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GENERALIZED MULTI-SCALE YOUNG MEASURES

ADOLFO ARROYO-RABASA AND JOHANNES DIERMEIER

ABSTRACT. This paper is devoted to the construction of generalized multi-
scale Young measures, which are the extension of Pedregal’s multi-scale Young
measures [Trans. Amer. Math. Soc. 358 (2006), pp. 591-602] to the setting of
generalized Young measures introduced by DiPerna and Majda [Comm. Math.
Phys. 108 (1987), pp. 667-689]. As a tool for variational problems, these are
well-suited objects for the study (at different length-scales) of oscillation and
concentration effects of convergent sequences of measures. Important prop-
erties of multi-scale Young measures such as compactness, representation of
non-linear compositions, localization principles, and differential constraints are
extensively developed in the second part of this paper. As an application, we
use this framework to address the I'-limit characterization of the homogenized
limit of convex integrals defined on spaces of measures satisfying a general
linear PDE constraint.
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1. INTRODUCTION

The notion of generalized surfaces introduced by Young [26-28], and known
today as Young’s measures, rests on the fundamental idea to consider functions
as graphs. Young realized that the weak convergence of the graphs of a sequence
of functions carries substantially more information than the weak convergence of
the functions themselves. In fact, this was the cornerstone leading to the following
fundamental principle of Young measures: Let (uj)ren C L' (€2;RY) be a uniformly
bounded sequence. Then (up to passing to a subsequence) there exists a family of
probability measures {v,} C Prob(RY), parameterized by x in Q, such that

(1) glug) — u, for all LY(Q) for some g € C.(RY),

where
@) ty = £ 0(:) dvi(2).

In the field of applications, the seminal work of Miiller [19] (among many others)
adds up to a fair amount of applications in optimal design where the framework of
Young measures plays a fundamental role in their development. However, as pointed
out by Tartar [25] and Pedregal [21], Young measures have their own drawbacks
and limitations. The first important limitation is their incapability to keep track of
concentration of mass (mass carried by the sequence may escape to infinity, in RV,
while leaving the limit in (1) unchanged). To solve this issue, DiPerna & Majda
adapted Young’s ideas using a compactification of RV. They extended classical
Young measures to what today is known as generalized Young measures [12] (see
also [1]), which are capable of representing more general limits than (1). More
precisely, extending (1) to the representation of limits ps of the form

(3) flug) =y in M(Q)  among integrands satisfying f € C(BRY),

with f(z) == f(2)/(1+|z|), and where SRY is the Stone-Cech compactification of
RY. Here, we omit the representation formula for generalized Young measures as
it is substantially more involved than (2); we shall postpone this to the Appendix
where for the convenience of the reader we give a brief sketch of the construction and
properties of (the different notions of) Young measures. The second main drawback
of Young’s construction is the failure to record patterns such as the direction or
speed where oscillation (and/or concentration) occurs. This is easily illustrated
by the following one dimensional example. Fix a positive real o and consider the
purely oscillatory sequence

ug(z) = sin(k®x), k=1,2,...

Clearly, the choice of « significantly changes the length-scale period at which oscil-
lations occur as k tends to co. However, regardless of the choice of «, a change of
variables argument shows the associated Young measure to this sequence is given
by the family {v, }.er where v, = 1y for almost every x € Q, and where 1 is the
probability measure satisfying

1

2m
(v, 9) = —/ g(siny) dy for all g € C(R).
2 Jo

Hence, there is a need to extend the notion of Young measure to one that incor-
porates the dependence of the parameter o. To record this information, Pedregal



considered the joint Young measure v associated to the sequences of pairs

wi(x) = ((xx ), ur) 2 @ = ((kx), ur (),
where () denotes the equivalence class of the vector x € R? in the d-dimensional
flat torus Z := R%/Z%. After performing a slicing argument, v, decomposes into
Vp = Tply @ Vg ¢, Where 71 Z X RY — Z is the canonical projection on the torus.
Pedregal introduced the resulting family {v; ¢} of probability measures on RV as
the associated two-scale Young measure, in turn, designed to represent weak-limits
of the form

(4) g(wg) = U, inL*Q) for integrands g € C.(Z x RY).

Similarly to the case of generalized Young measures, a sketch of Pedregal’s con-
struction is further discussed in the Appendix.

We are now in a position to give a rough description of the content and goals of
this work.

1.1. Main results. The first goal of this paper is to introduce generalized multi-
scale Young measures (“multi-scale®” throughout the text for short) in the following
sense. We combine the ideas of DiPerna & Majda with the approach from Pedregal
to construct a new type of Young measures, capable of dealing with oscillation-
concentration effects while also quantifying the length-scales where these phenom-
ena occur. For simplicity we shall restrict only to two-scale* Young measures.
Effectively, we introduce a measure-theoretic tool to represent weak-* limits of the
form

()

FOxk,ur) = pp in M(Q)  amongst integrands f satisfying f € C(Z x BRY),

where f(£,2) = f(& 2)/(1 + |2]). Next, we give the rigorous definition and state
some of the main properties of two-scale® Young measures.

Definition 1.1 (two-scale* Young measures). A four-tuple v = (v, A, p,v™) is
called a two-scale* Young measure on 2 with values in E (a finite dimensional
euclidean space) provided that

(i) v is a weak-+ measurable from  x Z into the set of probability measures over
E such that the map (x,&) = (Va¢,|+|) belongs to L1(Q x Z),
(ii) A is a bounded positive measure on €,
(iii) p is a weak-* A-measurable map from ) to the set of probability measures on
the d-dimensional torus,
(iv) v is a weak-* (A ® p,)-measurable from Q x Z into the set of probability

measures over Sg (the sphere of radius one in E).

We denote the set of two-scale* Young measures by Y?(Q; E).

1.1.1. Representation via two-scale* Young measures. Here and in what follows
“e \¢ 0”7 will denote a sequence of positive reals converging to zero, which heuristi-
cally shall represent a microscopic length-scale.

Theorem 1.2 (representation). Let (pc)e C M(; E) be a sequence of vector-
valued measures with uniformly bounded total variation, i.e.,

sup |pe| () < 00
g

IThe semi-product A ® v, between a positive measure A € M(£2) and a weak-% A-measurable
map v : Q — Prob(K) : @ — vg, is the measure of Q x K defined as

(L®ve)(U) = /Q /K xu(z, z) dvz(z) du(zx), for all U € B(2 x K).
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The following representation result holds up to taking a subsequence of (ue)e. There
exists a two-scale* Young measure v = (v,\,p,v™) € Y*(Q; E) satisfying the
following fundamental property. Let f: Q x T? x E — R be a continuous integrand
for which the recession function

/ ! t / _
ez, & 2) = lim f@, &t (x,€,2) €A x T x E,
(.82 )= (,6,2) t
t—o00

exists. Then, there exists a Radon measure iy on 0 such that
fle, o/e,u) 2L =& py as measures on

and py s characterized by the values

m@) = [ ([, (] 62 o) ) ar

+ /w ( /T | [ ) W (2)) dpa(€)) dA(e),

where w ranges among all Borel subsets of Q. In this case we say that (uc). gener-
ates the two-scale® Young measure (v, \, p,v>°), in symbols
Y-2
fe — V.

The second objective, is to endow two-scale* Young measures with a measure-
theoretic toolbox tailored for applications in the calculus of variations. Our hope is
to lay a transparent framework which casts the geometrical meaning of the blow-
up methods (introduced by Fonseca & Miiller [14]) into the context of two-scale
analysis [2,6,20]. Based on a localization principle, this comprehends the represen-
tation of integral functionals arising from I'-convergence (see [9,10]) in the context
of homogenization of PDE-constrained structures [7,8,16,18].

Formally, this toolbox consists of establishing the following properties:

1.1.2. Fundamental properties of two-scale® Young measures.

(1) Compactness. In a natural way, two-scale® Young measures are elements
of due dual of the class of integrands E(2; F) (see Section 2.2). In Propo-
sition we show the sequential weak-x compactness (with respect to the
weak-* topology of E(€; E)*) of uniformly bounded subsets ) of Y?(; E),
that is, for sets such that

o f e

This result is a fundamental step towards the proof of Theorem

(2) Localization. The relevance of Propositions and is briefly explained
as follows. If a sequence (u.). generates a Young measure (v, A, p, ™),
then at (£ + \)-almost every x¢ € 2 we may find a blow-up sequence of
the original sequence (at xg) that generates a (global) tangent two-scale*
Young measure

ydédz + A(Q) : (V,/\,p,l/oo)ey}<oo.

Dv(zo) = (Vay, D)\,I‘i‘gp%, voo) for some & € Z, and DX € Tan; (A, zo) .

zo

Hence, extending the concept of tangent Young measure introduced in [23]
by Rindler; see also [24].



1.1.3. Barycenter measures and second-scale convergence. Given a sequence (4;)ken
that generates a two-scale* Young measure v, the representation Theorem 1.2 yields
that

. —
u; — [v] as measures on (2,

where [v] is the barycenter of v (see Definition ). In this sense our notion of
barycenter of a two-scale® Young measure coincides with the one for generalized
Young measures. We then define a weak-* (Z9LQ+ \*)-measurable map [v] : Q —
M(Z; E), called the second-scale barycenter of v, which has the property that

pe two-scale converges to (L + \*) @ [V]. ,

where the convergence above shall be understood as an extension of Nguetseng’s
concept of two-scale convergence [2,20] (see Definitions and ). In fact, via
the compactness of two-scale® Young measures, we give a fairly short proof of the
compactness of uniformly bounded sequences with respect to two-scale convergence;
see Corollary

1.1.4. Structure of PDE-constrained two-scale* Young measures. Consider a homo-
geneous linear partial differential operator of order & on R? (with constant coeffi-
cients) of the form

A= Z A, 0%, A, € Lin(E; F).
|| =k
aeN?

A vector-valued measure p € M(; E) is called A-free provided that
Ap =0 in the sense of distributions on .

We say that two-scale* Young measure v € YQ(Q; E) is A-free if it is generated by
a sequence of (asymptotically) A-free measures. The set of such Young measures
is denoted by YZ%(; E). We establish the following rigidity properties of A-free
two-scale® Young measures:

(1) The second-scale inherits the A-free constraint. In Proposition 5.2 we show
that the PDE-constraint is inherited also to the second-scale barycenter of
any A-free two-scale* Young measure (the constraint holds trivially for the
barycenter), that is,

A[v]s =0 in the sense of distributions on Z,

for (£ + \*)-almost evert x € Q). The corresponding version of this result
in terms of two-scale convergence is contained in Corollary

(2) Based on the recent developments [11] concerning the structure of PDE-
constrained measures, it further holds (see Corollary 5.4) at A*-almost every
x € ) that

d[v].
d|[v]s|
Here A 4 is the so-called wave-cone associated to A defined as
Ay = U ker A*(n) C E,
[n|=1

(&) e Ayg for |[v];|-almost every & € Z,

and which counsists of all Fourier amplitudes (vectors z € E) where A is not
elliptic with respect to one-directional oscillations.

2Following standard notation, the k-homogeneous map

n—AF(n) = > 1n*Aq € Lin(E,F), neR?
|e|=k
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(3) The support of the non-biting part of v (in the sense of Chacon; see
Lemma ) is constrained by the differential constraint of .4. More specif-
ically, in Lemma we show that

supp (vy¢) C span{Aa} NIBE for (A* ® p;)-almost every (z,§) € 2 x Z.

1.1.5. Applications to homogenization. We conclude our exposition solving a partic-
ular case of homogenization for PDE-constrained measures. We start by considering
a family {I¢}.5¢ of functionals of the form

(6) Fwwﬁéﬂ%WmW@DM+AﬁW%WWM@waw

defined for measures p = p*.L4LQ + pg|p*| € M(Q;RY).

The integrand f : Q x T¢ x RN — R is assumed to be a continuous integrand
with linear-growth at infinity. Further we will require that f(z,¢,.) is convex for
every z,£ € Q0 x T?. The candidate measures i € M(Q; RY) are assumed to satisfy
the PDE-constraint

(7) Ap =0 in the sense of distributions on €.

Our goal is to show that as € N\ 0, the rapidly oscillating variable /¢ averages out
and the functionals I¢ converge (in the context of I'-convergence, detailed below)
to an “homogenized” integral

(8) AWWM=AﬂM%WﬂDM+AmMW%m@MMW%

where the integrand f, 4 is characterized by means of the cell minimization problem

©) fealz, 2) = inf{ /Qf(z,y,Hw(y)) dy :
w € C*(Q; E) ﬂkerA’/Qw(y) dy =0 }

Let us briefly recall the notions of I'-convergence and homogeneous envelope
which will be required to give sense to our problem. Let {¢;}; be a sequence
of positive numbers converging to zero. The I'-limit inferior of the sequence of
functionals {I° }; with respect to the weak-* convergence of measures is defined as

I — liminf I (u) == inf{ liminf 799 (p15) = p; — pin M(Q; RY) }
j—o00

We say that a functional I is the I'-limit inferior of the family of functionals {I°}.~¢
if

I =T —liminf I®7 for every sequence ; \, 0.
j—oo

In this case, we write
I =T — liminf I°.
eN\0
The main homogenization result is contained in the following Theorem.

is the principal symbol associated to A. Using the Fourier transform it is immediate to verify that
a vector v € E belongs to ker AF(n) — for some n € R%\ {0} — if and only if the one-directional
function

x — vexp(2miz - 1) is A-free on RY.
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Theorem 1.3 (I-liminf of I¢). Let f : @ x T x E — R be a continuous integrand
with linear-growth at infinity. Further assume that f(x,§, ) is convex for all x € Q
and all € € T¢. Then, the I'-liminf of the family of functionals

s I () = / f(@x/e, 4 (z)) de

—|—/ Iz, z/e, ps(x)) d|p®|(z), wE M(Q; E)Nker A,
Q

with respect to the weak-+ convergence in M(; E), is given by the homogenized
functional

[hom ;) = /Q foal, poe(z)) d + /Q<f*A>°°<w,us<x>> d|s*| (@),

defined for measures p € M(€; E) Nker A.

2. PRELIMINARIES AND NOTATION

Here and in what follows Q C R? is an open and bounded set with £%(9§) = 0
(where .4 denotes the d-dimensional Lebesgue measure). To avoid cumbersome
definitions we shall simply write Z to denote the d-dimensional torus T¢, and @ to
denote the closed d-dimensional unit cube [0, 1]¢. To distinguish the d-dimensional
Lebesgue measure between two locally d-dimensional euclidean spaces FE and F' we
will often write Z2 and Z¢ respectively. We denote the indicator function of a
set A by xa. If E, F are two Banach spaces, we denote by Lin(E; F') the space of
linear maps from F to F.

2.1. Geometric measure theory. Let X be a locally convex space. We denote
by C.(X) the space of compactly supported and continuous functions on X, and
by Co(X) we denote its completion with respect to the -« norm. The space
C.(X) is not a complete normed space in the usual sense, however, it is a complete
metric space as the inductive union of Banach spaces Co(K,,) where K,, C X are
compact and K,,, /* X. By the Riesz representation theorem, the space M(X) of
bounded signed Radon measures on X is the dual of Co(X); a local argument of the
same theorem states that the space Mjo.(X) of signed Radon measures on X is the
dual of C.(X). We notate by M (X) the subset of non-negative measures. Since
Co(X) is a Banach space, the Banach—Alaoglu theorem and its characterizations
hold and in particular bounded sets of M(X) are weak-* metrizable. On the other
hand, the local compactness of C.(X) permits the existence of a complete and
separable metric on Mj,.(X) with the property that convergence with respect to
that metric is equivalent to the weak-* convergence in Mj,.(X) (see Remark 14.15
in [17]). In a similar manner, for a finite dimensional euclidean space E, M(X; E)
and Mj,.(X; E) will denote the spaces of E-valued bounded Radon measures and
E-valued Radon measures respectively.
The space M(X) is a normed space endowed with the total variation norm

(X; E) ¢=Sup{/wdu= o € Co(X:E), [lglloe < 1 }
X

The set of all positive Radon measures on X with total variation equal to one is
denoted by

Prob(X) = { veEMT(X): v(X)=1 };
the set of probability measures on X.

The push-forward of a measure p € M(Q; E), with respect to a Borel map
T:Q — , is formally defined through the change of variables formula “T'yp =
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poT~1 as follows. For every p € C(Q; E), we define the measure Ty € M(Q; E)

Vvia
/(,sad(T#u) = /Qondu-

We define the linear action of a measure p € M(X) on a function ¢ € Cy(X)
by the paring (o, u) = fX ¢ du. If X = Z is the d-dimensional torus (which is
a compact manifold), then any map g € C.(Z) = Co(Z) can be represented by
a periodic and continuous function on the d-dimensional semi-closed unit cube; in
this case we write

(g,u>:/gdu::/ gdp for pe M(2).
Z [O,l[d

For a positive measure A € M(X) we write Ly(X; F) to denote the set (space
provided that F' is a space) of A-measurable functions with values on F' C E. For
p € [1, 00] we write

Lﬁ(X;F):{fEL(X;F): /|f|%d)\<oo},
b'e

the space of A-measurable functions with values on F' C E that are p-integrable.
We will also use the short-hand notations LP(X) := LP(X;R) and

L’;,IOC(X;F){fGL(X;F): /K|f|%d)\<oofora11K@X}.

If F is an euclidean space, Riesz’ representation theorem tells us that every vector-
valued measure 1 € Mjoc(X; F') can be written as

po= flul for some f € L7 0. (4Sk);

this decomposition is often referred as the polar decomposition of u. The set of
points € X where

lim |f(z) = f(zo)| d|u|(z) =0,
™0 J B, (o)

is called the set of |u|-Lebesgue points; this set has full |u|-measure. Another
resourceful representation of a measure is given by its Radon—Nykodym—-Lebesque
decomposition

dp d dp
Kz
ERZ A T

where as usual pe e Llloc(X; F)a |:U’S| 1 gd, and bs € L\#S\,IOC(X; SF)

Let E,F be open or closed subsets of an euclidean finite dimensional space
and let p be a non-negative Radon measure on E. A map v : E — M(F) :
x +— v, 1s said to be weak-+x p-measurable if the map x — v, (B) is y-measurable
for all Borel sets B € B(F). A simple method to check the p-measurability of
such a measure valued map = +— v, is to test the p-measurability of the map
z = [ng(x, 2) dug(z) for every B(E) x B(F)-measurable function g : £ x F —
R. The set of all weak-* p-measurable maps z — v, endowed with the norm
[V (E) = esssup(g,,) [vz|(F) conforms a Banach space which will shall denote
by L, (E; M(F)). In the particular case that pu = Z4 we shall simply write
L3*(E; M(F)).

Given a weak-* p-measurable map v € L7°, (E; M(F')) we can define the gener-
alized product of u and v, which is the measure taking the values

(L@ v,)(U) = /E/FXU(:E,Z) dv,(z) dp(z), for all U € B(E x F).

o] = L+ |



The main step in the construction of Young measures (and multi-scale Young mea-
sures) relies on a well-known disintegration result for measures A\ € MT(E x F).
Merely, it establishes a condition under which A\ = y ® v,, where p is the push-
forward of A under the projection onto F and v, is a weak-* u-measurable map of
probability measures. This is recorded in the next theorem (for a proof see Theorem
2.28 in [3]).

Theorem 2.1 (disintegration). Let A € MT(E x F) and let 7 : Ex F — E be the
projection on the first factor. Assume that the push-forward measure p == Ty €
M(E) is a finite Radon measure. Then there exists a weak-x p-measurable map
veLy, (E; M(F)), uniquely defined up to equivalence classes, such that A = pQu,.
Moreover,

vy € Prob(F)  for u-almost every x in E.

We close this section by introducing the notion of probability tangent measure
as introduced in [3, Sec. 2.7]. Let {r;}jen be an infinitesimal sequence of positive
real numbers (r; N\, 0). A local blow-up sequence of a measure u € M(;RY) at a
point xg € € is a sequence of (normalized) measures of the form

1 o
7“7 =T o J,Ll, S M(Q),
1l(@r, (o))t 7
which are well-defined provided that [u|(Qr, (z0)) > 0. A weak-x limit 7 € M(Q)
of a local blow-up sequence is said to be a local tangent measure. We write

7 € Tany (i, z9) C Prob(Q),

to denote the set of all probability tangent measures (tangent measures for short).

At |pl-almost every xy € Q, all tangent measures of y at x are constant multiples
of a positive measure. More precisely, if 1 = f|u| is the polar decomposition of p,
then at every |u|-Lebesgue point zg € € it holds

Tany (p, z0) = f(wo) Tany (|ul, zo)-

In particular, every tangent measure 7 € Tany (u, o) can be written as
du
dlpl

2.2. Integrands. Let n be a non-negative integer. Throughout this section and

the rest of the paper we will consider continuous integrands f : 2 x Z" ! x E -+ R

(recall that  C R? is an open and bounded set, Z = T¢ is the d-dimensional torus,

and F is a euclidean space of finite dimension endowed with a norm )

Elements of Z"~! shall be denoted by & = (&1,...,&n_1).
Consider the transformation
2

T2 == ) f (n6 =g

defined for f € C(Q2 x Z x RY) where B is the open unit ball in E. The vector
space

(o) |7l

), (z,€,2) €A x Z" ! x B,

E"(Q;E) = { FeCQx 2"  x E) : (Tf) extends

to a continuous function in C(Q x Zn—1 x IB%E) }

3The term “tangent measure” refers to a more general object than the one referred to here.
For the purposes of this paper, in particular the development of the localization principles in
Section 4, it is technically more convenient to work with local tangent measures. However, our
conclusions are compatible with the more general notion of tangent measure introduced by Preiss
[22].
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endowed with the norm || f|l g5y = [|T f|loc, E"(£2; E) is a Banach space. More-
over, T' is a compactification in the sense that

T:E"(Q;E) — C(Q x Zn—1 x BF)

is an isometry of spaces with inverse

(S9)(.6,2) = (14 |2]) - (5

z

QOx 72" 1 x E.
o) e Xz

The map T : E"(; E) — C(Q x Z»~1 x B¥) induces, through duality, an iso-
morphism 7% (with inverse S*) of the dual spaces; T* and S* are also isometries.
Hence, a subset X C (E"(Q; E))* is sequentially weak-* closed if and only if its
image under S*, S*X C M(Q x Zn—1 x IB%E), is sequentially weak-x closed in the
sense of measures.

Every f € E"(Q; F) has linear-growth at infinity, meaning there exists a positive
constant M (in this case given by M = ||T' f||o0) for which |f(z,&,2)| < M(1+ |z])
for all (z,&, 2) € Qx Z" "1 x E. This allows one to define a regularization at infinity:
for f € E"(Q; E), we define the strong recession function of f as the limit

/ /
t _
f2(2,€ 2) = lim w, for (z,€,2) € Qx Z" ' x E.
€e
t—o0

The continuity of T'f ensures the limit is well-defined, and, in fact, Tf(z, €&, 2) =
foo(x,€,2) for all (2,€,2) € Q x Z" 1 x OBg. Observe that £ is positively one-
homogeneous in the z-variable and hence it can be recovered from the extended
values of T'f.

To complement our notation, we also define

E’(E) = { heC(E): h*™ exists}

where h is the strong recession function above without  or £ dependance. Observe
that if h € E°(E), then the integrand (¢ ® g ® h)(z, €, z) == ¢(x)g(€)h(z) belongs
to the space E"(Q; E) whenever ¢ € C(Q) and g € C(Z"1).

A function g : Z"~! — Ris called upper (lower) semicontinuous if its Q-periodic
extension to (R?)"~! is upper (lower) semicontinuous. Under this convention, the
function & — ¢ with & € (0, 1] is not lower semicontinuous on Z while the function
& & for € €[0,1) is. In the following we say that a function f : Qx Z" ! x E — R

AL AL

FIGURE 1. Lower semicontinuity of periodic functions, the functions & — £
for £ € (0,1] and € € [0,1).

is upper (lower) semicontinuous if f(+, ¢, ) is upper (lower) semicontinuous on Qx E
for all € € Z"~! and f(z,+, z) is upper (lower) semicontinuous on Z"~1.

In general, the strong recession function of a Borel (or even continuous) integrand
might fail to exist. Instead, one can always define the upper and lower recession
functions by setting

/ /
t _
[#(x, €, 2) = limsupM, for (z,€,2) e A x Z" ' x E
t
£e

t—o00
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and

/! !
e ) = lminf LEE) e etk 2 X B
# I r
e
t—o00

In the same way as f>°, f# and f# are positively 1-homogeneous on the z-variable.
Observe that f# (respectively fx) is nothing else than the upper (lower) semi-
continuous regularization of T'f on Q x Z»=1 x Bg. This observation is the key
argument behind the following approximation result (its proof follows the same
arguments given in the proof [1, Lemma 2.3] in the context of classical generalized
Young measures).

Proposition 2.2. Let f : Qx Z" ' x E — R be an upper semicontinuous integrand
and assume there exists M > 0 such that f(x,&,z) > —M(1+ |z|) for all (x,&,z2) €
O X Z x E. Then, there exists a non-increasing sequence of functions (fm)men C
E"(Q; E) such that

inf f,, = lim f,=f pointwise on Q x Z" 1 x E, and
m>0 m—00

inf f° = lim f° = f# pointwise on QU x Z"71 x E.
m>0 m— o0

Remark 2.3. The analogous statement holds for lower semicontinuous integrands
f and their lower recession function fy for a non-decreasing sequence of approxi-
mating functions.

3. GENERALIZED MULTI-SCALE YOUNG MEASURES

Our construction extends the exposition in [15] which itself goes back to the
seminal works of DiPerna & Majda [12] and Alibert & Bouchitté [1].
Heuristically, n will represent the number of hierarchical scales of the vector

(‘T’é-la' "7671—1)
—_——

n

where x €  is the macroscopic variable and the £;’s conform a hierarchical fam-
ily of periodic microscopic scales. The indexing corresponding to the microscopic
scales reflects a disassociation between the i-th scale and the finer (¢ + 1)-th scale.
Mathematically, this is reflected by the homogenization with respect to scales

T, — e,
€1 En—1
~~ S~—~—
S En—1
where we assume that ;41 < g; for each i = {1,...,n — 2}. We are now ready to

introduce the notion of multi-scale Young measure.
We are now ready to give the precise definition of multi-scale® Young measure
and state their main properties.

Definition 3.1 (n-scale* Young measure). A four-tuple v = (v, A, p, v™) is called

a generalized n-scale* Young measure on  with values on E provided that

(i) X is a positive measure on €,

(ii) p is a weak-* A-measurable map from € into the set Prob(Z"~!) of prob-
ability measures over the product of (n — 1) copies of the d-dimensional
torus, and

(iii) the map (z,€) = (|+|, vz ¢) belongs to L}(Q x Z"~1).

Additionally, v and v> are weak- and weak-* measurable maps on Q x Z respec-
tively:
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(iv) v is a weak measurable map from Q x Z"~! into the set Prob(E) of prob-
ability measures over E, and

(v) v™ is a weak-* (A ® p,)-measurable map from Q x Z"~! into the set
Prob(0Bg) of probability measures supported on the unit sphere in E.

The set of all n-scale Young measures is denoted by Y"(Q; E).

3.1. Construction. We shall restrict our analysis to two-scale® Young measures
Y? (€; E). The results and ideas behind the proofs extend analogously to n-scale*
Young measures.

Two-scale* Young measures conform a set of dual objects to the space of inte-
grands E*(Q; F) in the following way: For f € E*(Q;E) and v € Y?(Q, E), we
define a bilinear product by setting

oh = [ ([ (reme ac) as

" /r (/Z<f°°("’”’5’ D) de(&)) AN (x).

2

(10)

By the definition of two-scale* Young measure and the the linear-growth of the
elements of E*(Q; F) we can estimate its norm by

W ISl [ () ds ot [ av()

QxZ
= T flloo (LR) + 119" [ (2x 2) + A (),

where we used the short-hand notation g*(z, &) == (|+|,vz.¢).
It follows that (-,v) € E*(Q; E)*, and, in this sense, we shall identify Y*(Q; E)
with a subset of E*(Q; E)*. For v;,v € Y*(Q; E) we write v; — v in E*(Q; E) if
(fv) = (fv) forall feEX(Q;E).

In this case we say that v; weak-* converges to v as two-scale* Young measures.
The following weak-* semicontinuity results hold.

.

Lemma 3.2 (semicontinuity). Let f:Q x Z x E — R be a lower semicontinuous
integrand with linear-growth at infinity. Then, the functional

1) v b= [ ([ 6 i) ao
(12) ([ st am©) axe)

is weak-x lower semicontinuous in Y2(Q; E).
Similarly, if f: QX Z x E — R is a Borel integrand that is upper semicontinuous
and has linear growth at infinity, then the functional

(13) v (fv)* = /Q ( /Z <f<:c,«s,->,uz,g>d§) da
(14) ([t a©) ava)

Q

is weak-x upper semicontinuous in Y2(; F).

Proof. Since the two statements are equivalent modulo taking (—f) in place of
f, we shall only argue the case of upper-semicontinuity. Let f : Q x Z x E —
R be an upper-semicontinuous integrand and let v; X pin Y3(Q; E). Further
let (fm)men C E?(Q; E) be the monotone approximating sequence provided by
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Proposition 2.2. Fix m € N, then by continuity of the pairing and the properties
of the approximating sequence we get

lim sup ( f, I/j>># < ]liglo (fm,vj)

Jj—o0
= {(fm,v)-
The conclusion then follows by letting m — oo in the inequality above and arguing
with the monotone convergence theorem. O

An immediate consequence of this result is that the weak-* continuity of the
map v — ((f,v) can be extended from E?(; E) to the larger class

RQ(Q;E)::{fGC(QXZxE):foozf#zf#}

of continuous integrands possessing a strong recession function. In particular z-
convex integrands with linear growth at infinity belong to this class:

Proposition 3.3. Let f: QO x Z x E — R be a continuous integrand with linear
growth at infinity. If f(x,€&, ) is convex for every (z,€) € Ox Z, then f € R*(Q; E).

Proof. The proof follows from Remark 2.4 in [1]. O
If v € Y?(Q; E), duality yields
(9,5v) = (Sg,v) forallge C(QxZxBg).
In other words, the following diagram

Y3 E) — E*(Q; B)*

15) Js Js

S*(Y?(Q; E)) —— M(Q x Z x Bg)
is commutative. Likewise, every u = S*v € S*(Y?(; E)) verifies the identity

(Tf,p)=(fv) forall feE*QE).
Using that S* is an isometry of Banach spaces, it can be deduced the isomorphism
lowers to a weak-+ isomorphism S* : (E*(Q; E)*, w-%) — (M(Q x Z x Bg), w-*).
It is then straightforward to check that
S*v; S in M@QxZxBg) & v, >T'u inE*(QE).
Remark 3.4 (topological isomorphism). Topological properties are preserved un-
der isomorphisms, in particular
S*[Y?(Q; E)] is sequentially weak-* closed in M(Q X Z x Bp)
=
Y?(Q; E) is sequentially weak-x closed in E?(Q; E)* .

The following characterization will play a fundamental role in proving the weak-x
compactness of uniformly bounded sets of two-scale® Young measures. We follow
the presentation given in Lemma 2 in [15] for Y*(Q; E).

Lemma 3.5. The set S*[Y?(Q; E)] consists precisely of all positive measures i €
MT(Q x Z x Bg) satisfying following property: for all ¢ € C() and all g € C(Z)
it holds that

(16) /  (¢@9E ([ dule.e. ) = / o(z) da / 9(€) de
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/)

Proof. Necessity. Fix u = S*v. Applying p on the function Tf = ¢ @ g ® (
and using that f = ¢ ® ¢ ® xg (and hence f*° =0) we get

(Tf,u) = (T, 5"v) / / £) dt du,

which is (16). The positivity of p follows from the positivity of v and v*° and the
definition of S.

Sufficiency. For the reverse statement, fix a measure p € M (Q x Z x Bg) sat-
isfying (16). We want to find v € Y?(Q; E) satisfying u = S*v. By disintegration
(see Theorem 2.1), we may decompose i as a double semi-product i = A® pz @ Uy ¢
where A € M1 (Q), p € L$°, (©; Prob(Z)) and ¥ € L§°®ﬁm*(ﬂ x Z;Prob(Bg)). Let
us further set

= (1 — .|, L Q
w(@, &) = (L= ||, 0ng) € Ly (X% Z).

Thus, we may re-write (16) as the equivalence u (A ® p,) = Z4 ® £2. On the one
hand, this gives u [(A\* ® p) + (LJ ® p5)] = 0, which, in turn, is equivalent to
(17) supp (7z.¢) C 0Br  [(A° @ pr) + (L3 © p3))-almost everywhere.
On the other hand, the same equivalence yields
(18) () - ple(&) - u(x, &) =1 LY @ LJ-almost everywhere.
In particular u is .£g ® .ZJ-measurable.

The goal now is to exhibit a v = (v, \, p,v>°) € Y?(Q; E) for which S*v =

Construction of v. Let us being by defining the weak-* (£4®_£g)-measurable
map

(x,€) = vy e € Prob(E),

where each v, ¢ is the probability measure satisfying

1
That v is a weak-+* measurable map follows from the measurability of u and the
properties of ¥'L B in terms of the measure (A ® p,). To check that each v, ¢
is indeed a probability measure (£d ® Zg-almost everywhere) follows by testing
with yg and using the definition of u (recall that Txg = 1 — |-| as functions on
Bg). Moreover, ( ¢) =u(z,8)" 10, ¢(Br) and hence by (18) we infer the
map (x,&) — ( ¢) is integrable on Q x Z.
We define the remaining A, p and v> as follows. First, we set

3= ([ ecl0Br) a0u(9)) A e M@,

Once this positive measure has been defined, we define a map p from € into the set
Prob(Z) of probability measures over the d-dimensional torus by setting

1
T py = (/Zam,f(a]BaE) dﬁz(«f)) M o

where we have used the short-hand notation my(§) = 5 ¢(0Bg). Since by defini-
tion my, is a py-measurable map, we infer that p is weak-+ A-measurable. Lastly,
we define a map v>° from Q x Z into Prob(0Bg) by setting

(z,8) = vy € Prob(dBE),

(Va,g, h) =

.

where each 1% is given (in terms of duality) by

(hy ) = ][ h(2) dipe(2)  for all h € C(OBg).
OB g
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That v*° is a weak-* (A ® p,)-measurable map is then a consequence of the weak-x
measurability of , and the way A\ and p are defined. Altogether these properties
imply v == (v, \, p,v™®) € Y2(; E).

Pre-image property (S*v = p). Let f € E*(Q; E) be a fixed but arbitrary
integrand, later we shall exploit this choice through duality. By construction of v
we get that

(fv) = [ /Z (.6, ), v e) A€ da + /(_ /Z (€, ), %) dpa(€) dA(a)

- /Q < /Z < /B Tf(z.€2) dﬁz,g(z>> pac(6) d&) Ae(z) da
+/Q (/Z (]{m Tf(w, %) dﬁz,s(z)) ma(€) P57 (€) ds) A (z) da
(L (L, e dee) 4@ ) ) an
L e eome) wis) e

where in passing to the last equality we used that f°°(z,&,.) = Tf(z,¢,-) as
functions over 0Bg. Furthermore, since mg(§) = 3 ¢(0Bg), the first two lines of
the last equality above add up to

/ T (AL @ 0 LY @ i)
QXZX]BE

On the other hand, using (17) we may re-write the last two lines in the expression

of (f,v) as

/ T A(A° L8 @ 3 © o e) + / TFA(X © o ® dre).
QXZX]BE QXZX]BE

Regrouping these three summands together we deduce
(fv)= [ __Trau=(Tfy) forall feB@E).
OXZxBgr
Equivalently, by a duality argument,
(®,p) = (SP,v) = (D,5"v) forall® e C(Qx Z xBg).
Thence p = S*v as measures in 2 x Z x Bg. This proves the sufficiency. (]

A direct consequence of this characterization and Remark is the following
fundamental property of Young measures. Here and in what follows, we shall write

E).

Proposition 3.6 (compactness of two-scale Young measures). The set of two-
scale* Young measures Y2(Q; E) is sequentially weak-+ closed in BE*(Q; E)*. More-
over, each subset Y C Y?(Q; E) satisfying

[lE=xag®xz® 1+

.

sup{/_/<1+|-|,Vz,£>d§dz+>\(ﬁ): l/(y,/\,p,yoo)ey}<oo
aJz

is pre-compact with respect to the relative weak-x topology on Y*(Q; E) C E*(Q; E)*.

Proof. To verify that Y?(Q; E) is sequentially weak-* closed it suffices (by Re-
mark and Lemma 3.5) to observe that (16) is a closed property with respect to
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the sequential weak-* convergence of measures in MT(Q x Z x Bg). Let ) as in
the assumptions and observe that T'(1+ |+|) = xB,, so that

sup |ul(2 x Z x Bg) = sup ([-]p,v) < co.
HES*[V] vey

The Banach—Alaoglu theorem tells us that S*[))] is pre-compact with respect to the

weak-* topology of measures. Hence, again by Remark 3.4, ) is weak-* pre-compact

with respect to the relative weak- topology of E?(Q; E)*. O

We close this section with an important separability property. The proof of this
result follows from a straightforward adaptation of the arguments given in the proof
of Lemma 3 in [15].

Lemma 3.7. There exists a countable family of non-negative integrands {pm, ®
Gm @ hn ymen C E*(Q; E) that separates Y*(Q; E). That is, if v,o € Y*(Q; E),
then

(fm, V) = (fm,0) foralmeN = v=o in Y (LE).

Moreover the family can be chosen so that each h., is uniformly Lipschitz on E and
each g, is uniformly continuously differentiable.

3.2. Generating sequences. Vector-valued Radon measures can be naturally iden-
tified with a Young measure via the (compact) embedding

MG E) = Y (QE) : ps vy = (Spac, |1°], L5, 0. ) -

Given an integrand f € R2(£2; E) and a positive real £, we may define a functional
100 = [ /e (@) dot [ (/e @) (o),

defined on vector-valued Radon measures u € M(;RY).

Definition 3.8 (generating sequence). Let ¢ N\, 0 be an infinitesimal sequence of
positive real numbers. We say that a sequence (). C M(;RY) generates the
two-scale* Young measure v € Y?(Q; E) if and only if

I5(pe) = (f,v) forall f € E*(OE).

. . . . Y2
In the case the domain of convergence is understood we simply write p. — v.

3.3. Proof of Theorem . We are now ready to give the proof of Theorem
which asserts that every uniformly bounded sequence of measures generates (up
to a subsequence) a two-scale* Young measure. It is worthwhile to mention the
proof is not an immediate consequence of the compactness of Young measures
(Corollary 3.6) since the microscopic variable “z/e” does not appear in the bi-linear
pairing -, .). Instead, the argument relies on the careful inspection of the limiting
two-scale™ Young measures, Proposition , and the topological equivalence of
Remark

Proof. In the context of the notation introduced above, we may re-formulate the
statement of Theorem |.2A as follows: let (1) C M(S; E) a sequence of measures
with uniformly bounded variation. Then, there exists a two-scale* Young-measure
v € Y?(Q; E) satsifying (up to a subsequence)

(19) I5(pe) = (f,v) for all f e B*(Q;E).

Step 1. Let 6 > 0. For an integrand ® € C(Q2 x Z x Bg) define a continuous
linear functional by setting

Ls(®) = 1(5%) (1)
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By the definition of the map f — Ifc with € = § we obtain the estimate [(L., ®)| <

|@ |00 (L4(Q2) + ||p1c||) for every € > 0 of the infinitesimal sequence. The Banach—
Alaoglu theorem and the Riesz representation theorem then yield the existence of
a subsequence (e )ren and a measure py, € M(Q X Z X IB%E) satisfying

Le, = (uz,+) as functionals in C(Q x Z x Bg)*.

.

Testing this convergence with an integrand of the form ® = o ® g ® (1 —
using that S® = ¢ ® g ® xg we further deduce

L(®) = [ plalglafe) do = (L.9).

) and

This gives
/mw(x)g(ﬁ)(l—|2|)dL(:c,g,z)=/ng(:c) dw/Zg(E) d¢

for all ¢ € C(Q) and g € C(Z). We apply Lemma 3.5 to the measure L, to find a
two-scale* Young measure v € Y?(Q; E) with S*v = L.

Step 2. Using the commutative diagram (1) and the identity S o T = idg2 o,z
we conclude that (recall that T f(z,&,+) = f*>°(z,&, ») as functions over 0Bg)

I5(pe) = Le(Tf) = (L, Tf) = (S*v,Tf) = (v, f)  forall f € E*(%E).
This proves (19). O
3.4. Barycenter measures and two-scale convergence. We now turn to the

concept of two-scale convergence. Following [20] we extend this notion to the two-
scale convergence of measures as follows.

Definition 3.9 (two-scale convergence). Let € N\, 0 be a sequence of infinitesimal
real numbers. Let also k € MT(Q) be a positive measure, and 6 be a weak-*
k-measurable map from Q into M(Z; E). We say that the sequence of measures
(e)e € M(82; E) two-scale converges (as € | 0) to the generalized product measure
uw=r® 80, if and only if

/Q\Il<:c g) dpe(z) — /ﬁ (/Z\Il(z,g) d@x(§)> dk(z) for all U € C(Q x 2).

This limit concept is linked to the notion of barycenter and second-scale barycen-
ter of a two-scale® Young measure (defined below) which will be significant for our
techniques.

Definition 3.10 (barycenter). Let v = (v, A, p, v>) € Y?(Q; E). We define the
barycenter of v to be the E-valued measure in M(Q); E) defined as

V] = < /Z (idp, vr) d&) 24+ ( /Z (s V5% dpx@))x

Let v = (v, \, p,v™®) € Y*(Q; E) be fixed. By the Radon-Nikodym decomposi-
tion theorem, applied to the measure A, there exist a partition of @ = Reg, () U
Sing,, () by subsets satisfying

2 (Sing, (2)) = X*(Reg, (?)) = 0.

Moreover,

Sing, (€2) — { v e j‘{iﬁ(@:o }

We are now in position to give the notion of second-scale barycenter.
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Definition 3.11 (second-scale barycenter). Let v = (v, A, p,v™) € Y?(Q; E). The
second-scale barycenter of v is the weak-* (£9 + A\*)-measurable map [v] : = —
[V]e € M(Z; E) where [v], is the measure defined by the values on Borel subsets
VCZas

/ (idp,ve) A€ + A(z) / (idos,, v2%) dpe(€) if 7 € Regy (Q)
174 174
[v].(V) =
/ (idoBg, V5% ) dpa(§) if x € Sing,, (Q?)
1%

The barycenter [v] can be recovered by integration from the second-scale barycen-
ter. Indeed, [v] = [V](Z) (L& + X*) and in particular

d

d D[Zl;]d (x) & d_almost everywhere in
dfv] o
\ ()  A®-almost everywhere in

2
. Y
Moreover, if . — v, then

(21) e — [v] as measures on
and
(22) pie two-scale converges to (Z4 + A*) @ [V]..

Corollary 3.12 (compactness of two-scale convergence). Let e \, 0 be an infinites-
imal sequence of real numbers and let (us)e C M(Q; E) be a sequence of measures
with uniformly bounded total variation. Then there exists a subsequence (¢k)ken,
a positive measure k € M(Q), and a weak-+ r-measurable map 0 from Q into

M(Z; E) such that
e, two-scale converges to kK ® O .
Moreover (k ® |0,)(Q x Z) < liminf. g |uc|(Q).
Proof. Apply Theorem and (22) to the sequence (u:).. The first conclusion

follows by setting k = £¢+ \* and = [v]. The lower semicontinuity of the norms
follows from the fact that

pe = [V] =0(Z) Kk as measures in Q.
O
Remark 3.13 (classical two-scale convergence). Notice that if a sequence of func-
tions (u). is equi-integrable (or if its is uniformly bounded in L? for some 1 <

p < oo) and the sequence ugiﬂg‘f generates a two-scale* Young measure v =
(v, A\, p,v™>®) € Y*(Q; E), then X\ = 0 and hence

L two-scale converges to u (£3 ® £2)
where
u(z,§) = (idg, vz e) -

Thus the space of all such two-scale limits can be identified with L!(Q x Z;RY).
In particular, our definition of two-scale convergence extends Nguetseng’s original
definition of two-scale convergence in LP-spaces [20] (see also [2]).
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3.4.1. Weighted barycenter measures. It will be often resourceful to interpret the
pairing (-, ) as a measure over Q. Let us introduce some additional notation by
extending the definitions of barycenter and two-scale barycenter of a two-scale*
Young measure v € Y?(Q; E).

Definition 3.14. Let f € R*(Q; E). The f-barycenter of v = (v, \, p, ™) is the
vector-valued measure

fov] = ( /Z (F@.6,),vae) dg)fg+ ( /Z (F (.6 ), %) dpz@))x.

Using this notation we get [f,v](Q) = (f,v), and [v] = ([(idRN)j,l/])
We also define a weighted second-scale f-barycenter.

j=1,...,N"

Definition 3.15 (second-scale f-barycenter). Let f € R?(Q2; E). We define the
f-barycenter of v = (v, \, p, ™) as the weak-* (£ 4 \*)-measurable map [f, V] :
x = [f,v]: € M(Z; E) where is the measure defined by its values on Borel subsets
VCZas

(23)

/ <f(1',§, ')a VI,§> d§
14

[, v]u(V) = 4 A% (g) /Z<f°°(:v,£, D% ) dpe(§)  if @ € Reg, () |

/V<f°°(ac,§, .),yf£> dpz () if € Sing,, ()

As we have seen before for the barycenter measures, a similar integral property
holds for the weighted barycenters, namely [f,v] = [f,v](Z) (£& + A*) which in
particular entails the identities

d(gi;’dj] () ZL?-almost everywhere in Q

(24) [f:v].(2) =
T s_almost everywhere in Q
d[f; “l@) Al here in 2

3.5. Heuristics and some generic examples. Let us begin by recalling the
criterion for L'-weak compactness due to Dunford & Pettis: a sequence (w.). C
L1(Q) is Ll-weak relatively compact if and only if it is equi-integrable, that is,

whenever
lim <1imsup/ |w5|) =0.
R—o0 elo  Jan{jw.|>R}

At those regions where a sequence fails to be equi-integrable, but its weak-* limit re-
mains absolutely continuous —which we call “continuous concentration”, we speak
of a biting limit of the sequence:

Lemma 3.16 (Chacon). Let (w.) C LY(Q) be a uniformly bounded sequence. Then
there exist w € L1(Q), a subsequence (we,)jen, and a non-increasing sequence of
measurable subsets (Kpm)men of Q such that

(1) L4K,,) — 0 as m — oo,

(2) we, = w in LY(Q\ Ky,) for all m € N.
Provided that the these hold, we say that w is the biting limit of (w,);jen, and the

" Buzz{er:xgéﬂKm}

meN
is called the set of biting points of (we,)jen.
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Given a sequence (u. ). that generates a two-scale™ Young measure v = (v, A, p, v*>°)
it is possible to understand, qualitatively speaking, how each element of the four-
tuple can be understood in terms of the generating sequence. In the following argu-
ments we will assume with a slight abuse of notation that (. = u.). C L'(Q; E).
A simple consequence of the representation of two-scale* Young measures is that
A and p, are supported (with respect to the z-variable) at non-biting points of
the sequence that generates v. Moreover, this two measures carry the mass of the
sequence (|u|.)e for different length-scales:

(1) The measure \ quantifies the limit mass carried by (|-L3uc|)e in the set where

it fails to be equi-integrable.
By Theorem 2.9 in [1], the biting limit of the sequence is the measure
< U dx>iﬂg‘zj where v = (5,5\,1700) € Yl(Q;E) is the Young measure gen-
erated by (uc).. Hence, we conclude from the representation of two-scale*
Young measures that

|U€°§/ﬂfczl| - <

(ii) The probability measure p, quantifies, at a given non-biting point xy of
(Jue£8))e, the homogenized mass carried by the sequence about xq in the fol-
lowing sense: If A C Z, then

/ XA (g) |ue| do — / pz(A) d\(x)  for all Borel subsets U C (.
U U

The argument is a direct consequence of the representation of two-scale*
Young measures and point (i).

~ * 3 -~
o dz). 4G S M=\ as measures on Q.

To give a better understanding of how the different components of the limiting
Young measure are connected to the features of a limiting sequence, we present the
following examples, that also emphasize the possibility of concentration for p and
A
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FIGURE 2. Sketches for the functions in Examples 1(a), 1(b) and 3 respectively.

For the sake of simplicity we will discuss examples in dimensions d = 1 and
FE = R; their correspondent versions to higher dimensions are easily constructed by
adding invariant directional measures or by mimicking similar constructions along
transversal directions. We cover generic examples for each of the qualitative first-
scale/second-scale scenarios:

Example 1 (singularity on the macro-scale). Fix o > 0 and let Q = (—1,1). We
consider the family of functions
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macro-scale () micro-scale (§) correlation
abs. cont. abs. cont. le equi-integrable
concentration/dissipation | scale of phenomena > ¢
concentration/dissipation abs. cont. scale of phenomena < ¢
concentration/dissipation | scale of phenomena > &

TaABLE 1. Qualitative properties of the elements of a two-scale* Young measure.

ue(r) = E_QX(O,EO‘)(x)v €>0.

2
Let us assume, up to taking a sequence of &’s that u. Y, v = (v, A\, p, ™) (in
this case every subsequence generates the same Young measure). The following
observations are easy to check:

(1) Pure concentration in the x-variable. On the one hand |u.|.£* = §. On
the other hand, using f(z,y,2) = |z| as a test function the Young measure
representation yields

ey |28 </<
7

whence we deduce v, ¢ = dp for £ @ Z1-almost every (z,£) in [-1,1] x Z
and X\ = dg. Thus, it suffices to characterize v at = = 0.

(2) Testing with an integrand of the form f(z,&,2) = p(x)g(£)|z] we see
through a change of variables that

7VI,E> d§>$g + )‘7

£

/_ P(w)g(e/h(ue () do = / o p()g(z/)h(1) da

0
(25) =/0 o(e%y)g(e* y)h(1) dy — c(a) .

(a) Pure singularity on the micro-scale: if o > 1, the Young measure
representation and the limit above give

/Z 9(€)(h, 55%) dpo(€) = () = g(O)h(1) = .
In conclusion pg = do, 155 = d1, and
v = (507 505 507 51) .

(b) Absolute continuity in the second-scale: if, in turn o < 1, we get

| 9(©0.15%) dpn(©) = cla) = (OR() [ (6) e

z

Therefore py = £} and 5% = d1, which altogether yields
v = (507505$Z1751) .

Remark 3.17. Observe that when oscillations of the sequence (u.). happens at
a coarser length-scale than {e}, then the the two-scale Young measure does not
provide more information than the classical Young measure. On the other hand, if
oscillations of (u.). takes part at a finer scale than {e}, then the two-scale* Young
measure cannot be recovered from the classical Young measure.

Example 2 (non-biting limit). Fakir’s construction (also known as Fakir’s carpet)
provides a good way to produce continuous concentrations. The idea is to create
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many small concentrations which diffuse before each of them can actually gain
mass.
Let Q = (0,1). In order to showcase the sensitivity of Young measures we shall
consider a “bi-directional half-carpet” which is generated by the functions
k/2

=0

3
Similarly to the example above, let us already assume that u1 X; v. The following
observations can be deduced directly from the representation of two-scale* Young
measures:
(1) First-scale analysis: |uc| Z5 = £'L[0,1/2]. There exist no singular points
in the first variable which is encoded by the equality of measures A\* = 0.
However, every point in the interval [0,1/2] is a non-biting point of the
sequence (ue, )i (clearly the sequence fails to be equi-integrable at any
subset of this interval) and hence

A=2'100,1/2] as measures on [0,1].

Moreover,

zr—>/<yz15,
Z

(2) Second-scale analysis: let f = ¢ ® g ® h € R2(Q;R). The limit of the
energies I;’“ (ue, ) as k — oo can be computed by Riemann-integral partial

.

YAE=0 = =00 £S5 x Lj-almost everywhere.

! WL S
/ p(@)gha)h(uy (@) do = kS / o(@)g(Er)h((~1)") dz
0 1=0 %
k/2 it
-y / o/ B)g(w)h((~1)7) dy
i=0 V"
k/2
~ gk S e(i/k)h((~1)") dy
1=0

%9(0)(@ /0; ¢(x) dz + @/O; o(z) dx) .

The representation of two-scale* Young measures and a density argument
then give

1 1
vV = (60,$1L[0,1/2],60, 56_1 + 561)

Remark 3.18. As it can be seen from the representation of Young mea-
sures, at biting-points « € [0,1] of the sequence {u.}, the correspondent
probability measures p, must be the uniform measure .Z*L (0, 1].

The precise representation of a Young measure does not only depend on the
generating sequence u. but is also strongly influenced by the speed of oscillation
€. This is an interesting and important feature of the compactness, that will also
play a role in the localization principles below, and is emphasized in the following
example.

Example 3 (non-uniqueness). Let again d = N =1 and Q = (0,1). For a fixed
¢ > 0 and arbitrary c,d € (0, 1], we consider the function

1
Ue (1'> = E_QX(a—i-bs,a-i-ba—i-az) (1'> .
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First-scale: If € 0, then for every subsequence €1 \, 0 and
(26) Ue, v = (80,84, 61)-

Second-scale: We may assume that () — & € Z. Here, we recall that (z) € Z
stands for the equivalence class of € R in the one-dimensional torus Z. Testing
with an integrand f = ¢ ® g ® h gives

a+b€1+sf
[ faafer) o= [ P(@)g(w/21)h(er2) da
Q a-+beq
ﬁerJrEl
= eh(e?) e(e1y)g(y) dy
b
~p(a)g((a/er) +b+er) -efh(er?)
— p(a)g(& +b)h™(1).

. . Y?
From this we infer that u., — v, where

v1 = (60,00, p" = O¢, 45, 61).

Notice that & does not depend on {u., }, but solely on subsequence {1 }. Hence, the
choice of a different subsequences generates a range of two-scale* Young measures
(compare this with the uniqueness of (26)). Indeed, if {e32} is another subsequence
satisfying
a
= lim ( — ,
&2 62w< > ) # &
2
then w., Y, vy = (80,04, p* = d¢y4p,01). However, passing to a subsequence does
not entirely forget in the sense that it is possible to relate v1 and v by a translation
in the torus:
Fi@pl = FinQ =dp,
where I' : ¢ — £ —7 is a translation map in R? (which also determines a translation
in the d-dimensional torus). In fact this translation in the second-scale also occurs
at biting points of the sequence. However, this is not reflected in the two-scale*
Young measure since Xg is an invariant measure under translation, that is,

1,24 = 2§ forallé€ Z.

4. LOCALIZATION PRINCIPLES

In this section we treat the (measure theoretic) differentiation of Young measures
which confirms the observation that the convergence

Lhe Yoy €Y} E)

is in fact local (with respect to the macroscopic variable ). We show that at a
point xg € €2, the information carried by v can be recovered by simply looking at
the homogeneous Young measures o € YQ(Q; E) generated by blow-ups of the gen-
erating sequence (¢ )e at xg. With the mathematical thrust of introducing Young
measures as a serving tool, we establish localization principles at both continuity
and singular points. Next, we recall some facts about the push-forward of blow-up
maps on measures.

Throughout this section we will indistinctly use the zero-extension map M(Q; E) —
Mioc(R4; E) to identify measures defined on Q C R? with measures defined on the
whole space R%. Fix p € M(;RY) and consider the map T®0") (z) := (z —x0)/r,
which blows-up B,.(x¢), the open ball around zy € Q with radius » > 0, into the
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open unit ball B; C RY. Following the definition of push-forward, it is easy to check
that

zo,T L 1
qu& 0, )M(B) := p(zo +rB) whenever B C = (2 — x¢) is a Borel set.
r

A simple calculation shows that the Radon—Nykodym decomposition of T;;O’T) W
can be re-written in terms of u as

(27) T = a2+ s T |,
where the densities a € LL (R4 RY) and s € L;’QIM)‘ ‘(Rd; SN=1) are defined by
# we
the rules
a(y) = ' (o + )
. dfd 0 )

d
() i= gy (0 + 1)

Retaking the notation of the last section, we write T'% : ¢ — & — & to denote
the translation in R? by a vector & € R%. To avoid a more intricate notation,
we shall also write T'% (with & € [0,1)9) to denote the same translation when
restricted to Z, that is, I : Z — Z : £ — (£ — & ). In this way, the push-forward
action Fi’ : M(Z) = M(Z) defines an automorphism of spaces. In particular, if
g € L}(Z), then

(28) [ ste=) aie) = [ o argo.
Notice that if p is a uniform measure in Z, then p is translation invariant:
Ip=p forall € 2).

To avoid any possible confusion we shall write y € @ (or R?) to denote the
blow-up variable; we keep the notation x € ) for the macroscopic scale.

4.1. Localization at regular points.

Lemma 4.1. Let v = (v, A\, p,v™) € Y*( E) be a two-scale* Young measure
generated by a sequence (u:)e C M(Q;E). Then, at £%-almost every xy € Q
there exists (up to a translation in Z) a regular tangent two-scale* Young measure
Dv = (Dv,DX,Dp,Dv>™) € Y*(Q;E) of v at xg. That is, there exists vector
& = &(xo) € Z such that

(29) DX = \*“(9) £§ € Tany (X, z0),
(30) Dpy = Fi“pzo for DX-almost every y € RY.

Moreover, {Dvy ¢}, {Dvye} are homogeneous Young measures in the sense that

(31) Duy ¢ = Vg ere, for (L@ ZLF)-almost every (y,€) € RY x Z,
(32) D% = vpe eve,  Jor (DA ® Dpy)-almost every (y,&) € RY x Z.

Proof. Let { fm = ©m®@Ggm@hm |m € N} € E*(Q; E) be the restriction to Qx Z x E
of the dense subset provided by Lemma 3.7; without loss of generality assume that
91 = xz € C(Z). Let also {&x}ren be a countable dense subset of Z.

Step 1. Selection of reqular points. First, let us define a set of full #%measure
where we aim to show the assertions of the lemma. To do this we first list three
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Lebesgue-type properties which are satisfied for .#%-almost every & € Q:
Lebesgue property 1. Lebesgue points of the measure A, that is,
AQr(E)) A*(Qr(T))

(33) lim ———— = \*“(zp), lim

=0.
rl0 rd r0 rd

Lebesgue property 2. Lebesgue points of the map

(34) e /Z (I+]s vrc) de.

Lebesgue property 3. Lebesgue points of the family of weighted barycenter measures
{[fr.m> Y]} k. men Where fim = ©m ® gm © 'k ® hyy,. Recall from (24) that being a
Lebesque point for all elements of the family is equivalent to

d[fk,mv V]

(35) W(i) = [f&.m,v]z(Z) for all k,m € N.

We shall show the conclusions of the lemma hold for all
xo € R:={2 € Q: & satisfies (33)-(35) },

which is a set of full .#%-measure in Q.

Step 2. Blow-up sequence. As before, we write (z) to denote the equivalence class
of a vector z € R? in the d-dimensional torus Z. Since Z is a compact manifold we
may assume (up to passing to a subsequence (fi, )icn) that

(36) <?>—>£er as i — oo.

Let r; J 0 (with 71 = 1) be an infinitesimal sequence of radii and consider, for fixed
7 € N, the blow-up sequence

1 )
Vor, = T—dTg“’”)ugi € M(Q;E), i€N,
J
where
€q .
51'7]' =, S N,
rj

is the readjusted blow-up length-scale sequence (this conforms again an infinitesimal
sequence). Since (i, )ien is uniformly bounded in M(Q;RY), we also have

sups, ;(Q) < oo for each j € N.
€N

For j = 1, we use the compactness result in Theorem to find a subsequence
{1(3)} c {i} and ¢V € Y*(Q; F) such that

Y? = .
Yoy o™ onQ as i— oo

Recursively, for each 2 < j € N, we may find a sequence {j(#)} C {(j — 1)(¢)} and
a two-scale* Young measure o) € Y?(Q; F) such that

2 .
s Y, o@ as 1 — 00
(i), :

Step 3. Characterization of o). In this step we fix j € N. Let f = p®gQh €
E?(Q;RY) with g € C'(Z) and h uniformly Lipschitz. A change of variables and
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the decomposition in (27) yields
(37)

(f,e@) = lim (/Qso(y)g(y/ém,j)h(qu(i) (w0 +15y)) dy

dute .,
Y 00 Hej —dmp(zo,m5) |, s
+ /ng(y)g(a—)h ((”T()(xo + ij)) d(r; dTL )|st(i) |)(y))

ON)

1 , T — xg
= — lim (/ (POT(IUJ‘]))(Z')9< >h( dpse (z)) da
rf im0\ JqQ,, (x0) ( €j(i) o

— dpte ..
T0,Tj T — o ) He ;) s
[ (ot wg (T i (e @) e, (o))
Qr, (@0) €4(i) d|usj(i) | €5(i)
Setting C' := limsup, | |1te|(Q) < oo (from the original sequence) we may estimate
the limiting behavior of the difference

r—x r—x xX
’/ 90( - O)[g( O)—g( —50)} dp;|(x)
Qr; (w0) T () €i(i)
by

3 Clele IDgll: [{22) -0

3 (1)

=0(i) =0 asi— oo,

where to see that the last term vanishes as i — oo we have used (306).
Using this we may re-write (37) as

(30)
@Y — L fim o 7@ () (g 0 TEN [ —*
(foo@y =L (/Q”(zo)w TEor))(2) (g oT ))(

rd imoo €5(i)

) aues, @) do

)

2
where in passing to the last equality we have used that pu. Y vin YL . R4 E).
Applying this to |+|g yields, together with (33) and (34),

(40) sup(p ® g @ |+|g,0@) < 0o for all p € C.(R?) and g € C1(Z).
JEN

due ...
+ / ((p o T(CEO,Tj))(x)(g o 1"50)) (E) B (L(ﬂ(x)) d|’u:‘(i)
Qr; (@0) ’

. S
E] d|:u€j(i)

_ T;d«(P o T@o:mi) & go rée g h,v),

We are then in position to apply the following global version of Corollary (whose
proof relies on a localization argument): there exists a subsequence of (r;) en (not
relabeled) satisfying

oc@ X Du(xo) in E*(Q;E)*, for some Dv(xzo) € Y*(Q; E).

Step 4: Characterization of o. Fix m € N and let 5 € N be an arbitrary positive
integer. Let us write fm ‘= Om @ gm 0 '0 @ h,,. For an arbitrary positive real
number 1 > 0, we may use the uniform continuity of g,, (recall that g,, € C1(Z2))
and the density of the set of points {& }ren in Z to find a sufficiently large k = k(n)
with the following property (here we use the positivity of ¢, and h,,):

€0 — &| = O(n),

and
|gm © ré — gm © 1N oo = Pm () - hm(2)
0(77) [90®XZ® E(x7§,z)],

|Fn = Frml(2,€, 2)

<
<

.
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where O(n) — 0 as 7 tends to zero. In particular,

fim sup 75 s V1@ (20)) = 75~ ity V1@, (zo))’
J

E, V](er (‘TO))

“q

.

< OM) - lemlloo - Lip(fm) - lim sup 5 lipm © x7 ©
Jje

<(my O(n) - lim inf (1 + M)

J—00 d

J

Testing (39) with f,,, (not to be confused with f,,), it follows from the estimate
above and (33) that

(@) =1 pm 0 T @ g1 0T @ by, 1)
(41) = ijd[fm,'/](@rj (20))
= rj_d[fk(n),ma V](@Tj (:EO)) + 0(77)

Letting j — oo at both sides of (1), (35) and the weak-* convergence o@) =
Duv(xo) imply

Following analogous arguments to the ones in (41) and using [£o — &) = O(7),
we may let n \ 0 to deduce

(fms Dv(@0)) = [fims V]2 (2)
(42) /Q</Z<fm’yﬂﬁm§0+5> d(TH.24)(©)

dn\
+agaton) [ 40000 ) do

The sought assertion follows from the arbitrariness of m on Step 4 (see (42)) and
Lemma which translates into the equivalence

_ d 1€
0= (Vmg,foJrfa/\ac(zO)g 7F#Epmﬂ’yg§750+f)y657562

as two-scale* Young measures in the set Y? (Q;RY). Notice we have used that the
d-dimensional Lebesgue is uniformly distributed and hence Fi‘giﬂd = 4. This
proves the desired result. O

4.2. Localization at singular points.

Proposition 4.2. Let v = (v, \, p,v™) € Y?(Q; E) be two-scale* Young measure
which is generated by a sequence of measures (pie,)ien € M(;RN). Then, there
exists a set S C Q with full A\*-measure that satisfies the following property: at
every xg € S there exists (up to a translation in Z) a local tangent two-scale*
Young measure Dv = (Dv, D\, Dp, Dv>®) € Y*(Q;RY) of v at zo. That is, there
exists &9 = &(xo) € Z such that

(43) DX € Tany (A, x0)

(44) Dp, = Fifpzo for DX-almost every y € Q.

Moreover, Dv is concentrated on zero and Dv>° is homogeneous in the sense that
(45) Dv, ¢ = 0 for (Xg ® ZL3)-almost every (y,€) € Q x Z,

(46) Duye = v e, for (DA ® Dpy)-almost every (y,£) € Q x Z.
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Proof. The structure of the proof is very similar to the one of the localization
principle for regular points. The main difference lies in the scaling of the blow up
and, as a consequence of that, different terms vanish.

Let e \, 0 and (u:) C M(Q; E) be such that y; Y b, We select a countable
dense family {€;}ren in Z and we write {fi, = ©m @ gm @ by |m € N} € E*(Q, E)
to denote the restriction to Q x Z x E of the dense subset introduced in Lemma

. Additionally, this time we will assume without loss of generality that hy = xg.
Recall we may assume the h,,’s to be Lipschitz continuous.

Step 1. Selection of the singular set S. We shall consider points & € (2 satisfying
the density estimate

ot fQT(i) Sl d€ v e) dE + er(i) A%(z) dx
W Q@) =0

and which are

(48) Aé-Lebesgue points of [fi.m,v] € M(Q) for all k,m € N.
Here, these barycenter measures are parametrized by the z-homogenous integrands
Jrm =XQ®gm ol ®@h,, kmecN.

In particular, by (24) and the Lipschitz continuity of the h,,’s, at such points & € Q
it holds

d[fi,m, V] -
(49) %(m) = [fem,v](Z) = [fiom,v]z(Z) forall k,m € N.
For the rest of the proof we fix a point zg € S = {Z € Q: Z satisfies (17)-(19) },
which is a set of full A*-measure in Q.

Step 2. Blow-up sequence. Since Z is a compact manifold, we may again restrict
to a subsequence of the generating sequence (i, )ien and find & = &o(xo) € Z such
that

To .
<—>%§0€Z as i — 00.
i

For a positive radius r > 0, we set ¢, = \*(Q.(w9))". By the compactness
properties of measures we may find a weak™ convergent blow-up sequence in the
sense there exists a sequence of infinitesimal radii (r;),en such that

% —

(50) Aj = e, TSNS 5 DA€ Tany (A, 29)  and 7(Q) = 1.

For the sake of simplicity let us write ¢; := ¢,;. We consider, for fixed j € N, the
i-indexed sequence

. & .
Yij = cjqugfo’”O)ugi, where 4; ;= — N0 asi— 0.
"

J

After an iterative procedure as the one for regular points, for each j € N we may
find a sequence j(i) with the following properties: {(j + 1)(¢)}ien C {j(é)}ien for
all 7 € N, and

Vi), ﬁ o9 for some @ € Y3(Q; E), jeN.

Moreover, up to passing to a subsequence of {j};en, we may assume there exists
Duv(x0) € Y?*(Q; E) for which

(51) o@) X Du(xzo) in E*(Q;RY)*.
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Step 3: Characterization of @ . For fixed o ® g®@ h € C(Q) x C1(Z) x E°(RN)
we deduce, by the same change of variables used in (37), that

(52)
(D) = tim ([ ot 510 h(errins, oo+ i) ay
d
Yy 0o He;; 0,7 s
+/§sﬁ(y)g<5j(_)>h (le”'(xo+w)> e Tt )(y))
v €4(i)

€5(1)

ZTo,Tj T — Zo [e's) d/'[/Ej(i) d
er(zo)( ) €j(3) d|u§j(i) 773150

Making use of (47) and the estimate (38) as it was used in (39), and the fact that
2

. 1 0,75 Lr—x ac
= lim — (/ ((poT( 0 J))(J:)g( O)h(cjr?ugj(i) (z)) do
J QTJ(IU)

e oy Y, v, we can re-write the limit on the right hand side in terms of a weighted
barycenter measure as (here we use that h*°(c.) = ch® for all ¢ > 0)

(53)
c@y — L lim o T (1) (0 0 TEN [ —E
(fo@y =1 (/er(mw 7079)(a) (g 1)

) h(cjr;-i,ugjc(i) (x)) dz

T§ imoo €5(3)
de,
+ / (p o T@))(2)(g o Ffo))< z >h°° <er;l@(z)> dlps, |(z)>
Qr; (o) i) dlpez, ., ’

= r;d[cp o T(®o:mi) goT% @ h(cjr;-i-), v](Qr; (x0)).

Step 4. Characterization of Dv(xo). The last step consists on characterizing
the limiting Young measure in (51) as j tends to infinity. Here, we expect the biting
part of o to vanish since we are performing a blow-up at a purely singular point
xo € S. Arguing as in Step 4 of the proof of the localization at regular points, we
cast the O(n)-approximation of the dense family {&} behind (41); this time with
the integrands kaym = oy 0 TE0T3) @ g 0 Ték @ hm(cjr?.). For positive n we find
k(n) € N sufficiently large so that that (using the density of the family {& }ren in
Z, and the uniform continuity of g,,)

€0 — &) =O0(n) and |fn = frm| <OM) [0 ® xz @ (1+ ¢;7f|+| ) (@, & 2)),

where fr, = @ 0 TE07) @ g, 0 T @ hyy, (ch;l-). Using these estimates in (53) we
deduce by (47) that

(54) <<fma O'(J) >> = Tjid[fk(’q),ma V](QT] (:CO)) + 0(77)

For the next step let n be an arbitrary positive real. We claim that taking then
the limit as j — oo at both sides of the equality yields

lim (fon, 0 = h (0) /Q wm<y>( [ amerHoig dg) dyt

J—0o0

(55)
it Vo (Z) - L om(y) ADN)(y) +O).
Q

First, we deal with the absolutely continuous part of the barycenter measure in (54)
as follows. For all Z%-almost every z € Q,, (zo) we estimate (recall that by = g~ )

d[fk(n),m — Pm O T(@ors) & gm © D&k & hm(o)hla V] (w)
d.zd

.

< ¢riC(m) [

E’V]]Z(Z)a




30 A. ARROYO-RABASA AND J. DIERMEIER

where C(m) = ||mlloo * [|gm||co - Lip(hsm). This estimate leads to the bound

A[fatmy.m = om0 T @ gy 0 T @ hyn (0)h1, V]
dzd ()| dz
Qr; (wo)
< fQTj (wo) fZ< | dE, Vz,§> dg + erj (z0) A®(z) da =0(ry)
~(m) S (QW (%)) j

Here, to reach the last equality we have used that zo € S satisfies (47). Thus,
when passing to limit j — oo, we may substitute the absolutely continuous part of
r;d[ fr(@m),v] in (54) by the integrable function

1 -
T _d(/ <fk(n),m($a€a ‘)360> df) .
Tj z
We now deal with the singular part and the passing to the limit. By (51) and the
density identity from (49) (applied to the point & = xg € S), we may let j tend to
infinity at both sides of (55) to deduce (recall that h?;j(cjr?o) = cjr?h?ﬁ)

e Do@o)) = fin ([ iyl 0.00) d o

rj(x0)
1 dlfge) V] .
+= R (@) dA (x)) +0(n)
T JQr; (@o)

= hm(O)/me(y)(/ngoFf’W () d«s) dy+

. [f"]?o m?’ V]
lim () ST (@) AN () + O()
J—eo er (10)

= hm(O)/me(y)(/ngoFf’w () d«s) dy+

et V1o (2) /@ () A(DN) () +O()

where we have used A; = chg”’Tj))\s X DX on @ in passing to the last equality.

This proves the claim.
To conclude we observe that n has so far been chosen arbitrarily. Therefore, by
the dominated convergence theorem, the identity (55) implies

(56)
(s Do (0) ) = hon(0) /Q som<y>( [ amere@ dg) ay

s 1o (2) - /a om(y) A(DN)(w)

=/Q (/Z<fm($,-,-),5o> d§) dy
“ /. ([tfizn 0z cne) a05020)0)) aD ).

Here, we have used that F%Xg = Zg to reach the second equality. Since {fm }men
separates E?(Q; RY), Lemma gives

DV($0) = (50, DA, Dp, DI/OO)7 DX e Tan1 ()\s, ZL'O),
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where Dp(x) = FigpgcU and Dv>(y,§) = ve . ¢ forall y € Q. This finishes the
proof. (I

5. PDE-CONSTRAINED YOUNG MEASURES

Let k € N and let E, F be finite-dimensional real vector spaces. For o € N? we
define its modulus |a| = a3 + --- + ag. We shall consider general homogeneous
differential operators of order k on R? from E to F, that is, operators of the form

A= )" A,0% A, €Lin(E;F).

aeN?
|| =k

A vector-valued measure u € M(Q; E) is called A-free provided that
Ap =0 in the sense of distributions on .

We say that v € Y?(Q; E) is an A-free two scale® Young measure if it is generated
by a sequence of (asymptotically) A-free measures:

Definition 5.1 (A-free Young measures). Let 1 < p < %. A two-scale* Young

measure v € Y (Q; E) is called A-free if there exist a sequences ¢ \, 0 and (). C
M(Q; E) such that

Ape — 0 strongly in W5P(Q)  and  pu. Y.

5.1. Rigidity properties of A-free two-scale* Young measures. Clearly, the
barycenter [v] of an A-free two-scale™ Young measure is A-free. This same property
is inherited to second-scale barycenters [v] as it is portrayed in the next proposition.
To deal with a possible abuse of notation about the domain of partial differential
operators, we shall write A¢ to denote the action of A on D'(Z; E), i.e.,

(Aen)lgl = <77,.A*g> for alln € D'(Z; E) and g € C2(Q; F).

per

Proposition 5.2. Let v = (1, A, p,v™) € Y*(Q; E) be an A-free two-scale* Young
measure. Then at (L% + \*)-almost every xq € Q it holds that

A¢[V]eo =0 in the sense of distributions on Z .

Proof. Let ¢ € C2°(Q2) and let g € C°°(Z) be arbitrary functions. Let (uc): be a
sequence of A-free measures that generates the Young measure v (on ) and let
T¢(x) = x/¢e be the re-scaling by the factor €. As a consequence of the product rule
there exist constants c, g such that

A(p-eF(goT)) = (=1)F > ¥ Ple, s AT (07 P)(0%g) o T7,
|a|<k
BLla

where we write 8 < « if and only if 8; < «; for every ¢ = 1,...,d. Observe that
Ca,o = 1 for every «a, and in particular it follows that

|A*(p-e"(goT)) — - (A*g) 0 T%||oo — 0, ase 0.

Hence, since Ap. — 0 in strongly in W=5?(Q) <5 Co(Q)*, we deduce from the
convergence above that

= lim 1ok (goT(x x
0= lim QA[w (90 T9)](z) dpe(2)

tny [ l0)(A°0) /%) (o)
(¢ ® Afg ®idg,v).

(57)
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Using the tensor structure of the integrand and the property (23) of the second-scale
barycenters we obtain

Oz/ﬁ/z dfy ® Afg ® idgy, V]4(y) d(L?+ X¥)(z)

= [ e@)( | (A9)(€) d[¥]a(€) | AL+ N)(x).
fre (), )

Since the choice of ¢ € C°() was arbitrary, this identity must hold locally.
Namely, for (£ + \*)-a.e. zo € Q it holds

(9, Aclv]as) = / (A29)(€) dl]ay (€) = 0 for all g € C=(2).

By the distributional definition of derivative this is equivalent to
A¢[V]zy =0 in the sense of distributions on Z.

This proves the assertion. ([

Corollary 5.3 (differential rigidity of the second-scale). Let e \, 0 and let (pc)e C
M(Q; E) be a sequence of asymptotically A-free measures that two-scale converges
to a limit A® 0,. That is, such that
Ape = 0 strongly in W=EP(Q).
Then, at A-almost every xg € €, it holds
Agly, =0 in the sense of distributions on Z.
Proof. This follows directly from (22) and the previous proposition. O

Corollary 5.4 (structure of A-free two-scale* Young measures). Let v € Y4 (Q; E)
be an A-free two-scale® Young measure. Then, at A\*-almost every xo € §, the
following differential inclusion holds:

%(5) € Aa for|[v];,|-almost every & € Z.

d[v]z,|

Proof. By Proposition we have that for (£ + \*)-almost every xo € €, the
second-scale barycenter [1],, is an A¢-free measure on Z. Since locally, A¢ and A
coincide as operators in R?, it follows from [11, Theorem 1.1] that

d[v]e,
di[vz, |
This finishes the proof. (I

(&) € Aq for |[v];, |-ae. € € Z.

The next lemma asserts the support of the purely singular part of an A-free
measure cannot be arbitrary. In fact, it must be contained in the smallest vectorial
space containing the wave cone A 4.

Lemma 5.5. Let v = (v, \, p,v™) € Y*(Q; E) be an A-free two-scale* Young mea-
sure. Then the support of the purely singular part of v is contained in span{A 4},
that is,

supp (vy¢) Cspan{Aa} NIBE for (\° ® p,)-almost every (z,§) € A x Z.

Proof. Recall that if (). generates the two-scale* Young measure v, then the same
sequence generates the generalized Young measure v = (v, A, v°°) where v>° is the
weak-* A\-measurable map x — v2° € Prob(0Bg) and each probability measure vy,
is defined by duality as

(58)  (h™,0) = /Z ( /6 . h>(2) dugfg(,%)) dp, (&) for all b € E°(E).
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Moreover, if (pu. ) is originally an asymptotically .A-free sequence, then by definition
v is an A-free generalized Young measure (see [4] for the corresponding definition).
The localization principle [4, Proposition 2.25] (for generalized Young measures
at singular points) yields the existence of a set S C Q with full A*-measure and
satisfying the following property: at each xg € S there exists an A-free sequence
(us)e € LY(Q; E) —depending on the point zo— such that

(59) Ue 5 v(20) = (60, Augs Vay) € YHQIE), Ay (0Q) = 0,

and A, € Tan; (), o) is a probability measure (hence a non-zero positive measure).
Moreover, by Theorem [11, Theorem 1.1], we may further assume <id3]BE,vIU> =
[(idoB s, Vo )| - d[v]/ d|[v]|*(z0) € Aa. In particular
(60) [v(xo)] € M(Q;span{A4}) for every xp € S.

By properties (59)-(60) we may apply [4, Lemma 3.2] to each generalized young
measure v(xo). Using (60) once more we deduce

supp (vge) C span{A 4} N OBg for every zo € S.

Hence, by (9%), supp (v5%) C span{A4} N IBp for (A* ® p,)-almost every (z,§) €
Q@ x Z. This finishes the proof. O

In the introduction we have defined the .A-free homogeneous envelope for inte-
grands C(Z x E) which are convex in their second argument. This definition is
nothing else than a simplified representation of the (general) definition of A-free
homogeneous envelope defined for arbitrary integrands:

Definition 5.6. Let h : Z x E — R be a continuous integrand. The A-free
homogeneous envelope of h is the integrand

hA—hom(z) = inf{ ][ hy,z4+w(y))dy : ReN,
(61) :
w € C2 (Qr; E) Nker A, wdyzO}, Z2€F.
Qr

The following relation about the commutability of the recession operation and
the homogenization of an integrand holds.
Proposition 5.7 (recession regularization vs. homogenization). Let h € C(ZxRY)
be an integrand with linear-growth at infinity. Then

(h‘#)A—hOm > (h.A—hom)#
Proof. Fix a vector z € E. Let also R € N and w € C2 (Qr; F) as in (61). Recall

per
that h(&,te)/t < M(14]+]) € LL _(R?), hence we may use Fatou’s lemma and the
definition of A to obtain

* loc

h(y,t t
][ h#(f,A +w(y)) dy — ][ hmsupw dy
Qr Qr t—o 3
h(y,t t
(62) > limsup ]z hly.tz +twly) o,
t—o0 R t
ha—nom(t
> lim sup ha-hom(t2) = (ha—nom)™ (2).
t— o0 t

In passing to the first inequality we have used the linearity of both A and the mean

value operation to ensure that tw € C®(Qg; E) Nker A, fQR tw = 0. Taking the

infimum over such w’s first, and subsequently over all R € N in (62) gives
(h#)A—hom(Z) Z (h.A—hom)#(Z)a

as desired. ([
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6. CONVEX HOMOGENIZATION

6.1. Jensen-type inequalities. This section is devoted to the study of (Jensen)
integral inequalities satisfied by the A-homogeneous envelope of convex integrands
with respect to arbitrary A-free two-scale* Young measures. The plan is to establish
Jensen type inequalities at the first- and second-scale; naturally involving the first
and second barycenters. Bridging these two inequalities into an homogenized Jensen
inequality is, in turn, the key argument towards the proof of Theorem 1.3. We close
this section with an open problem and a discussion about non-convex integrands.

6.1.1. First-scale Jensen’s inequality.

Proposition 6.1. Let v = (v, \, p,v™®) € Y(; E) be an A-free two-scale* Young
measure and let h € C(Z x E) N R%(Q; E) be an integrand that is conver in its
second argument, that is, h(, ) is convex for all £ € Z. Then,

(i) at every regular point x € Reg,, () it holds

na(ggo) < [n(e <o) ac
s [ (6545 ©) anto),

(i) and, at every singular point x € Sing,, (X)),
(69 0)a (k@) < [ (6 Eeg) ante).

Proof. Let ¢ be a non-negative mollifier on Z with [, ¢ = 1. Set o5 := 6"%p(z/.)
so that ¢s.ZJ is a probability measure on Z. We define, for fixed § > 0 and z € 2,
the mollified second-order barycenter

vs(§) = (s * [V]2)(€) -
Recall from [4, Remark 2.2] that convergence of mollified measures is strengthened
to area-convergence, that is, vs area-converges to [v], on Z (as § | 0). Hence, by

[15, Theorem 5] we obtain
(65)

d[v]. d[v];
h d h h™> = d|[v]: .
[ ncus@nas— [ n(eSe) + [ (e k@) amLie)
On the other hand, by the properties of mollifiers and the differential rigidity of the
second-scale barycenter proved in Corollary 5.3, it holds that every test function
05 = vs — [V]+(Z) is Ae-free and has zero mean value. This property of the

0s’s enables us to use the definition of the .A-homogeneous envelope (of a convex
integrand) which yields

(66) /Z hE,vs(€)) dt = /Z WE,T5(6) + [P1e(2)) d€ > haa([V]2(2)) -

(63)

From (65) and (66) we conclude

//‘(5’ T <f>> + /Zh°° <£, j% <§>> AIEIE) > hea([v]a(2))

Thus, taking into account that [[v]3| = [(ides,, V%) s and h*>° (€, (idos,, Vi) =
h*>°(&,0) = 0 for p%, where p¥ is the singular part of pS with respect to |[v]Z], we
get (using the 1-homogeneity of h°°) the refined estimate

o0 [ n(eg0)+ [ (6 TE©) 4 2 hall(2).
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In particular, if x € Reg,,(Q), we apply the inequality (67) to deduce
d[[l/]]1 o d[[l/]]; s 20) d[l/]
[ (ko) + [ (e T200) a2 na( ).

This proves (63). If on the other hand z € Sing,,(Q2), we use (67) (with h> in place
of h) to get

dpy . .
[ (egm©tasozg ) s [ 1 (e o 0) ans(o

_ [ (e AV @) 1o dv]
= [ (6 E209) 4nale) 2 0)a (. @),
This proves (64) and the proof is completed. O

6.1.2. Second-scale Jensen inequalities.

Proposition 6.2 (at regular points). Let v = (1, \, p,v™®) € Y?(Q; E) be an A-
free two-scale* Young measure and let h € C(Z x E) NR*(Q;E) be an integrand
that is convex in its second argument, that is, h(, +) is convez for all§ € Z. Then,
for all regular points x € Reg,,(Q) the following inequalities hold:

(i) at L3-almost every & in Z,

(68) h(g, il (5)) < vl o

dzd dzd
(i) and, at ps-almost every & in Z,
d[v]= d[r®, v].
h™> R e < ——(8).
(69) (6t =0) < F 9

Proof. Let z € Reg, () and & € Z so that d[v]./ d.Z%(&) exists (note that this
property is satisfied at .Zg-almost every ¢ in Z). Observe that since h is £&-uniformly
Lipschitz in its second argument, d[h,v]./ d-Z4(€) also exists at such £’s. We have

dlvl, . dx dps :
d[.[,lg]d (€) = (idp, vog) + (@) - ;d (&) - (idopy, vye)-

By the classical Jensen’s inequality and the positive 1-homogeneous character of
h® we further obtain

T = ) + @) G (O (6

dA dpz .
> (e, i v h) + 1 (€ (o) (€ om0 )

Now, let us recall the following sub-additive property satisfied by convex functions
and their recession functions: every convex function g : E — R g(z1 + 2z2) <
g(z1) + g (22) for all z1, 2o € E. It follows directly from this observation and the

inequality above that
Bk © 2 n(ne 470).

dzd dzd

This proves the first inequality in (68).

For the proof of the second inequality we let £ € Z be such that d[v],/ dps (&)
exists, hence also d[h, ],/ dps(€) exists (h™ is -uniformly Lipschitz continuous
in its second argument). In fact, these two measure-theoretic derivatives are given
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by the parings (idom,,v5%) and (h(§, +),v5%) respectively. Once more, a simple
application of Jensen’s classical inequality gives

AVha ) ioo(e, ), 02

dps,
> h> (6) <id6]BE ) V;?g))

Since d[v]./ dp;(§) and (h(§, -), v2%) exist p;-almost everywhere in Z, this proves (
O

Proposition 6.3 (at singular points). Let v = (v, \,p,v™) € Y2(Q E) be an
A-free two-scale* Young measure and let g € C(Z x RYN) be continuous integrand.
Further, assume that g(&, ) is convex and positively 1-homogeneous for all & € Z.
Then, at every x € Sing,, () it holds that

d[v]. dlg, v].

@ o(s ) <

1 (&) for py-almost every € € Z .
Pa

Proof. The proof can be reproduced by following the exact same ideas in the proof
of the second part of the proof of Proposition 6.2. O

We are now in place to prove the homogeneous version of Jensen’s inequality
that involves the A-hom envelope (of convex integrands).

Theorem 6.4 (homogenized Jensen’s inequality). Letv = (v, \, p,v>®) € Y*(%; E)
be an A-free two-scale* Young measure and let h € C(Zx E)NR2(E) be an integrand
that is convex in its second argument, that is, h(&, +) is convex for all £ € Z. Then,

(1) at every regular point x € Reg,, () it holds that

() hoa(gg) = ).

(2) and, at every singular point x € Sing,, (1),

d[l/]( )) < d[h,v].(Z)

(72) (h*)ua (W o Ze @),

Proof. The proof is a direct consequence of Propositions 6.2, 6.2, and 6.1. O

6.1.3. Comments on the non-convez case. In general, even at singular points x €
Sing,, N €2, one cannot expect the second-scale differential inclusion

d[v]a,
dzd
to hold. Instead, we believe the following weaker statement holds under mild non-

degeneracy assumptions on A (for instance if A satisfies Murat’s constant rank
condition).

(73) (€) € Ay for Z-almost every € € Z

Conjecture 6.5. Let v € Y*(;RY) be an A-free two-scale* Young measure and
let h € C(Z x RYN) be a positively 1-homogeneous for all € € Z. Then, for all
xo € Sing,, it holds that

(74) [7 V)6 (Z) 2 ha—nom([V]2, (2))

This is a powerful inclusion, and, in fact, it is the key inequality towards the
characterization of the homogenization of non-conver integrals. The proof of this
conjecture is relatively simple provided that A is a first-order operator (see [16]).
For operators of general order, the veracity of this conjecture seems to be linked to
the structural properties of tangent A-free measures.
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6.1.4. The conjecture in BD. A natural candidate to study the elastic perfectly
plastic behavior of materials is the space of functions whose linearized strains are
measures. Formally, these deformations belong to the space of functions of bounded
deformation which is defined as

BD(Q) == {u e LY RY) : Bu:= Du+ Du” € M(Q; M) }.
In the A-free context, a measure p € M(€; M) is locally a symmetric gradient if
and only if it satisfies (see [13, Example 3.10(e)]) the second order PDE-constraint

d
curlcurl p == (Z@ikug —|—6¢juf — Oyl — aiiuf) B k=1,...,d.
jk

i=1

In a forthcoming [5] paper we shall give a positive answer to Conjecture in the
case v is BDY?(Q) two-scale* Young measure, that is, when

EUj Y_’) v (Uj)jeN C BD(Q)

6.2. Proof of the Theorem . By the definition of I-limit it is enough to verify
the conclusion of the theorem for infinitesimal sequences. Let €; N\, 0 and gy, S
in M(Q; E) Nker A. Observe that up to extracting a subsequence we may assume
without loss of generality that

liminf I¥7 (p;) = lUm I%7(p; )
j—o00

j—o0
and
2
and  pp, Y, v for some v = (v, \ p,v™) € Y2 (QE).

The Young-measure representation and the Radon—Nykodym differentiation give

lim inf 1% (1) = (f.v)
_ /ﬁ[[f, V]o(Z) d(L7 + 2 ()

o [[f,l/]]m(Z) [[fay]]fﬂ(Z) S

An z-point-wise application of the Jensen inequalities in Theorem with the
family of integrands {h(¢,2)}. = {f(x,&, 2)}» on the right-hand side above yields

(notice that it suffices to perform this at all € €2 where the conclusion of Theo-
rem 0.4 holds)

imint 1) > [ foa(r. 20 ) ot [ (1) (52 ) (o

du du .

> " s d ) , d|p® .

> [ (o)) e+ [ (o @) dl)
Here, to reach the second inequality we have used that |(idgw~, v, )|(AY)® = |p®| and
thaTt Td‘;s (z) = 0 for A\*-a.e. € Q where \* is the singular part of \* with respect
to |u®l.

Lastly, it follows from Proposition that (f°°).a > (f«a)® whence we con-

clude

.. . du / < du )

minf 7% (i) > | fonl 2 —F—(2)) de+ [ (fo0)®( | () -
mint 191y) > [ foa(0 (@) ot [ (.0 (o520 ) il
This finishes the proof. (I
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APPENDIX A. BACKGROUND ON YOUNG MEASURES

A.0.1. Classical Young measures. Let € be an open set in R? and let (ux)xen be a
uniformly bounded sequence in L!(Q2). Qualitatively speaking, there are two main
reasons why the sequence fails to converge strongly in L(2), namely oscillation
and concentration. The first occurs when fluctuations average out. For example, if
d = 1, the sequence

(75) up =sin(kz) k=1,2,...

converges weakly to the constant function zero, while its mass remains constant
and strictly positive on the interval [0,2n]. This corresponds to an oscillation
behavior. The generalized surface measures, introduced by L. C. Young [26-28]
and nowadays known as (classical) Young measures, are powerful measure-theoretic
tools to understand oscillations. In an informal manner, one can define the Young
measure associated to a weakly convergent sequence (uy)ren C L'(€2;RY) as the
family of probability measures {v, }, parameterized by = € Q, with the fundamental
property that

(76) /Qf(ac,uk(ac)) dz — /Q ( . f(z,2) duz(z)) dz for all f € Co(Q x RY).

Notice that v, = d,(;) when ug converges strongly to u (it suffices to assume
convergence in measure). Thus, the total variation measure |d,(,) — vz gives a
sense of how rapidly the sequence oscillates around x. Moreover, property (76)
makes of Young measures a natural candidate to represent solutions of variational
integral problems, which, may otherwise have no solution in their respective domain
of definition.

Young realized that studying the weak convergence of the surfaces “graphug”
is the right way to overcome the incompatibility of weak convergence with nonlin-
ear functionals. The reasoning behind this claim is the following. The uniformly
distributed measure I'y which is concentrated on the set graphu; C Q X RN is
formally expressed by the push-forward measure (id, ug)x-2?LQ. Provided that

(77) Iy, >T asmeasures in Q x RY,

the convergence in (706) can be written as (f,T'x) — (f,T') in terms of the du-
ality (Co(Q x RY), M(Q x RY)). The Young measure v, is then nothing else
than the slice of T' at a point x € . This reasoning justifies 1) Young’s original
definition of generalized surface, and 2) the probabilistic interpretation v,(A) =~
limg 00 P({ur(y) € A:for y about z}), expressed rigorously by the limit

(78) vz (A) = lim ( lim / xA(ug) dy) ACRY,
ONO \k—oo Bs ()

A.0.2. Generalized Young measures. Albeit powerful, the notion of Young measure
is somehow unsatisfactory since it relies on the equi-integrability of minimizing
sequences. There is a second phenomenon that hinders strong convergence and
it corresponds to concentration of mass. The reader may think of a unit mass
distribution at the point = 0 (the Dirac mass dp centered at the origin) and let it
evolve according to the heat flow, which is highly regularizing and mass preserving.
The solution at a time ¢ > 0 is given by the gaussian

1 |z
79 vy = — ex (—) .
(79) T Py
As we go backwards in time, say with the sequence uy = vy /1, the sequence (ug)ren

weak-* converges (in the sense of measures) to 9. Therefore, (ug)ken is a sequence
of probability measures in L!(R?) which converges strongly to the zero function in
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R?\ {0} and nevertheless fails to converge strongly at precisely the point z = 0.
It is worth to mention that loss of compactness of an L!-bounded sequence (with
respect to the strong topology) does not correspond exclusively to oscillation or
concentration, but rather to a combination of both. The understanding of this sce-
nario is part of the seminal work of DiPerna & Majda [12], which was motivated by
evidence pointing that beyond a critical time 7" > 0, the solutions v, of the Navier-
Stokes equations (with Reynolds number e71) tend to develop wild oscillations as
well as concentration effects. Therefore, suggesting that v. weak-* converges (but
not strongly) to v a solution of the Euler equation. In their effort to understand the
complexity of the flow, they introduced a notion of measure-valued solution for the
3-d incompressible Euler equation. To define measure-valued solutions, DiPerna
& Majda extended Young’s ideas and introduced generalized Young measures (see
also [1]).

Let us discuss briefly their construction and its differences with respect to Young’s
construction. First, notice that the classical characterization (76) fails to deal with
concentration of mass. Indeed, taking the reversed heat flow (79), we readily check
the limit “forgets” to distinguish the point z = 0 since

flz,ug(z)) de — f(z,0)dz for all f € Co(B; x RY).
B B,
This happens because the sequence is tested with bounded integrands. The general
idea behind their construction is to test with the largest family of functions where
one can hope to compute the limit in the left-hand side. Due to the L!-boundedness,
the natural candidates are integrands satisfying a uniform linear-growth condition,
that is,
[f(z,2)] < M(1+|z|) for some M > 0.

However, in spite that 'y, = T' as in (77), we cannot ensure (I'y, f) — (', f) as
before. This owes to the fact that f ¢ Co(€2 x RY) and hence the attempted pairing
above is not in the correct duality. The turn around to this problem rests in the
following compactification argument. Since € is open and bounded, the Stone-Cech
compactification of X = Q x RY reduces to

BX =Q x SRV,
where BRY is the result of glueing the infinity points at every direction to R¥.
In this way g € C(8X) if and only if g is uniformly bounded on X, and, it can
be continuously extended at every direction of infinity. Since we imposed a linear
growth condition on f, the function

r _f(x,z)

is uniformly bounded on X. To verify f € C(BX) we require that f can be extended
continuously to X, or equivalently, that the recession function

fa',t2)
t

f°(z,2) = lim exists in R for all z € Q and 2 € BY,

x:%m
z2'—=Z
t—o0

where BY is the closed unit ball of RV. The next step is to balance the additional
weight coming from the transformation f — f by defining T = (id,us)x[(1 +
lug|)-£?], which is again a uniformly bounded sequence in M(3X). Neglecting the
pass to further subsequences, we may assume that 'y weak* converges to some
Radon measure I on BX. Then, the Riesz—Markov—Kakutani representation theo-
rem ensures that f and ', are in duality and thus

(Thy f) = (Tr, f) = (T, f) .
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Let us now consider the canonical projection 7 : Q x ARN — Q and let A =mT
be the associated push-forward measure of I'. Similarly to Young’s construction, a
slicing argument and the convergence above yields the limit representation

/Qf(x,uk(:c)) dz — /§< - fl(x, 2) dﬁm(z)> dX\(z) for all f e Cy(Q2 x RY).

In fact, one can exploit the topological isomorphism BRYN = BN and the idea that
f° is the trace of f at infinity to re-write the right-hand side above in the form

/ﬁ( [ J2) dum(z)) dx—i—/ﬁ( @) dugO(z)) A\ ().

pure oscillation concentration

This construction leads to the following non-rigorous definition. The generalized
Young measure associated to a sequence (ux)ien is a triple (A, v, v°°) conformed
by a positive measure A satisfying

(80) (1+|ur))LQ = X as measures on Q,

and two families v = {v, }, v>° = {v2°} of probability measures (parameterized by
x € Q) satisfying the fundamental property that

/Qf(x,uk(x)) dr ﬁ( [ fa2) duz(z)) du

) L[ s e e) o

for all f € Cp(Q2 x RY).

Notice that the correspondent probabilistic interpretation for v, remains the
same as in (78). The term A, ({z}) can be interpreted as the amount of mass car-
ried by the sequence (|ug|)ren about z, and v°(B) & limg— oo P({uk(y)/|ukl(y) €
B:for y about x}) or

T . N-—1
82 B =l (Jm [ st/ dy) B S

A.0.3. Classical two-scale Young measures. There is yet another extension of the
classical setting which arises from the following question: can we quantify how fast
or how often oscillation occurs with respect to a given parameter? In good part, this
is motivated by materials science problems such as the description of macroscopic
and microscopic properties of composite materials. The mathematical approach is
that of “homogenization” to which a particular model corresponds the description
of weak (or weak*) limits of sequences of the form

(83) flzyz/e,uc(x)) withe 0.

Here, the function f is assumed to be [0, 1]%-periodic in its second argument. One
often refers to x as the macroscopic scale and to z/¢ as the microscopic one, thence
also called two-scale analysis. To put in this in context with our previous exam-
ples (75) and (79) we set k=1 to play the role of £ in (33). In the first case oscillations
are uniformly distributed in space with period 2rk~!, while in the second example
we can argue “most” of the mass carried by uy is concentrated in a neighborhood of
radius k~! around the origin. In general, such information is not recorded by gener-
alized Young measures. This is portrayed by the following 1-dimensional example.
Fix a > 0, and consider the purely oscillatory sequence

Uq,e = sin(e™x) k=1,2,....
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Clearly, each « significantly changes the scale at which oscillations occur as k tends
to co. However, a change of variables shows that regardless of the value of «, the
associated Young measure to (uq,e)e is given by the homogeneous family {v;}zer
where v, = d, for every x € R and &, is the probability measure satisfying

— 1

2m
(8g, ) = %/ p(siny) dy for all ¢ € C.(R).
0

Hence, the search for a Young measure able to distinguish different length-scales
of convergence (one that would explicitly depend on « in the previous example).
Taking a step towards the solution of this problem, Pedregal introduced the notion
of two-scale Young measure as a way to represent weak limits of equi-integrable
sequences of the form (83). Let us briefly recall the the ideas behind Pedregal’s
construction. First, let K C R? be a compact set and consider an additional
sequence {v. : Q@ — K}. Then, extend the original equi-integrable sequence (uc)e
to the sequence of pairs
((ve, ue))e €\ 0.

This sequence is also equi-integrable and therefore it can be fully analyzed within
the framework of classical Young measures. For the sake of our discussion, we
assume that

(84) v > v= {Vz}zeq C Prob(RY)
(85) v % p={pztzen C Prob(K)
(86) (uesve) 5 0 ={0u}sen C Prob( x K),

where “ %7 means the sequence in the left hand-side generates the Young measure
in the right-hand side in the sense of (76). Since we can recover v, by projecting into
the first coordinate of the pair (ve, uc), a well-known disintegration argument yields
the existence of a family of probability measures 7 = {7 ¢}zcn.ecx C Prob(K)
such that

(87) Op = po @ Vg, (1,6) €K xQ.

If the sequences (ve)e, (ue)e oscillate at different length-scales, for instance when
one oscillates considerably faster than the other (as £ | 0), then the semi-product
(87) simplifies to the classical product

(88) Or = pe @y where 0,(F X F) = p,(E) - vy(F),

which does not contain any additional information on v. However, if v. and u.
oscillate at a comparable length-scale (for small £’s), then the joint Young measure
o will record how “u. compares to v.” at the length-scale where both of their
oscillations interact. A priori, one may consider any candidate for the test functions
(ve). For example, information on the oscillation of u. at e-length-scale in the
direction of a fixed vector ¢ € R? may be captured by considering the indicator

functions
ve(7) = X[0,1/2) (< @ + a>), a € Rd,

where for a point x €  C R? we have denoted by (z) its representative class in
K = T? (the flat d-dimensional torus). Motivated by problems in homogenization
theory, in particular the behavior of sequences of the form (83), Pedregal studied
(classical) Young measures generated by sequences of pairs

we(a) = {(2), ulo)},

and called the resulting family 7 = {0; ¢} e eee in (37), the two-scale Young
measure generated by {u.}. Since the Young measure generated by the sequence
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({+/e))e is precisely the Lebesgue measure restricted to T¢ (as the measure smears
evenly throughout the torus), then (87) reads

(89) 0r = (LT @ e .

On the other hand w, X o, and hence the identity above leads to the limit repre-
sentation

| rwafenanars [ [ e )

- /Q (/Td ( . (2,6, 2) dﬁw,s(Z)) d£) da,

which holds for all continuous integrands f : Q x T¢ x RV — R with uniform RV-
linear growth in its third component. This comprises the construction of two-scale
Young measures.
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