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GENERALIZED MULTI-SCALE YOUNG MEASURES

ADOLFO ARROYO-RABASA AND JOHANNES DIERMEIER

Abstract. This paper is devoted to the construction of generalized multi-
scale Young measures, which are the extension of Pedregal’s multi-scale Young
measures [Trans. Amer. Math. Soc. 358 (2006), pp. 591–602] to the setting of
generalized Young measures introduced by DiPerna and Majda [Comm. Math.
Phys. 108 (1987), pp. 667–689]. As a tool for variational problems, these are
well-suited objects for the study (at different length-scales) of oscillation and
concentration effects of convergent sequences of measures. Important prop-
erties of multi-scale Young measures such as compactness, representation of
non-linear compositions, localization principles, and differential constraints are
extensively developed in the second part of this paper. As an application, we
use this framework to address the Γ-limit characterization of the homogenized
limit of convex integrals defined on spaces of measures satisfying a general

linear PDE constraint.
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1. Introduction

The notion of generalized surfaces introduced by Young [26–28], and known
today as Young’s measures, rests on the fundamental idea to consider functions
as graphs. Young realized that the weak convergence of the graphs of a sequence
of functions carries substantially more information than the weak convergence of
the functions themselves. In fact, this was the cornerstone leading to the following
fundamental principle of Young measures: Let (uk)k∈N ⊂ L1(Ω;RN ) be a uniformly
bounded sequence. Then (up to passing to a subsequence) there exists a family of
probability measures {νx} ⊂ Prob(RN ), parameterized by x in Ω, such that

(1) g(uk) ⇀ ug for all L1(Ω) for some g ∈ Cc(R
N ) ,

where

(2) ug = −

∫

Ω

g(z) dνx(z) .

In the field of applications, the seminal work of Müller [19] (among many others)
adds up to a fair amount of applications in optimal design where the framework of
Young measures plays a fundamental role in their development. However, as pointed
out by Tartar [25] and Pedregal [21], Young measures have their own drawbacks
and limitations. The first important limitation is their incapability to keep track of
concentration of mass (mass carried by the sequence may escape to infinity, in RN ,
while leaving the limit in (1) unchanged). To solve this issue, DiPerna & Majda
adapted Young’s ideas using a compactification of RN . They extended classical
Young measures to what today is known as generalized Young measures [12] (see
also [1]), which are capable of representing more general limits than (1). More
precisely, extending (1) to the representation of limits µf of the form

(3) f(uk)
∗
⇀ µf in M(Ω) among integrands satisfying f̃ ∈ C(βRN ),

with f̃(z) := f(z)/(1 + |z|), and where βRN is the Stone–Čech compactification of
RN . Here, we omit the representation formula for generalized Young measures as
it is substantially more involved than (2); we shall postpone this to the Appendix
where for the convenience of the reader we give a brief sketch of the construction and
properties of (the different notions of) Young measures. The second main drawback
of Young’s construction is the failure to record patterns such as the direction or
speed where oscillation (and/or concentration) occurs. This is easily illustrated
by the following one dimensional example. Fix a positive real α and consider the
purely oscillatory sequence

uk(x) = sin(kαx), k = 1, 2, . . .

Clearly, the choice of α significantly changes the length-scale period at which oscil-
lations occur as k tends to ∞. However, regardless of the choice of α, a change of
variables argument shows the associated Young measure to this sequence is given
by the family {νx}x∈R where νx = ν0 for almost every x ∈ Ω, and where ν0 is the
probability measure satisfying

〈ν0, g〉 =
1

2π

∫ 2π

0

g(sin y) dy for all g ∈ Cc(R) .

Hence, there is a need to extend the notion of Young measure to one that incor-
porates the dependence of the parameter α. To record this information, Pedregal



3

considered the joint Young measure υ associated to the sequences of pairs

wk(x) := (〈χk 〉, uk) : x 7→ (〈 kx 〉, uk(x)) ,

where 〈x 〉 denotes the equivalence class of the vector x ∈ Rd in the d-dimensional
flat torus Z := Rd/Zd. After performing a slicing argument, υx decomposes into
υx = π#νx ⊗ νx,ξ, where π : Z ×RN → Z is the canonical projection on the torus.
Pedregal introduced the resulting family {νx,ξ} of probability measures on RN as
the associated two-scale Young measure, in turn, designed to represent weak-limits
of the form

(4) g(wk) ⇀ Ug in L1(Ω) for integrands g ∈ Cc(Z × R
N ) .

Similarly to the case of generalized Young measures, a sketch of Pedregal’s con-
struction is further discussed in the Appendix.

We are now in a position to give a rough description of the content and goals of
this work.

1.1. Main results. The first goal of this paper is to introduce generalized multi-
scale Young measures (“multi-scale*” throughout the text for short) in the following
sense. We combine the ideas of DiPerna & Majda with the approach from Pedregal
to construct a new type of Young measures, capable of dealing with oscillation-
concentration effects while also quantifying the length-scales where these phenom-
ena occur. For simplicity we shall restrict only to two-scale* Young measures.
Effectively, we introduce a measure-theoretic tool to represent weak-∗ limits of the
form
(5)

f(χk, uk)
∗
⇀ µf in M(Ω) amongst integrands f satisfying f̃ ∈ C(Z × βRN ) ,

where f̃(ξ, z) := f(ξ, z)/(1 + |z|). Next, we give the rigorous definition and state
some of the main properties of two-scale* Young measures.

Definition 1.1 (two-scale* Young measures). A four-tuple ν = (ν, λ, ρ, ν∞) is
called a two-scale* Young measure on Ω with values in E (a finite dimensional
euclidean space) provided that

(i) ν is a weak-∗ measurable from Ω×Z into the set of probability measures over
E such that the map (x, ξ) 7→ 〈νx,ξ, | q|〉 belongs to L1(Ω× Z),

(ii) λ is a bounded positive measure on Ω,
(iii) ρ is a weak-∗ λ-measurable map from Ω to the set of probability measures on

the d-dimensional torus,
(iv) ν∞ is a weak-∗ (λ ⊗ ρx)-measurable from Ω × Z into the set of probability

measures over SE (the sphere of radius one in E).1

We denote the set of two-scale* Young measures by Y2(Ω;E).

1.1.1. Representation via two-scale* Young measures. Here and in what follows
“ε ց 0” will denote a sequence of positive reals converging to zero, which heuristi-
cally shall represent a microscopic length-scale.

Theorem 1.2 (representation). Let (µε)ε ⊂ M(Ω;E) be a sequence of vector-
valued measures with uniformly bounded total variation, i.e.,

sup
ε

|µε|(Ω) < ∞ .

1The semi-product λ⊗ νx, between a positive measure λ ∈ M(Ω) and a weak-∗ λ-measurable

map ν : Ω → Prob(K) : x 7→ νx, is the measure of Ω×K defined as

(µ⊗ νx)(U) :=

∫
Ω

∫
K

χU (x, z) dνx(z) dµ(x), for all U ∈ B(Ω×K).
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The following representation result holds up to taking a subsequence of (µε)ε. There
exists a two-scale* Young measure ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E) satisfying the
following fundamental property. Let f : Ω×Td ×E → R be a continuous integrand
for which the recession function

f∞(x, ξ, z) := lim
(x′,ξ′,z′)→(x,ξ,z)

t→∞

f(x′, ξ′, tz′)

t
(x, ξ, z) ∈ Ω× T

d × E,

exists. Then, there exists a Radon measure µf on Ω such that

f( q , q/ε , uε )L
d Ω

∗
⇀ µf as measures on Ω ,

and µf is characterized by the values

µf (ω) =

∫

ω

(∫

Td

(∫

E

f(x, ξ, z) dνx(z)
)

dξ
)

dx

+

∫

ω

( ∫

Td

( ∫

BE

f∞(x, ξ, z) dν∞x (z)
)

dρx(ξ)
)

dλ(x) ,

where ω ranges among all Borel subsets of Ω. In this case we say that (µε)ε gener-
ates the two-scale* Young measure (ν, λ, ρ, ν∞), in symbols

µε
Y2

→ ν .

The second objective, is to endow two-scale* Young measures with a measure-
theoretic toolbox tailored for applications in the calculus of variations. Our hope is
to lay a transparent framework which casts the geometrical meaning of the blow-
up methods (introduced by Fonseca & Müller [14]) into the context of two-scale
analysis [2,6,20]. Based on a localization principle, this comprehends the represen-
tation of integral functionals arising from Γ-convergence (see [9,10]) in the context
of homogenization of PDE-constrained structures [7, 8, 16, 18].

Formally, this toolbox consists of establishing the following properties:

1.1.2. Fundamental properties of two-scale* Young measures.

(1) Compactness. In a natural way, two-scale* Young measures are elements
of due dual of the class of integrands E(Ω;E) (see Section 2.2). In Propo-
sition 3.6 we show the sequential weak-∗ compactness (with respect to the
weak-∗ topology of E(Ω;E)∗) of uniformly bounded subsets Y of Y2(Ω;E),
that is, for sets such that

sup

{ ∫

Ω

∫

Z

〈νξ,x, | q|〉 dξ dx + λ(Ω) : (ν, λ, ρ, ν∞) ∈ Y

}

< ∞ .

This result is a fundamental step towards the proof of Theorem 1.2.
(2) Localization. The relevance of Propositions 4.1 and 4.2 is briefly explained

as follows. If a sequence (µε)ε generates a Young measure (ν, λ, ρ, ν∞),
then at (L d + λ)-almost every x0 ∈ Ω we may find a blow-up sequence of
the original sequence (at x0) that generates a (global) tangent two-scale*
Young measure

Dν(x0) = (νx0 , Dλ,Γξ0
#ρx0 , ν

∞
x0
) for some ξ0 ∈ Z, and Dλ ∈ Tan1(λ, x0) .

Hence, extending the concept of tangent Young measure introduced in [23]
by Rindler; see also [24].
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1.1.3. Barycenter measures and second-scale convergence. Given a sequence (uj)k∈N

that generates a two-scale* Young measure ν, the representation Theorem 1.2 yields
that

uj
∗
⇀ [ν] as measures on Ω ,

where [ν] is the barycenter of ν (see Definition 3.10). In this sense our notion of
barycenter of a two-scale* Young measure coincides with the one for generalized
Young measures. We then define a weak-∗ (L d Ω+λs)-measurable map [[ν]] : Ω →
M(Z;E), called the second-scale barycenter of ν, which has the property that

µε two-scale converges to (L d + λs)⊗ [[ν]]x ,

where the convergence above shall be understood as an extension of Nguetseng’s
concept of two-scale convergence [2, 20] (see Definitions 3.9 and 3.11). In fact, via
the compactness of two-scale* Young measures, we give a fairly short proof of the
compactness of uniformly bounded sequences with respect to two-scale convergence;
see Corollary 3.12.

1.1.4. Structure of PDE-constrained two-scale* Young measures. Consider a homo-
geneous linear partial differential operator of order k on Rd (with constant coeffi-
cients) of the form

A =
∑

|α|=k

α∈N
d

Aα ∂α, Aα ∈ Lin(E;F ).

A vector-valued measure µ ∈ M(Ω;E) is called A-free provided that

Aµ = 0 in the sense of distributions on Ω.

We say that two-scale* Young measure ν ∈ Y2(Ω;E) is A-free if it is generated by
a sequence of (asymptotically) A-free measures. The set of such Young measures
is denoted by Y2

A(Ω;E). We establish the following rigidity properties of A-free
two-scale* Young measures:

(1) The second-scale inherits the A-free constraint. In Proposition 5.2 we show
that the PDE-constraint is inherited also to the second-scale barycenter of
any A-free two-scale* Young measure (the constraint holds trivially for the
barycenter), that is,

A[[ν]]x = 0 in the sense of distributions on Z,

for (L d +λs)-almost evert x ∈ Ω. The corresponding version of this result
in terms of two-scale convergence is contained in Corollary 5.3.

(2) Based on the recent developments [11] concerning the structure of PDE-
constrained measures, it further holds (see Corollary 5.4) at λs-almost every
x ∈ Ω that

d[[ν]]x
d|[[ν]]sx|

(ξ) ∈ ΛA for |[[ν]]sx|-almost every ξ ∈ Z,

Here ΛA is the so-called wave-cone associated to A defined as

ΛA :=
⋃

|η|=1

kerAk(η) ⊂ E,

and which consists of all Fourier amplitudes (vectors z ∈ E) where A is not
elliptic with respect to one-directional oscillations.2

2Following standard notation, the k-homogeneous map

η 7→ A
k(η) :=

∑
|α|=k

ηαAα ∈ Lin(E,F ), η ∈ R
d,
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(3) The support of the non-biting part of ν (in the sense of Chacon; see
Lemma 3.16) is constrained by the differential constraint of A. More specif-
ically, in Lemma 5.5 we show that

supp (ν∞x,ξ) ⊂ span{ΛA} ∩ ∂BE for (λs ⊗ ρx)-almost every (x, ξ) ∈ Ω× Z .

1.1.5. Applications to homogenization. We conclude our exposition solving a partic-
ular case of homogenization for PDE-constrained measures. We start by considering
a family {Iε}ε>0 of functionals of the form

(6) Iε(µ) :=

∫

Ω

f(x, x/ε, µac(x)) dx+

∫

Ω

f∞(x, x/ε, µs(x)) d|µ
s|(x),

defined for measures µ = µacL d Ω + µs|µ
s| ∈ M(Ω;RN ).

The integrand f : Ω × Td × RN → R is assumed to be a continuous integrand
with linear-growth at infinity. Further we will require that f(x, ξ, q) is convex for
every x, ξ ∈ Ω×Td. The candidate measures µ ∈ M(Ω;RN ) are assumed to satisfy
the PDE-constraint

(7) Aµ = 0 in the sense of distributions on Ω.

Our goal is to show that as ε ց 0, the rapidly oscillating variable x/ε averages out
and the functionals Iε converge (in the context of Γ-convergence, detailed below)
to an “homogenized” integral

(8) Ihom(µ) =

∫

Ω

f∗A(x, µ
ac(x)) dx+

∫

Ω

(f∗A)
∞(x, µs(x)) d|µ

s|(x),

where the integrand f∗A is characterized by means of the cell minimization problem

f∗A(x, z) := inf

{ ∫

Q

f(x, y, z + w(y)) dy :

w ∈ C∞(Q;E) ∩ kerA,

∫

Q

w(y) dy = 0

}

.

(9)

Let us briefly recall the notions of Γ-convergence and homogeneous envelope
which will be required to give sense to our problem. Let {εj}j be a sequence
of positive numbers converging to zero. The Γ-limit inferior of the sequence of
functionals {Iεj}j with respect to the weak-∗ convergence of measures is defined as

Γ− lim inf Iεj (µ) := inf
{

lim inf
j→∞

Iεj (µj) : µj
∗
⇀ µ in M(Ω;RN )

}

.

We say that a functional I is the Γ-limit inferior of the family of functionals {Iε}ε>0

if

I = Γ− lim inf
j→∞

Iεj for every sequence εj ց 0.

In this case, we write

I = Γ− lim inf
εց0

Iε.

The main homogenization result is contained in the following Theorem.

is the principal symbol associated to A. Using the Fourier transform it is immediate to verify that
a vector v ∈ E belongs to kerAk(η) — for some η ∈ Rd \ {0} — if and only if the one-directional
function

x 7→ v exp(2πix · η) is A-free on R
d.
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Theorem 1.3 (Γ-lim inf of Iε). Let f : Ω×Td×E → R be a continuous integrand
with linear-growth at infinity. Further assume that f(x, ξ, q) is convex for all x ∈ Ω
and all ξ ∈ Td. Then, the Γ-lim inf of the family of functionals

µ 7→ Iε(µ) =

∫

Ω

f(x, x/ε, µac(x)) dx

+

∫

Ω

f∞(x, x/ε, µs(x)) d|µ
s|(x) , µ ∈ M(Ω;E) ∩ kerA,

with respect to the weak-∗ convergence in M(Ω;E), is given by the homogenized
functional

Ihom(µ) =

∫

Ω

f∗A(x, µ
ac(x)) dx+

∫

Ω

(f∗A)
∞(x, µs(x)) d|µ

s|(x),

defined for measures µ ∈ M(Ω;E) ∩ kerA.

2. Preliminaries and Notation

Here and in what follows Ω ⊂ Rd is an open and bounded set with L d(∂Ω) = 0
(where L d denotes the d-dimensional Lebesgue measure). To avoid cumbersome
definitions we shall simply write Z to denote the d-dimensional torus Td, and Q to
denote the closed d-dimensional unit cube [0, 1]d. To distinguish the d-dimensional
Lebesgue measure between two locally d-dimensional euclidean spaces E and F we
will often write L d

E and L d
F respectively. We denote the indicator function of a

set A by χA. If E,F are two Banach spaces, we denote by Lin(E;F ) the space of
linear maps from E to F .

2.1. Geometric measure theory. Let X be a locally convex space. We denote
by Cc(X) the space of compactly supported and continuous functions on X , and
by C0(X) we denote its completion with respect to the ‖ q‖∞ norm. The space
Cc(X) is not a complete normed space in the usual sense, however, it is a complete
metric space as the inductive union of Banach spaces C0(Km) where Km ⊂ X are
compact and Km ր X . By the Riesz representation theorem, the space M(X) of
bounded signed Radon measures on X is the dual of C0(X); a local argument of the
same theorem states that the space Mloc(X) of signed Radon measures on X is the
dual of Cc(X). We notate by M+

loc(X) the subset of non-negative measures. Since
C0(X) is a Banach space, the Banach–Alaoglu theorem and its characterizations
hold and in particular bounded sets of M(X) are weak-∗ metrizable. On the other
hand, the local compactness of Cc(X) permits the existence of a complete and
separable metric on Mloc(X) with the property that convergence with respect to
that metric is equivalent to the weak-∗ convergence in Mloc(X) (see Remark 14.15
in [17]). In a similar manner, for a finite dimensional euclidean space E, M(X ;E)
and Mloc(X ;E) will denote the spaces of E-valued bounded Radon measures and
E-valued Radon measures respectively.

The space M(X) is a normed space endowed with the total variation norm

|µ|(X ;E) := sup

{ ∫

X

ϕ dµ : ϕ ∈ C0(X ;E), ‖ϕ‖∞ ≤ 1

}

.

The set of all positive Radon measures on X with total variation equal to one is
denoted by

Prob(X) :=
{

ν ∈ M+(X) : ν(X) = 1
}

;

the set of probability measures on X .
The push-forward of a measure µ ∈ M(Ω;E), with respect to a Borel map

T : Ω → Ω′, is formally defined through the change of variables formula “T#µ =
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µ◦T−1” as follows. For every ϕ ∈ C(Ω′;E), we define the measure T#µ ∈ M(Ω;E)
via ∫

Ω′

ϕ d(T#µ) :=

∫

Ω

ϕ ◦ T dµ.

We define the linear action of a measure µ ∈ M(X) on a function ϕ ∈ C0(X)
by the paring 〈ϕ, µ〉 =

∫

X ϕ dµ. If X = Z is the d-dimensional torus (which is
a compact manifold), then any map g ∈ Cc(Z) = C0(Z) can be represented by
a periodic and continuous function on the d-dimensional semi-closed unit cube; in
this case we write

〈
g, µ

〉
=

∫

Z

g dµ :=

∫

[0,1[d
g dµ for µ ∈ M(Z).

For a positive measure λ ∈ M(X) we write Lλ(X ;F ) to denote the set (space
provided that F is a space) of λ-measurable functions with values on F ⊂ E. For
p ∈ [1,∞] we write

Lp
λ(X ;F ) :=

{

f ∈ L(X ;F ) :

∫

X

|f |pE dλ < ∞

}

,

the space of λ-measurable functions with values on F ⊂ E that are p-integrable.
We will also use the short-hand notations Lp(X) := Lp(X ;R) and

Lp
λ,loc(X ;F ) =

{

f ∈ L(X ;F ) :

∫

K

|f |pE dλ < ∞ for all K ⋐ X

}

.

If F is an euclidean space, Riesz’ representation theorem tells us that every vector-
valued measure µ ∈ Mloc(X ;F ) can be written as

µ = f |µ| for some f ∈ L∞
|µ|,loc(Ω; SF );

this decomposition is often referred as the polar decomposition of µ. The set of
points x ∈ X where

lim
r↓0

∫

Br(x0)

|f(x) − f(x0)| d|µ|(x) = 0,

is called the set of |µ|-Lebesgue points; this set has full |µ|-measure. Another
resourceful representation of a measure is given by its Radon–Nykodým–Lebesgue
decomposition

µ =
dµ

dL d
L

d +
dµ

d|µs|
|µs| = µac

L
d + µs|µ

s|

where as usual µac ∈ L1
loc(X ;F ), |µs| ⊥ L d, and µs ∈ L|µs|,loc(X ; SF ).

Let E,F be open or closed subsets of an euclidean finite dimensional space
and let µ be a non-negative Radon measure on E. A map ν : E 7→ M(F ) :
x 7→ νx is said to be weak-∗ µ-measurable if the map x 7→ νx(B) is µ-measurable
for all Borel sets B ∈ B(F ). A simple method to check the µ-measurability of
such a measure valued map x 7→ νx is to test the µ-measurability of the map
x 7→

∫

F
g(x, z) dνx(z) for every B(E) × B(F )-measurable function g : E × F →

R. The set of all weak-∗ µ-measurable maps x 7→ νx endowed with the norm
|ν|∞(E) := ess sup(E,µ) |νx|(F ) conforms a Banach space which will shall denote

by L∞
µ,⋆(E;M(F )). In the particular case that µ = L d we shall simply write

L∞
⋆ (E;M(F )).
Given a weak-∗ µ-measurable map ν ∈ L∞

µ,⋆(E;M(F )) we can define the gener-
alized product of µ and νx which is the measure taking the values

(µ⊗ νx)(U) :=

∫

E

∫

F

χU (x, z) dνx(z) dµ(x), for all U ∈ B(E × F ).
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The main step in the construction of Young measures (and multi-scale Young mea-
sures) relies on a well-known disintegration result for measures λ ∈ M+(E × F ).
Merely, it establishes a condition under which λ = µ ⊗ νx, where µ is the push-
forward of λ under the projection onto E and νx is a weak-∗ µ-measurable map of
probability measures. This is recorded in the next theorem (for a proof see Theorem
2.28 in [3]).

Theorem 2.1 (disintegration). Let λ ∈ M+(E×F ) and let π : E×F → E be the
projection on the first factor. Assume that the push-forward measure µ := π#λ ∈
M(E) is a finite Radon measure. Then there exists a weak-∗ µ-measurable map
ν ∈ L∞

µ,⋆(E;M(F )), uniquely defined up to equivalence classes, such that λ = µ⊗νx.
Moreover,

νx ∈ Prob(F ) for µ-almost every x in E.

We close this section by introducing the notion of probability tangent measure
as introduced in [3, Sec. 2.7]. Let {rj}j∈N be an infinitesimal sequence of positive
real numbers (rj ց 0). A local blow-up sequence of a measure µ ∈ M(Ω;RN ) at a
point x0 ∈ Ω is a sequence of (normalized) measures of the form

τj =
1

|µ|(Qrj (x0))−1
T

x0,rj
# µ ∈ M(Q),

which are well-defined provided that |µ|(Qrj (x0)) > 0. A weak-∗ limit τ ∈ M(Q)
of a local blow-up sequence is said to be a local tangent measure. We write

τ ∈ Tan1(µ, x0) ⊂ Prob(Q),

to denote the set of all probability tangent measures (tangent measures for short).
3 At |µ|-almost every x0 ∈ Ω, all tangent measures of µ at x0 are constant multiples
of a positive measure. More precisely, if µ = f |µ| is the polar decomposition of µ,
then at every |µ|-Lebesgue point x0 ∈ Ω it holds

Tan1(µ, x0) = f(x0)Tan1(|µ|, x0).

In particular, every tangent measure τ ∈ Tan1(µ, x0) can be written as

τ =
dµ

d|µ|
(x0)|τ |.

2.2. Integrands. Let n be a non-negative integer. Throughout this section and
the rest of the paper we will consider continuous integrands f : Ω×Zn−1 ×E → R

(recall that Ω ⊂ R
d is an open and bounded set, Z = T

d is the d-dimensional torus,
and E is a euclidean space of finite dimension endowed with a norm | q| = | q|E).
Elements of Zn−1 shall be denoted by ξ = (ξ1, . . . , ξn−1).

Consider the transformation

(Tf)(x, ξ, ẑ) := (1 − |ẑ|) · f

(

x, ξ,
ẑ

1− |ẑ|

)

, (x, ξ, ẑ) ∈ Ω× Zn−1 × BE ,

defined for f ∈ C(Ω × Z × RN ) where BE is the open unit ball in E. The vector
space

En(Ω;E) :=
{

f ∈ C(Ω× Zn−1 × E) : (Tf) extends

to a continuous function in C
(
Ω× Zn−1 × BE

)}

3The term “tangent measure” refers to a more general object than the one referred to here.
For the purposes of this paper, in particular the development of the localization principles in
Section 4, it is technically more convenient to work with local tangent measures. However, our
conclusions are compatible with the more general notion of tangent measure introduced by Preiss
[22].
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endowed with the norm ‖f‖En(Ω;E) := ‖Tf‖∞, En(Ω;E) is a Banach space. More-
over, T is a compactification in the sense that

T : En(Ω;E) → C
(
Ω× Zn−1 × BE

)

is an isometry of spaces with inverse

(Sg)(x, ξ, z) := (1 + |z|) · g

(

x, ξ,
z

1 + |z|

)

, (x, ξ, z) ∈ Ω× Zn−1 × E.

The map T : En(Ω;E) → C
(
Ω× Zn−1 × BE

)
induces, through duality, an iso-

morphism T ∗ (with inverse S∗) of the dual spaces; T ∗ and S∗ are also isometries.
Hence, a subset X ⊂ (En(Ω;E))∗ is sequentially weak-∗ closed if and only if its

image under S∗, S∗X ⊂ M
(
Ω× Zn−1 × BE

)
, is sequentially weak-∗ closed in the

sense of measures.
Every f ∈ En(Ω;E) has linear-growth at infinity, meaning there exists a positive

constant M (in this case given by M = ‖Tf‖∞) for which |f(x, ξ, z)| ≤ M(1 + |z|)
for all (x, ξ, z) ∈ Ω×Zn−1×E. This allows one to define a regularization at infinity:
for f ∈ En(Ω;E), we define the strong recession function of f as the limit

f∞(x, ξ, z) := lim
x′→x
ξ′→ξ
t→∞

f(x′, ξ′, tz)

t
, for (x, ξ, z) ∈ Ω× Zn−1 × E.

The continuity of Tf ensures the limit is well-defined, and, in fact, Tf(x, ξ, ẑ) =
f∞(x, ξ, ẑ) for all (x, ξ, ẑ) ∈ Ω × Zn−1 × ∂BE . Observe that f∞ is positively one-
homogeneous in the z-variable and hence it can be recovered from the extended
values of Tf .

To complement our notation, we also define

E0(E) :=
{

h ∈ C(E) : h∞ exists
}

where h∞ is the strong recession function above without x or ξ dependance. Observe
that if h ∈ E0(E), then the integrand (ϕ⊗ g ⊗ h)(x, ξ, z) := ϕ(x)g(ξ)h(z) belongs
to the space En(Ω;E) whenever ϕ ∈ C(Ω) and g ∈ C(Zn−1).

A function g : Zn−1 → R is called upper (lower) semicontinuous if its Q-periodic
extension to (Rd)n−1 is upper (lower) semicontinuous. Under this convention, the
function ξ 7→ ξ with ξ ∈ (0, 1] is not lower semicontinuous on Z while the function
ξ 7→ ξ for ξ ∈ [0, 1) is. In the following we say that a function f : Ω×Zn−1×E → R

Figure 1. Lower semicontinuity of periodic functions, the functions ξ 7→ ξ

for ξ ∈ (0, 1] and ξ ∈ [0, 1).

is upper (lower) semicontinuous if f( q, ξ, q) is upper (lower) semicontinuous on Ω×E
for all ξ ∈ Zn−1 and f(x, q, z) is upper (lower) semicontinuous on Zn−1.

In general, the strong recession function of a Borel (or even continuous) integrand
might fail to exist. Instead, one can always define the upper and lower recession
functions by setting

f#(x, ξ, z) := lim sup
x′→x
ξ′→ξ
t→∞

f(x′, ξ′, tz)

t
, for (x, ξ, z) ∈ Ω× Zn−1 × E
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and

f#(x, ξ, z) := lim inf
x′→x
ξ′→ξ
t→∞

f(x′, ξ′, tz)

t
, for (x, ξ, z) ∈ Ω× Zn−1 × E.

In the same way as f∞, f# and f# are positively 1-homogeneous on the z-variable.
Observe that f# (respectively f#) is nothing else than the upper (lower) semi-

continuous regularization of Tf on Ω× Zn−1 × BE . This observation is the key
argument behind the following approximation result (its proof follows the same
arguments given in the proof [1, Lemma 2.3] in the context of classical generalized
Young measures).

Proposition 2.2. Let f : Ω×Zn−1×E → R be an upper semicontinuous integrand
and assume there exists M > 0 such that f(x, ξ, z) ≥ −M(1+ |z|) for all (x, ξ, z) ∈
Ω × Z × E. Then, there exists a non-increasing sequence of functions (fm)m∈N ⊂
En(Ω;E) such that

inf
m>0

fm = lim
m→∞

fm = f pointwise on Ω× Zn−1 × E, and

inf
m>0

f∞
m = lim

m→∞
f∞
m = f# pointwise on Ω× Zn−1 × E.

Remark 2.3. The analogous statement holds for lower semicontinuous integrands
f and their lower recession function f# for a non-decreasing sequence of approxi-
mating functions.

3. Generalized multi-scale Young measures

Our construction extends the exposition in [15] which itself goes back to the
seminal works of DiPerna & Majda [12] and Alibert & Bouchitté [1].

Heuristically, n will represent the number of hierarchical scales of the vector

(x, ξ1, . . . , ξn−1)
︸ ︷︷ ︸

n

where x ∈ Ω is the macroscopic variable and the ξi’s conform a hierarchical fam-
ily of periodic microscopic scales. The indexing corresponding to the microscopic
scales reflects a disassociation between the i-th scale and the finer (i+ 1)-th scale.
Mathematically, this is reflected by the homogenization with respect to scales

(

x,
x

ε1
︸︷︷︸

ξ1

, . . . ,
x

εn−1
︸ ︷︷ ︸

ξn−1

)

where we assume that εi+1 ≪ εi for each i = {1, . . . , n− 2}. We are now ready to
introduce the notion of multi-scale Young measure.

We are now ready to give the precise definition of multi-scale* Young measure
and state their main properties.

Definition 3.1 (n-scale* Young measure). A four-tuple ν = (ν, λ, ρ, ν∞) is called
a generalized n-scale* Young measure on Ω with values on E provided that

(i) λ is a positive measure on Ω,
(ii) ρ is a weak-∗ λ-measurable map from Ω into the set Prob(Zn−1) of prob-

ability measures over the product of (n − 1) copies of the d-dimensional
torus, and

(iii) the map (x, ξ) 7→ 〈| q|, νx,ξ〉 belongs to L1(Ω× Zn−1).

Additionally, ν and ν∞ are weak- and weak-∗ measurable maps on Ω × Z respec-
tively:
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(iv) ν is a weak measurable map from Ω× Zn−1 into the set Prob(E) of prob-
ability measures over E, and

(v) ν∞ is a weak-∗ (λ ⊗ ρx)-measurable map from Ω × Zn−1 into the set
Prob(∂BE) of probability measures supported on the unit sphere in E.

The set of all n-scale Young measures is denoted by Yn(Ω;E).

3.1. Construction. We shall restrict our analysis to two-scale* Young measures
Y2(Ω;E). The results and ideas behind the proofs extend analogously to n-scale*
Young measures.

Two-scale* Young measures conform a set of dual objects to the space of inte-
grands E2(Ω;E) in the following way: For f ∈ E2(Ω;E) and ν ∈ Y2(Ω, E), we
define a bilinear product by setting

⟪f,ν⟫ :=

∫

Ω

(∫

Z

〈
f(x, ξ, q), νx,ξ

〉
dξ

)

dx

+

∫

Ω

(∫

Z

〈
f∞(x, ξ, q), ν∞x,ξ

〉
dρνx(ξ)

)

dλν(x).

(10)

By the definition of two-scale* Young measure and the the linear-growth of the
elements of E2(Ω;E) we can estimate its norm by

|⟪f,ν⟫| ≤ ‖Tf‖∞

(∫

Ω×Z

〈
1 + | q|, νx,ξ

〉
dξ dx+

∫

Ω

dλν(x)

)

= ‖Tf‖∞
(
L

d(Ω) + ‖gν‖L1(Ω×Z) + λν(Ω)
)
,

where we used the short-hand notation gν(x, ξ) :=
〈
| q|, νx,ξ

〉
.

It follows that ⟪ q,ν⟫ ∈ E2(Ω;E)∗, and, in this sense, we shall identify Y2(Ω;E)

with a subset of E2(Ω;E)∗. For νj ,ν ∈ Y2(Ω;E) we write νj
∗
⇀ ν in E2(Ω;E) if

⟪f,νj⟫→ ⟪f,ν⟫ for all f ∈ E2(Ω;E).

In this case we say that νj weak-∗ converges to ν as two-scale* Young measures.
The following weak-∗ semicontinuity results hold.

Lemma 3.2 (semicontinuity). Let f : Ω× Z × E → R be a lower semicontinuous
integrand with linear-growth at infinity. Then, the functional

ν 7→ ⟪f,ν⟫# :=

∫

Ω

(∫

Z

〈
f(x, ξ, q), νx,ξ

〉
dξ

)

dx(11)

+

∫

Ω

(∫

Z

〈
f#(x, ξ, q), ν

∞
x,ξ

〉
dρx(ξ)

)

dλ(x)(12)

is weak-∗ lower semicontinuous in Y2(Ω;E).
Similarly, if f : Ω×Z×E → R is a Borel integrand that is upper semicontinuous

and has linear growth at infinity, then the functional

ν 7→ ⟪f,ν⟫# :=

∫

Ω

(∫

Z

〈
f(x, ξ, q), νx,ξ

〉
dξ

)

dx(13)

+

∫

Ω

(∫

Z

〈
f#(x, ξ, q), ν∞x,ξ

〉
dρx(ξ)

)

dλ(x)(14)

is weak-∗ upper semicontinuous in Y2(Ω;E).

Proof. Since the two statements are equivalent modulo taking (−f) in place of
f , we shall only argue the case of upper-semicontinuity. Let f : Ω × Z × E →

R be an upper-semicontinuous integrand and let νj
∗
⇀ ν in Y2(Ω;E). Further

let (fm)m∈N ⊂ E2(Ω;E) be the monotone approximating sequence provided by
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Proposition 2.2. Fix m ∈ N, then by continuity of the pairing and the properties
of the approximating sequence we get

lim sup
j→∞

⟪f,νj⟫
# ≤ lim

j→∞
⟪fm,νj⟫

= ⟪fm,ν⟫.

The conclusion then follows by letting m → ∞ in the inequality above and arguing
with the monotone convergence theorem. �

An immediate consequence of this result is that the weak-∗ continuity of the
map ν 7→ ⟪f,ν⟫ can be extended from E2(Ω;E) to the larger class

R2(Ω;E) :=
{

f ∈ C(Ω× Z × E) : f∞ ≡ f# ≡ f#

}

of continuous integrands possessing a strong recession function. In particular z-
convex integrands with linear growth at infinity belong to this class:

Proposition 3.3. Let f : Ω × Z × E → R be a continuous integrand with linear
growth at infinity. If f(x, ξ, q) is convex for every (x, ξ) ∈ Ω×Z, then f ∈ R2(Ω;E).

Proof. The proof follows from Remark 2.4 in [1]. �

If ν ∈ Y2(Ω;E), duality yields
〈
g, S∗ν

〉
= ⟪Sg,ν⟫ for all g ∈ C

(
Ω× Z × BE

)
.

In other words, the following diagram

(15)

Y2(Ω;E) E2(Ω;E)∗

S∗(Y2(Ω;E)) M(Ω× Z × BE)

S∗ S∗

is commutative. Likewise, every µ = S∗ν ∈ S∗(Y2(Ω;E)) verifies the identity
〈
Tf, µ

〉
= ⟪f,ν⟫ for all f ∈ E2(Ω;E).

Using that S∗ is an isometry of Banach spaces, it can be deduced the isomorphism
lowers to a weak-∗ isomorphism S∗ : (E2(Ω;E)∗,w-∗) → (M(Ω× Z × BE),w-∗).
It is then straightforward to check that

S∗νj
∗
⇀ µ in M(Ω× Z × BE) ⇔ νj

∗
⇀ T ∗µ in E2(Ω;E).

Remark 3.4 (topological isomorphism). Topological properties are preserved un-
der isomorphisms, in particular

S∗[Y2(Ω;E)] is sequentially weak-∗ closed in M(Ω× Z × BE)

⇔

Y2(Ω;E) is sequentially weak-∗ closed in E2(Ω;E)∗ .

The following characterization will play a fundamental role in proving the weak-∗
compactness of uniformly bounded sets of two-scale* Young measures. We follow
the presentation given in Lemma 2 in [15] for Y1(Ω;E).

Lemma 3.5. The set S∗[Y2(Ω;E)] consists precisely of all positive measures µ ∈
M+(Ω× Z × BE) satisfying following property: for all ϕ ∈ C(Ω) and all g ∈ C(Z)
it holds that

∫

Ω×Z×BE

(ϕ⊗ g)(x, ξ) (1 − |ẑ|) dµ(x, ξ, ẑ) =

∫

Ω

ϕ(x) dx

∫

Z

g(ξ) dξ .(16)
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Proof. Necessity. Fix µ = S∗ν. Applying µ on the function Tf = ϕ⊗ g ⊗ (1− | q|)
and using that f = ϕ⊗ g ⊗ χE (and hence f∞ ≡ 0) we get

〈
Tf, µ

〉
=

〈
Tf, S∗ν

〉
= ⟪f,ν⟫ =

∫

Ω

∫

Z

ϕ(x)g(ξ) dξ dx,

which is (16). The positivity of µ follows from the positivity of ν and ν∞ and the
definition of S.

Sufficiency. For the reverse statement, fix a measure µ ∈ M+(Ω× Z × BE) sat-
isfying (16). We want to find ν ∈ Y2(Ω;E) satisfying µ = S∗ν. By disintegration

(see Theorem 2.1), we may decompose µ as a double semi-product µ = λ̂⊗ ρ̂x⊗ ν̂x,ξ
where λ̂ ∈ M+(Ω), ρ̂ ∈ L∞

λ̂,⋆
(Ω; Prob(Z)) and ν̂ ∈ L∞

λ̂⊗ρ̂x,⋆
(Ω × Z; Prob(BE)). Let

us further set

u(x, ξ) := 〈1− | q|, ν̂x,ξ〉 ∈ L1
λ̂⊗ρ̂x

(Ω× Z) .

Thus, we may re-write (16) as the equivalence u (λ̂⊗ ρ̂x) ≡ L d
Ω ⊗ L d

Z . On the one

hand, this gives u [(λ̂s ⊗ ρ̂x) + (L d
Ω ⊗ ρ̂sx)] ≡ 0, which, in turn, is equivalent to

(17) supp (ν̂x,ξ) ⊂ ∂BE [(λ̂s ⊗ ρ̂x) + (L d
Ω ⊗ ρ̂sx)]-almost everywhere.

On the other hand, the same equivalence yields

(18) λac(x) · ρacx (ξ) · u(x, ξ) = 1 L
d
Ω ⊗ L

d
Z -almost everywhere.

In particular u is L d
Ω ⊗ L d

Z -measurable.

The goal now is to exhibit a ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E) for which S∗ν = µ.
Construction of ν. Let us being by defining the weak-∗ (L d

Ω⊗L
d
Z)-measurable

map

(x, ξ) 7→ νx,ξ ∈ Prob(E) ,

where each νx,ξ is the probability measure satisfying

〈νx,ξ, h〉 :=
1

u(x, ξ)

∫

BE

Th(ẑ) dν̂x,ξ(ẑ) for all h ∈ C(βE) .

That ν is a weak-∗ measurable map follows from the measurability of u and the

properties of ν̂ ∂BE in terms of the measure (λ̂ ⊗ ρ̂x). To check that each νx,ξ
is indeed a probability measure (L d

Ω ⊗ L d
Z -almost everywhere) follows by testing

with χE and using the definition of u (recall that TχE ≡ 1 − | q| as functions on
BE). Moreover, 〈1 + | q|, νx,ξ〉 = u(x, ξ)−1ν̂x,ξ(BE) and hence by (18) we infer the
map (x, ξ) 7→ 〈1 + | q|, νx,ξ〉 is integrable on Ω× Z.

We define the remaining λ, ρ and ν∞ as follows. First, we set

λ :=

(∫

Z

ν̂x,ξ(∂BE) dρx(ξ)

)

λ̂ ∈ M+(Ω) .

Once this positive measure has been defined, we define a map ρ from Ω into the set
Prob(Z) of probability measures over the d-dimensional torus by setting

x 7→ ρx :=

(∫

Z

ν̂x,ξ(∂BE) dρ̂x(ξ)

)−1

mx ρ̂x .

where we have used the short-hand notation mx(ξ) := ν̂x,ξ(∂BE). Since by defini-
tion mx is a ρ̂x-measurable map, we infer that ρ is weak-∗ λ-measurable. Lastly,
we define a map ν∞ from Ω× Z into Prob(∂BE) by setting

(x, ξ) 7→ ν∞x,ξ ∈ Prob(∂BE) ,

where each ν∞x,ξ is given (in terms of duality) by

〈h, νx,ξ〉 := −

∫

∂BE

h(ẑ) dν̂x,ξ(ẑ) for all h ∈ C(∂BE) .
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That ν∞ is a weak-∗ (λ⊗ ρx)-measurable map is then a consequence of the weak-∗
measurability of ν̂, and the way λ and ρ are defined. Altogether these properties
imply ν := (ν, λ, ρ, ν∞) ∈ Y2(Ω;E).

Pre-image property (S∗ν = µ). Let f ∈ E2(Ω;E) be a fixed but arbitrary
integrand, later we shall exploit this choice through duality. By construction of ν
we get that

⟪f,ν⟫ =

∫

Ω

∫

Z

〈f(x, ξ, q), νx,ξ〉 dξ dx+

∫

Ω

∫

Z

〈f∞(x, ξ, q), ν∞x,ξ〉 dρx(ξ) dλ(x)

=

∫

Ω

(∫

Z

(∫

BE

Tf(x, ξ, z) dν̂x,ξ(z)

)

ρ̂acx (ξ) dξ

)

λ̂ac(x) dx

+

∫

Ω

(∫

Z

(

−

∫

∂BE

Tf(x, ξ, z) dν̂x,ξ(z)

)

mx(ξ) ρ̂
ac
x (ξ) dξ

)

λ̂ac(x) dx

+

∫

Ω

(∫

Z

(∫

∂BE

Tf(x, ξ, z) dν̂x,ξ(z)

)

dρ̂sx(ξ)

)

λ̂ac(x) dx

+

∫

Ω

(∫

Z

(∫

∂BE

Tf(x, ξ, z) dν̂x,ξ(z)

)

dρ̂x(ξ)

)

λ̂s(x) ,

where in passing to the last equality we used that f∞(x, ξ, q) ≡ Tf(x, ξ, q) as
functions over ∂BE . Furthermore, since mx(ξ) = ν̂x,ξ(∂BE), the first two lines of
the last equality above add up to

∫

Ω×Z×BE

Tf d(λ̂ac
L

d
Ω ⊗ ρ̂acx L

d
Z ⊗ ν̂x,ξ) .

On the other hand, using (17) we may re-write the last two lines in the expression
of ⟪f,ν⟫ as

∫

Ω×Z×BE

Tf d(λ̂ac
L

d
Ω ⊗ ρ̂sx ⊗ ν̂x,ξ) +

∫

Ω×Z×BE

Tf d(λ̂s ⊗ ρ̂x ⊗ ν̂x,ξ) .

Regrouping these three summands together we deduce

⟪f,ν⟫ =

∫

Ω×Z×BE

Tf dµ = 〈Tf, µ〉 for all f ∈ E2(Ω;E) .

Equivalently, by a duality argument,
〈
Φ, µ

〉
= ⟪SΦ,ν⟫ =

〈
Φ, S∗ν

〉
for all Φ ∈ C(Ω× Z × BE) .

Thence µ ≡ S∗ν as measures in Ω× Z × BE . This proves the sufficiency. �

A direct consequence of this characterization and Remark 3.4 is the following
fundamental property of Young measures. Here and in what follows, we shall write

[ q]E := χΩ ⊗ χZ ⊗ (1 + | q|E).

Proposition 3.6 (compactness of two-scale Young measures). The set of two-
scale* Young measures Y2(Ω;E) is sequentially weak-∗ closed in E2(Ω;E)∗. More-
over, each subset Y ⊂ Y2(Ω;E) satisfying

sup

{ ∫

Ω

∫

Z

〈1 + | q|, νx,ξ〉 dξ dx+ λ(Ω) : ν = (ν, λ, ρ, ν∞) ∈ Y

}

< ∞

is pre-compact with respect to the relative weak-∗ topology on Y2(Ω;E) ⊂ E2(Ω;E)∗.

Proof. To verify that Y2(Ω;E) is sequentially weak-∗ closed it suffices (by Re-
mark 3.4 and Lemma 3.5) to observe that (16) is a closed property with respect to
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the sequential weak-∗ convergence of measures in M+(Ω × Z × BE). Let Y as in
the assumptions and observe that T (1 + | q|) = χBE

so that

sup
µ∈S∗[Y]

|µ|(Ω× Z × BE) = sup
ν∈Y
⟪[ q]E ,ν⟫ < ∞.

The Banach–Alaoglu theorem tells us that S∗[Y] is pre-compact with respect to the
weak-∗ topology of measures. Hence, again by Remark 3.4, Y is weak-∗ pre-compact
with respect to the relative weak-∗ topology of E2(Ω;E)∗. �

We close this section with an important separability property. The proof of this
result follows from a straightforward adaptation of the arguments given in the proof
of Lemma 3 in [15].

Lemma 3.7. There exists a countable family of non-negative integrands {ϕm ⊗
gm ⊗ hm}m∈N ⊂ E2(Ω;E) that separates Y2(Ω;E). That is, if ν,σ ∈ Y2(Ω;E),
then

⟪fm,ν⟫ = ⟪fm,σ⟫ for all m ∈ N ⇒ ν ≡ σ in Y2(Ω;E).

Moreover the family can be chosen so that each hm is uniformly Lipschitz on E and
each gm is uniformly continuously differentiable.

3.2. Generating sequences. Vector-valued Radonmeasures can be naturally iden-
tified with a Young measure via the (compact) embedding

M(Ω;E) →֒ Y2(Ω;E) : µ 7→ νµ := (δµac , |µs|,L d
Z , δµs

) .

Given an integrand f ∈ R2(Ω;E) and a positive real ε, we may define a functional

Iεf (µ) :=

∫

Ω

f(x, x/ε, µac(x)) dx+

∫

Ω

f∞(x, x/ε, µs(x)) d|µ
s|(x) ,

defined on vector-valued Radon measures µ ∈ M(Ω;RN ).

Definition 3.8 (generating sequence). Let ε ց 0 be an infinitesimal sequence of
positive real numbers. We say that a sequence (µε)ε ⊂ M(Ω;RN ) generates the
two-scale* Young measure ν ∈ Y2(Ω;E) if and only if

Iεf (µε) → ⟪f, ν⟫ for all f ∈ E2(Ω;E) .

In the case the domain of convergence is understood we simply write µε
Y2

→ ν.

3.3. Proof of Theorem 1.2. We are now ready to give the proof of Theorem 1.2
which asserts that every uniformly bounded sequence of measures generates (up
to a subsequence) a two-scale* Young measure. It is worthwhile to mention the
proof is not an immediate consequence of the compactness of Young measures
(Corollary 3.6) since the microscopic variable “x/ε” does not appear in the bi-linear
pairing ⟪ q, q⟫. Instead, the argument relies on the careful inspection of the limiting
two-scale* Young measures, Proposition 3.5, and the topological equivalence of
Remark 3.4.

Proof. In the context of the notation introduced above, we may re-formulate the
statement of Theorem 1.2Â as follows: let (µε) ⊂ M(Ω;E) a sequence of measures
with uniformly bounded variation. Then, there exists a two-scale* Young-measure
ν ∈ Y2(Ω;E) satsifying (up to a subsequence)

(19) Iεf (µε) → ⟪f,ν⟫ for all f ∈ E2(Ω;E).

Step 1. Let δ > 0. For an integrand Φ ∈ C(Ω× Z × BE) define a continuous
linear functional by setting

Lδ(Φ) := Iδ(SΦ)(µ) .
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By the definition of the map f 7→ Iδf with ε = δ we obtain the estimate |〈Lε,Φ〉| ≤

‖Φ‖∞(L d(Ω) + ‖µε‖) for every ε > 0 of the infinitesimal sequence. The Banach–
Alaoglu theorem and the Riesz representation theorem then yield the existence of
a subsequence (εk)k∈N and a measure µL ∈ M

(
Ω× Z × BE

)
satisfying

Lεk
∗
⇀ 〈µL, q〉 as functionals in C(Ω× Z × BE)

∗.

Testing this convergence with an integrand of the form Φ = ϕ ⊗ g ⊗ (1 − | q|) and
using that SΦ = ϕ⊗ g ⊗ χE we further deduce

Lε(Φ) =

∫

Ω

ϕ(x)g(x/εk) dx → 〈L,Φ〉 .

This gives
∫

Ω×Z×BE

ϕ(x)g(ξ)(1 − |ẑ|) dL(x, ξ, ẑ) =

∫

Ω

ϕ(x) dx

∫

Z

g(ξ) dξ

for all ϕ ∈ C(Ω) and g ∈ C(Z). We apply Lemma 3.5 to the measure L, to find a
two-scale* Young measure ν ∈ Y2(Ω;E) with S∗ν = L.

Step 2. Using the commutative diagram (15) and the identity S ◦ T = idE2(Ω;E)

we conclude that (recall that Tf(x, ξ, q) ≡ f∞(x, ξ, q) as functions over ∂BE)

Iεf (µε) = Lε(Tf) → 〈L, Tf〉 = 〈S∗ν, T f〉 = ⟪ν, f⟫ for all f ∈ E2(Ω;E) .

This proves (19). �

3.4. Barycenter measures and two-scale convergence. We now turn to the
concept of two-scale convergence. Following [20] we extend this notion to the two-
scale convergence of measures as follows.

Definition 3.9 (two-scale convergence). Let ε ց 0 be a sequence of infinitesimal
real numbers. Let also κ ∈ M+(Ω) be a positive measure, and θ be a weak-∗
κ-measurable map from Ω into M(Z;E). We say that the sequence of measures
(µε)ε ⊂ M(Ω;E) two-scale converges (as ε ↓ 0) to the generalized product measure
µ = κ⊗ θx if and only if

∫

Ω

Ψ

(

x,
x

ε

)

dµε(x) →

∫

Ω

(∫

Z

Ψ(x, ξ) dθx(ξ)

)

dκ(x) for all Ψ ∈ C(Ω× Z).

This limit concept is linked to the notion of barycenter and second-scale barycen-
ter of a two-scale* Young measure (defined below) which will be significant for our
techniques.

Definition 3.10 (barycenter). Let ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E). We define the
barycenter of ν to be the E-valued measure in M(Ω;E) defined as

[ν] :=

(∫

Z

〈
idE , νx,ξ

〉
dξ

)

L
d
Ω +

(∫

Z

〈
id∂BE

, ν∞x,ξ
〉
dρx(ξ)

)

λ .

Let ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E) be fixed. By the Radon–Nikodym decomposi-
tion theorem, applied to the measure λ, there exist a partition of Ω = Regν(Ω) ∪
Singν(Ω) by subsets satisfying

L
d(Singν(Ω)) = λs(Regν(Ω)) = 0 .

Moreover,

Singν(Ω) =

{

x ∈ Ω :
dL d

d|λs|
(x) = 0

}

.

We are now in position to give the notion of second-scale barycenter.
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Definition 3.11 (second-scale barycenter). Let ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E). The
second-scale barycenter of ν is the weak-∗ (L d

Ω + λs)-measurable map [[ν]] : x 7→
[[ν]]x ∈ M(Z;E) where [[ν]]x is the measure defined by the values on Borel subsets
V ⊂ Z as

[[ν]]x(V ) =







∫

V

〈
idE , νx,ξ

〉
dξ + λac(x)

∫

V

〈
id∂BE

, ν∞x,ξ
〉
dρx(ξ) if x ∈ Regν(Ω)

∫

V

〈
id∂BE

, ν∞x,ξ
〉
dρx(ξ) if x ∈ Singν(Ω)

.

The barycenter [ν] can be recovered by integration from the second-scale barycen-
ter. Indeed, [ν] = [[ν]](Z) (L d

Ω + λs) and in particular

(20) [[ν]]x(Z) =







d[ν]

dL d
(x) L d-almost everywhere in Ω

d[ν]

λs
(x) λs-almost everywhere in Ω

.

Moreover, if µε
Y
→

2

ν, then

(21) µε
∗
⇀ [ν] as measures on Ω

and

(22) µε two-scale converges to (L d
Ω + λs)⊗ [[ν]]x.

Corollary 3.12 (compactness of two-scale convergence). Let ε ց 0 be an infinites-
imal sequence of real numbers and let (µε)ε ⊂ M(Ω;E) be a sequence of measures
with uniformly bounded total variation. Then there exists a subsequence (εk)k∈N,
a positive measure κ ∈ M(Ω), and a weak-∗ κ-measurable map θ from Ω into
M(Z;E) such that

µεk two-scale converges to κ⊗ θx .

Moreover (κ⊗ |θx|)(Ω× Z) ≤ lim infε↓0 |µε|(Ω).

Proof. Apply Theorem 1.2 and (22) to the sequence (µε)ε. The first conclusion
follows by setting κ = L d

Ω+λs and θ = [[ν]]. The lower semicontinuity of the norms
follows from the fact that

µε
∗
⇀ [ν] = θ(Z)κ as measures in Ω .

�

Remark 3.13 (classical two-scale convergence). Notice that if a sequence of func-
tions (uε)ε is equi-integrable (or if its is uniformly bounded in Lp for some 1 <
p ≤ ∞) and the sequence uεL

d
Ω generates a two-scale* Young measure ν =

(ν, λ, ρ, ν∞) ∈ Y2(Ω;E), then λ ≡ 0 and hence

µε two-scale converges to u (L d
Ω ⊗ L

d
Z)

where

u(x, ξ) := 〈idE , νx,ξ〉 .

Thus the space of all such two-scale limits can be identified with L1(Ω × Z;RN).
In particular, our definition of two-scale convergence extends Nguetseng’s original
definition of two-scale convergence in Lp-spaces [20] (see also [2]).
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3.4.1. Weighted barycenter measures. It will be often resourceful to interpret the
pairing ⟪ q, q⟫ as a measure over Ω. Let us introduce some additional notation by
extending the definitions of barycenter and two-scale barycenter of a two-scale*
Young measure ν ∈ Y2(Ω;E).

Definition 3.14. Let f ∈ R2(Ω;E). The f -barycenter of ν = (ν, λ, ρ, ν∞) is the
vector-valued measure

[f,ν] :=

(∫

Z

〈
f(x, ξ, q), νx,ξ

〉
dξ

)

L
d
Ω +

(∫

Z

〈
f∞(x, ξ, q), ν∞x,ξ

〉
dρx(ξ)

)

λ .

Using this notation we get [f,ν](Ω) = ⟪f,ν⟫, and [ν] =
(
[(idRN )j ,ν]

)

j=1,...,N
.

We also define a weighted second-scale f -barycenter.

Definition 3.15 (second-scale f -barycenter). Let f ∈ R2(Ω;E). We define the
f -barycenter of ν = (ν, λ, ρ, ν∞) as the weak-∗ (L d + λs)-measurable map [[f,ν]] :
x 7→ [[f,ν]]x ∈ M(Z;E) where is the measure defined by its values on Borel subsets
V ⊂ Z as
(23)

[[f,ν]]x(V ) =







∫

V

〈
f(x, ξ, q), νx,ξ

〉
dξ

+ λac(x)

∫

Z

〈
f∞(x, ξ, q), ν∞x,ξ

〉
dρx(ξ) if x ∈ Regν(Ω)

∫

V

〈
f∞(x, ξ, q), ν∞x,ξ

〉
dρx(ξ) if x ∈ Singν(Ω)

.

As we have seen before for the barycenter measures, a similar integral property
holds for the weighted barycenters, namely [f,ν] = [[f,ν]](Z) (L d

Ω + λs) which in
particular entails the identities

(24) [[f,ν]]x(Z) =







d[f,ν]

dL d
(x) L d-almost everywhere in Ω

d[f,ν]

λs
(x) λs-almost everywhere in Ω

.

3.5. Heuristics and some generic examples. Let us begin by recalling the
criterion for L1-weak compactness due to Dunford & Pettis: a sequence (wε)ε ⊂
L1(Ω) is L1-weak relatively compact if and only if it is equi-integrable, that is,
whenever

lim
R→∞

(

lim sup
ε↓0

∫

Ω∩{|wε|≥R}

|wε|

)

= 0.

At those regions where a sequence fails to be equi-integrable, but its weak-∗ limit re-
mains absolutely continuous —which we call “continuous concentration”, we speak
of a biting limit of the sequence:

Lemma 3.16 (Chacon). Let (wε) ⊂ L1(Ω) be a uniformly bounded sequence. Then
there exist w ∈ L1(Ω), a subsequence (wεj )j∈N, and a non-increasing sequence of
measurable subsets (Km)m∈N of Ω such that

(1) L d(Km) → 0 as m → ∞,
(2) wεj ⇀ w in L1(Ω \Km) for all m ∈ N.

Provided that the these hold, we say that w is the biting limit of (wεj )j∈N, and the
set

Bu :=

{

x ∈ Ω : x /∈
⋂

m∈N

Km

}

is called the set of biting points of (wεj )j∈N.
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Given a sequence (µε)ε that generates a two-scale* Young measure ν = (ν, λ, ρ, ν∞)
it is possible to understand, qualitatively speaking, how each element of the four-
tuple can be understood in terms of the generating sequence. In the following argu-
ments we will assume with a slight abuse of notation that (µε = uε)ε ⊂ L1(Ω;E).
A simple consequence of the representation of two-scale* Young measures is that
λ and ρx are supported (with respect to the x-variable) at non-biting points of
the sequence that generates ν. Moreover, this two measures carry the mass of the
sequence (|µ|ε)ε for different length-scales:

(i) The measure λ quantifies the limit mass carried by (|L d
Ωuε|)ε in the set where

it fails to be equi-integrable.
By Theorem 2.9 in [1], the biting limit of the sequence is the measure

〈
| q|, ν̃ dx

〉
L d

Ω where υ = (ν̃, λ̃, ν̃∞) ∈ Y1(Ω;E) is the Young measure gen-
erated by (uε)ε. Hence, we conclude from the representation of two-scale*
Young measures that

|uεL
d
Ω| −

〈
| q|, ν̃ dx

〉
L

d
Ω

∗
⇀ λ̃ ≡ λ as measures on Ω.

(ii) The probability measure ρx0 quantifies, at a given non-biting point x0 of
(|uεL

d
Ω |)ε, the homogenized mass carried by the sequence about x0 in the fol-

lowing sense: If A ⊂ Z, then
∫

U

χA

(
x

ε

)

|uε| dx →

∫

U

ρx(A) dλ(x) for all Borel subsets U ⊂ Ω.

The argument is a direct consequence of the representation of two-scale*
Young measures and point (i).

To give a better understanding of how the different components of the limiting
Young measure are connected to the features of a limiting sequence, we present the
following examples, that also emphasize the possibility of concentration for ρ and
λ.

1−1 0 εα

ε−α

11
20

ε−1
ε2

ε−1 many

1−1 0 1
2 ε

ε−2
ε2

Figure 2. Sketches for the functions in Examples 1(a), 1(b) and 3 respectively.

For the sake of simplicity we will discuss examples in dimensions d = 1 and
E = R; their correspondent versions to higher dimensions are easily constructed by
adding invariant directional measures or by mimicking similar constructions along
transversal directions. We cover generic examples for each of the qualitative first-
scale/second-scale scenarios:

Example 1 (singularity on the macro-scale). Fix α > 0 and let Ω = (−1, 1). We
consider the family of functions
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macro-scale (x) micro-scale (ξ) correlation

abs. cont. abs. cont. µε equi-integrable
concentration/dissipation scale of phenomena ≫ ε

concentration/dissipation abs. cont. scale of phenomena ≤ ε
concentration/dissipation scale of phenomena ≫ ε

Table 1. Qualitative properties of the elements of a two-scale* Young measure.

uε(x) = ε−αχ(0,εα)(x), ε > 0.

Let us assume, up to taking a sequence of ε’s that uε
Y2

→ ν = (ν, λ, ρ, ν∞) (in
this case every subsequence generates the same Young measure). The following
observations are easy to check:

(1) Pure concentration in the x-variable. On the one hand |uε|L
1 ∗
⇀ δ0. On

the other hand, using f(x, y, z) = |z| as a test function the Young measure
representation yields

|uεk |L
d
Ω

∗
⇀

(∫

Z

〈| q|, νx,ξ〉 dξ

)

L
d
Ω + λ ,

whence we deduce νx,ξ = δ0 for L 1 ⊗L 1-almost every (x, ξ) in [−1, 1]×Z
and λ ≡ δ0. Thus, it suffices to characterize ν at x = 0.

(2) Testing with an integrand of the form f(x, ξ, z) = ϕ(x)g(ξ)|z| we see
through a change of variables that
∫ 1

−1

ϕ(x)g(x/ε)h(uε(x)) dx =

∫ εα

0

ε−αϕ(x)g(x/ε)h(1) dx

=

∫ 1

0

ϕ(εαy)g(εα−1y)h(1) dy → c(α) .(25)

(a) Pure singularity on the micro-scale: if α > 1, the Young measure
representation and the limit above give

∫

Z

g(ξ)〈h, ν∞0,ξ〉 dρ0(ξ) = c(α) = g(0)h(1) ⇒ .

In conclusion ρ0 = δ0, ν
∞
0,0 = δ1, and

ν = (δ0, δ0, δ0, δ1) .

(b) Absolute continuity in the second-scale: if, in turn α ≤ 1, we get
∫

Z

g(ξ)〈h, ν∞0,ξ〉 dρ0(ξ) = c(α) = ϕ(0)h(1)

∫

Z

g(ξ) dξ.

Therefore ρ0 = L 1
Z and ν∞0,0 = δ1, which altogether yields

ν = (δ0, δ0,L
1
Z , δ1) .

Remark 3.17. Observe that when oscillations of the sequence (uε)ε happens at
a coarser length-scale than {ε}, then the the two-scale Young measure does not
provide more information than the classical Young measure. On the other hand, if
oscillations of (uε)ε takes part at a finer scale than {ε}, then the two-scale* Young
measure cannot be recovered from the classical Young measure.

Example 2 (non-biting limit). Fakir’s construction (also known as Fakir’s carpet)
provides a good way to produce continuous concentrations. The idea is to create
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many small concentrations which diffuse before each of them can actually gain
mass.

Let Ω = (0, 1). In order to showcase the sensitivity of Young measures we shall
consider a “bi-directional half-carpet” which is generated by the functions

u 1
k
(x) := k

k/2
∑

i=0

(−1)iχ[ i
k
, i
k
+ 1

k2 ](x), k = 2, 4, 6, . . .

Similarly to the example above, let us already assume that u 1
k

Y2

→ ν. The following

observations can be deduced directly from the representation of two-scale* Young
measures:

(1) First-scale analysis: |uε|L
1
Ω

∗
⇀ L 1 [0, 1/2]. There exist no singular points

in the first variable which is encoded by the equality of measures λs ≡ 0.
However, every point in the interval [0, 1/2] is a non-biting point of the
sequence (uεk)k (clearly the sequence fails to be equi-integrable at any
subset of this interval) and hence

λ ≡ L
1 [0, 1/2] as measures on [0, 1] .

Moreover,

x 7→

∫

Z

〈νx,ξ, | q|〉 dξ ≡ 0 ⇒ νx,ξ = δ0 L
1
Ω × L

1
Z-almost everywhere.

(2) Second-scale analysis: let f = ϕ ⊗ g ⊗ h ∈ R2(Ω;R). The limit of the
energies Iεkf (uεk) as k → ∞ can be computed by Riemann-integral partial
sums as

∫ 1

0

ϕ(x)g(kx)h(u 1
k
(x)) dx = k

k/2
∑

i=0

∫ i
k
+ 1

k2

i
k

ϕ(x)g(kx)h((−1)i) dx

=

k/2
∑

i=0

∫ i+ 1
k

i

ϕ(y/k)g(y)h((−1)i) dy

∼ g(k−1)

k/2
∑

i=0

ϕ(i/k)h((−1)i) dy

→ g(0)

(
h(1)

2

∫ 1
2

0

ϕ(x) dx+
h(−1)

2

∫ 1
2

0

ϕ(x) dx

)

.

The representation of two-scale* Young measures and a density argument
then give

ν = (δ0,L
1 [0, 1/2], δ0,

1

2
δ−1 +

1

2
δ1) .

Remark 3.18. As it can be seen from the representation of Young mea-
sures, at biting-points x ∈ [0, 1] of the sequence {uε}, the correspondent
probability measures ρx must be the uniform measure L

1 (0, 1].

The precise representation of a Young measure does not only depend on the
generating sequence uε but is also strongly influenced by the speed of oscillation
ε. This is an interesting and important feature of the compactness, that will also
play a role in the localization principles below, and is emphasized in the following
example.

Example 3 (non-uniqueness). Let again d = N = 1 and Ω = (0, 1). For a fixed
ε > 0 and arbitrary c, d ∈ (0, 1], we consider the function

uε(x) :=
1

ε2
χ(a+bε,a+bε+ε2)(x).
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First-scale: If ε ց 0, then for every subsequence ε1 ց 0 and

(26) uε1
Y
→ υ = (δ0, δa, δ1).

Second-scale: We may assume that 〈 a
ε1

〉 → ξ1 ∈ Z. Here, we recall that 〈x 〉 ∈ Z
stands for the equivalence class of x ∈ R in the one-dimensional torus Z. Testing
with an integrand f = ϕ⊗ g ⊗ h gives

∫

Ω

f(x, x/ε1, uε1) dx =

∫ a+bε1+ε21

a+bε1

ϕ(x)g(x/ε1)h(ε
−2
1 ) dx

= εh(ε−2
1 )

∫ a
ε1

+b+ε1

a
ε1

+b

ϕ(ε1y)g(y) dy

∼ ϕ(a)g
(
〈 a/ε1 〉+ b+ ε1

)
· ε21h(ε

−2
1 )

→ ϕ(a)g(ξ1 + b)h∞(1).

From this we infer that uε1
Y2

→ ν1, where

ν1 = (δ0, δa, ρ
1 = δξ1+b, δ1).

Notice that ξ1 does not depend on {uε1}, but solely on subsequence {ε1}. Hence, the
choice of a different subsequences generates a range of two-scale* Young measures
(compare this with the uniqueness of (26)). Indeed, if {ε2} is another subsequence
satisfying

ξ2 := lim
ε2↓0

〈
a

ε2
〉 6= ξ1,

then uε2
Y2

→ ν2 = (δ0, δa, ρ
2 = δξ2+b, δ1). However, passing to a subsequence does

not entirely forget in the sense that it is possible to relate ν1 and ν2 by a translation
in the torus:

Γξ1
#ρ1 ≡ Γξ2

#ρ2 ≡ δb ,

where Γη : ξ 7→ ξ−η is a translation map in Rd (which also determines a translation
in the d-dimensional torus). In fact this translation in the second-scale also occurs
at biting points of the sequence. However, this is not reflected in the two-scale*
Young measure since L d

Z is an invariant measure under translation, that is,

Γξ
#L

d
Z ≡ L

d
Z for all ξ ∈ Z.

4. Localization principles

In this section we treat the (measure theoretic) differentiation of Young measures
which confirms the observation that the convergence

µε
Y2

→ ν ∈ Y2(Ω;E)

is in fact local (with respect to the macroscopic variable x). We show that at a
point x0 ∈ Ω, the information carried by ν can be recovered by simply looking at
the homogeneous Young measures σ ∈ Y2(Q;E) generated by blow-ups of the gen-
erating sequence (µε)ε at x0. With the mathematical thrust of introducing Young
measures as a serving tool, we establish localization principles at both continuity
and singular points. Next, we recall some facts about the push-forward of blow-up
maps on measures.

Throughout this section we will indistinctly use the zero-extension mapM(Ω;E) →֒
Mloc(R

d;E) to identify measures defined on Ω ⊂ Rd with measures defined on the
whole space Rd. Fix µ ∈ M(Ω;RN) and consider the map T (x0,r)(x) := (x−x0)/r,
which blows-up Br(x0), the open ball around x0 ∈ Ω with radius r > 0, into the
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open unit ball B1 ⊂ Rd. Following the definition of push-forward, it is easy to check
that

T
(x0,r)
# µ(B) := µ(x0 + rB) whenever B ⊂

1

r
(Ω− x0) is a Borel set.

A simple calculation shows that the Radon–Nykodym decomposition of T
(x0,r)
# µ

can be re-written in terms of µ as

(27) T
(x0,r)
# µ = aL

d + s T
(x0,r)
# |µs|,

where the densities a ∈ L1
loc(R

d;RN ) and s ∈ L∞

T
(x0,r)

# |µs|
(Rd; SN−1) are defined by

the rules

a(y) := rd
dµ

dL d
(x0 + ry),

s(y) :=
dµ

d|µs|
(x0 + ry).

Retaking the notation of the last section, we write Γξ0 : ξ 7→ ξ − ξ0 to denote
the translation in Rd by a vector ξ0 ∈ Rd. To avoid a more intricate notation,
we shall also write Γξ0 (with ξ0 ∈ [0, 1)d) to denote the same translation when
restricted to Z, that is, Γξ0 : Z → Z : ξ → 〈 ξ − ξ0 〉. In this way, the push-forward

action Γξ0
# : M(Z) → M(Z) defines an automorphism of spaces. In particular, if

g ∈ L1
ρ(Z), then

∫

Z

g(ξ − ξ0) dρ(ξ) =

∫

Z

g(ξ) d(Γξ0
#ρ)(ξ).(28)

Notice that if ρ is a uniform measure in Z, then ρ is translation invariant:

Γξ0
#ρ ≡ ρ for all ξ0 ∈ Z).

To avoid any possible confusion we shall write y ∈ Q (or Rd) to denote the
blow-up variable; we keep the notation x ∈ Ω for the macroscopic scale.

4.1. Localization at regular points.

Lemma 4.1. Let ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E) be a two-scale* Young measure
generated by a sequence (µε)ε ⊂ M(Ω;E). Then, at L d-almost every x0 ∈ Ω
there exists (up to a translation in Z) a regular tangent two-scale* Young measure
Dν = (Dν,Dλ,Dρ,Dν∞) ∈ Y2(Q;E) of ν at x0. That is, there exists vector
ξ0 = ξ(x0) ∈ Z such that

Dλ = λac(x0)L
d
Q ∈ Tan1(λ, x0),(29)

Dρy = Γξ0
#ρx0 for Dλ-almost every y ∈ R

d.(30)

Moreover, {Dνy,ξ}, {Dν∞y,ξ} are homogeneous Young measures in the sense that

Dνy,ξ = νx0,ξ+ξ0 for (L d ⊗ L
d
Z)-almost every (y, ξ) ∈ R

d × Z,(31)

Dν∞y,ξ = ν∞x0,ξ+ξ0 for (Dλ ⊗Dρy)-almost every (y, ξ) ∈ R
d × Z.(32)

Proof. Let {fm := ϕm⊗gm⊗hm |m ∈ N} ⊂ E2(Q;E) be the restriction toQ×Z×E
of the dense subset provided by Lemma 3.7; without loss of generality assume that
g1 ≡ χZ ∈ C(Z). Let also {ξk}k∈N be a countable dense subset of Z.

Step 1. Selection of regular points. First, let us define a set of full L d-measure
where we aim to show the assertions of the lemma. To do this we first list three
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Lebesgue-type properties which are satisfied for L d-almost every x̃ ∈ Ω:
Lebesgue property 1. Lebesgue points of the measure λ, that is,

(33) lim
r↓0

λ(Qr(x̃))

rd
= λac(x0), lim

r↓0

λs(Qr(x̃))

rd
= 0.

Lebesgue property 2. Lebesgue points of the map

x 7→

∫

Z

〈| q|E , νx,ξ〉 dξ.(34)

Lebesgue property 3. Lebesgue points of the family of weighted barycenter measures
{[fk,m,ν]}k,m∈N where fk,m := ϕm ⊗ gm ◦ Γξk ⊗ hm. Recall from (24) that being a
Lebesque point for all elements of the family is equivalent to

d[fk,m,ν]

dL d
(x̃) = [[fk,m,ν]]x̃(Z) for all k,m ∈ N.(35)

We shall show the conclusions of the lemma hold for all

x0 ∈ R := { x̃ ∈ Ω : x̃ satisfies (33)-(35) },

which is a set of full L d-measure in Ω.
Step 2. Blow-up sequence. As before, we write 〈z〉 to denote the equivalence class

of a vector z ∈ Rd in the d-dimensional torus Z. Since Z is a compact manifold we
may assume (up to passing to a subsequence (µεi)i∈N) that

(36)
〈x0

εi

〉

→ ξ0 ∈ Z as i → ∞.

Let rj ↓ 0 (with r1 = 1) be an infinitesimal sequence of radii and consider, for fixed
j ∈ N, the blow-up sequence

γδi,j :=
1

rdj
T

(x0,rj)
# µεi ∈ M(Q;E), i ∈ N,

where

δi,j :=
εi
rj
, i ∈ N,

is the readjusted blow-up length-scale sequence (this conforms again an infinitesimal
sequence). Since (µεi)i∈N is uniformly bounded in M(Ω;RN), we also have

sup
i∈N

γδi,j (Q) < ∞ for each j ∈ N.

For j = 1, we use the compactness result in Theorem 1.2 to find a subsequence
{1(i)} ⊂ {i} and σ(1) ∈ Y2(Q;E) such that

γδ1(i),1
Y2

→ σ(1) on Q as i → ∞.

Recursively, for each 2 ≤ j ∈ N, we may find a sequence {j(i)} ⊂ {(j − 1)(i)} and
a two-scale* Young measure σ(j) ∈ Y2(Q;E) such that

γδj(i),j
Y2

→ σ(j) as i → ∞.

Step 3. Characterization of σ(j). In this step we fix j ∈ N. Let f = ϕ⊗ g⊗ h ∈
E2(Q;RN ) with g ∈ C1(Z) and h uniformly Lipschitz. A change of variables and
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the decomposition in (27) yields

⟪f,σ(j)⟫ = lim
i→∞

(∫

Q

ϕ(y) g( y/δj(i),j )h(µ
ac
εj(i)

(x0 + rjy) ) dy

+

∫

Q

ϕ(y)g

(
y

δj(i),j

)

h∞

(
dµεj(i)

d|µs
εj(i)

|
(x0 + rjy)

)

d
(
r−d
j T

(x0,rj)
# |µs

εj(i)
|)(y)

)

=
1

rdj
lim
i→∞

(∫

Qrj
(x0)

(
ϕ ◦ T (x0,rj)

)
(x) g

(
x− x0

εj(i)

)

h( dµac
εj(i)

(x) ) dx

+

∫

Qrj
(x0)

(
ϕ ◦ T (x0,rj)

)
(x) g

(
x− x0

εj(i)

)

h∞

(
dµεj(i)

d|µs
εj(i)

|
(x)

)

d|µs
εj(i))

|(x)

)

.

(37)

Setting C := lim supε↓0 |µε|(Q) < ∞ (from the original sequence) we may estimate
the limiting behavior of the difference

∣
∣
∣
∣

∫

Qrj
(x0)

ϕ

(
x− x0

rj

)[

g

(
x− x0

εj(i)

)

− g

(
x

εj(i)
− ξ0

)]

d|µj |(x)

∣
∣
∣
∣

by

C‖ϕ‖∞ · ‖Dg‖∞ ·

∣
∣
∣
∣

〈
x0

εj(i)

〉

− ξ0

∣
∣
∣
∣
= O(i) → 0 as i → ∞,(38)

where to see that the last term vanishes as i → ∞ we have used (36).
Using this we may re-write (37) as

⟪f,σ(j)⟫ =
1

rdj
lim
i→∞

(∫

Qrj
(x0)

(ϕ ◦ T (x0,rj))(x) (g ◦ Γξ0))

(
x

εj(i)

)

h( dµac
εj(i)

(x) ) dx

+

∫

Qrj
(x0)

(ϕ ◦ T (x0,rj))(x)(g ◦ Γξ0))

(
x

εj

)

h∞

(
dµεj(i)

d|µs
εj(i)

|
(x)

)

d|µs
εj(i)

|(x)

)

= r−d
j ⟪ϕ ◦ T (x0,rj) ⊗ g ◦ Γξ0 ⊗ h,ν⟫,

(39)

where in passing to the last equality we have used that µε
Y2

→ ν in Y2
loc(R

d;E).
Applying this to | q|E yields, together with (33) and (34),

sup
j∈N

⟪ϕ ⊗ g ⊗ | q|E ,σ
(j)⟫ < ∞ for all ϕ ∈ Cc(R

d) and g ∈ C1(Z) .(40)

We are then in position to apply the following global version of Corollary 3.6 (whose
proof relies on a localization argument): there exists a subsequence of (rj)j∈N (not
relabeled) satisfying

σ(j) ∗
⇀ Dν(x0) in E2(Q;E)∗, for some Dν(x0) ∈ Y2(Q;E) .

Step 4: Characterization of σ. Fix m ∈ N and let j ∈ N be an arbitrary positive
integer. Let us write f̃m := ϕm ⊗ gm ◦ Γξ0 ⊗ hm. For an arbitrary positive real
number η > 0, we may use the uniform continuity of gm (recall that gm ∈ C1(Z))
and the density of the set of points {ξk}k∈N in Z to find a sufficiently large k = k(η)
with the following property (here we use the positivity of ϕm and hm):

|ξ0 − ξk| = O(η),

and

|f̃m − fk,m|(x, ξ, z) ≤ ‖gm ◦ Γξ0 − gm ◦ Γξk‖∞ · ϕm(x) · hm(z)

≤ O(η) [ϕ ⊗ χZ ⊗ | q|E(x, ξ, z)],
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where O(η) → 0 as η tends to zero. In particular,

lim sup
j∈N

∣
∣
∣rj

−d[f̃m,ν](Qrj(x0))− rj
−d[fk(η),m,ν](Qrj(x0))

∣
∣
∣

≤ O(η) · ‖ϕm‖∞ · Lip(hm) · lim sup
j∈N

r−d
j [ϕm ⊗ χZ ⊗ | q|E ,ν](Qrj(x0))

.(m) O(η) · lim inf
j→∞

(

1 +
λ(Qrj (x0))

rdj

)

.

Testing (39) with fm (not to be confused with f̃m), it follows from the estimate
above and (33) that

⟪fm,σ(j)⟫ = rj
−d⟪ϕm ◦ T (x0,rj) ⊗ gm ◦ Γξ0 ⊗ hm,ν⟫

= rj
−d[f̃m,ν](Qrj (x0))

= rj
−d[fk(η),m,ν](Qrj (x0)) + O(η).

(41)

Letting j → ∞ at both sides of (41), (35) and the weak-∗ convergence σ(j) ∗
⇁

Dν(x0) imply

⟪fm,Dν(x0)⟫ = lim
j→∞
⟪fm,σ(j)⟫ = [[fk(γ),m, ν]]x0(Z) + O(η).

Following analogous arguments to the ones in (41) and using |ξ0 − ξk(γ)| = O(γ),
we may let η ց 0 to deduce

⟪fm,Dν(x0)⟫ = [[f̃m, ν]]x0(Z)

=

∫

Q

(∫

Z

〈fm, νx0,ξ0+ξ〉 d(Γ
ξ0
#L

d
Z)(ξ)

+
dλν

dL d
(x0)

∫

Z

〈f∞
m , ν∞x0,ξ0+ξ〉 d(Γ

ξ0
#ρx0)(ξ)

)

dy.

(42)

The sought assertion follows from the arbitrariness of m on Step 4 (see (42)) and
Lemma 3.7 which translates into the equivalence

σ ≡
(

νx0,ξ0+ξ, λ
ac(x0)L

d,Γξ0
#ρx0 , ν

∞
x0,ξ0+ξ

)

y∈Q,ξ∈Z

as two-scale* Young measures in the set Y2(Q;RN ). Notice we have used that the

d-dimensional Lebesgue is uniformly distributed and hence Γξ0
#L d

Z ≡ L d
Z . This

proves the desired result. �

4.2. Localization at singular points.

Proposition 4.2. Let ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E) be two-scale* Young measure
which is generated by a sequence of measures (µεi)i∈N ⊂ M(Ω;RN ). Then, there
exists a set S ⊂ Ω with full λs-measure that satisfies the following property: at
every x0 ∈ S there exists (up to a translation in Z) a local tangent two-scale*
Young measure Dν = (Dν,Dλ,Dρ,Dν∞) ∈ Y2(Q;RN ) of ν at x0. That is, there
exists ξ0 = ξ(x0) ∈ Z such that

Dλ ∈ Tan1(λ
s, x0) ,(43)

Dρy = Γξ0
#ρx0 for Dλ-almost every y ∈ Q .(44)

Moreover, Dν is concentrated on zero and Dν∞ is homogeneous in the sense that

Dνy,ξ = δ0 for (L d
Q ⊗ L

d
Z)-almost every (y, ξ) ∈ Q× Z,(45)

Dν∞y,ξ = ν∞x0,ξ+ξ0 for
(
Dλ⊗Dρy

)
-almost every (y, ξ) ∈ Q× Z.(46)
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Proof. The structure of the proof is very similar to the one of the localization
principle for regular points. The main difference lies in the scaling of the blow up
and, as a consequence of that, different terms vanish.

Let ε ց 0 and (µε) ⊂ M(Ω;E) be such that µj
Y2

→ ν. We select a countable

dense family {ξk}k∈N in Z and we write {fm = ϕm⊗ gm⊗hm |m ∈ N} ⊂ E2(Q,E)
to denote the restriction to Q × Z × E of the dense subset introduced in Lemma
3.7. Additionally, this time we will assume without loss of generality that h1 ≡ χE .
Recall we may assume the hm’s to be Lipschitz continuous.

Step 1. Selection of the singular set S. We shall consider points x̃ ∈ Ω satisfying
the density estimate

lim
r↓0

rd +
∫

Qr(x̃)

∫

Z
〈| q| dξ, νx,ξ〉 dξ +

∫

Qr(x̃)
λac(x) dx

λs(Qr(x̃))
= 0 ,(47)

and which are

(48) λs-Lebesgue points of [fk,m,ν] ∈ M(Ω) for all k,m ∈ N .

Here, these barycenter measures are parametrized by the x-homogenous integrands

fk,m := χΩ ⊗ gm ◦ Γξk ⊗ hm k,m ∈ N.

In particular, by (24) and the Lipschitz continuity of the hm’s, at such points x̃ ∈ Ω
it holds

d[fk,m,ν]

dλs
(x̃) = [[fk,m,ν]]x̃(Z) = [[f∞

k,m,ν]]x̃(Z) for all k,m ∈ N.(49)

For the rest of the proof we fix a point x0 ∈ S :=
{
x̃ ∈ Ω : x̃ satisfies (47)-(49)

}
,

which is a set of full λs-measure in Ω.
Step 2. Blow-up sequence. Since Z is a compact manifold, we may again restrict

to a subsequence of the generating sequence (µεi)i∈N and find ξ0 = ξ0(x0) ∈ Z such
that

〈x0

εi

〉

→ ξ0 ∈ Z as i → ∞.

For a positive radius r > 0, we set cr := λs(Qr(x0))
−1. By the compactness

properties of measures we may find a weak* convergent blow-up sequence in the
sense there exists a sequence of infinitesimal radii (rj)j∈N such that

(50) Λj := crjT
(x0,rj)
# λs ∗

⇀ Dλ ∈ Tan1(λ
s, x0) and γ(Q) = 1.

For the sake of simplicity let us write cj := crj . We consider, for fixed j ∈ N, the
i-indexed sequence

γi,j := cj0T
(x0,rj0 )

# µεi , where δi,j :=
εi
rj

ց 0 as i → ∞ .

After an iterative procedure as the one for regular points, for each j ∈ N we may
find a sequence j(i) with the following properties: {(j + 1)(i)}i∈N ⊂ {j(i)}i∈N for
all j ∈ N, and

γj(i),j
Y2

→ σ(j) for some σ(j) ∈ Y2(Q;E), j ∈ N.

Moreover, up to passing to a subsequence of {j}j∈N, we may assume there exists

Dν(x0) ∈ Y2(Q;E) for which

(51) σ(j) ∗
⇀ Dν(x0) in E2(Q;RN )∗.
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Step 3: Characterization of σ(j). For fixed ϕ⊗ g⊗ h ∈ C(Q)×C1(Z)×E0(RN )
we deduce, by the same change of variables used in (37), that

⟪f,σ(j)⟫ = lim
i→∞

(∫

Q

ϕ(y) g(y/ δj(i) )h
(
cjr

d
jµ

ac
εj(i)

(x0 + rjy)
)
dy

+

∫

Q

ϕ(y)g

(
y

δj(i)

)

h∞

(
dµεj(i)

d|µs
εj(i)

|
(x0 + rjy)

)

d
(
cjT

(x0,rj)
# |µs

εj(i)
|)(y)

)

= lim
i→∞

1

rdj

(∫

Qrj
(x0)

(
ϕ ◦ T (x0,rj)

)
(x) g

(
x− x0

εj(i)

)

h
(
cjr

d
jµ

ac
εj(i)

(x)
)
dx

+

∫

Qrj
(x0)

(
ϕ ◦ T (x0,rj)

)
(x) g

(
x− x0

εj(i)

)

h∞

(
dµεj(i)

d|µs
εj(i)

|
(x)

)

d(cjr
d
j |µ

s
εj(i)

|)(x)

)

.

(52)

Making use of (47) and the estimate (38) as it was used in (39), and the fact that

µεj(i)
Y2

→ ν, we can re-write the limit on the right hand side in terms of a weighted

barycenter measure as (here we use that h∞(c q) = ch∞ for all c ≥ 0)

⟪f,σ(j)⟫ =
1

rdj
lim
i→∞

(∫

Qrj
(x0)

(ϕ ◦ T (x0,rj))(x) (g ◦ Γξ0))

(
x

εj(i)

)

h
(
cjr

d
jµ

ac
εj(i)

(x)
)
dx

+

∫

Qrj
(x0)

(ϕ ◦ T (x0,rj))(x)(g ◦ Γξ0))

(
x

εj(i)

)

h∞

(

cjr
d
j

dµεj(i)

d|µs
εj(i)

|
(x)

)

d|µs
εj(i)

|(x)

)

= r−d
j [ϕ ◦ T (x0,rj) ⊗ g ◦ Γξ0 ⊗ h(cjr

d
j
q),ν](Qrj (x0)).

(53)

Step 4. Characterization of Dν(x0). The last step consists on characterizing
the limiting Young measure in (51) as j tends to infinity. Here, we expect the biting
part of σ to vanish since we are performing a blow-up at a purely singular point
x0 ∈ S. Arguing as in Step 4 of the proof of the localization at regular points, we
cast the O(η)-approximation of the dense family {ξk} behind (41); this time with

the integrands f̃k,m := ϕm ◦ T (x0,rj) ⊗ gm ◦ Γξk ⊗ hm(cjr
d
j
q). For positive η we find

k(η) ∈ N sufficiently large so that that (using the density of the family {ξk}k∈N in
Z, and the uniform continuity of gm)

|ξ0 − ξk(η)| = O(η) and |f̃m − f̃k,m| ≤ O(η) [ϕ ⊗ χZ ⊗ (1 + cjr
d
j | q|E)(x, ξ, z)],

where f̃m := ϕm ◦T (x0,rj) ⊗ gm ◦Γξ0 ⊗hm(cjr
d
j
q). Using these estimates in (53) we

deduce by (47) that

⟪fm,σ(j)⟫ = rj
−d[f̃k(η),m,ν](Qrj(x0)) + O(η).(54)

For the next step let η be an arbitrary positive real. We claim that taking then
the limit as j → ∞ at both sides of the equality yields

lim
j→∞
⟪fm,σ(j)⟫ = hm(0)

∫

Q

ϕm(y)

(∫

Z

gm ◦ Γk(η)(ξ) dξ

)

dy+

[[f̃k(η),m,ν]]x0(Z) ·

∫

Q

ϕm(y) d(Dλ)(y) + O(η) .

(55)

First, we deal with the absolutely continuous part of the barycenter measure in (54)

as follows. For all L d-almost every x ∈ Qrj (x0) we estimate (recall that h1 ≡ χRN )

∣
∣
∣
∣
∣

d[f̃k(η),m − ϕm ◦ T (x0,rj) ⊗ gm ◦ Γξk(η) ⊗ hm(0)h1,ν]

dL d
(x)

∣
∣
∣
∣
∣
≤ cjr

d
jC(m)·[[| q|E ,ν]]x(Z),
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where C(m) := ‖ϕm‖∞ · ‖gm‖∞ · Lip(hm). This estimate leads to the bound

−

∫

Qrj
(x0)

∣
∣
∣
∣

d[f̃k(η),m − ϕm ◦ T (x0,rj) ⊗ gm ◦ Γξk(η) ⊗ hm(0)h1,ν]

dL d
(x)

∣
∣
∣
∣
dx

.(m)

∫

Qrj
(x0)

∫

Z〈|
q|E dξ, νx,ξ〉 dξ +

∫

Qrj
(x0)

λac(x) dx

λs(Qrj (x̃))
= O(rj).

Here, to reach the last equality we have used that x0 ∈ S satisfies (47). Thus,
when passing to limit j → ∞, we may substitute the absolutely continuous part of
r−d
j [f̃k(η),ν] in (54) by the integrable function

x 7→
1

rdj

(∫

Z

〈
f̃k(η),m(x, ξ, q), δ0

〉
dξ

)

.

We now deal with the singular part and the passing to the limit. By (51) and the
density identity from (49) (applied to the point x̃ = x0 ∈ S), we may let j tend to
infinity at both sides of (55) to deduce (recall that h∞

m (cjr
d
j
q) = cjr

d
jh

∞
m )

⟪fm,Dν(x0)⟫ = lim
j→∞

(

−

∫

Qrj(x0)

∫

Z

〈f̃k(η),m(x, ξ, q), δ0〉 dξ dx

+
1

rdj

∫

Qrj
(x0)

d[f̃∞
k(η),m,ν]

dλs
(x) dλs(x)

)

+O(η)

= hm(0)

∫

Q

ϕm(y)

(∫

Z

gm ◦ Γξk(η)(ξ) dξ

)

dy+

lim
j→∞

−

∫

Qrj
(x0)

ϕm(x)
[f̃∞

k(η),m,ν]

dλs
(x) dλs(x) + O(η)

= hm(0)

∫

Q

ϕm(y)

(∫

Z

gm ◦ Γξk(η)(ξ) dξ

)

dy+

[[f̃k(η),m,ν]]x0(Z) ·

∫

Q

ϕm(y) d(Dλ)(y) + O(η) ,

where we have used Λj = cjT
(x0,rj)
# λs ∗

⇀ Dλ on Q in passing to the last equality.
This proves the claim.

To conclude we observe that η has so far been chosen arbitrarily. Therefore, by
the dominated convergence theorem, the identity (55) implies

⟪fm,Dν(x0)⟫ = hm(0)

∫

Q

ϕm(y)

(∫

Z

gm ◦ Γξ0(ξ) dξ

)

dy

+ [[f̃m,ν]]x0(Z) ·

∫

Q

ϕm(y) d(Dλ)(y)

=

∫

Q

(∫

Z

〈
fm(x, q, q), δ0

〉
dξ

)

dy

+

∫

Q

(∫

Z

〈f∞
m (x, q, q), ν∞x0,ξ0+ξ〉 d(Γ

ξ0
#ρx0)(ξ)

)

d(Dλ)(y) .

(56)

Here, we have used that Γξ0
#L d

Z = L d
Z to reach the second equality. Since {fm}m∈N

separates E2(Q;RN ), Lemma 3.7 gives

Dν(x0) = (δ0, Dλ,Dρ,Dν∞), Dλ ∈ Tan1(λ
s, x0),
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where Dρ(x) = Γξ0
#ρx0 and Dν∞(y, ξ) = ν∞x0,ξ0+ξ for all y ∈ Q. This finishes the

proof. �

5. PDE-constrained Young measures

Let k ∈ N and let E,F be finite-dimensional real vector spaces. For α ∈ Nd we
define its modulus |α| := α1 + · · · + αd. We shall consider general homogeneous
differential operators of order k on Rd from E to F , that is, operators of the form

A =
∑

α∈N
d

|α|=k

Aα ∂α, Aα ∈ Lin(E;F ).

A vector-valued measure µ ∈ M(Ω;E) is called A-free provided that

Aµ = 0 in the sense of distributions on Ω.

We say that ν ∈ Y2(Ω;E) is an A-free two scale* Young measure if it is generated
by a sequence of (asymptotically) A-free measures:

Definition 5.1 (A-free Young measures). Let 1 < p < d
d−1 . A two-scale* Young

measure ν ∈ Y(Ω;E) is called A-free if there exist a sequences ε ց 0 and (µε)ε ⊂
M(Ω;E) such that

Aµε → 0 strongly in W−k,p(Ω) and µε
Y2

→ ν.

5.1. Rigidity properties of A-free two-scale* Young measures. Clearly, the
barycenter [ν] of an A-free two-scale* Young measure is A-free. This same property
is inherited to second-scale barycenters [[ν]] as it is portrayed in the next proposition.
To deal with a possible abuse of notation about the domain of partial differential
operators, we shall write Aξ to denote the action of A on D′(Z;E), i.e.,

(Aξη)[g] =
〈
η,A∗g

〉
for all η ∈ D′(Z;E) and g ∈ C∞

per(Q;F ) .

Proposition 5.2. Let ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E) be an A-free two-scale* Young
measure. Then at (L d + λs)-almost every x0 ∈ Ω it holds that

Aξ[[ν]]x0 = 0 in the sense of distributions on Z .

Proof. Let ϕ ∈ C∞
c (Ω) and let g ∈ C∞(Z) be arbitrary functions. Let (µε)ε be a

sequence of A-free measures that generates the Young measure ν (on Ω) and let
T ε(x) = x/ε be the re-scaling by the factor ε. As a consequence of the product rule
there exist constants cα,β such that

A∗(ϕ · εk(g ◦ T ε)) = (−1)k
∑

|α|≤k
β≤α

εk−|β|cα,βA
T
α(∂

α−βϕ)(∂βg) ◦ T ε,

where we write β ≤ α if and only if βi ≤ αi for every i = 1, . . . , d. Observe that
cα,α = 1 for every α, and in particular it follows that

‖A∗(ϕ · εk(g ◦ T ε))− ϕ · (A∗g) ◦ T ε‖∞ → 0, as ε ց 0.

Hence, since Aµε → 0 in strongly in W−k,p(Ω)
c
→֒ C0(Ω)

∗, we deduce from the
convergence above that

0 = lim
εց0

∫

Ω

A∗[ϕ · εk(g ◦ T ε)](x) dµε(x)

= lim
εց0

∫

Ω

ϕ(x)(A∗g)(x/ε) dµε(x)

= ⟪ϕ ⊗A∗
ξg ⊗ idE ,ν⟫.

(57)
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Using the tensor structure of the integrand and the property (23) of the second-scale
barycenters we obtain

0 =

∫

Ω

∫

Z

d[[ϕ⊗A∗
ξg ⊗ idRN ,ν]]x(y) d(L

d + λs)(x)

=

∫

Ω

ϕ(x)

(∫

Z

(A∗
ξg)(ξ) d[[ν]]x(ξ)

)

d(L d + λs)(x).

Since the choice of ϕ ∈ C∞
c (Ω) was arbitrary, this identity must hold locally.

Namely, for (L d + λs)-a.e. x0 ∈ Ω it holds

〈
g,Aξ[[ν]]x0

〉
=

∫

Z

(A∗
ξg)(ξ) d[[ν]]x0(ξ) = 0 for all g ∈ C∞(Z).

By the distributional definition of derivative this is equivalent to

Aξ[[ν]]x0 = 0 in the sense of distributions on Z.

This proves the assertion. �

Corollary 5.3 (differential rigidity of the second-scale). Let ε ց 0 and let (µε)ε ⊂
M(Ω;E) be a sequence of asymptotically A-free measures that two-scale converges
to a limit λ⊗ θx. That is, such that

Aµε → 0 strongly in W−k,p(Ω) .

Then, at λ-almost every x0 ∈ Ω, it holds

Aξθx0 = 0 in the sense of distributions on Z.

Proof. This follows directly from (22) and the previous proposition. �

Corollary 5.4 (structure ofA-free two-scale* Young measures). Let ν ∈ Y2
A(Ω;E)

be an A-free two-scale* Young measure. Then, at λs-almost every x0 ∈ Ω, the
following differential inclusion holds:

d[[ν]]x0

d|[[ν]]sx0
|
(ξ) ∈ ΛA for |[[ν]]sx0

|-almost every ξ ∈ Z.

Proof. By Proposition 5.2 we have that for (L d + λs)-almost every x0 ∈ Ω, the
second-scale barycenter [[ν]]x0 is an Aξ-free measure on Z. Since locally, Aξ and A
coincide as operators in Rd, it follows from [11, Theorem 1.1] that

d[[ν]]x0

d|[[ν]]sx0
|
(ξ) ∈ ΛA for |[[ν]]sx0

|-a.e. ξ ∈ Z.

This finishes the proof. �

The next lemma asserts the support of the purely singular part of an A-free
measure cannot be arbitrary. In fact, it must be contained in the smallest vectorial
space containing the wave cone ΛA.

Lemma 5.5. Let ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E) be an A-free two-scale* Young mea-
sure. Then the support of the purely singular part of ν is contained in span{ΛA},
that is,

supp (ν∞x,ξ) ⊂ span{ΛA} ∩ ∂BE for (λs ⊗ ρx)-almost every (x, ξ) ∈ Ω× Z .

Proof. Recall that if (µε)ε generates the two-scale* Young measure ν, then the same
sequence generates the generalized Young measure υ = (υ, λ, υ∞) where υ∞ is the
weak-∗ λ-measurable map x 7→ υ∞

x ∈ Prob(∂BE) and each probability measure υx
is defined by duality as

(58)
〈
h∞, υ∞

x

〉
=

∫

Z

(∫

∂BE

h∞(ẑ) dν∞x,ξ(ẑ)

)

dρx(ξ) for all h∞ ∈ E0(E) .
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Moreover, if (µε)ε is originally an asymptoticallyA-free sequence, then by definition
υ is an A-free generalized Young measure (see [4] for the corresponding definition).
The localization principle [4, Proposition 2.25] (for generalized Young measures
at singular points) yields the existence of a set S ⊂ Ω with full λs-measure and
satisfying the following property: at each x0 ∈ S there exists an A-free sequence
(uε)ε ⊂ L1(Q;E) —depending on the point x0— such that

(59) uε
Y
→ υ(x0) = (δ0, λx0 , υx0) ∈ Y1(Q;E), λ̃x0(∂Q) = 0,

and λ̃x0 ∈ Tan1(λ, x0) is a probability measure (hence a non-zero positive measure).
Moreover, by Theorem [11, Theorem 1.1], we may further assume

〈
id∂BE

, υx0

〉
=

|
〈
id∂BE

, υx0

〉
| · d[υ]/ d|[υ]|s(x0) ∈ ΛA. In particular

(60) [υ(x0)] ∈ M(Q; span{ΛA}) for every x0 ∈ S .

By properties (59)-(60) we may apply [4, Lemma 3.2] to each generalized young
measure υ(x0). Using (60) once more we deduce

supp (υ∞
x0
) ⊂ span{ΛA} ∩ ∂BE for every x0 ∈ S .

Hence, by (58), supp (ν∞x,ξ) ⊂ span{ΛA} ∩ ∂BE for (λs ⊗ ρx)-almost every (x, ξ) ∈
Q× Z. This finishes the proof. �

In the introduction we have defined the A-free homogeneous envelope for inte-
grands C(Z × E) which are convex in their second argument. This definition is
nothing else than a simplified representation of the (general) definition of A-free
homogeneous envelope defined for arbitrary integrands:

Definition 5.6. Let h : Z × E → R be a continuous integrand. The A-free
homogeneous envelope of h is the integrand

hA−hom(z) := inf

{

−

∫

QR

h(y, z + w(y)) dy : R ∈ N,

w ∈ C∞
per(QR;E) ∩ kerA,

∫

QR

w dy = 0

}

, z ∈ E .

(61)

The following relation about the commutability of the recession operation and
the homogenization of an integrand holds.

Proposition 5.7 (recession regularization vs. homogenization). Let h ∈ C(Z×RN)
be an integrand with linear-growth at infinity. Then

(h#)A−hom ≥ (hA−hom)
#.

Proof. Fix a vector z ∈ E. Let also R ∈ N and w ∈ C∞
per(QR;E) as in (61). Recall

that h(ξ, t q)/t ≤ M(1 + | q|) ∈ L1
loc(R

d), hence we may use Fatou’s lemma and the
definition of h# to obtain

−

∫

QR

h#(ξ, A+ w(y)) dy = −

∫

QR

lim sup
t→∞

h(y, tz + tw(y))

t
dy

≥ lim sup
t→∞

−

∫

QR

h(y, tz + tw(y))

t
dy

≥ lim sup
t→∞

hA−hom(tz)

t
= (hA−hom)

#(z).

(62)

In passing to the first inequality we have used the linearity of both A and the mean
value operation to ensure that tw ∈ C∞(QR;E) ∩ kerA,

∫

QR
tw = 0. Taking the

infimum over such w’s first, and subsequently over all R ∈ N in (62) gives

(h#)A−hom(z) ≥ (hA−hom)
#(z),

as desired. �
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6. Convex homogenization

6.1. Jensen-type inequalities. This section is devoted to the study of (Jensen)
integral inequalities satisfied by the A-homogeneous envelope of convex integrands
with respect to arbitraryA-free two-scale* Young measures. The plan is to establish
Jensen type inequalities at the first- and second-scale; naturally involving the first
and second barycenters. Bridging these two inequalities into an homogenized Jensen
inequality is, in turn, the key argument towards the proof of Theorem 1.3. We close
this section with an open problem and a discussion about non-convex integrands.

6.1.1. First-scale Jensen’s inequality.

Proposition 6.1. Let ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E) be an A-free two-scale* Young
measure and let h ∈ C(Z × E) ∩ R2(Ω;E) be an integrand that is convex in its
second argument, that is, h(ξ, q) is convex for all ξ ∈ Z. Then,

(i) at every regular point x ∈ Regν(Ω) it holds

h∗A

(
d[ν]

dL d
(x)

)

≤

∫

Z

h

(

ξ,
d[[ν]]x
dL d

(ξ)

)

dξ

+

∫

Z

h∞

(

ξ,
d[[ν]]s

dρx
(ξ)

)

dρx(ξ) ,

(63)

(ii) and, at every singular point x ∈ Singν(Ω),

(64) (h∞)∗A

(
d[ν]x
dλs

(x)

)

≤

∫

Z

h∞

(

ξ,
d[[ν]]x
dρx

(ξ)

)

dρx(ξ) .

Proof. Let ϕ be a non-negative mollifier on Z with
∫

Z
ϕ = 1. Set ϕδ := δ−dϕ(x/ q)

so that ϕδL
d
Z is a probability measure on Z. We define, for fixed δ > 0 and x ∈ Ω,

the mollified second-order barycenter

vδ(ξ) := (ϕδ ∗ [[ν]]x)(ξ) .

Recall from [4, Remark 2.2] that convergence of mollified measures is strengthened
to area-convergence, that is, vδ area-converges to [[ν]]x on Z (as δ ↓ 0). Hence, by
[15, Theorem 5] we obtain
(65)

∫

Z

h(ξ, vδ(ξ)) dξ →

∫

Z

h

(

ξ,
d[[ν]]x
dL d

(ξ)

)

+

∫

Z

h∞

(

ξ,
d[[ν]]sx
d|[[ν]]sx|

(ξ)

)

d|[[ν]]sx|(ξ) .

On the other hand, by the properties of mollifiers and the differential rigidity of the
second-scale barycenter proved in Corollary 5.3, it holds that every test function
ṽδ := vδ − [[ν]]x(Z) is Aξ-free and has zero mean value. This property of the
ṽδ’s enables us to use the definition of the A-homogeneous envelope (of a convex
integrand) which yields

(66)

∫

Z

h(ξ, vδ(ξ)) dξ =

∫

Z

h(ξ, ṽδ(ξ) + [[ν]]x(Z)) dξ ≥ h∗A([[ν]]x(Z)) .

From (65) and (66) we conclude
∫

Z

h

(

ξ,
d[[ν]]x
dL d

(ξ)

)

+

∫

Z

h∞

(

ξ,
d[[ν]]sx
d|[[ν]]sx|

(ξ)

)

d|[[ν]]sx|(ξ) ≥ h∗A([[ν]]x(Z)) .

Thus, taking into account that |[[ν]]sx| = |〈id∂BE
, ν∞x,ξ〉|ρ

s
x and h∞(ξ, 〈id∂BE

, ν∞x,ξ〉) =

h∞(ξ, 0) = 0 for ρ∗x, where ρ∗x is the singular part of ρsx with respect to |[[ν]]sx|, we
get (using the 1-homogeneity of h∞) the refined estimate

(67)

∫

Z

h

(

ξ,
d[[ν]]x
dL d

(ξ)

)

+

∫

Z

h∞

(

ξ,
d[[ν]]sx
dρsν

(ξ)

)

dρsx(ξ) ≥ h∗A([[ν]]x(Z)) .
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In particular, if x ∈ Regν(Ω), we apply the inequality (67) to deduce
∫

Z

h

(

ξ,
d[[ν]]x
dL d

(ξ)

)

+

∫

Z

h∞

(

ξ,
d[[ν]]sx
dρsx

(ξ)

)

dρsx(ξ)
(20)

≥ h∗A

(
d[ν]

dL d
(x)

)

.

This proves (63). If on the other hand x ∈ Singν(Ω), we use (67) (with h∞ in place
of h) to get

∫

Z

h∞

(

ξ,
dρx
dL d

(ξ)〈idE , ν
∞
x,ξ〉

)

dξ +

∫

Z

h∞

(

ξ, 〈id∂BE
, ν∞x,ξ〉

)

dρsx(ξ)

=

∫

Z

h∞

(

ξ,
d[[ν]]x
dρx

(ξ)

)

dρx(ξ)
(20)

≥ (h∞)∗A

(

x,
d[ν]

dλs
(x)

)

.

This proves (64) and the proof is completed. �

6.1.2. Second-scale Jensen inequalities.

Proposition 6.2 (at regular points). Let ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E) be an A-
free two-scale* Young measure and let h ∈ C(Z × E) ∩ R2(Ω;E) be an integrand
that is convex in its second argument, that is, h(ξ, q) is convex for all ξ ∈ Z. Then,
for all regular points x ∈ Regν(Ω) the following inequalities hold:

(i) at L
d
Z-almost every ξ in Z,

(68) h

(

ξ,
d[[ν]]x
dL d

(ξ)

)

≤
d[[h,ν]]x
dL d

(ξ),

(ii) and, at ρsx-almost every ξ in Z,

(69) h∞

(

ξ,
d[[ν]]x
dρsx

(ξ)

)

≤
d[[h∞,ν]]x

dρsx
(ξ).

Proof. Let x ∈ Regν(Ω) and ξ ∈ Z so that d[[ν]]x/ dL d(ξ) exists (note that this
property is satisfied at L

d
Z -almost every ξ in Z). Observe that since h is ξ-uniformly

Lipschitz in its second argument, d[[h,ν]]x/ dL d(ξ) also exists at such ξ’s. We have

d[[ν]]x
dL d

(ξ) = 〈idE , νx,ξ〉+
dλ

dL d
(x) ·

dρx
L d

(ξ) · 〈id∂BE
, ν∞x,ξ〉.

By the classical Jensen’s inequality and the positive 1-homogeneous character of
h∞ we further obtain

d[[h,ν]]x
dL d

(ξ) = 〈h(ξ, q), νx,ξ〉+
dλ

dL d
(x) ·

dρx
L d

(ξ) · 〈h∞(ξ, q), ν∞x,ξ〉

≥ h(ξ, 〈idE , νx,ξ〉) + h∞

(

ξ,
dλ

dL d
(x) ·

dρx
L d

(ξ) · 〈id∂BE
, ν∞x,ξ〉

)

.

Now, let us recall the following sub-additive property satisfied by convex functions
and their recession functions: every convex function g : E → R g(z1 + z2) ≤
g(z1) + g∞(z2) for all z1, z2 ∈ E. It follows directly from this observation and the
inequality above that

d[[h,ν]]x
dL d

(ξ) ≥ h

(

x, ξ,
d[[ν]]x
dL d

(ξ)

)

.

This proves the first inequality in (68).
For the proof of the second inequality we let ξ ∈ Z be such that d[[ν]]x/ dρsx(ξ)

exists, hence also d[[h,ν]]x/ dρsx(ξ) exists (h∞ is ξ-uniformly Lipschitz continuous
in its second argument). In fact, these two measure-theoretic derivatives are given
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by the parings 〈id∂BE
, ν∞x,ξ〉 and 〈h(ξ, q), ν∞x,ξ〉 respectively. Once more, a simple

application of Jensen’s classical inequality gives

d[[h,ν]]x
dρsx

(ξ) = 〈h∞(ξ, q), ν∞x,ξ〉

≥ h∞(ξ, 〈id∂BE
, ν∞x,ξ〉)

Since d[[ν]]x/ dρsx(ξ) and 〈h(ξ, q), ν∞x,ξ〉 exist ρ
s
x-almost everywhere in Z, this proves (69).

�

Proposition 6.3 (at singular points). Let ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E) be an
A-free two-scale* Young measure and let g ∈ C(Z × RN ) be continuous integrand.
Further, assume that g(ξ, q) is convex and positively 1-homogeneous for all ξ ∈ Z.
Then, at every x ∈ Singν(Ω) it holds that

(70) g

(

ξ,
d[[ν]]x
dρx

(ξ)

)

≤
d[[g,ν]]x
dρx

(ξ) for ρx-almost every ξ ∈ Z .

Proof. The proof can be reproduced by following the exact same ideas in the proof
of the second part of the proof of Proposition 6.2. �

We are now in place to prove the homogeneous version of Jensen’s inequality
that involves the A-hom envelope (of convex integrands).

Theorem 6.4 (homogenized Jensen’s inequality). Let ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E)
be an A-free two-scale* Young measure and let h ∈ C(Z×E)∩R2(E) be an integrand
that is convex in its second argument, that is, h(ξ, q) is convex for all ξ ∈ Z. Then,

(1) at every regular point x ∈ Regν(Ω) it holds that

h∗A

(
d[ν]

dL d
(x)

)

≤
d[[h,ν]]x(Z)

dL d
(x) ,(71)

(2) and, at every singular point x ∈ Singν(Ω),

(72) (h∞)∗A

(
d[ν]

dλs
(x)

)

≤
d[[h,ν]]x(Z)

dλs
(x) .

Proof. The proof is a direct consequence of Propositions 6.2, 6.2, and 6.1. �

6.1.3. Comments on the non-convex case. In general, even at singular points x ∈
Singν ∩ Ω, one cannot expect the second-scale differential inclusion

(73)
d[[ν]]x0

dL d
Z

(ξ) ∈ ΛA for L
d
Z -almost every ξ ∈ Z

to hold. Instead, we believe the following weaker statement holds under mild non-
degeneracy assumptions on A (for instance if A satisfies Murat’s constant rank
condition).

Conjecture 6.5. Let ν ∈ Y2(Ω;RN ) be an A-free two-scale* Young measure and
let h ∈ C(Z × RN ) be a positively 1-homogeneous for all ξ ∈ Z. Then, for all
x0 ∈ Singν it holds that

(74) [[h,ν]]x0(Z) ≥ hA−hom([[ν]]x0(Z))

This is a powerful inclusion, and, in fact, it is the key inequality towards the
characterization of the homogenization of non-convex integrals. The proof of this
conjecture is relatively simple provided that A is a first-order operator (see [16]).
For operators of general order, the veracity of this conjecture seems to be linked to
the structural properties of tangent A-free measures.
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6.1.4. The conjecture in BD. A natural candidate to study the elastic perfectly
plastic behavior of materials is the space of functions whose linearized strains are
measures. Formally, these deformations belong to the space of functions of bounded
deformation which is defined as

BD(Ω) :=
{
u ∈ L1(Ω;Rd) : Eu := Du+DuT ∈ M(Ω;Msym

d×d)
}
.

In the A-free context, a measure µ ∈ M(Ω;Msym
d×d) is locally a symmetric gradient if

and only if it satisfies (see [13, Example 3.10(e)]) the second order PDE-constraint

curl curlµ :=

( d∑

i=1

∂ikµ
j
i + ∂ijµ

k
i − ∂jkµ

i
i − ∂iiµ

k
j

)

jk

j, k = 1, . . . , d .

In a forthcoming [5] paper we shall give a positive answer to Conjecture 6.5 in the
case ν is BDY2(Ω) two-scale* Young measure, that is, when

Euj
Y2

→ ν (uj)j∈N ⊂ BD(Ω).

6.2. Proof of the Theorem 1.3. By the definition of Γ-limit it is enough to verify

the conclusion of the theorem for infinitesimal sequences. Let εj ց 0 and µn
∗
⇀ µ

in M(Ω;E) ∩ kerA. Observe that up to extracting a subsequence we may assume
without loss of generality that

lim inf
j→∞

Iεj (µj) = lim
j→∞

Iεj (µj)

and

and µn
Y2

→ ν for some ν = (ν, λ, ρ, ν∞) ∈ Y2(Ω;E) .

The Young-measure representation and the Radon–Nykodym differentiation give

lim inf
j→∞

Iεj (µj) = ⟪f,ν⟫

=

∫

Ω

[[f,ν]]x(Z) d(L d + λs)(x)

=

∫

Ω

[[f,ν]]x(Z)

dL d
(x) dx+

∫

Ω

[[f,ν]]x(Z)

dλs
(x) dλs(x) .

An x-point-wise application of the Jensen inequalities in Theorem 6.4 with the
family of integrands {h(ξ, z)}x := {f(x, ξ, z)}x on the right-hand side above yields
(notice that it suffices to perform this at all x ∈ Ω where the conclusion of Theo-
rem 6.4 holds)

lim inf
j→∞

Iεj (µj) ≥

∫

Ω

f∗A

(

x,
dµ

dL d
(x)

)

dx+

∫

Ω

(f∞)∗A

(

x,
d[ν]x
d(λν)s

(x)

)

dλs(x)

≥

∫

Ω

f∗A

(

x,
dµ

dL d
(x)

)

dx+

∫

Ω

(f∞)∗A

(

x,
dµ

d|µs|
(x)

)

d|µs|(x) .

Here, to reach the second inequality we have used that |〈idRN , νx〉|(λ
ν)s ≡ |µs| and

that d|µs|
dλs (x) = 0 for λ∗-a.e. x ∈ Ω where λ∗ is the singular part of λs with respect

to |µs|.
Lastly, it follows from Proposition 5.7 that (f∞)∗A ≥ (f∗A)

∞ whence we con-
clude

lim inf
j→∞

Iεj (µj) ≥

∫

Ω

f∗A

(

x,
dµ

dL d
(x)

)

dx+

∫

Ω

(f∗A)
∞

(

x,
dµ

d|µs|
(x)

)

d|µs|(x) .

This finishes the proof. �
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Appendix A. Background on Young measures

A.0.1. Classical Young measures. Let Ω be an open set in Rd and let (uk)k∈N be a
uniformly bounded sequence in L1(Ω). Qualitatively speaking, there are two main
reasons why the sequence fails to converge strongly in L1(Ω), namely oscillation
and concentration. The first occurs when fluctuations average out. For example, if
d = 1, the sequence

(75) uk = sin(kx) k = 1, 2, . . .

converges weakly to the constant function zero, while its mass remains constant
and strictly positive on the interval [0, 2π]. This corresponds to an oscillation
behavior. The generalized surface measures, introduced by L. C. Young [26–28]
and nowadays known as (classical) Young measures, are powerful measure-theoretic
tools to understand oscillations. In an informal manner, one can define the Young
measure associated to a weakly convergent sequence (uk)k∈N ⊂ L1(Ω;RN ) as the
family of probability measures {νx}, parameterized by x ∈ Ω, with the fundamental
property that

(76)

∫

Ω

f(x, uk(x)) dx →

∫

Ω

(∫

RN

f(x, z) dνx(z)
)

dx for all f ∈ C0(Ω× R
N ) .

Notice that νx = δu(x) when uk converges strongly to u (it suffices to assume
convergence in measure). Thus, the total variation measure |δu(x) − νx| gives a
sense of how rapidly the sequence oscillates around x. Moreover, property (76)
makes of Young measures a natural candidate to represent solutions of variational
integral problems, which, may otherwise have no solution in their respective domain
of definition.

Young realized that studying the weak convergence of the surfaces “graphuk”
is the right way to overcome the incompatibility of weak convergence with nonlin-
ear functionals. The reasoning behind this claim is the following. The uniformly
distributed measure Γk which is concentrated on the set graphuk ⊂ Ω × RN is
formally expressed by the push-forward measure (id, uk)#L d Ω. Provided that

(77) Γk
∗
⇀ Γ as measures in Ω× R

N ,

the convergence in (76) can be written as 〈f,Γk〉 → 〈f,Γ〉 in terms of the du-
ality (C0(Ω × RN ) , M(Ω × RN ) ). The Young measure νx is then nothing else
than the slice of Γ at a point x ∈ Ω. This reasoning justifies 1) Young’s original
definition of generalized surface, and 2) the probabilistic interpretation νx(A) ≈
limk→∞ P({uk(y) ∈ A : for y about x}), expressed rigorously by the limit

(78) νx(A) = lim
δց0

(

lim
k→∞

∫

Bδ(x)

χA(uk) dy
)

A ⊂ R
N .

A.0.2. Generalized Young measures. Albeit powerful, the notion of Young measure
is somehow unsatisfactory since it relies on the equi-integrability of minimizing
sequences. There is a second phenomenon that hinders strong convergence and
it corresponds to concentration of mass. The reader may think of a unit mass
distribution at the point x = 0 (the Dirac mass δ0 centered at the origin) and let it
evolve according to the heat flow, which is highly regularizing and mass preserving.
The solution at a time t > 0 is given by the gaussian

(79) vt =
1

4πt
exp

( |x|2

4t

)

.

As we go backwards in time, say with the sequence uk := v1/k, the sequence (uk)k∈N

weak-∗ converges (in the sense of measures) to δ0. Therefore, (uk)k∈N is a sequence
of probability measures in L1(Rd) which converges strongly to the zero function in
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Rd \ {0} and nevertheless fails to converge strongly at precisely the point x = 0.
It is worth to mention that loss of compactness of an L1-bounded sequence (with
respect to the strong topology) does not correspond exclusively to oscillation or
concentration, but rather to a combination of both. The understanding of this sce-
nario is part of the seminal work of DiPerna & Majda [12], which was motivated by
evidence pointing that beyond a critical time T > 0, the solutions vε of the Navier-
Stokes equations (with Reynolds number ε−1) tend to develop wild oscillations as
well as concentration effects. Therefore, suggesting that vε weak-∗ converges (but
not strongly) to v a solution of the Euler equation. In their effort to understand the
complexity of the flow, they introduced a notion of measure-valued solution for the
3-d incompressible Euler equation. To define measure-valued solutions, DiPerna
& Majda extended Young’s ideas and introduced generalized Young measures (see
also [1]).

Let us discuss briefly their construction and its differences with respect to Young’s
construction. First, notice that the classical characterization (76) fails to deal with
concentration of mass. Indeed, taking the reversed heat flow (79), we readily check
the limit “forgets” to distinguish the point x = 0 since

∫

B1

f(x, uk(x)) dx →

∫

B1

f(x, 0) dx for all f ∈ C0(B1 × R
d).

This happens because the sequence is tested with bounded integrands. The general
idea behind their construction is to test with the largest family of functions where
one can hope to compute the limit in the left-hand side. Due to the L1-boundedness,
the natural candidates are integrands satisfying a uniform linear-growth condition,
that is,

|f(x, z)| ≤ M(1 + |z|) for some M > 0.

However, in spite that Γk
∗
⇀ Γ as in (77), we cannot ensure 〈Γk, f〉 → 〈Γ, f〉 as

before. This owes to the fact that f /∈ C0(Ω×RN ) and hence the attempted pairing
above is not in the correct duality. The turn around to this problem rests in the
following compactification argument. Since Ω is open and bounded, the Stone–Čech
compactification of X = Ω× RN reduces to

βX = Ω× βRN ,

where βRN is the result of glueing the infinity points at every direction to RN .
In this way g ∈ C(βX) if and only if g is uniformly bounded on X , and, it can
be continuously extended at every direction of infinity. Since we imposed a linear
growth condition on f , the function

f̃(x, z) =
f(x, z)

1 + |z|

is uniformly bounded on X . To verify f̃ ∈ C(βX) we require that f̃ can be extended
continuously to βX , or equivalently, that the recession function

f∞(x, ẑ) := lim
x′→x
z′→ẑ
t→∞

f(x′, tz′)

t
exists in R for all x ∈ Ω and ẑ ∈ B

N ,

where BN is the closed unit ball of RN . The next step is to balance the additional
weight coming from the transformation f 7→ f̃ by defining Γ̃k := (id, uk)#[(1 +
|uk|)L

d], which is again a uniformly bounded sequence in M(βX). Neglecting the

pass to further subsequences, we may assume that Γ̃k weak* converges to some
Radon measure Γ̃ on βX . Then, the Riesz–Markov–Kakutani representation theo-
rem ensures that f̃ and Γ̃k are in duality and thus

〈Γk, f〉 = 〈Γ̃k, f̃〉 → 〈Γ̃, f̃〉 .
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Let us now consider the canonical projection π : Ω × βRN → Ω and let λ̃ = π∗Γ̃
be the associated push-forward measure of Γ̃. Similarly to Young’s construction, a
slicing argument and the convergence above yields the limit representation
∫

Ω

f(x, uk(x)) dx →

∫

Ω

(∫

βRN

f̃(x, z) dν̃x(z)

)

dλ̃(x) for all f ∈ Cb(Ω× R
N) .

In fact, one can exploit the topological isomorphism βRN ∼= BN and the idea that
f∞ is the trace of f̃ at infinity to re-write the right-hand side above in the form

∫

Ω

(∫

RN

f(x, z) dνx(z)

)

dx

︸ ︷︷ ︸

pure oscillation

+

∫

Ω

(∫

∂BN

f(x, z)∞ dν∞x (z)

)

dλ(x)

︸ ︷︷ ︸

concentration

.

This construction leads to the following non-rigorous definition. The generalized
Young measure associated to a sequence (uk)k∈N is a triple (λ, ν, ν∞) conformed
by a positive measure λ satisfying

(80) (1 + |uk|) Ω
∗
⇀ λ as measures on Ω,

and two families ν = {νx}, ν
∞ = {ν∞x } of probability measures (parameterized by

x ∈ Ω) satisfying the fundamental property that
∫

Ω

f(x, uk(x)) dx →

∫

Ω

(∫

RN

f(x, z) dνx(z)

)

dx

+

∫

Ω

(∫

∂BN

f(x, z)∞ dν∞x (z)

)

dλ(x)

(81)

for all f ∈ Cb(Ω× R
N ).

Notice that the correspondent probabilistic interpretation for νx remains the
same as in (78). The term λν({x}) can be interpreted as the amount of mass car-
ried by the sequence (|uk|)k∈N about x, and ν∞x (B) ≈ limk→∞ P({uk(y)/|uk|(y) ∈
B : for y about x}) or

(82) νx(B) = lim
δց0

(

lim
k→∞

∫

Bδ(x)

χB(uk/|uk|) dy
)

B ⊂ S
N−1 .

A.0.3. Classical two-scale Young measures. There is yet another extension of the
classical setting which arises from the following question: can we quantify how fast
or how often oscillation occurs with respect to a given parameter? In good part, this
is motivated by materials science problems such as the description of macroscopic
and microscopic properties of composite materials. The mathematical approach is
that of “homogenization” to which a particular model corresponds the description
of weak (or weak*) limits of sequences of the form

(83) f(x, x/ε, uε(x)) with ε ց 0 .

Here, the function f is assumed to be [0, 1]d-periodic in its second argument. One
often refers to x as the macroscopic scale and to x/ε as the microscopic one, thence
also called two-scale analysis. To put in this in context with our previous exam-
ples (75) and (79) we set k−1 to play the role of ε in (83). In the first case oscillations
are uniformly distributed in space with period 2πk−1, while in the second example
we can argue “most” of the mass carried by uk is concentrated in a neighborhood of
radius k−1 around the origin. In general, such information is not recorded by gener-
alized Young measures. This is portrayed by the following 1-dimensional example.
Fix α > 0, and consider the purely oscillatory sequence

uα,ε = sin(ε−αx) k = 1, 2, . . . .
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Clearly, each α significantly changes the scale at which oscillations occur as k tends
to ∞. However, a change of variables shows that regardless of the value of α, the
associated Young measure to (uα,ε)ε is given by the homogeneous family {νx}x∈R

where νx = δg for every x ∈ R and δg is the probability measure satisfying

〈δg, ϕ〉 :=
1

2π

∫ 2π

0

ϕ(sin y) dy for all ϕ ∈ Cc(R).

Hence, the search for a Young measure able to distinguish different length-scales
of convergence (one that would explicitly depend on α in the previous example).
Taking a step towards the solution of this problem, Pedregal introduced the notion
of two-scale Young measure as a way to represent weak limits of equi-integrable
sequences of the form (83). Let us briefly recall the the ideas behind Pedregal’s
construction. First, let K ⊂ Rd be a compact set and consider an additional
sequence {vε : Ω → K}. Then, extend the original equi-integrable sequence (uε)ε
to the sequence of pairs

( ( vε , uε ) )ε ε ց 0.

This sequence is also equi-integrable and therefore it can be fully analyzed within
the framework of classical Young measures. For the sake of our discussion, we
assume that

uε
Y
→ ν = {νx}x∈Ω ⊂ Prob(RN )(84)

vε
Y
→ ρ = {ρx}x∈Ω ⊂ Prob(K)(85)

(uε , vε )
Y
→ σ = {σx}x∈Ω ⊂ Prob(Ω×K),(86)

where “
Y
→ ” means the sequence in the left hand-side generates the Young measure

in the right-hand side in the sense of (76). Since we can recover vε by projecting into
the first coordinate of the pair (vε, uε), a well-known disintegration argument yields
the existence of a family of probability measures ν̃ = {ν̃x,ξ}x∈Ω,ξ∈K ⊂ Prob(K)
such that

(87) σx = ρx ⊗ ν̃x,ξ, (x, ξ) ∈ K × Ω.

If the sequences (vε)ε, (uε)ε oscillate at different length-scales, for instance when
one oscillates considerably faster than the other (as ε ↓ 0), then the semi-product
(87) simplifies to the classical product

(88) σx = ρx ⊗ νx where σx(E × F ) = ρx(E) · νx(F ),

which does not contain any additional information on ν. However, if vε and uε

oscillate at a comparable length-scale (for small ε’s), then the joint Young measure
σ will record how “uε compares to vε” at the length-scale where both of their
oscillations interact. A priori, one may consider any candidate for the test functions
(vε). For example, information on the oscillation of uε at ε-length-scale in the
direction of a fixed vector ζ ∈ Rd may be captured by considering the indicator
functions

vε(x) = χ[0,1/2)

(〈 (x · ζ)

ε
+ a

〉)

, a ∈ R
d,

where for a point x ∈ Ω ⊂ Rd we have denoted by 〈x 〉 its representative class in
K = Td (the flat d-dimensional torus). Motivated by problems in homogenization
theory, in particular the behavior of sequences of the form (83), Pedregal studied
(classical) Young measures generated by sequences of pairs

wε(x) :=
{〈 x

ε

〉

, uε(x)
}

,

and called the resulting family ν̃ = {ν̃x,ξ}x∈Ω,ξ∈Td in (87), the two-scale Young
measure generated by {uε}. Since the Young measure generated by the sequence
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(〈 q/ε 〉)ε is precisely the Lebesgue measure restricted to Td (as the measure smears
evenly throughout the torus), then (87) reads

(89) σx = (L d
T
d)⊗ ν̃ξ,x.

On the other hand wε
Y
→ σ, and hence the identity above leads to the limit repre-

sentation
∫

Ω

f(x, x/ε, uε(x)) dx →

∫

Ω

∫

Td×RN

f(x, ξ, z) dσx(ξ, z)

=

∫

Ω

(∫

Td

(∫

RN

f(x, ξ, z) dν̃x,ξ(z)

)

dξ

)

dx,

which holds for all continuous integrands f : Ω× Td × RN → R with uniform RN -
linear growth in its third component. This comprises the construction of two-scale
Young measures.
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