
with a closed operator. Since Qx ∈ H for any x ∈ Cm, we have that

‖(zI − L)−1‖H = sup
f∈H,‖f‖H=1

‖(zI − L)−1f‖H ≥ max
x∈Cm,‖x‖Cm=1

‖(zI − L)−1Qx‖H.

Now, when range(Q) is an invariant subspace of L and Q∗Q = I, we have that
‖(zI − L)−1Qx‖H = ‖Q∗(zI − L)−1Qx‖Cm . Because QQ∗f = f for all f ∈ V, we
can check that Q∗(zI − L)−1Q = (Q∗(zI − L)Q)−1. Since Q∗Q = I, it follows that

‖(zI − L)−1‖H ≥ ‖(Q∗(zI − L)Q)−1‖Cm = ‖(zI −Q∗LQ)−1‖Cm .
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Therefore, z ∈ λε(L) whenever z ∈ λε(Q∗LQ).

The inclusion in Theorem 3.2 may be strict, indicating that the eigenvalues of
Q∗LQ are less sensitive than those of L. For example, this may occur when the pro-
jection onto range(Q) targets a subset of well-conditioned eigenvalues of L. However,
we emphasize that ill-conditioning in the eigenvalues of L cannot be overcome by a
Rayleigh–Ritz projection: in general, the situation is complicated [60, Ch. 40].

Theorem 3.2 is useful for studying the stability of Algorithm 3.1. If an approxi-
mate eigenvalue λ̂ of Q∗LQ is computed with an error tolerance of ε > 0, then

λ̂ ∈ λε(Q∗LQ) ⊂ λε(L).

From this, we know by (3.4) that λ̂ is an eigenvalue of a perturbed operator L+ E
with ‖E‖H < ε. In other words, the operator analogue of FEAST, Algorithm 3.1, is
backward stable. As we see in section 5, Theorem 3.2 is also the starting point for a
stability analysis when the spectral projection is no longer exact and the Rayleigh–
Ritz projection is performed with a matrix Q̂ that only approximates a basis for an
invariant subspace of L.

4. A practical differential eigensolver based on an operator analogue
of FEAST. The operator analogue of FEAST requires the manipulation of objects
such as differential operators, functions, and contour integrals (see Algorithm 3.1).
For a practical implementation, these objects must be discretized; however, we avoid
discretizing L directly. Instead, we construct polynomial approximants to the basis
for V by approximately solving shifted linear ODEs. These polynomial approximants
are used in the Rayleigh–Ritz projection to compute the eigenvalues of L in Ω.

Let z1, . . . , z` and w1, . . . , w` be a set of quadrature nodes and weights to approx-
imate the integral in (3.1). As FEAST does in the matrix case, we approximate PV
in (3.1) with a quadrature rule as follows:

(4.1) P̂V =
1

2πi

∑̀
k=1

wk(zkI − L)−1.

If F is a quasimatrix with columns f1, . . . , fm ∈ H, then PVF is replaced by the
approximation P̂VF = 1

2πi

∑`
k=1 wk(zkI − L)−1F . Therefore, to compute P̂VF we

need to solve ` shifted linear ODEs, each with m righthand sides, i.e.,

(4.2) (zkI − L)gi,k = fi, gi,k(±1) = · · · = g
(N/2)
i,k (±1) = 0, 1 ≤ i ≤ m.

If the quasimatrix with columns g1,k, . . . , gm,k is denoted by Gk for k = 1, . . . , `, then

we have P̂VF =
∑`
k=1 wkGk.

To construct a basis for V, it is important to choose F so that the columns of
V̂ = P̂VF are linearly independent and, if possible, well-conditioned. In analogy with
the implementation of matrix FEAST [33,44], we obtain the columns of F by selecting
m band-limited random functions5 on [−1, 1] [21]. When L is a normal operator, this
typically yields a well-conditioned basis V̂ .

We now outline the key implementation details of our differential eigensolver:

5A periodic band-limited random function on [−L,L] is a periodic function defined by a truncated
Fourier series with random (e.g. standard Gaussian distributed) coefficients. In the non-periodic set-
ting, the Fourier series is defined on a larger interval [−L′, L′] and the domain is then truncated [21].
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Algorithm 4.1 A practical algorithm for computing the eigenvalues of a differential
operator L, which we refer to as contFEAST.

Input: L : D(L)→ H, z1, . . . , z` ∈ ∂Ω, w1, . . . , w` ∈ C, F : Cm → H, ε > 0.

1: repeat

2: Solve (zkI − L)Gk = F , Gk(±1) = 0, . . . , G
(N/2)
k (±1) = 0, for k = 1, . . . , `.

3: Set V̂ =
∑`
k=1 wkGk.

4: Compute V̂ = Q̂R̂, where Q̂ : Cm → D(L) ⊂ H has H-orthonormal columns
and R̂ ∈ Cm×m is upper triangular.

5: Compute L̂ = Q̂∗LQ̂ and solve L̂X̂ = X̂Λ̂ for Λ̂ = diag[λ̂1, . . . , λ̂m] and X̂ ∈
Cm×m. Set F = Q̂X̂.

6: until ‖LF − F Λ̂‖H ≤ ε‖Λ̂‖Cm .

Output: Λ̂, Û = Q̂X̂.

(i) Approximate spectral projection. To compute V̂ = P̂VF , we solve the shifted
linear ODEs in (4.2) using the ultraspherical spectral method [37]. The ultras-
pherical spectral method leads to well-conditioned linear systems and is capable of
accurately resolving the functions gi,k even when they are highly oscillatory or have
boundary layers. Moreover, an adaptive QR factorization automatically determines
the degree of the polynomial interpolants needed to approximate the functions gi,k
to near machine precision [38, 39]. After accurately resolving the functions gi,k,
we can accurately compute a basis for V provided that both the spectral projector
is well-conditioned (i.e., L is not highly non-normal) and the quadrature rule is
sufficiently accurate.

(ii) Orthonormal basis. To compute an orthonormal basis Q̂ for the columns of V̂ ,
we compute a QR factorization of the quasimatrix V̂ by Householder triangular-
ization [58]. The Householder reflectors are constructed with respect to the inner
product (·, ·)H so that the columns of Q̂ are H-orthonormal.

(iii) Computing Q̂∗LQ̂. To construct the matrix L̂ = Q̂∗LQ̂, we apply L to the
columns of Q̂ and then evaluate the action of Q̂∗ on LQ̂. Multiplying Q̂∗ with LQ̂
involves taking the inner products

(4.3) L̂ij = (q̂i,Lq̂j)H, 1 ≤ i, j ≤ m,

where q̂i denotes the ith column of Q̂. The eigenvalues λ̂1, . . . , λ̂m and eigenvectors
x̂1, . . . , x̂m of the matrix L̂ are computed using the QR algorithm [25, p. 385].

Critically, the inner product (·, ·)H used in the QR factorization of V̂ and the
construction of Q̂∗LQ̂ depends on the choice of the Hilbert space H. As long as we
are able to evaluate (·, ·)H, we can exploit the fact that L is self-adjoint or a normal
operator with respect to (·, ·)H so that we can accurately compute the eigenvalues of L
in Ω (see Theorem 5.2). For this reason, our algorithm is able to accurately compute
the eigenvalues and eigenfunctions of differential operators that are self-adjoint with
respect to non-standard Hilbert spaces (see subsection 4.1).

Evaluating the inner product (·, ·)H usually means computing an integral, which
we approximate with a quadrature rule. For example, if H = L2([−1, 1]),

(f, g)L2([−1,1]) =

∫ 1

−1

f(x)g(x) dx.

Given the Gauss–Legendre quadrature nodes x1, . . . , xp and weights w1, . . . , wp on
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[−1, 1], then one uses the approximation [12]

(f, g)L2([−1,1]) ≈
p∑
k=1

wkf(xk)g(xk).

A practical implementation of the operator analogue of FEAST is presented in
Algorithm 4.1. As with matrix FEAST, there are two approaches for improving
the accuracy of the Ritz values λ̂1, . . . , λ̂m and vectors Q̂x̂1, . . . , Q̂x̂m. The first is
to improve the accuracy of the quadrature rule in (4.1). The second is to iterate the
algorithm by replacing F by the quasimatrix Û with columns ûi = Q̂x̂i for 1 ≤ i ≤ m,
repeating the process if necessary.6 For normal operators, this iteration generates a
sequence of quasimatrices Q̂k with H-orthonormal columns that converge to an H-
orthonormal basis for the invariant subspace V as k → ∞. This can be viewed as
a rational subspace iteration and geometric convergence of the Ritz pairs is typical
(see section 5).

With either refinement strategy, the accuracy of the Ritz pairs may be monitored
using the residual norm (see step 6 of Algorithm 4.1) as a proxy, just as in the matrix
case. For normal operators, the error in the eigenvalues and eigenvectors computed by
Algorithm 4.1 is typicallyO(ε), where ε is the threshold for the residual norm in step 6.
We defer a discussion of the convergence and stability of Algorithm 4.1 to section 5.
Additional resources on residual norm bounds for eigenvalues and eigenvectors of
matrices and extensions to closed linear operators are found in [9, 13,52].

In practice, when L is non-normal it may be beneficial to use a dual Rayleigh–Ritz
projection Q̂∗LLQ̂R, where the columns of Q̂R approximate an orthonormal basis for

the target eigenspace of L and the columns of Q̂L approximate an orthonormal basis
for the associated eigenspace of the adjoint L∗. In the case of matrix FEAST, the
use of the dual projection leads to a non-normal matrix eigensolver with improved
robustness [33]. Although it is not difficult to adapt Algorithm 4.1 to an operator
analogue of FEAST that uses dual projection, we focus on the implementation and
analysis of the one-sided iteration.

Typically, solving the ODEs in (4.2) dominates the computational cost of Algo-
rithm 4.1. With the ultraspherical spectral method, the computational complexity of
solving the linear ODEs with m distinct right hand sides is O(mMN log(N)) float-
ing point operations (flops) [37]. Here, N and M are, respectively, the degrees of
the truncated Chebyshev series needed to resolve the columns of Gk and the vari-
able coefficients in L to within the tolerance ε specified in Algorithm 4.1. In ad-
dition to the ODE solve, the QR factorization in (ii) requires O(m2N) flops [58],
while the dense eigenvalue computation with a small m × m matrix in (iii) takes
O(m3) flops [25, p. 391]. The complexity of one iteration of Algorithm 4.1 is therefore
O(mMN log(N) + m2N + m3) flops. In practice, convergence to machine precision
usually occurs within two or three iterations.

4.1. Computing high-frequency eigenmodes. Algorithm 4.1 adaptively and
accurately resolves basis functions for highly oscillatory eigenmodes and preserves the
sensitivity of the eigenvalues of the differential operator L, so it is well-suited to
computing high-frequency eigenmodes when L is self-adjoint or normal with respect

6When L is non-normal the Ritz vectors Q̂x̂1, . . . , Q̂x̂m may become numerically linearly de-
pendent, which can lead to an ill-conditioned basis V̂ in susbequent iterations. The robustness
of Algorithm 4.1 may be improved by computing the Schur vectors v1, . . . , vm of L̂ and using the
orthonormal basis Q̂v̂1, . . . , Q̂v̂m to seed the next iteration [53].
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Figure 4.1. Left: The large eigenvalues of (4.4) are computed by contFEAST (see Algorithm 4.1)
using search regions given by asymptotic estimates for the eigenvalues (4.6). Right: The relative

difference |λ̂n − λasyn |/λasyn between the eigenvalues λ̂n computed by contFEAST and the asymptotic
values λasyn from (4.6). The difference is compared to an O(n−2) relative error estimate [2].

to (·, ·)H. We provide two examples from Sturm–Liouville theory to illustrate the
effectiveness of the solve-then-discretize methodology in the high-frequency regime.

4.1.1. A regular Sturm–Liouville eigenvalue problem. First consider a
regular Sturm–Liouville eigenvalue problem (SLEP) given by

(4.4) − d2u

dx2
+ x2u = λ cosh(x)u, u(±1) = 0.

This defines a self-adjoint differential operator with respect to the inner product

(4.5) (v, u)w =

∫ 1

−1

vu cosh(x) dx.

Consequently, (4.4) possesses a complete (·, ·)w-orthonormal basis of eigenfunctions
u1, u2, u3, . . . for the weighted Hilbert space Hw = {u : ‖u‖w =

√
(u, u)w < ∞} and

an unbounded set of real eigenvalues λ1 ≤ λ2 ≤ λ3 ≤ · · · .
Asymptotics for the large eigenvalues of (4.4) are given by [2]

(4.6)
√
λn ∼

nπ∫ 1

−1

√
cosh(x) dx

, n→∞.

To accurately compute the large eigenvalues of (4.4) with Algorithm 4.1, we prescribe
circular search regions with unit radius centered at the values given by the asymptotic
formula in (4.6) (see Figure 4.1). Each search region contains one eigenvalue.

4.1.2. An indefinite Sturm–Liouville eigenvalue problem. Next, we con-
sider the following indefinite SLEP:

(4.7) − d2u

dx2
= λx3u, u(±1) = 0,

which is closely related to models of light propagation in a nonhomogeneous mate-
rial [2, 62]. Since the weight function x3 changes sign at x = 0, (4.7) has a bi-infinite
sequence of eigenvalues [7]. We index them in order as · · · ≤ λ−2 ≤ λ−1 < 0 < λ1 ≤
λ2 ≤ · · · . The asymptotics for the positive eigenvalues are given by [3]

(4.8)
√
λn ∼

(n− 1/4)π∫ 1

0
x3/2 dx

, λn > 0, n→∞.
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Figure 4.2. Left: The high-frequency eigenfunction associated to λ1500 of the indefinite Sturm–
Liouville eigenvalue problem (4.7) computed by contFEAST (see Algorithm 4.1). Right: The Cheby-
shev coefficients {ûk} in a series expansion used to represent the eigenfunction. About 5371 Cheby-
shev coefficients are needed to accurately resolve the eigenfunction. The rapid decay in the coeffi-
cients to essentially machine precision is a good indication that the solution is fully resolved.

A similar expansion holds for the negative eigenvalues [3].
In contrast to the previous example, the indefinite weight function x3 means

that (4.7) is not immediately associated with a self-adjoint operator on a Hilbert
space. Instead, (4.7) is usually studied through the lens of a Krein space and the
eigenfunctions form a Riesz basis for the Hilbert space with the inner product [16]

(4.9) (v, u)|w| =

∫ 1

−1

vu|x|3 dx.

We use the leading order asymptotics in (4.8) to identify search regions that are
likely to contain an eigenvalue of (4.7). Because the ultraspherical spectral method
used to solve the ODEs in step 2 of Algorithm 4.1 is efficient when applied to ODEs
with smooth variable coefficients, it is convenient to treat (4.7) as a generalized eigen-

value problem, i.e., as L1u = λL2u, where L1u = −d
2u
dx2 and L2u = x3u. The eigenval-

ues of the pencil zL2 − L1 are then computed with a straightforward generalization
of Algorithm 4.1 that is based on the spectral projector for the generalized eigenvalue
problem, i.e.,

(4.10) PV =
1

2πi

∫
∂Ω

(zL2 − L1)−1L2 dz.

The eigenvalues and eigenfunctions are automatically resolved to essentially machine
precision because of the use of the adaptive QR solver (see Figure 4.2).

5. Convergence and stability. The primary consequence of the approxima-
tions introduced in Algorithm 4.1 is that the spectral projector is no longer applied
exactly. Therefore, the basis Q̂ computed for the Rayleigh–Ritz projection is not an
exact basis for the invariant subspace V of L and may require further refinement.
Here, we view the iterative refinement procedure used in Algorithm 4.1 as a rational
subspace iteration applied to a normal differential operator L in order to provide a
preliminary analysis of the stability of the iteration and the sensitivity of the Ritz
values. The main results may be summarized as follows.

(i) Algorithm 4.1 yields a sequence of quasimatrices Q̂1, . . . , Q̂k that (generically) con-
verge geometrically to an orthonormal basis for the eigenspace V (see Theorem 5.1).
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(ii) If Q̂k is a sufficiently good approximation to an orthonormal basis for V, then
the ε-psuedospectrum of Q̂∗kLQ̂k is contained in the 2ε-psuedospectrum of L itself
(see Theorem 5.2).

(iii) Under mild conditions on the initial quasimatrix F in Algorithm 4.1, the sequence
‖L(Q̂k −Q)‖Cm→H is uniformly bounded as k →∞ (see Lemma 5.3).

Taken together, these results demonstrate that each iteration of Algorithm 4.1 yields
uniformly consistent Ritz pairs that converge linearly to the desired eigenpair and
that the unboundedness of L does not lead to instability. Note that this analysis does
not take into account the impact of finite-precision arithmetic or the fact that the
shifted differential equations in (4.2) are not solved exactly at each iteration (see the
discussion at the end of subsection 5.1). However, (ii) ensures that the eigenvalues
of the small matrix Q̂∗kLQ̂k are not much more sensitive than the eigenvalues of L.
Therefore, provided that the eigenvalue problem for L is well-conditioned and we
compute a sufficiently accurate approximation to a basis for V, then we expect that
the eigenvalues computed with Algorithm 4.1 provide an accurate approximation to
the desired eigenvalues of L.

5.1. Rational subspace iteration for differential operators. In analogy
to the matrix case [54], Algorithm 4.1 may be interpreted as a filtered subspace
iteration. Filtered subspace iteration is a variant of standard subspace iteration for
computing a target subset of eigenvalues of a matrix A [47, Ch. 5]. The main idea
is to choose a filter function s(·) that is large on the targeted eigenvalues of A and
small on the unwanted eigenvalues of A. Applying the spectral transformation s(A),7

one uses standard subspace iteration to compute a basis for the eigenspace of s(A)
corresponding to its largest eigenvalues, i.e., the targeted eigenvalues of A. With an
approximate basis for the eigenspace available, the eigenvalues and eigenvectors can
be extracted with a Rayleigh–Ritz step.

From this perspective, Algorithm 4.1 computes the eigenvalues of L in Ω with
the aid of a rational filter function induced by the quadrature rule in (4.1), i.e., s(·)
is given by

(5.1) s(z) =
∑̀
k=1

wk
zk − z

, z ∈ C \ {z1, . . . , zl}.

The functional calculus for unbounded normal operators ensures that if λi is an eigen-
value of L with eigenfunction ui, then s(λi) is an eigenvalue of s(L) with eigenfunction
ui [45, VIII.5].8 As the degree of the quadrature rule is increased, the rational function
becomes an increasingly good approximation to the Cauchy integral

(5.2) χ(z) =
1

2πi

∫
∂Ω

dw

w − z
, z ∈ C \ ∂Ω.

Therefore, the eigenvalues of L in Ω are usually O(1) in size under the spectral
transformation s(·) while the eigenvalues outside of Ω are much smaller.

7A spectral transformation s(·) may be applied to A via the eigendecomposition of A, or more
generally the Jordan decomposition. For example, if A has eigendecomposition A = XΛX−1 with
Λ = diag(λ1, . . . , λn), then s(A) = X s(Λ)X−1, where s(Λ) = diag(s(λ1), . . . , s(λn)).

8The result [45, VIII.5] is stated for closed self-adjoint operators on H, however, it extends
immediately to closed normal operators on H if the spectral decomposition of a closed normal op-
erator [46, Theorem 13.33] is used in place of the spectral decomposition of a self-adjoint operator.
For information on the spectral decomposition of unbounded normal operators and the associated
functional calculus, see [46, Ch. 13] and [20].
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We now turn to the convergence of the iteration described in Algorithm 4.1, which
we interpret as a subspace iteration applied to the bounded linear operator P̂V = s(L).
It is helpful to introduce the notions of the spectral radius and a dominant eigenspace
of a bounded linear operator B. The spectral radius of a bounded linear operator B
on a Hilbert space H is defined as [17, p. 99]

(5.3) ρ(B) = max{|z| : z ∈ λ(B)}.

The spectral radius is useful because it characterizes the asymptotic behavior of

‖Bk‖H, in the sense that ρ(B) = limk→∞‖Bk‖1/kH [17, Theorem 4.1.3]. Let V be
an invariant subspace of B associated with eigenvalues λ1 ≥ · · · ≥ λm and a spectral
projector PV . We say that B has dominant eigenspace V if

(5.4) ρ((I − PV)B) < |λm|.

The following theorem is an extension of a convergence analysis [47, p. 119] for
matrix subspace iteration to the setting of bounded linear operators with a dominant
eigenspace. We omit the details of the proof, as they are identical to those found in
the proof of Lemma 3.1 and Lemma 3.2 of [27].

Theorem 5.1. Let B be a bounded linear operator on a Hilbert space H with
dominant eigenspace V, defined in (5.4), having dim(V) = m. Select a quasimatrix
F : Cm → H such that the columns of PVF are linearly independent and suppose the
columns of the quasimatrix Q̂k : Cm → H form an orthonormal basis for range(BkF ),
for k = 1, 2, 3, . . . . If u ∈ V is an eigenvector of B with eigenvalue λ, then there is a
function ûk ∈ range(Q̂k) such that

‖ûk − u‖H ≤ (|ρ/λ|+ εk)
k ‖(I − PV)Fx‖H, k = 1, 2, 3, . . . ,

where ρ = ρ((I − PV)B), εk → 0 as k →∞, and u = PVFx.

Although we have neglected the effects of approximately solving the ODEs in (4.2)
and the impact of round-off errors in our brief analysis of rational subspace iteration
for normal differential operators, we mention two recent results for rational subspace
iteration with matrices [48] and self-adjoint differential operators [27,28].
• For matrices, small errors made during application of the spectral projector gener-

ally do not alter the convergence behavior of subspace iteration [48]. In this case,
the sequence Q̂k no longer converges to an exact basis for V. However, the matrices
Q̂k approximate a basis for V and the approximation error converges geometrically
to a constant determined by the sizes of the errors introduced at each iteration [48].

• For self-adjoint differential operators (closed and densely defined on H), rational
subspace iteration converges to a subspace even when the resolvent operator is
discretized to solve the ODEs in (4.2) [27,28]. The distance between the computed
subspace and the target eigenspace (in a distance metric between subspaces) is
proportional to the approximation error in the discretized resolvent [27,28].

We expect that similar statements hold for normal operators on H, but a rigorous
and detailed convergence analysis is more subtle and beyond the scope of this paper.

5.2. A pseudospectral inclusion theorem. As range(Q̂) is not an invariant
subspace of L, the ε-pseudospectrum of Q̂∗LQ̂ is not, in general, contained in the
ε-pseudospectrum of L. However, if ‖Q̂ − Q‖Cm→H is sufficiently small, then the
ε-pseudospectrum of Q̂∗LQ̂ is contained in the 2ε-pseudospectrum of L.
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Theorem 5.2. Consider a closed operator L with domain D(L) that is densely
defined on a Hilbert space H and fix ε > 0. Let Q : Cm → D(L)

⋂
D(L∗) satisfy

Q∗Q = I, and let range(Q) be an m-dimensional invariant subspace of L. If Q̂ :
Cm → D(L) satisfies

‖Q̂−Q‖Cm→H

(
‖L∗Q‖Cm→H + ‖LQ‖Cm→H + ‖L(Q̂−Q)‖Cm→H

)
<
ε

2
,

then λε(Q̂
∗LQ̂) ⊂ λ2ε(L).

Proof. Consider z ∈ λε(Q̂
∗LQ̂). If z ∈ λε(Q̂

∗LQ̂) ∩ λε(L), there is nothing to
prove, so assume without loss of generality that z 6∈ λε(L). If we denote RQ(z) =

(zI − Q∗LQ)−1, RQ̂(z) = (zI − Q̂∗LQ̂)−1, and E = Q̂ − Q, then we have that

RQ̂(z) = [RQ(z)−1−B]−1, where B = Q∗LE+E∗LQ+E∗LE. Employing a formula

for the inverse of the sum of two matrices, we obtain RQ̂(z) = RQ(z) + RQ(z)[I −
BRQ(z)]−1BRQ(z) [31].

Now, ‖B‖Cm ≤ ‖Q∗LE‖Cm + ‖E∗LQ‖Cm + ‖E∗LE‖Cm . Since ‖E∗‖H→Cm =
‖E‖Cm→H and ‖Q∗L‖H→Cm = ‖L∗Q‖Cm→H [32, p. 256], our hypothesis indicates
that the sum of the three terms comprising B is bounded in norm by

‖B‖Cm ≤ ‖E‖Cm→H (‖L∗Q‖Cm→H + ‖LQ‖Cm→H + ‖LE‖Cm→H) <
ε

2
.

Moreover, since z 6∈ λε(L), we have that ‖RQ(z)‖Cm ≤ 1/ε by Theorem 3.2. Therefore,
‖BRQ(z)‖Cm ≤ 1/2.

Because ‖BRQ(z)‖Cm ≤ 1/2, we may use the Neumann series to compute (I −
BRQ(z))−1 =

∑∞
k=0(BRQ(z))k. We see that RQ̂(z) = RQ(z)

(
I +

∑∞
k=1(BRQ(z))k

)
and therefore,

‖RQ̂(z)‖Cm ≤

(
1 +

∞∑
k=1

1

2k

)
‖RQ(z)‖Cm = 2‖RQ(z)‖Cm .

Now, if z ∈ λε(Q̂∗LQ̂), then ‖RQ(z)‖Cm ≥ ‖RQ̂(z)‖Cm/2 > 1/(2ε). By Theorem 3.2,

we have that ‖(zI − L)−1‖H ≥ ‖RQ(z)‖Cm . Collecting inequalities yields the result
‖(zI − L)−1‖H > 1/(2ε), i.e., z ∈ λ2ε(L).

A consequence of Theorem 5.2 is that Algorithm 4.1 possesses a type of stability
provided that L is uniformly bounded on the sequence E1, E2, E3, . . . , where Ek =
Q̂k −Q for k ≥ 1. If L is uniformly bounded on {Ek}∞k=1, then there is a Λ ≥ 0 such
that supk≥1‖LEk‖Cm→H ≤ Λ. Applying Theorem 5.2, we see that Algorithm 4.1
computes elements in the 2ε-pseudospectrum of L provided that a basis for V is
resolved to within ε/(2(‖L∗Q‖Cm→H + ‖LQ‖Cm→H + Λ)).

We now verify, with two mild constraints placed on the choice of the initial quasi-
matrix F , that L is uniformly bounded on the sequence {Q̂k}∞k=1 generated by Algo-
rithm 4.1. Note that this implies that L is uniformly bounded on {Ek}∞k=1 because

Ek = Q̂k − Q and range(Q) ⊂ D(L). The constraints on F are generically satisfied
when F is selected as in section 4. In the statement of the bound on ‖LQ̂k‖Cm→H,
we use the notation σmin(PVF ) and σmin((I − PV)F ) to denote the smallest singular
values of the quasimatrices PVF and (I − PV)F , respectively.9

9The singular value decomposition of a quasimatrix A : Cm → H is the decomposition A =
UΣV ∗, where U : Cm →H is a quasimatrix with H-orthonormal columns, Σ ∈ Cm×m is a diagonal
matrix with non-negative entries σ1 ≥ · · · ≥ σm, and V ∈ Cm×m is a unitary matrix [57].
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Lemma 5.3. Consider a closed, normal operator L with domain D(L) that is
densely defined on a Hilbert space H. Let P̂V be the bounded operator on H defined
in (4.1) and suppose that P̂V has a dominant eigenspace of V (see (5.4)) with dim(V) =
m. Let F , PV , and {Q̂k}∞k=1 be as in Theorem 5.1 with B = P̂V . Suppose that P̂kVF
(for each k ≥ 1) and (I − PV)F each have linearly independent columns and that
range(F ) ⊂ D(L). Then, we have that

‖LQ̂k‖Cm→H ≤ 2M‖LF‖Cm→H, k = 1, 2, 3 . . . ,

where M = max {1/σmin(PVF ), 1/σmin((I − PV)F )}.
Proof. Since Q̂k is an orthonormal basis for P̂kVF , there is a matrix Rk ∈ Cm×m

such that P̂kVF = Q̂kRk. By the assumption that P̂kVF has linearly independent
columns, we know that Rk is invertible. We obtain that

(5.5) Q̂k = P̂kVFR−1
k .

We use the spectral projector PV to rewrite (5.5) as

(5.6) Q̂k = P̂kV (PVF + (I − PV)F )R−1
k .

Now, range(PVF ) and range((I − PV)F ) are invariant under P̂V [32, p. 178].
Consequently, there are matrices D1, D2 ∈ Cm×m such that

(5.7) P̂kVPVF = PVFDk
1 , P̂kV(I − PV)F = (I − PV)FDk

2 .

Substituting (5.7) into (5.6) yields the following useful equation for Q̂k:

(5.8) Q̂k =
(
PVFDk

1 + (I − PV)FDk
2

)
R−1
k .

Applying L to both sides of (5.8) and commuting with the spectral projectors PV and
I − PV [32, p. 179], we obtain

(5.9) LQ̂k =
(
PVLFDk

1 + (I − PV)LFDk
2

)
R−1
k .

Since range(F ) ⊂ D(L), we have that ‖LF‖Cm→H < ∞. Additionally, since L
is normal, the spectral projectors have norms equal to 1 [32, p. 277]. Therefore, it
remains to find a uniform bound for ‖Dk

1R
−1
k ‖Cm and ‖Dk

2R
−1
k ‖Cm as k →∞.

For brevity, we prove uniform boundedness of ‖Dk
1R
−1
k ‖Cm and note that the

proof for ‖Dk
2R
−1
k ‖Cm is essentially identical. We begin by commuting P̂V with the

spectral projectors in (5.7) and substituting the QR factorization of P̂kVF to see that

(5.10) PVQ̂k = (PVF )Dk
1R
−1
k .

Using the psuedoinverse (PVF )+ of the quasimatrix10 PVF and noting that PVF has
linearly independent columns, (5.10) implies that

(5.11) Dk
1R
−1
k = (PVF )+PVQ̂k.

10The pseudoinverse of a quasimatrix A : Cm →H may be defined via the SVD as A+ = V Σ+U∗,
where Σ+ is the diagonal matrix with entries Σ+

ii = 1/σi if σi 6= 0 and 0 otherwise. It is easy to verify
familiar properties from the matrix case [25, p. 290], i.e., if A has linearly independent columns, then
A+A = I and ‖A+‖H→Cm = 1/σmin(A).
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Now, we know that ‖PVQ̂k‖H ≤ 1, because ‖PV‖H = 1 and Q̂k has orthonormal
columns. We conclude that

(5.12) ‖Dk
1R
−1
k ‖Cm ≤ 1

σmin(PVF )
.

A similar argument shows that

(5.13) ‖Dk
2R
−1
k ‖Cm ≤ 1

σmin((I − PV)F )
.

Taking norms in (5.9) and substituting the bounds from (5.12) and (5.13), we find

(5.14) ‖LQ̂k‖Cm→H ≤ ‖LF‖Cm→H

(
1

σmin(PVF )
+

1

σmin((I − PV)F )

)
.

The lemma follows immediately from (5.14).

Theorem 5.1, Theorem 5.2, and Lemma 5.3 provide a preliminary analysis to ex-
plain why Algorithm 4.1 accurately computes the eigenvalues of normal operators with
a dominant eigenspace V. Theorem 5.1 allows us to accurately resolve an orthonormal
basis Q for V by refining the quasimatrix Q̂k with subspace iteration. Lemma 5.3 con-
firms that LQ̂k does not grow without bound as Q̂k is refined. Finally, Theorem 5.2
demonstrates that the eigenvalues are computed to the expected accuracy, provided
that the basis for V has been resolved.

6. An operator analogue of the Rayleigh Quotient Iteration. It is useful
to have operator analogues for other eigensolvers too; particularly, when the eigen-
values of interest are difficult to target with a pre-selected search region Ω ⊂ C. The
Rayleigh Quotient Iteration (RQI) is a generalization of the inverse iteration that
incorporates dynamic shifting to obtain cubic (for Hermitian problems) or quadratic
(non-Hermitian problems) convergence [43]. Given a matrix A ∈ Cn×n and an initial
vector ỹ0 ∈ Cn, RQI computes the iterates

(6.1) ỹk+1 = (A− βkI)−1yk, βk = y∗kAyk, yk =
ỹk
‖ỹk‖2

, k = 0, 1, 2, . . . .

The vectors yk typically converge to a nearby eigenvector of A, while the sequence
βk converges to the associated eigenvalue of A [41]. In the matrix setting, (6.1)
is often used to compute interior eigenvalues or refine an estimate of an invariant
subspace [42,43].

Replacing a matrix A by a differential operator L : D(L) → H, as in (1.1), and
the vectors ỹk by functions fk ∈ D(L), we obtain an operator analogue of RQI. One
needs to select an initial function f0 ∈ D(L) and solve a sequence of ODEs, i.e.,

(6.2) (L − βkI)fk+1 = fk, fk+1(±1) = · · · = f
(N/2)
k+1 (±1) = 0.

At each iteration, the shift βk is computed from the Rayleigh Quotient (fk,Lfk)H (in
strong form) and the solution fk+1 is normalized after each iteration. Analogous to
the matrix setting, we observe that the operator analogue of the Rayleigh Quotient It-
eration converges cubically for self-adjoint operators and quadratically otherwise [29].

We note that block generalizations of RQI (RSQR and GRQI [1]) are also easily
extended to the differential operator setting. In this case, a sequence of quasimatrices
Q̂k with H-orthonormal columns are generated to approximate an invariant subspace
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Figure 6.1. Selected free-vibration modes of an airplane wing modeled by (6.3).

of L and a Rayleigh–Ritz projection is performed to compute approximate eigenvalues
and eigenvectors. As with the operator analogue of FEAST, Theorem 5.2 implies that
the iteration (6.2) accurately computes eigenvalues of normal differential operators
when the basis for the target eigenspace is sufficiently resolved.

6.1. Free vibrations of an airplane wing. The improved convergence rate of
RQI can offer much faster computation time than subspace iteration, often requiring
only 3 or 4 ODE solves to reach an accuracy of essentially machine precision [29]. We
now employ (6.2) for the rapid computation of vibrational modes of an airplane wing.

An airplane wing may be crudely modeled as a thin, cantilevered beam of length
L with a linear taper. The governing equation for free vibrations is [30]

(6.3)
d2

dx2

(
(1 + x)

d2u

dx2

)
= λu, u(0) = u′(0) = 0, u′′(L) = u′′′(L) = 0.

The variable coefficient 1 + x accounts for the linear taper of the wing, while the
boundary conditions on u′′ and u′′′ at x = 1 express the natural requirement that the
bending moment and shear force vanish at the endpoint.

To compute a few of the smoothest modes of (6.3) we use the eigenfunctions wn of
the cantilevered beam equation with constant coefficients, given in closed form by [30]

(6.4) wn(x) = coshβnx− cosβnx+
cosβnL+ coshβnL

sinβnL+ sinhβnL
(sinβnx+ sinhβnx).

Here βn is the nth root of g(β) = cosh(βL) cos(βL)+1 [30]. We target a mode of (6.3)
by setting f0(x) = wn(x). Figure 6.1 shows the modes that are computed using initial
guesses w1, . . . , w4, corresponding to the smallest four positive roots of g(β).

7. Computing eigenvalues in unbounded regions. The stability analysis of
solutions to time-dependent partial differential equations (PDEs) provides an abun-
dant source of differential eigenvalue problems. Consider the initial boundary value
problem (IBVP) with periodic boundary conditions

(7.1) ut = Lu+N (u), ut(x, 0) = g(x), u(−1, t) = u(1, t).
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Figure 7.1. Left: The region ΩR from (7.2) used in the derivation of the rational filter over
the right half-plane. Right: The constructed rational filter (7.6) for the right half-plane with ` = 20.

Here, L and N are linear and nonlinear ordinary differential operators (with respect
to the variable x), respectively. In many instances, (7.1) supports steady-states, trav-
eling wave states, or other phenomena whose stability is of critical importance in
the physical problem under study [4, 35, 49]. When L is self-adjoint or normal, the
stability analysis often reduces to determining whether or not the eigenvalues of L
are contained in one half-plane [4, 34, 49, 60]. We now show how to modify the spec-
tral projector in (3.1) to derive a practical rational filter to compute (finitely many)
eigenvalues of L in the right half-plane.

7.1. A rational filter for the half-plane. Let L be a closed linear operator
that is densely defined on a Hilbert space H. Suppose that L is a normal operator
with a spectrum in the left half-plane Re(z) < 0 except for finitely many eigenvalues
λ1, . . . , λm (including multiplicities) such that Re(λi) > 0 for 1 ≤ i ≤ m. Denote
the eigenspace associated with λ1, . . . , λm by V and consider search regions that are
semi-circles of radius R, i.e.,

(7.2) ΩR = {z ∈ C : |z| < R,Re(z) > 0}, R > max1≤i≤m|λi|.

To construct a computable spectral projector onto the right half-plane we consider
taking R→∞. We adopt the following strategy:

(i) Introduce a 1/R decay into the integrand of the spectral projector (3.1) as R→∞,
while preserving the projection onto V.

(ii) Split the projector into an integral over the vertical part of ∂ΩR and an integral
over the circular arc of ∂ΩR. By taking R →∞, we observe that the contribution
from the circular arc goes to 0 due to the additional 1/R decay in the integrand.

(iii) Map the imaginary axis to the interval [−1, 1] and approximate the spectral pro-
jector by a quadrature rule.

Select a ∈ R+ and consider the family of functions that are analytic in the right
half-plane defined by

(7.3) PR(λ) =
1

2πi

∫
∂ΩR

(z + a)−1(z − λ)−1 dz.

By Cauchy’s Integral Formula, we know that PR(λ) = (λ+a)−1 if λ ∈ ΩR and is zero
otherwise [51]. Taking the limit R→∞, we obtain

(7.4) P(λ) = lim
R→∞

PR(λ) =
1

2π

∫ ∞
−∞

(iy + a)−1(iy − λ)−1 dy.
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Figure 7.2. Left: A droplet, uss, which is a steady-state solution to (7.7), computed from the
IVP (7.9). Right: Two rightmost eigenvalues (blue and red dots) of (7.8) together with a log-scale
colormap of the rational filter in (7.6) with ` = 20, which is used in place of (4.1). The eigenvalue
with a positive real part (red dot) indicates that this steady-state droplet is unstable.

Using functional calculus for unbounded normal operators we can extend P(λ) to
an operator-valued function P(L) [46, Theorem 13.24].11 Moreover, we have that
P(L)u = P(λ)u when Lu = λu [45, VIII.5]. Consequently, range(P(L)) = V.

Now, take the change-of-variables x = 2
π tan−1 y in (7.4) to obtain

(7.5) P(L) =
1

4

∫ 1

−1

(
i tan

(πx
2

)
+ a
)−1 (

i tan
(πx

2

)
I − L

)−1

sec2
(πx

2

)
dx.

Using Gauss–Legendre quadrature nodes x1, . . . , x` and weights w1, . . . , w` on [−1, 1],
we can approximate P(L) by

(7.6) P̂(L) =
1

4

∑̀
k=1

wk
1− z2

k

zk + a
(zkI − L)−1, zk = i tan

(πxk
2

)
.

Figure 7.1 (right) shows the derived rational filter P̂(λ) in the complex plane.

7.2. Stability of thin fluid films. To demonstrate the utility of the filter
in (7.6), we assess the stability of the steady-state solutions to a PDE governing the
motion of a thin film of fluid supported below by a flat substrate. The PDE is

(7.7) ut = ∂4
xu+ ∂x(u∂xu),

where u(x, t) is a positive, periodic function representing the thickness of the fluid [35].
The nonlinear term models gravitational effects and substrate-fluid interactions [35].

A droplet steady-state uss(x) of (7.7), rescaled so that it is supported on [0, l]
with contact angle π/4, is stable if all the eigenvalues of a fourth-order differential
operator are in the left half-plane. The associated differential eigenproblem is [34]

(7.8)
d4u

dx4
+

d

dx

(
uss

du

dx

)
= λu, u(0) = u(l) = 0, u′′(0) = u′′(l) = 0.

We compute the steady-state uss(x) by solving the second order nonlinear ODE [35]

(7.9)
duss

dx
+

1

2
u2

ss − δ = 0, uss(0) = 0, u′ss(0) = 1.

11In [46, Theorem 13.24], Ex,y is the spectral measure of L [46, Theorem 13.33].
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Here, δ is a dimensionless quantity relating the rescaled problem to the original contact
angle [35]. The length l of the droplet’s base and δ may be calculated analytically [35].

In Figure 7.2, we show an approximation to the rescaled steady-state uss along
with the right-most eigenvalues of (7.8). Using the rational filter in (7.6) with ` = 20
(the degree of the quadrature rule defining the filter) to perform the approximate
spectral projection in Algorithm 4.1, we are able to identify an eigenvalue of (7.8) in
the right half-plane, which indicates that the droplet (see Figure 7.2 (left)) is unstable.

Techniques for selecting the dimension m of the subspace V [33,54] are important
in stability analysis as one is trying to determine the number of eigenvalues in the
right half-plane. To select m, we monitor the singular values of the matrix V̂ ∗V̂ after
each iteration and adjust the number of basis functions by removing columns of V̂
associated with singular values that are close to machine precision (relative to the
largest singular value) [54]. This procedure usually allows us to capture the dominant
eigenspace of the filtered operator P̂(L) that includes the target eigenspace as well
as any eigenvalues clustered near the imaginary axis. We then determine whether
there are any eigenvalues in the right half-plane by sorting through the computed
eigenvalues. However, this strategy may break down, for instance, if there is an
eigenvalue close to a quadrature node. Additionally, the sharp decay of the filter (7.6)
across the imaginary axis is softened as |Im(z)| → ∞, which can lead to difficulties
when there are clusters of eigenvalues near the imaginary axis with large imaginary
part. In this case, one may need to take a large number of basis functions to accurately
resolve the dominant eigenvalues of P̂(L).

Conclusions. An operator analogue of the FEAST matrix eigensolver is de-
rived to solve differential eigenvalue problems without discretizing the operator. This
approach leads to an algorithm that can exploit spectrally accurate techinques for
computing with functions while preserving the structure of L. The result is an ef-
ficient, automated, and accurate eigensolver for normal and self-adjoint differential
operators. This eigensolver is adept in the high-frequency regime and may provide a
new direction towards robust high-frequency eigenvalue computations.

The implementation described in section 4 extends to higher dimensions in a
straightforward way for simple geometries where spectral methods apply [56]. In the
case of more complicated geometries, one may still benefit from the advantages of the
“solve-then-discretize” framework outlined in Algorithm 4.1 provided that one is able
to accurately compute inner products and solutions to the shifted linear differential
equations. Although we have focused on the strong form of the eigenvalue problem
in (1.1), it may be necessary to work with the weak form. In this case, one can still
follow Algorithm 4.1 provided that the shifted linear systems are solved in weak form
and the Rayleigh–Ritz projection is performed with the associated sesquilinear form.
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