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1. Introduction

The Poincaré-type inequalities are a crucial tool in analysis, as they provide a relation between the
norms of a function and its gradient. As such they are deeply relevant in analytic models appearing in
geometry, physics and biology. Such models often exhibit different qualitative behaviours for various
ranges of parameters and therefore sharply estimating the Poincaré constant is fundamental for a
proper understanding of a model.

The Poincaré-type inequalities always involve some constraints on the target of the function in
order to eliminate the constants, which are not seen by the gradient part. The most commonly used
ones, for scalar-valued functions, involve either local restrictions (zero values on the boundary of
the domain) or non-local ones (zero mean). The optimal constant strongly depends on the type of
constraint imposed and provides a piece of significant geometric information about the problem under
consideration [3, 18, 11].

There exists an enormous body of literature about Poincaré-type inequalities for scalar-valued
functions but virtually nothing about vector-valued ones despite their use in many physical contexts.
The last four decades have witnessed an extraordinary interest in manifold-valued function spaces
but Poincaré inequalities naturally relevant in this context have not been explored much. The var-
ious constraints on the range of the vector-valued function, motivated by physical or geometrical
considerations reduce the degrees of freedom allowed on the function and generate natural questions
concerning the optimal constants. Such questions require special approaches, going beyond what is
available in the scalar case.

We are interested in proving a sharp Poincaré-type inequality for vector-valued functions on the
2-sphere S2 :=

{
ξ ∈ R3 : |ξ| = 1

}
and using this result to obtain non-trivial information about mag-

netization behaviour inside thin spherical shells. Topological magnetic structures arising in non-flat
geometries attract a lot of interest due to their potential in the application to magnetic devices [17].
Thin spherical shells are one of the simplest examples where an interplay between topology, geometry
and curvature of the underlying space results in non-trivial magnetic structures [16].

The magnetization distribution u ∈ H1(S2,S2) in thin spherical shells can be found by minimizing
the following reduced micromagnetic energy [7, 13]

Fκ(u) =
∫
S2

∣∣∇∗ξu(ξ)
∣∣2 dξ + κ

∫
S2

(u(ξ) · n(ξ))2dξ, (1)

where n(ξ) := ξ is the normal field to the unit sphere and κ ∈ R is an effective anisotropy parameter.
Here, we have denoted by ∇∗ : H1(S2,R3)→ L2(S2,R3) the tangential gradient on S2.

The existence of minimizers can be easily obtained using direct methods of the calculus of variations
and non-uniqueness of minimizers follows due to the invariance of the energy Fκ under the orthogonal
group. An exact characterization of the minimizers in this problem is a non-trivial task and so far
has been carried out only numerically [16]. However, sometimes it is enough to obtain a meaningful
lower bound on the energy in order to gain some information of the ground states. This lower bound
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is typically obtained by relaxing the constraint u ∈ S2 to the following weaker constraint
1

4π

∫
S2
|u(ξ)|2dξ = 1. (2)

This kind of relaxation, which physically corresponds to a passage from classical physics to a proba-
bilistic quantum mechanics perspective, has been proved to be useful in obtaining non-trivial lower
bounds of the ground state micromagnetic energy (see eg [4]). Mathematically, replacing a constraint
u ∈ S2 with (2) puts us in a realm of Poincare-type inequalities, where in many cases the relaxed
problem can be solved exactly and the dependence of the minimizers on the geometrical and physical
properties of the model made explicit. Sometimes this relaxation turns out to be helpful to obtain
sufficient conditions for minimizers to have specific geometric structures (see eg [4]).

We note that the constraint |u|2 = 1 a.e. on S2 is equivalent to the following two energy constraints
in terms of the L2 and L4 norms:

1
4π

∫
S2
|u(ξ)|2dξ = 1 and 1

4π

∫
S2
|u(ξ)|4dξ = 1. (3)

This observation follows from the Cauchy-Schwartz inequality
4π = (|u|2, 1)L2(S2,R3) 6 ‖|u|2‖L2(S2,R3)‖1‖L2(S2) = 4π, (4)

where equality holds when |u|2 is a constant. Therefore our relaxed problem is the one obtained by
removing the L4 constraint.

Main results. Our results include the precise characterization of the minimal value and global min-
imizers of the energy functional Fκ, defined in (1), on the space of H1(S2,R3) vector fields satisfying
the relaxed constraint (2). In particular, we prove the following Poincaré-type inequality:

Theorem 1 (Poincaré inequality on S2). Let κ ∈ R. For everyu ∈ H1(S2,R3) the following inequality
holds: ∫

S2

∣∣∇∗ξu(ξ)
∣∣2 dξ + κ

∫
S2

(u(ξ) · n(ξ))2dξ > γ(κ)
∫
S2
|u(ξ)|2dξ, (5)

with
γ(κ) :=

{
κ+ 2 if κ 6 −4,

1
2 ((κ+ 6)−

√
κ2 + 4κ+ 36) if κ > −4 . (6)

For any κ ∈ R the equality in (5) holds if and only if the function u has the following form in terms
of vector spherical harmonics (see Section 2, Definition 1)

u(ξ) = c0y
(1)
0,0(ξ) +

1∑
j=−1

σjy
(1)
1,j(ξ) + τjy

(2)
1,j(ξ), (7)

where coefficients c0, (σj , τj)|j|61 are defined as follows
• if κ < −4 then c0 = ±

√
4π, σj = τj = 0 for |j| 6 1;

• if κ > −4 then

c0 = 0, τj = −2
√

2
(γ(κ)− 2)σj ∀|j| 6 1,

∑
|j|61

σ2
j = 2π−(κ+ 2) +

√
κ2 + 4κ+ 36√

κ2 + 4κ+ 36
; (8)

• if κ = −4 then

τj =
√

2
2 σj ∀|j| 6 1, 2c2

0 + 3
∑
|j|61

σ2
j = 8π. (9)

We discover, surprisingly, that for k 6 −4 the unique minimizer of the relaxed problem coincides
with the unique minimizer of Fκ under the pointwise constraint |u(ξ)| = 1. Thus, as a byprod-
uct of Theorem 1 we obtain the following characterization of micromagnetic ground states in thin
spherical shells.

Theorem 2 (Micromagnetic ground states in thin spherical shells). For every κ ∈ R, the normal
vector fields ±n(ξ) are stationary points of the micromagnetic energy functional Fκ given by (1) on
the space H1(S2,S2). Moreover, they are strict local minimizers for every κ < 0 and are unstable for
κ > 0. If κ 6 −4, the normal vector fields ±n(ξ) are the only global minimizers of Fκ.
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Figure 1. Examples of vector fields for which the equality sign is attained in the
Poincaré inequality (5). (Left) κ = −8; (Center) κ = −4; (Right) κ = 6.

Remark 1.1. Although the inequality (5) holds for any κ ∈ R, it is sometimes more convenient to
restate it in the standard form where both the term on the right side and the term on the left side are
non-negative. Therefore when κ > 0 we can use (5) and if κ < 0 we note that |u(ξ)×n(ξ)|2−|u(ξ)|2 =
−(u(ξ) · n(ξ))2, and rewrite relation (5) in the following way∫

S2

∣∣∇∗ξu(ξ)
∣∣2 dξ + |κ|

∫
S2
|u(ξ)× n(ξ)|2dξ > (|κ|+ γ(κ))

∫
S2
|u(ξ)|2dξ, (10)

with |κ| > |κ|+ γ(κ) > 0 and the tangential part of the vector field appearing on the left-hand side.
Plots of the best constants κ ∈ R 7→ γ(k) and κ ∈ R 7→ γ(k) + |κ| for κ > 0 and κ < 0,

respectively, are given in Figure 2. Examples of vector fields for which the equality sign is attained
in (5) are depicted in Figure 1. We note that for κ < −4 the minimizing configurations are normal
vector fields, for κ � 1 the tangential configurations are favoured and for the critical case κ = −4
various minimizing states may coexist.

Remark 1.2. Note that the maximum value of γ(κ) (see Figure 2) is reached at κ = +∞, where
γ(+∞) = 2. It follows that for purely tangential vector fields one has the Poincaré inequality

1
2

∫
S2

∣∣∇∗ξu(ξ)
∣∣2 dξ >

∫
S2
|u(ξ)|2dξ. (11)

The inequality (11) is sharp as equality is achieved, for instance, by a vector field u(ξ) = ±
√

4πy(2)
1,0(ξ).

In fact, one can characterize all vector fields delivering optimal Poincaré constant by taking the limit
for κ→ +∞ of the coefficients τj in (8).

Remark 1.3. We note that Theorem 2 implies that the minimizers of micromagnetic energy don’t
have full radial symmetry in the case κ > 0. It follows from the fact that the only radially symmetric
vector fields are ±n(ξ) and these are unstable for κ > 0.

Remark 1.4. It is worth noting that, in the language of modern physics, the two ground states ±n
carry a different skyrmion number (or topological charge). Indeed, since deg(±n) = ±1, by Hopf
theorem [14], these two configurations cannot be homotopically mapped one into the other and are,
therefore, topologically protected against external perturbations and thermal fluctuations. These
considerations make the two ground states ±n promising in view of novel spintronic devices [8, 9].

We also want to point out a correspondence between our Theorem 2 and Brown’s fundamental
theorem on fine ferromagnetic particles [4, 5, 1], as Theorem 2 implies an existence of a critical value
κ0 < 0 below which the only ground states are ±n(ξ).

In the following, in Section 2, we define suitable vector spherical harmonics. Afterwards, in Sec-
tion 3, by the means of these vector spherical harmonics, we recast the minimization problem for
Fκ as a constrained minimization problem on a suitable space of sequences. Then, in Section 4,
by proper use of the Euler-Lagrange equations in sequence space, we derive necessary minimality
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Figure 2. The values of the best constants in the Poincaré inequalities (5) and
(10) for κ > 0 and κ < 0, respectively.

conditions which allow us to reduce the infinite dimensional problem to a finite dimensional one.
Finally, arguments based on the method of Lagrange multipliers complete the proof of Theorem 1
and afterwards of Theorem 2.

2. Notation and setup. Vector Spherical Harmonics

In this section, we define a natural basis and characterize vector spherical harmonics on the unit
sphere S2, see [10]. Every point ξ ∈ S2 can be expressed via the polar coordinates parametrization

σ(ϕ, t) =
(√

1− t2 cos ϕ,
√

1− t2 sin ϕ, t
)
, (12)

where ϕ ∈ [0, 2π) is the longitude, t = cos θ ∈ [−1, 1] is the polar distance and θ ∈ [0, π] the latitude.
We can define the surface gradient operator ∇∗ξ for a.e. ξ ∈ S2 in the following way

∇∗ξ = εϕ
1√

1− t2
∂ϕ + εt

√
1− t2∂t, (13)

where εϕ(ϕ, t) := (− sinϕ, cosϕ, 0), εt(ϕ, t) :=
(
−t cosϕ,−t sinϕ,

√
1− t2

)
. For any u ∈ C2(S2,R),

the Laplace-Beltrami operator is defined as

∆∗ξu(ξ) := ∇∗ξ · ∇∗ξu(ξ). (14)

Notation 2.1. We denote by N the set of positive integers, by N0 the set of non-negative integers.
For every n ∈ N we set Nn := {1, 2, . . . , n} and Zn := {0,±1, . . . ,±n}, for every N ∈ N0 we introduce
the set JN ⊆ N0 × Z consisting of all pairs (n, j) ∈ N0 × Z such that n 6 N and |j| 6 n. We set
J := J∞.

Vector spherical harmonics are an extension of the scalar spherical harmonics to square-integrable
vector fields on the sphere; in fact, they can be introduced in terms of the scalar spherical harmon-
ics and their derivatives. Motivated by different physical problems, various sets of vector spherical
harmonics have been introduced in the literature. The system that best fit our purposes is the one in-
troduced in [2], and obtained from the splitting of vector fields into a radial and tangential component.
We have the following definition (see [10]).

Definition 1. The vector spherical harmonics y(1)
n,j ,y

(2)
n,j, and y(3)

n,j of degree n and order j, with
(n, j) ∈ J , are defined by

y
(1)
n,j(ξ) := Yn,j(ξ)n(ξ), y

(2)
n,j(ξ) := 1

√
n∗
∇∗ξYn,j(ξ), y

(3)
n,j(ξ) := 1

√
n∗
∇∗ξ ∧ Yn,j(ξ), (15)
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where n∗ := n(n + 1). Here, for every (n, j) ∈ J , the function Yn,j is the real-valued scalar spherical
harmonics of degree n and order j, defined by

Yn,j(ξ) :=


√

2Xn,|j|(t) cos(jϕ) if − n 6 j < 0,
Xn,0(θ) if j = 0,√

2Xn,j(t) sin(jϕ) if 0 < j 6 n,
(16)

where for every t ∈ [−1, 1] and every 0 6 j 6 n

Xn,j(t) = (−1)j
√(

2n+ 1
4π

)
(n− j)!
(n+ j)!Pn,j(t), (17)

and Pn,j is the associate Legendre polynomial given by Pn,j(t) := 1
2nn! (1− t

2)j/2∂n+j
t (t2 − 1)n.

It is well-known (cf. [2, 15]) that the system (Yn,j)(n,j)∈J so defined is a complete orthonormal
system for L2 (S2,R

)
, consisting of eigenfunctions of the Laplace-Beltrami operator. Precisely, for

every n ∈ N0 we have −∆∗ξYn,j = n∗Yn,j with n∗ := n(n+ 1). Not so widely known seems to be that
the system of vector spherical harmonics is complete in L2(S2,R3) and forms an orthonormal system
(cf. [10]). Therefore, any vector field u ∈ L2(S2,R3) can be represented by its Fourier series:∑

i∈N3

∑
(n,j)∈J

û(i)(n, j)y(i)
n,j = u in L2(S2,R3) , (18)

with the Fourier coefficients û(i) being given by û(i)(n, j) := (u,y(i)
n,j)L2(S2,R3).

As the minimizers of our problem will be fully characterized in terms of the first vector spherical
harmonics, it is worth to explicitly write down their explicit expressions. By the relation y(1)

n,j(ξ) :=
Yn,j(ξ)n(ξ) we get, for n = 0, that

y
(1)
0,0(ξ) = 1√

4π
n(ξ). (19)

For n = 1, we get

µ(1)y
(1)
1,−1(ξ) = sin θ cosϕn(ξ), (20)

µ(1)y
(1)
1,0(ξ) = cos θn(ξ), (21)

µ(1)y
(1)
1,1(ξ) = sin θ sinϕn(ξ), (22)

with µ(1) :=
√

4π/3. Also, by the relation y(2)
n,j(ξ) := 1√

n∗
∇∗ξYn,j(ξ), we obtain, for n = 1, the

following identities:

µ(2)y
(2)
1,−1(ξ) = cos θ cosϕ τ θ(ξ)− sinϕ τϕ(ξ), (23)

µ(2)y
(2)
1,0(ξ) = − sin θ τ θ(ξ), (24)

µ(2)y
(2)
1,1(ξ) = cos θ sinϕ τ θ(ξ) + cosϕ τϕ(ξ), (25)

with µ(2) :=
√

8π/3, τ θ(ξ) := (cos θ cosϕ, cos θ sinϕ,− sin θ), and τϕ(ξ) := (− sinϕ, cosϕ, 0). Note
that the tangent vectors τ θ and τϕ have unit norms. The previous expressions turn out to be ex-
tremely useful to obtain both a qualitative and a quantitative comprehension of the energy landscape
as in Figure 1.

Remark 2.1. Throughout the paper, we use summations which formally involve also y(2)
0,0 = y

(3)
0,0 = 0,

with the understanding that û(2)(0, 0) = û(3)(0, 0) = 0. Indeed, although these vectors are not
officially present in the orthonormal system of vector spherical harmonics, such a convention allows
us to express the Fourier series representation of u in the compact form

∑
i∈N3

∑
(n,j)∈J û

(i)(n, j)y(i)
n,j .
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3. Representation of the energy in a space of sequences

In this section we are going to rewrite the energy (1) in terms of sequences using Fourier represen-
tation (18). According to the representation formula (18), every vector field u ∈ H1(S2,R3) can be
expressed in the form

u =
∑
i∈N3

∑
(n,j)∈J

ûi(n, j)y(i)
n,j in L2(S2,R3), (26)

with the Fourier coefficients û(i) being given by û(i)(n, j) := (u,y(i)
n,j)L2(S2,R3). Also, if u is a smooth

vector field, we have ‖∇∗ξu‖2
L2(S2,R3) = (−∆∗ξu,u)L2(S2,R3). Hence, by making use of the relations (cf.

[10, p.237])

−∆∗y(1)
n,j = (n∗ + 2)y(1)

n,j − 2
√
n∗y

(2)
n,j , (27)

−∆∗y(2)
n,j = n∗y

(2)
n,j − 2

√
n∗y

(1)
n,j , (28)

−∆∗y(3)
n,j = n∗y

(3)
n,j , (29)

where n∗ := n(n+ 1), we infer that for every u ∈ C∞
(
S2,R3)

−∆∗ξu(ξ) =
∑

(n,j)∈J

û1(−∆∗ξy(1)) + û2(−∆∗ξy(2)) + û3(−∆∗ξy(3)) (30)

=
∑

(n,j)∈J

((n∗ + 2) û1 − 2
√
n∗û2)y(1)

n,j + (n∗û2 − 2
√
n∗û1)y(2)

n,j + n∗û3y
(3)
n,j . (31)

with the understanding that û2(0, 0) = û3(0, 0) = 0 and û1 = û1(n, j), û2 = û2(n, j), and û3 =
û3(n, j). Thus, for every u ∈ C∞

(
S2,R3),∫

S2

∣∣∇∗ξu(ξ)
∣∣2 dξ =

∑
(n,j)∈J

(n∗ + 2) û2
1 − 4

√
n∗û1û2 + n∗û

2
2 + n∗û

2
3, (32)

and, by density, the same relation holds for every u ∈ H1 (S2,R3). Also, a straightforward calculation
shows that ∫

S2
(u(ξ) · n(ξ))2dξ =

∑
(n,j)∈J

û2
1(n, j). (33)

Therefore, the surface energy (1), in the sequence space, reads as the functional

Gκ(û) =
∑

(n,j)∈J

(n∗ − 2 + κ) û2
1 + (2û1 −

√
n∗û2)2 + n∗û

2
3. (34)

Denoting by `2(J) the classical Hilbert space of square-summable sequences endowed with the inner
product 〈û, v̂〉 :=

∑
(n,j)∈J û1v̂1 + û2v̂2 + û3v̂3, the natural domain of Gκ is the subspace `′2(J) of

`2(J) consisting of those sequences in û ∈ `2(J) such that √n∗û ∈ `2(J). In `′2(J) the constraint (2)
reads as

〈û, û〉 =
∑

(n,j)∈J

û2
1 + û2

2 + û2
3 =

∫
S2
|u(ξ)|2dξ = 4π . (35)

As before, in the previous relations, to shorten notation, we avoided to explicitly write the dependence
of û1, û2, û3 from (j, n).

4. Proof of the Poincaré inequality (Theorem 1)

In this section, we are going to prove the main result of this note – Theorem 1. Without loss of
generality, we will focus on the case κ 6= 0, because for κ = 0 the only minimizers are the constant
vector fields with unit modulus. Instead of working with the original continuous formulation (1), we
introduce the equivalent formulation in terms of sequences:

min
û∈`′2(J)

Gκ(û), subject to 1
4π ‖û‖

2
`2(J) = 1 , (36)

and provide a complete characterization of the minimizers of (36).
We split the proof into several steps and firstly prove the following useful lemma.
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Lemma 1. For any κ ∈ R, the following upper bound on the energy (34) holds

minGκ(û) 6 min
{

2π
(

(κ+ 6)−
√
κ2 + 4κ+ 36

)
, 4π(2 + κ)

}
< 8π. (37)

Moreover, if û = (û1, û2, û3) ∈ `′2(J) is a minimizer for Gκ then:
i) The coefficients û3(n, j) = 0 for any (n, j) ∈ J .

ii) If Gκ(û) < 4π(2 + κ) then û1(0, 0) = 0.
iii) The coefficients û(n, j) = 0 for any n > 2 and all |j| 6 n.

Proof. We provide a simple test function û∗(n, j) by setting all its terms to 0 except û1(1, 1) and
û2(1, 1). Therefore the minimum value of Gκ is less than the minimum of ακ(x, y) = (κ + 4)x2 −
4
√

2xy + 2y2 under constraint x2 + y2 = 4π. By studying the minima of (ακ ◦ γ)(t) with γ(t) =√
4π(cos t, sin t), it is easily seen that

min
(x,y)∈

√
4πS1

ακ(x, y) = 2π
(

(κ+ 6)−
√
κ2 + 4κ+ 36

)
. (38)

Note that, κ2 + 4κ + 36 > 0 for every κ ∈ R and moreover 2π
(
(κ+ 6)−

√
κ2 + 4κ+ 36

)
< 8π for

every κ ∈ R, therefore

minGκ(û) 6 2π
(

(κ+ 6)−
√
κ2 + 4κ+ 36

)
< 8π ∀κ ∈ R. (39)

Next, we provide another test function û∗(n, j) by setting all its terms to 0 except û1(0, 0) and
û1(1, 1). Therefore the minimum of Gκ is less than the minimum of βκ(x, y) = (κ+ 2)x2 + (κ+ 4)y2

on
√

4πS1. By studying the minima of (βκ ◦ γ)(t) with γ(t) =
√

4π(cos t, sin t), it is easily seen that

min
σ∈
√

4πS1
βκ(σ) = 4π(2 + κ). (40)

Therefore, for every κ ∈ R, relation (37) holds.

i) We compute the first variation of Gκ around the generic point û ∈ `′2(J) to obtain the following
Euler-Lagrange equations∑

(j,n)∈J

(n∗ + 2 + κ) û1v̂1 − 2
√
n∗(û1v̂2 + v̂1û2) + n∗(û2v̂2 + û3v̂3) = λ(û) · 〈û, v̂〉, (41)

with λ(û) ∈ R the Lagrange multiplier coming from the constraint (35). Plugging v̂ := û and taking
into account (35), we obtain λ(û) = 1

4πGκ(û). Thus, the Euler Lagrange equation reads as
1

4πGκ(û)〈û, v̂〉 =
∑

(j,n)∈J

(n∗ + 2 + κ) û1v̂1 − 2
√
n∗(û1v̂2 + v̂1û2) + n∗(û2v̂2 + û3v̂3). (42)

for every v̂ ∈ `′2(J).
We test (42) against the sequence v̂ := (v̂1, v̂2, v̂3) with v̂1 = v̂2 = 0 and v̂3 = ê(n,j), with ên,j

denoting the sequence (n′, j′) ∈ J 7→ ên,j(n′, j′) ∈ R such that ên,j(n, j) = 1 and ên,j(n′, j′) = 0 if
(n′, j′) 6= (n, j). We get that

1
4πGκ(û)û3(n, j) = n∗û3(n, j) (43)

for any n > 1 and any |j| 6 n. Thus, for n > 1 we have Gκ(û) = 4πn∗ > 8π whenever û3(n, j) 6= 0.
Since the minimum of energy is strictly less then 8π we necessarily have û3(n, j) = 0 for any n > 1.
This proves the assertion.

ii) We now evaluate (42) on v̂ := (v̂1, v̂2, v̂3), first with v̂2 = v̂3 = 0 and v̂1 = ê(n,j), then on
v̂2 = ê(n,j), v̂3 = 0 and v̂1 = 0. We get the following two relations

1
4πGκ(û)û1(n, j) = (n∗ + 2 + κ) û1(n, j)− 2

√
n∗û2(n, j) (44)

1
4πGκ(û)û2(n, j) = −2

√
n∗û1(n, j) + n∗û2(n, j) (45)
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For n = 0, relation (44) gives Gκ(û)û1(0, 0) = 4π(2 + κ)û1(0, 0) so that if û is a minimizer and
û1(0, 0) 6= 0, the minimum energy agrees with the limiting value 4π(2 +κ). Therefore, if the minimal
energy is strictly less than 4π(2 + κ), then necessarily û1(0, 0) = 0. This proves the statement.

iii) If û is a minimizer of Gκ then for n > 1, using (44) and (45), we have that û1(n, j) = 0 if and only
if û2(n, j) = 0. Equivalently, for any n > 1, û1(n, j)û2(n, j) = 0 implies û1(n, j) = 0 and û2(n, j) = 0.

We now focus on the indices n > 1 and, using above observation, rewrite relations (44) and (45)
into the form

1
4πGκ(û)û1(n, j)û2(n, j) = (n∗ + 2 + κ) û1(n, j)û2(n, j)− 2

√
n∗û

2
2(n, j) (46)

1
4πGκ(û)û2(n, j)û1(n, j) = −2

√
n∗û

2
1(n, j) + n∗û2(n, j)û1(n, j). (47)

If for some n > 1 the product û1(n, j)û2(n, j) is negative then from (46) and (47) we get

Gκ(û) = 4π
[
(n∗ + 2 + κ)− 2

√
n∗

û2
2(n, j)

û1(n, j)û2(n, j)

]
> 4π(κ+ 2) (48)

Gκ(û) = 4π
[
n∗ − 2

√
n∗

û2
1(n, j)

û1(n, j)û2(n, j)

]
> 8π (49)

and û is not a minimizer as a consequence of (37). Thus, if û is a minimizer of Gκ then

sign(û1(n, j)) = sign(û2(n, j)) for any n > 1. (50)

Hence, from (44) and (45) we infer

Gκ(û) = 4π
[
(n∗ + 2 + κ)− 2

√
n∗
|û2(n, j)|
|û1(n, j)|

]
, (51)

Gκ(û) = 4π
[
n∗ − 2

√
n∗
|û1(n, j)|
|û2(n, j)|

]
. (52)

Imposing the condition Gκ(û) 6 4π(κ+ 2) in (51) and the condition Gκ(û) < 8π in (52) we get that
if û is a minimizer then necessarily (n∗ − 2) |û2(n, j)| < 4|û2(n, j)|, but this cannot be the case for
n > 2. Therefore, necessarily û1(n, j) = û2(n, j) = 0 for any n > 2. This concludes the proof. �

Combining the results stated in Lemma 1, we can reduce the infinite dimensional minimization
problem for Gκ to a finite dimensional one. Precisely, we have the following proposition.

Proposition 1. The minimization problem for Gκ, subject to the constraint (35), reduces to the
minimization, in the variables σ := (û1(0, 0), û1(1, j), û2(1, j))|j|61, of the constrained function gκ :√

4πS6 → R+ given by

gκ(σ) = (κ+ 2)û2
1(0, 0) +

1∑
j=−1

κû2
1(1, j) +

(
2û1(1, j)−

√
2û2(1, j)

)2
. (53)

Precisely, any minimizer û? = (û1(n, j), û2(n, j), û3(n, j))(n,j)∈J of Gκ has all the terms zero except
for those presented in σ, and coming fom minimizing gκ. Specifically, the following complete charac-
terization of the energy landscape holds:

• If κ < −4, the minimum value of the energy is given by Gκ(û?) = 4π(κ+ 2) and, in this case,
û1(0, 0) is the only non-zero variable. Therefore, necessarily û1(0, 0) = ±

√
4π.

• If κ > −4 the minimum value of the energy is given by Gκ(û?) = 4πγ+(κ) with γ+(κ) :=
1
2
(
(κ+ 6)−

√
κ2 + 4κ+ 36

)
. In this case, necessarily û1(0, 0) = 0 and

û2(1, j) = −2
√

2
(γ+(κ)− 2) û1(1, j) ∀|j| 6 1. (54)

The minimum value is reached on any vector σ̂ = (û1(1, j))|j|61 such that

|σ̂|2 = 2π−(κ+ 2) +
√
κ2 + 4κ+ 36√

κ2 + 4κ+ 36
. (55)
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• If κ = −4, the minimum value of the energy is given by Gκ(û?) = −8π and it is reached on
any vector σ such that (54) holds and 2û2

1(0, 0) + 3|σ̂|2 = 8π.

Remark 4.1. The limiting value κ = −4 represents a special case in which different topological
states may coexist. Indeed, for |σ̂| = 0 we recover the solutions û1(0, 0) := ±

√
4π formally arising as

the limit for κ → −4− of the family of minimization problems for gκ. Similarly, for û1(0, 0) = 0, we
recover the minimal solutions arising as the limit for κ→ −4+ of the family of minimization problems
for gκ.

Proof. According to Lemma 1, the Euler-Lagrange equations (42), can be simplified to read, for every
v̂ ∈ `′2(J), as

1
4πGκ(û)〈û, v̂〉 =

∑
(n,j)∈J1

(n∗ + 2 + κ) û1v̂1 − 2
√
n∗(û1v̂2 + v̂1û2) + n∗(û2v̂2 + û3v̂3). (56)

Taking, in the order, v̂ = (ê0,0, 0, 0), v̂ = (ê1,j , 0, 0), v̂ = (0, ê1,j , 0), we get that if û is a minimizer,
then

1
4πGκ(û)û1(0, 0) = (2 + κ)û1(0, 0), (57)
1

4πGκ(û)û1(1, j) = (4 + κ)û1(1, j)− 2
√

2û2(1, j), (58)
1

4πGκ(û)û2(1, j) = −2
√

2û1(1, j) + 2û2(1, j). (59)

From equation (57) and Lemma 1 we immediately obtain that û1(0, 0) 6= 0 if, and only if, Gκ(û) =
4π(2 + κ). On the other hand, from (59), setting Gκ := 1

4πGκ(û) and noting that Gκ < 2, we obtain

û2(1, j) = −2
√

2
(Gκ − 2) û1(1, j). (60)

Substituting this last expression into (58) we obtain (Gκ − 2)(Gκ − (4 + κ))û1(1, j) = 8û1(1, j), and
this, together with (60), implies that if û1(1, j) 6= 0 for some |j| 6 1, then û2(1, j) is different from
zero too, and (G− (4 + κ))(G− 2) = 8, that is

Gκ(û) = 4πγ+(κ), γ+(κ) := 1
2

(
(κ+ 6)−

√
κ2 + 4κ+ 36

)
. (61)

We have proved the following implication:
(∃|j| 6 1 û1(1, j) 6= 0 or û2(1, j) 6= 0) =⇒ Gκ(û) = 4πγ+(κ).

Therefore, if Gκ(û) 6= 4πγ+(κ) then necessarily
û1(1, j) = û2(1, j) = 0 ∀|j| 6 1.

Since γ+(κ) 6 (κ + 2) if, and only if, κ > −4, by (37) we infer that for κ < −4 we have Gκ(û) <
4πγ+(κ) and û1(1, j) = û2(1, j) = 0 ∀|j| 6 1. Since the variables in σ must be in

√
4πS6 this means

that û1(0, 0) is the only variable different from zero, and therefore necessarily equal to ±
√

4π.
On the other hand, from equation (57) we immediately obtain that if û1(0, 0) 6= 0 then Gκ(û) =

4π(2+κ), which, in turn, implies κ 6 −4. Therefore, if κ > −4 then necessarily û1(0, 0) = 0 and, due
to the constraint, at least one of the û1(1, j) is different from zero. Thus, Gκ := 1

4πGκ(û) = γ+(κ).
This observation, in combination with (60), implies that for κ > −4 the problem trivialize to the
minimization of

gκ(σ̂) =
(
κ(γ+(κ)− 2)2 + 4γ2

+(κ)
(γ+(κ)− 2)2

)
|σ̂|2, σ̂ := (û1(1, j))|j|61, (62)

subject to the constraint |σ̂|2 = 4π(γ+(κ)−2)2/((γ+(κ)−2)2+8). This leads to the already computed
minimal value gκ(σ̂) = γ+(κ) reached on any vector σ̂ = (û1(1, j))|j|61 such that (55) holds.

Finally, for κ = −4, we have γ+(−4) = −2, and again by (60), the problem trivialize to the
minimization of

gκ(σ) = −2û2
1(0, 0)− 3|σ̂|2, σ := (û1(0, 0), σ̂), (63)

subject to the constraint 2û2
1(0, 0)+3|σ̂|2 = 8π. This leads to the minimal value gκ(σ) = −8π reached

on any vector σ := (û1(0, 0), σ̂) such that 2û2
1(0, 0) + 3|σ̂|2 = 8π. �
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Finalizing the proof of Theorem 1. Going back to the minimization problem (1), (2) for the
energy functional Fκ, the results of Proposition 1 immediately translate into the context of Theorem 1
via the Fourier isomorphism that maps Fκ into Gκ. It is therefore sufficient to apply the results to
Fκ(ũ) with ũ :=

√
4πu/‖u‖L2(S2,R3).

Proof of Theorem 2. Due to the saturation constraint |u(ξ)|2 = 1 for a.e. ξ ∈ S2, the Euler-
Lagrange equations for Fκ reads, in strong form, as

u(ξ)× (−∆∗ξu(ξ) + κ(u(ξ) · n(ξ))n(ξ)) = 0 ∀ξ ∈ S2. (64)

Since −∆∗ξn(ξ) = 2n(ξ), the vector fields u±(ξ) := ±n(ξ) satisfy (64) and, therefore, are stationary
points of Fκ.

Next, consider the second order variation F ′′κ (u, ·) of Fκ at u ∈ H1(S2,S2), which reads, for every
v ∈ H1(S2,R3) such that u(ξ) · v(ξ) = 0 for a.e. in S2, as

F ′′κ (u,v) =
∫
S2
|∇∗ξv|2 − |∇∗ξu|2|v|2dξ + κ

∫
S2

(v · n)2 − (u · n)2|v|2dξ. (65)

In particular, for u(ξ) := ±n(ξ), noting that |∇∗ξn(ξ)|2 = 2, we get

F ′′κ (±n,v) =
∫
S2
|∇∗ξv|2 − (κ+ 2)|v|2dξ. (66)

Now, for u(ξ) := ±n(ξ), the condition u(ξ) · v(ξ) = 0 a.e. in S2 forces the variation v to be tangent
to S2. Thus, the Poincaré inequality (11) holds and we end up with the estimate

F ′′κ (±n,v) > −κ
∫
S2
|v|2dξ,

from which the strict local minimality follows.
To show instability of u(ξ) := ±n(ξ) for κ > 0 we return to the second variation (66). Using a

test function u(ξ) =
√

4πy(2)
1,0(ξ) from the Remark 1.2 we obtain negativity of the second variation

which implies instability of u(ξ) := ±n(ξ).
Finally, for κ 6 −4, the global minimality of ±n(ξ) is clear from Theorem 1 and the fact that Fκ

is constrained to H1(S2,S2).
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