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Abstract. We propose a new least squares finite element method to solve the Poisson equation. By

using a piecewisely irrotational space to approximate the flux, we split the classical method into two

sequential steps. The first step gives the approximation of flux in the new approximation space and
the second step can use flexible approaches to give the pressure. The new approximation space for

flux is constructed by patch reconstruction with one unknown per element consisting of piecewisely
irrotational polynomials. The error estimates in the energy norm and L2 norm are derived for the flux

and the pressure. Numerical results verify the convergence order in error estimates, and demonstrate

the flexibility and particularly the great efficiency of our method.
keywords: Poisson equation, Patch reconstructed, Irrotational polynomial space, Discontinuous least

squares finite element method.

1. Introduction

The least squares finite element method (LSFEM) is a sophisticated technique for solving the partial
differential equation. For second-order elliptic problems, we refer to [11, 18, 12, 24, 4], for the Navier-
Stokes problem, we refer to [9, 7, 13]. For an overview of the least squares finite element methods, we refer
to [10] and the references therein. Different from the Galerkin method, the lease squares method is based
on the minimization of the L2-norm residual over a proper approximation space. An immediate advantage
is the symmetric positive definite resulting linear system, which has made the method attractive in several
fields. Instantly, one may see the condition number of the resulting linear system is squared due to the
formation of the approximation. To relieve the curse due to the condition number, one may write the
equation into low order formation. Taking the Poisson equation as an example, we may introduce a flux
variable to write it into the mixed formation, resulting a system coupled by the flux and pressure. Though
the mixed form is helpful in reducing condition number, more degree of freedoms(DOF) are introduced
to achieve the same accuracy.

Discontinuous Galerkin(DG) methods have received massive attention in the past two decades due to
its great flexibility in mesh partition and easy implementation of the approximation spaces especially
for the spaces of high order. We refer to the review paper [3] and the references therein. Using the
approximation space from the DG methods, discontinuous least squares (DLS) finite element methods
have been developed in [26, 6, 5] for solving the elliptic system. In [7, 8], the authors extend the DLS
finite element methods to the Stokes problem in velocity-vorticity-pressure form. The same as the least
squares methods using continuous approximation space, the technique to write the equation into low order
system is adopted in DLS methods either to reduce the condition number of resulting linear systems. To
achieve the high order accuracy, discontinuous finite element space requires a huge number of degrees of
freedom which leads to a very large linear system [17, 27] in comparison to the methods using continuous
approximation spaces. The coupling of the variables in the mixed form and the increasing of the number
of DOFs make one hard to satisfy with its efficiency.

In this paper, a new least squares finite element method is proposed to solve the Poisson equation.
The novel point is that we split the solver into two sequential steps. This is motivated from the idea in [5]
to decouple the least-squares-type functional into two subproblems. In the first step, we approximate the
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flux still using a discontinuous approximation space. This space is the piecewise irrotational polynomial
space, which is a generalization of the reconstructed space proposed in [21, 20]. The new space is obtained
by solving a local least squares problem based on the irrotational polynomial bases and only one unknown
locates inside each element. With such a space, we makes the idea in [5] to decouple the flux and the
pressure implementable. For the flux, the optimal error estimate with respect to the energy norm is
derived. We can only prove the suboptimal convergence rate in L2 norm for the flux until now, while in
numerical experiments we obverse the optimal convergence behavior for the space of odd order.

Once we get the numerical approximation to the flux, one then could use the numerical flux to obtain
the pressure in a very flexible manner. As a demonstration, we adopt the standard C0 finite element
space to solve the pressure. We give the error estimates of the pressure in both energy norm and L2 norm.
By a series of numerical examples, we at first verify the convergence order given in the error estimate
and illustrate the flexibility we inherit from the DG method. Particularly, by the comparison [17] of
the number of DOFs used to achieve the same numerical error, we show that our method has a great
saving in DOFs compared to the standard DLS finite element method. Consequently, by the decoupling
of the flux and the pressure and by the saving in the number of DOFs, a much better efficiency could be
attained by our method.

The rest of this paper is organized as follows. In Section 2, we review the standard DLS finite element
method and present the corresponding error estimates. In Section 3, we introduce a reconstruction
operator to define the piecewise irrotational approximation space and we give the approximation property
of the new space. In Section 4, the approximation to the flux and the pressure of the Poisson problem is
proposed, and we derive the error estimates for both flux and pressure in energy norm and L2 norm. In
Section 5, we present the numerical examples on meshes with different geometry to verify the convergence
order in the error estimates. Besides, we make a comparison of number of DOFs respect to the numerical
error between our method and the method in Section 2 to show the great efficiency of our method.

2. Discontinuous Least Squares Finite Element Method

Let Ω be a bounded polygonal domain in Rd(d = 2, 3). Let Th be a partition of Ω into polygonal
(polyhedral) elements. We denote by E ih the set of interior element faces of Th and by Ebh the set of the
element faces on the boundary ∂Ω, thus the set of all element faces Eh = Ebh ∪ E ih. The diameter of an
element K is denoted by hK = diam(K), ∀K ∈ Th and the size of the face e is he = |e|, ∀e ∈ Eh. We
denote h = hmax = maxK∈Th hK . It is assumed that the elements in Th are shape-regular according to
the conditions specified in [1], which read: there are

• two positive numbers N and σ which are independent of h;

• a compatible sub-decomposition T̃h consisting of shape-regular triangles;

such that

• any element K ∈ Th admits a decomposition T̃h|K which is composed of less than N shape-regular
triangles;

• the triangle K̃ ∈ T̃h is shape-regular in the sense of that the ratio between hK̃ and ρK̃ is bounded

by σ: hK̃/ρK̃ ≤ σ where ρK̃ is the radius of the largest ball inscribed in K̃.

The regularity conditions could lead to some useful consequences which are easily verified:

M1 There exists a positive constant σs such that σvhK ≤ he for any element K and every edge e of
K;

M2 [trace inequality] There exists a positive constant C such that

(1) ‖v‖2L2(∂K) ≤ C
(
h−1
K ‖v‖

2
L2(K) + hK‖∇v‖2L2(K)

)
, ∀v ∈ H1(K).

M3 [inverse inequality] There exists a positive constant C such that

(2) ‖∇v‖L2(K) ≤ Ch−1
K ‖v‖L2(K), ∀v ∈ Pm(K),
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where Pm(·) is the polynomial space of degree ≤ m.

Next, we introduce the standard trace operators in the discontinuous Galerkin (DG) framework [3]. Let
v be a scalar- or vector-valued function and e ∈ E ih shared by two adjacent elements K+ and K− with the
unit outward normal n+ and n− corresponding to ∂K+ and ∂K−, respectively. We define the average
operator {·} and the jump operator [[·]] as

{v} =
1

2
(v|K+ + v|K−) , ∀e ∈ E ih,

and

[[v]] = v|K+n+ + v|K−n−, [[v ⊗ n]] = v|K+ ⊗ n+ + v|K− ⊗ n−, ∀e ∈ E ih.
In the case e ∈ Ebh, {·} and [[·]] are modified as

{v} = v, [[v]] = vn, [[v ⊗ n]] = v ⊗ n, ∀e ∈ Ebh,

where n denotes the unit outward normal to e.
Throughout the paper, let us note that C and C with a subscript are generic constants which may be

different from line to line but are independent of the mesh size, and we follow the standard definitions
for the spaces: L2(D), Ht(D), Ct(D), L2(D) := [L2(D)]d, Ht(D) = [Ht(D)]d, Ct(D) = [Ct(D)]d(t ≥ 0)
and we define

H(curl0;D) ,
{
v ∈ L2(D) | ∇ × v = 0

}
.

The problem considered in this article is the Poisson’s equation: seek u such that

(3)
−∆u = f, in Ω,

u = g, on ∂Ω.

The first step of usual least squares finite element methods [26, 6] is to write the problem (3) into an
equivalent mixed form: seek p and u such that

(4)

p−∇u = 0, in Ω,

−∇ · p = f, in Ω,

u = g, on ∂Ω.

In the mixed form, we refer u as the pressure and p as the flux later on based on the terminology of
the background of this equation in fluid dynamics. Here we introduce two discontinuous approximation
spaces: V mh for the pressure u and Wm

h for the flux q, which are defined as below:

V mh =
{
vh ∈ L2(Ω) | vh|K ∈ Pm(K), ∀K ∈ Th

}
,

Wm
h =

{
qh ∈ L2(Ω) | qh|K ∈ [Pm(K)]

d
, ∀K ∈ Th

}
,

where m is a positive integer. We equip these two approximation spaces with the following norms, ‖ · ‖u
for V mh and ‖ · ‖p for Wm

h , respectively, as

‖vh‖2u ,
∑
K∈Th

‖∇vh‖2L2(K) +
∑
e∈Eh

h−1‖[[vh]]‖2L2(e), ∀vh ∈ V mh ,

‖qh‖2p ,
∑
K∈Th

(
‖∇ · qh‖2L2(K) + ‖qh‖2L2(K)

)
+
∑
e∈Eih

h−1‖[[qh]]‖2L2(e), ∀qh ∈Wm
h .

The standard least squares finite element method based on mixed form (4) reads [26]: find (uh,ph) ∈
V mh ×Wm

h such that

(5) Jh(uh,ph) = inf
(vh,qh)∈Vm

h ×W
m
h

Jh(vh,qh),
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where Jh(·, ·) is the least squares functional which is defined as

(6)

Jh(vh,qh) ,
∑
K∈Th

(
‖∇ · qh + f‖2L2(K) + ‖∇vh − qh‖2L2(K)

)
+
∑
e∈Eih

1

h
‖[[vh]]‖2L2(e) +

∑
e∈Eih

1

h
‖[[qh ⊗ n]]‖2L2(e) +

∑
e∈Ebh

1

h
‖vh − g‖2L2(e).

To solve the minimization problem (5), one has its corresponding variational equation which takes the
form: find (uh,ph) ∈ V mh ×Wm

h such that

(7) ah(uh,ph; vh,qh) = lh(vh,qh), ∀(vh,qh) ∈ V mh ×Wm
h ,

where the bilinear form ah(·; ·) and the linear form lh(·) are defined by

ah(uh,ph; vh,qh) =
∑
K∈Th

(∫
K

∇ · ph∇ · qhdx+

∫
K

(∇uh − ph)(∇vh − qh)dx

)
+
∑
e∈Eih

∫
e

1

h
[[u]][[v]]ds+

∑
e∈Eih

∫
e

1

h
[[ph ⊗ n]][[qh ⊗ n]]ds+

∑
e∈Ebh

∫
e

1

h
uhvhds,

and

lh(vh,qh) =
∑
K∈Th

∫
K

f∇ · qhdx+
∑
e∈Ebh

1

h

∫
e

gvhds.

The coercivity of the bilinear form ah(·; ·) are given in [26, Lemma 3.1] as

Lemma 1. For any (vh,qh) ∈ V mh ×Wm
h , there exists a constant C such that

(8) ah(vh,qh; vh,qh) ≥ C
(
‖vh‖2u + ‖qh‖2p

)
.

The uniqueness of the solution to (7) instantly follows from Lemma 1 and the trivial boundedness of
ah(·; ·). Further, it is direct to derive the error estimate with respect to the norms ‖ · ‖u and ‖ · ‖p by the
approximation properties of spaces V mh and Wm

h [26, Theorem 4.1].

Theorem 1. Let uh×qh ∈ V mh ×Wm
h be the solution to (8), and assume the exact solution u ∈ Hm+1(Ω)

and q ∈ Hm+1(Ω), then there exists a constant C such that

(9) ‖u− uh‖u + ‖q− qh‖p ≤ Chm
(
‖u‖Hm+1(Ω) + ‖q‖Hm+1(Ω)

)
.

3. Approximation Space with Irrotational Basis

In this section, we follow the idea in [20, 19] to define an approximation space using a patch reconstruc-
tion operator. Purposely, the reconstruction operator we propose here will use the irrotational basis, thus
the approximation space obtained is piecewise rotation free. With this new approximation space, we will
decouple the minimization problem (6) into two sub-problems, that we can numerically solve p at first
and then solve u. Let us introduce an irrotational space Sm which plays a key role in the construction of
the operator,

Sm(D) =
{
v ∈ [Pm(D)]d | ∇ × v = 0

}
.

For the irrotational space, we have that:
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Lemma 2. For ∀q ∈ Hm+1(K) ∩H(curl0,K), there exists a constant C such that there is a polynomial
q̃h ∈ Sm(K) such that

(10) ‖q− q̃h‖L2(K) + hK‖∇ (q− q̃h) ‖L2(K) ≤ Chm+1
K ‖q‖Hm+1(K).

Proof. Since H(curl0,K) = ∇H1(K) [16], there exists a v ∈ Hm+2(K) such that q = ∇v. Let ṽ ∈
Pm+2(K) be the standard nodal interpolation polynomial of v, and let q̃h = ∇ṽh. The inequality (10)
directly follows from the approximation properties of ṽh. �

With the partition Th, we define a reconstruction operator from C0(Ω) to the piecewise irrotational
polynomial space. For any element K ∈ Th, we prescribe a point xK ∈ K, referred as the sampling node
later on, which is preferred to be the barycenter of K. Then, for each element K we construct an element
patch S(K) which is an agglomeration of elements that contain K itself and some elements around K.
There are a variety of approaches to build the element patch and in this paper we agglomerate elements
to form the element patch recursively. For element K, we first let S0(K) = {K} and we define St(K) as

St(K) = St−1(K) ∪
{
K ′ | ∃K̃ ∈ St−1(K) s.t. K ′ ∩ K̃ = e ∈ Eh

}
, t = 1, 2, · · ·

In the implementation of our code, at the depth t we enlarge St(K) element by element and once St(K)
has collected sufficiently large number of elements we stop the recursive procedure and let S(K) = St(K),
otherwise we let t = t+ 1 and continue the recursion. The cardinality of S(K) is denoted by #S(K).

Further, for element K we denote by IK the set of sampling nodes located inside the element patch
S(K),

IK ,
{
xK̃ | ∀K̃ ∈ S(K)

}
.

For any function f ∈ C0(Ω) ∩H(curl0; Ω) and an element K ∈ Th, we seek a polynomial RmKf of degree
m defined on S(K) by solving the following least squares problem:

(11) Rmf = arg min
v∈Sm(S(K))

∑
x

K̃
∈IK

|v(xK̃)− f(xK̃)|2.

We note that the existence of the solution to (11) is obvious but the uniqueness of the solution depends
on the position of the sampling nodes in IK , here we follow [20] to state the following assumption:

Assumption 1. For all element K ∈ Th and v ∈ Sm(S(K)),

v|IK = 0 implies v|S(K) ≡ 0.

This assumption demands the number #S(K) shall be greater than dim(Sm)/d and excludes the
situation that all the points in IK lie on an algebraic curve of degree m. Hereafter, we always require
the assumption holds.

Due to the linear dependence of the solution (11), a global reconstruction operator Rm for f can be
defined by restricting the polynomial RmKf on K:

(Rmf)|K = (RmKf)|K , ∀K ∈ Th.
It is clear that the operator Rm embeds the space C0(Ω) ∩H(curl0; Ω) to a piecewise irrotational poly-
nomial space of degree m, and we denote by Um

h the image of the operator Rm. In Appendix, we give
more details about our reconstructed space and the computer implementation.

We next focus on the approximation property of the operator Rm. For element K, we define a constant

Λ(m,S(K)) = max
v∈Pm(S(K))

maxx∈S(K) |v(x)|
maxx∈IK |v(x)|

.

We note that under some mild and practical conditions about S(K), the Λ(m,S(K)) has a uniform
upper bound Λm, which plays an important role in the approximation property analysis. We refer to
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[21, 20] for the conditions and more details about the constant Λ(m,S(K)) and the uniform upper bound.
Besides, under such conditions the Lemma 2 could be generalized as

Lemma 3. For any function q ∈ Hm+1(S(K)) ∩ H(curl0, S(K)), there exists a constant C such that
there is a polynomial q̃h ∈ Sm(S(K)) such that

(12) ‖q− q̃h‖L2(S(K)) + hK‖∇ (q− q̃h) ‖L2(S(K)) ≤ Chm+1
K ‖q‖Hm+1(S(K)).

Proof. It directly follows from [20, Assumption A and Property M3]. �

With Λm, let us state the approximation property of the operator RmK .

Theorem 2. Let f ∈ Hm+1(Ω) ∩H(curl0; Ω) and K ∈ Th, there exists a constant C such that

(13)
‖f −RmKf‖Hq(K) ≤ CΛmh

m+1−q
K ‖f‖Hm+1(S(K)), q = 0, 1,

‖∇q(f −RmKf)‖L2(∂K) ≤ CΛmh
m+1−q−1/2
K ‖f‖Hm+1(S(K)), q = 0, 1.

Proof. The estimates directly follows the proof of [20, Lemma 2.4] and the Lemma 3. �

4. Sequential Least Squares Finite Element Approximation

Let us define a new functional Jp
h (·) by

(14)

Jp
h (qh) ,

∑
K∈Th

‖∇ · qh + f‖2L2(K)+
∑
e∈Eih

1

h
‖[[qh ⊗ n]]‖2L2(e)

+
∑
e∈Ebh

1

h
‖qh × n−∇g × n‖2L2(e).

The terms in Jp
h (qh) include the part related to the flux in (6) and the term on boundary. We minimize

this functional in Um
h to have an approximate flux. The corresponding minimization problem reads: find

ph ∈ Um
h such that

(15) Jp
h (ph) = inf

qh∈Um
h

Jp
h (qh).

The Euler-Lagrange equation of this minimization problem is as: find ph ∈ Um
h such that

(16) aph(ph,qh) = lph(qh), qh ∈ Um
h ,

where the bilinear form aph(·, ·) is

aph(ph,qh) =
∑
K∈Th

∫
K

∇ · ph∇ · qhdx+
∑
e∈Eih

∫
e

1

h
[[ph ⊗ n]][[qh ⊗ n]]ds

+
∑
e∈Ebh

∫
e

1

h
(ph × n) · (qh × n)ds,

and the linear form lph(·) is

lph(qh) =
∑
K∈Th

∫
K

f∇ · qhdx+
∑
e∈Ebh

∫
e

1

h
(ph × n) · (∇g × n)ds.

Let

(17) |||qh|||2p ,
∑
K∈Th

‖∇ · qh‖2L2(K) +
∑
e∈Eih

1

h
‖[[qh ⊗ n]]‖2L2(e) +

∑
e∈Ebh

1

h
‖qh × n‖2L2(e)
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for ∀qh ∈ Um
h + H1(Ω) ∩H(curl0; Ω). The following lemma shows that ||| · |||p actually defines a norm on

the space Um
h + H1(Ω) ∩H(curl0; Ω), referred as the energy norm later on.

Lemma 4. For any qh ∈ Um
h + H1(Ω) ∩H(curl0; Ω), there exists a constant C such that

(18) ‖qh‖L2(Ω) ≤ C|||qh|||p.

Proof. The idea follows [6, Lemma 1] to apply the orthogonal decomposition of L2(Ω). We only proof for
the case d = 2 and it is almost trivial to extend the result for three dimensional case. Since qh ∈ L2(Ω),
we let φ ∈ H1(Ω)\R be the only solution of

(∇× φ,∇× χ) = (qh,∇× χ), ∀χ ∈ H1(Ω).

This solution φ satisfies

−∆φ = ∇× qh, in H−1(Ω).

Applying the Green’s formula, we have

0 = (qh −∇× φ,∇× χ) = ((qh −∇× φ)× n, χ)L2(∂Ω) , ∀χ ∈ H1(Ω).

Thus there exists v ∈ H1
0 (Ω) such that ∇v = qh −∇× φ [16]. Besides we have the stability estimates

(19) ‖χ‖H1(Ω) ≤ C‖qh‖L2(Ω), ‖v‖H1(Ω) ≤ C‖qh‖L2(Ω).

Further, we use the decomposition to obtain

‖qh‖2L2(Ω) =

( ∑
K∈Th

∫
K

qh · ∇vdx+

∫
K

qh · ∇ × χdx

)

=
∑
K∈Th

(∫
∂K

vqh · nds−
∫
K

v∇ · qhdx+

∫
∂K

χqh × nds

)
.

=
∑
e∈Eih

∫
e

(v[[qh · n]] + χ[[qh × n]]) ds+
∑
e∈Ebh

∫
e

χqh × nds−
∫
K

v∇ · qhdx

And we have that∑
e∈Eih

∫
e

(
‖[[qh · n]]‖2L2(e) + ‖[[qh × n]]‖2L2(e)

)
ds ≤ C

∑
e∈Eih

∫
e

‖[[qh ⊗ n]]‖2L2(e)ds.

Using the Cauchy-Schwarz inequality, trace inequality (1) and the stability estimate (19) could yield the
estimate (18), which completes the proof. �

Since for ∀qh ∈ Um
h +H1(Ω)∩H(curl0; Ω) we have aph(qh,qh) = |||qh|||2p, it is implied that the problem

(16) has a unique solution. Moreover, we could establish the convergence result with respect to the norm
||| · |||p.

Theorem 3. Let the solution p ∈ Hm+1(Ω)∩H(curl0; Ω) and let ph ∈ Um
h be the solution to (16), then

we have

(20) |||p− ph|||p ≤ Chm‖p‖Hm+1(Ω).

Proof. Since ph minimizes the problem (15) and [[p⊗ n]] = 0, we have

|||p− ph|||2p = Jp
h (ph) ≤ Jp

h (Rmp) = |||p−Rmp|||2p.

Therefore, we only need to bound |||p−Rmp|||p.
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By the approximation (13) and trace inequality (1), we obtain that for element K,

‖∇ · p−∇ · Rmp‖L2(K) ≤ ChmK‖p‖Hm+1(S(K)),

and
‖(p−Rmp)⊗ n‖2L2(∂K) ≤ C‖p−Rmp‖2L2(∂K)

≤ C(h−1
K ‖p−Rmp‖2L2(K) + hK‖∇(p−Rmp)‖2L2(K))

≤ Ch2m+1
K ‖p‖Hm+1(S(K)).

The inequality (20) is concluded by summing over all elements in the partition, which completes the
proof. �

After getting the numerical flux ph, the next step is to plug it into the functional (6) to calculate the
pressure u. We define the functional Juh (·) as below:

(21) Juh (v) ,
∑
K∈Th

‖∇v − ph‖2L2(K) +
∑
e∈Eih

1

h
‖[[v]]‖2L2(e) +

∑
e∈Ebh

1

h
‖v − g‖2L2(e).

To get an approximation to u, one may solve the minimization problem for the functional Juh (·) in a
certain approximation space. We note that it is very flexible to choose the approximation space for u.
For instance, one may use the discontinuous finite element space V mh or the patch reconstructed space
proposed in [20]. Here we solve the pressure u with the standard Lagrange finite element space, which is
defined as

V̂ mh , {vh ∈ C(Ω) | vh|K ∈ Pm(K), ∀K ∈ Th} .
Due to the continuity of the space V̂ mh , the functional Juh (v) is simplified as

(22) Juh (v) =
∑
K∈Th

‖∇v − ph‖2L2(K) +
∑
e∈Ebh

1

h
‖v − g‖2L2(e), ∀v ∈ H1(Ω).

The following minimization problem gives the numerical solution to the pressure u in V̂ mh :

min
vh∈V̂m

h

Juh (vh).

The discrete variational problem equivalent to the minimization problem reads: find uh ∈ V̂ mh such that

(23) auh(uh, vh) = luh(vh), ∀vh ∈ V̂ mh ,

where the bilinear form auh(·, ·) is given by

auh(uh, vh) =
∑
K∈Th

∫
K

∇uh · ∇vhdx+
∑
e∈Ebh

∫
e

1

h
uhvhds,

and the linear form luh(·) is given by

luh =
∑
K∈Th

∫
K

∇vh · phdx+
∑
e∈Ebh

∫
e

1

h
vhgds.

Analogous to the procedure we solve the flux p, we define ||| · |||u as

|||v|||2u ,
∑
K∈Th

‖∇v‖2L2(K) +
∑
e∈Ebh

1

h
‖v‖2L2(e), ∀v ∈ H1(Ω).

The inequality ‖v‖L2(Ω) ≤ C|||v|||u [2, Lemma 2.1] ensures ||| · |||u is actually a norm on H1(Ω), which

actually guarantees the unisolvability of the problem (23). ||| · |||u is referred as the energy norm on V̂ mh
since now on. Further, the error estimate with respect to ||| · |||u is given in the theorem below as:
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Theorem 4. Let the solution u ∈ Hm+1(Ω) and let uh ∈ V̂ mh be the solution to (23), then we have

(24) |||u− uh|||u ≤ C‖p− ph‖L2(Ω) + Chm‖u‖Hm+1(Ω),

where ph is the solution to (15).

Proof. Let uI ∈ V̂ mh be the interpolant of u and we have that

Juh (uh) ≤ Juh (uI)

|||u− uh|||2u ≤ C(Juh (uI) + ‖∇u− ph‖2L2(Ω))

≤ C
(
|||u− uI |||2u + ‖p− ph‖2L2(Ω)

)
.

The approximation property of the space V̂ mh gives us [14]:

|||u− uI |||u ≤ Chm‖u‖Hm+1(Ω),

which yields the estimate (24) and completes the proof. �

Then we can have the error estimate under L2-norm:

Theorem 5. Let the solution u ∈ Hm+1(Ω) and let uh ∈ V̂ mh be the solution to (23), then we have

(25) ‖u− uh‖L2(Ω) ≤ C0‖p− ph‖L2(Ω) + C1h
m+1‖u‖Hm+1(Ω),

where ph is the solution to (15).

Proof. Let eh = u− uh and from the definition of auh(·, ·), one see that

auh(eh, vh) = (p− ph, vh), ∀vh ∈ V̂ mh .

We first show that ‖eh‖H−1/2(∂Ω) ≤ C0h|||eh|||u + C1h‖p− ph‖L2(Ω), where

‖eh‖H−1/2(∂Ω) = sup
τ∈H1/2(∂Ω)

(eh, τ)L2(∂Ω)

‖τ‖H1/2(∂Ω)

.

We let α ∈ H1(Ω) which solves ∆α = 0 in Ω, α = τ on ∂Ω, and we let αI ∈ V̂ mh be interpolant of α.
Then we have that

(eh, τ)L2(∂Ω) = h(h−1(eh, α)L2(∂Ω))

= h(h−1(eh, α)L2(∂Ω) − auh(eh, αI)) + h(p− ph, αI)

= h(h−1(eh, α− αI)L2(∂Ω) − (∇eh,∇αI)L2(Ω)) + h(p− ph, αI)

≤ C0h|||eh|||u(‖h(α− αI)‖L2(∂Ω) + ‖∇αI‖L2(Ω)) + C1h‖p− ph‖L2(Ω)‖αI‖L2(Ω)

≤ C0h|||uh|||u‖α‖H1(Ω) + C1h‖p− ph‖L2(Ω)‖α‖H1(Ω).

We complete the proof by the regularity estimate ‖α‖H1(Ω) ≤ C‖τ‖H1/2(∂Ω).

Given ψ ∈ L2(Ω) and we let w ∈ H2(Ω) which solves −∆w = ψ in Ω, w = 0 on ∂Ω. We denote by

wI ∈ V̂ mh the interpolant of w. Then we could deduce that

(eh, ψ) = (∇eh,∇w)−
(
eh,

∂w

∂n

)
L2(∂Ω)

= auh(eh, w − wI) + (p− ph, wI)−
(
eh,

∂w

∂n

)
L2(∂Ω)

≤ Ch|||eh|||‖w‖H2(Ω) + ‖p− ph‖L2(Ω)‖w‖H2(Ω) + ‖eh‖H−1/2(∂Ω)

∥∥∥∥∂w∂n

∥∥∥∥
H1/2(∂Ω)

.

Let ψ = eh, and combining the bound of ‖eh‖H−1/2(Ω), the regularity estimate ‖w‖H2(Ω) ≤ C‖ψ‖L2(Ω)

and the approximation property of |||eh|||u could yield the estimate (25), which completes the proof. �
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d = 2
m 1 2 3

#S(K) 6 10 16

d = 3
m 1 2 3

#S(K) 8 15 25

Table 1. #S(K) for 1 ≤ m ≤ 3.

Remark 1. Until now the method we established is only for the problem with the Dirichlet boundary
condition. For the Neumann boundary condition ∇u · n = g on ∂Ω, the boundary term in (14) and (22)
should be modified as ∑

e∈Ebh

1

h
‖qh · n− g‖2L2(e) and

∑
e∈Ebh

1

h

∥∥∥∥ ∂v∂n
− g
∥∥∥∥2

L2(e)

,

respectively. It is almost trivial to extend our method in this section to the problem with the Neumann
boundary condition.

5. Numerical Results

In this section, we conduct some numerical experiments to show the accuracy and efficiency of the
proposed method in Section 4. For simplicity, we select the cardinality #S(K) uniformly and we list a
group of reference values of #S(K) for different m in Tab. 1.

5.1. Convergence order study. We first examine the numerical convergence to verify the theoretical
prediction and exhibit the flexibility of our method.
Example 1. We first consider a two-dimensional Poisson problem with Dirichlet boundary condition on
the domain Ω = [0, 1]× [0, 1]. The exact solution u(x, y) is taken as

u(x, y) = sin(2πx) sin(4πy),

and the source term f and the boundary data g are chosen accordingly.
We solve this problem on a series of triangular meshes (see Fig. 1) with mesh size h = 1/10, 1/20,

c . . . , 1/80 and we first use the space pairs Um
h × V̂ mh (1 ≤ m ≤ 3) to solve the flux and pressure. In this

setting, from (25) we could see that the optimal convergence order of uh depends on the convergence rate
of ‖p − ph‖L2(Ω). Although, we can not develop a theoretical verification for the optimal convergence

of ph under L2 norm, the computed convergence rates of ‖p − ph‖L2(Ω) seem optimal for odd m. The

L2 norm and the energy norm of the errors in the approximation to the exact solution are gathered
in Tab. 2. We could observe that for odd m, the errors ‖u − uh‖L2(Ω), |||u − uh|||u, ‖p − ph‖L2(Ω) and
|||p − ph|||p converge to zero optimally as the mesh is refined. For even m, the orders of convergence
under L2-norm are suboptimal. Moreover, from the estimate (25) one could observe that if we decrease
the space approximating pressure by one order, we could obtain the optimality for u approximations.

The errors with the space pairs Um
h × V̂ m−1

h are collected in Tab. 3, which clearly shows the optimal
convergence of uh for both measurements. Besides, we note that all the convergence rates are consistence
with the theoretical predictions.
Example 2. In this example, we consider the sample problem as in Example 1. But we use a sequence
of polygonal meshes consisting of elements with various geometries (see Fig. 2), which are generated by
PolyMesher [25]. We only solve the flux, and we present the corresponding errors in the energy norm
and L2 norm and their respective computed rates in Tab. 4. Again we observe the optimal convergence
for both norms when m is odd. For even m, ‖p− ph‖L2(Ω) tends to zero in a suboptimal way. To apply
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Figure 1. The triangular meshes with mesh size h = 1/10 (left) and h = 1/20 for Example 1.

m ‖eu‖L2(Ω) order |||eu|||u order ‖ep‖L2(Ω) order |||ep|||p order

1

1 1.0602e-01 - 2.5550e-00 - 1.1553e-00 - 2.9109e+01 -

2 3.0872e-02 1.80 1.2677e-00 1.01 3.3347e-01 1.80 1.5319e+01 0.93

3 8.3590e-03 1.90 6.3053e-01 1.01 8.7712e-02 1.90 7.9176e+00 0.95

4 2.1548e-03 1.96 3.1463e-01 1.00 2.2647e-02 1.96 4.0133e+00 0.98

5 5.4473e-04 1.98 1.5723e-02 1.00 5.7033e-03 1.98 2.0137e+00 1.00

2

1 5.5862e-02 - 9.3425e-01 - 9.1461e-01 - 8.0168e+00 -

2 1.8898e-02 1.57 2.8628e-01 1.71 2.7402e-01 1.73 1.7807e+00 2.17

3 4.9746e-03 1.93 7.3469e-02 1.93 7.1190e-02 1.95 4.1888e-01 2.08

4 1.2538e-03 1.99 1.8776e-02 1.98 1.8016e-02 1.98 1.0111e-01 2.03

5 3.1393e-04 2.00 4.7137e-03 1.99 4.5126e-03 2.00 2.4633e-02 2.02

3

1 5.2485e-03 - 1.6872e-01 - 1.2492e-01 - 3.7196e+00 -

2 3.9516e-04 3.73 1.9952e-02 3.07 9.2700e-03 3.75 4.6565e-01 2.95

3 2.1869e-05 4.17 2.0437e-03 3.28 5.9833e-04 3.95 6.0447e-02 2.97

4 1.1300e-06 4.27 2.2652e-04 3.17 3.8808e-05 3.95 7.7175e-03 2.97

5 6.0716e-08 4.07 2.7352e-05 3.05 2.4584e-06 3.98 9.7343e-04 2.99

Table 2. Example 1. The errors eu = u−uh, ep = p−ph, and the orders of convergence

with the spaces Um
h × V̂ mh (1 ≤ m ≤ 3).

the method on meshes with different geometry, it is an advantage inherited from the DG method. On
such meshes, the convergence order is agreed with our error estimates again.
Example 3. In this example, we consider the mild wave front problem, which is the Poisson equation on
the unit square with Dirichlet boundary conditions. The data functions f and g are selected such that
the exact solution is

u(x, y) = arctan(α(r − r0)), (x, y) ∈ [0, 1]2,
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m ‖eu‖L2(Ω) order |||eu|||u order ‖ep‖L2(Ω) order |||ep|||p order

2

1 6.8296e-02 - 2.4561e-00 - 9.1461e-01 - 8.0168e+00 -

2 1.7533e-02 1.96 1.2484e-00 0.97 2.7402e-01 1.73 1.7807e+00 2.17

3 4.4126e-03 1.99 6.2683e-01 0.99 7.1190e-02 1.95 4.1888e-01 2.08

4 1.1050e-03 2.00 3.3137e-01 1.00 1.8016e-02 1.98 1.0111e-01 2.03

5 2.7636e-04 2.00 1.5691e-01 1.00 4.5126e-03 2.00 2.4633e-02 2.02

3

1 4.9662e-03 - 3.8263e-01 - 1.2492e-01 - 3.7196e+00 -

2 6.3248e-04 2.97 9.7317e-02 1.97 9.2700e-03 3.75 4.6565e-01 2.95

3 7.9437e-05 2.99 2.4434e-02 1.99 5.9833e-04 3.95 6.0447e-02 2.97

4 9.9415e-06 3.00 6.1151e-03 2.00 3.8808e-05 3.95 7.7175e-03 2.97

5 1.2430e-06 3.00 1.5291e-03 2.00 2.4584e-06 3.98 9.7343e-04 2.99

Table 3. Example 1. The errors eu = u−uh, ep = p−ph, and the orders of convergence

with the spaces Um
h × V̂ m−1

h (2 ≤ m ≤ 3).

Figure 2. The polygonal meshes with 250 elements (left) / 1000 elements (right).

where r =
√

(x− x0)2 + (y − y0)2. The mild wave front uses (x0, y0) = (−0.05,−0.05), r0 = 0.7, α = 10
and it is a problem of near singularities. For this problem, the high-order accuracy is preferred [23]. We
use a sequence of quasi-uniform triangular meshes (see Fig. 3) and we solve the problem with spaces

Um
h × V̂ mh (1 ≤ m ≤ 3). We list the errors in approximation to p and u in Tab. 5. It is clear that the

proposed method yields the same convergence rates as the Example 1, which validates our theoretical
estimates.
Example 4. In this example, we exhibit the performance of the proposed method with the problem with
a corner singularity. We consider the L-shaped domain Ω = [−1, 1]2\[0, 1) × (−1, 0] and we use a series
of triangular meshes, see Fig. 4. Following [22], we let the exact solution be

u(r, θ) = r5/3 sin(5θ/3)

in polar coordinate and impose the Dirichlet boundary condition. The data f and the function g are
chosen accordingly. We notice that u(r, θ) only belongs to H2+s with s < 2/3. In Tab. 6, we list the
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m DOFs ‖ep‖L2(Ω) order ‖ep‖p order

1

500 1.0485e-00 - 2.6456e+01 -
2000 2.7316e-01 1.94 1.3244e+01 0.99
8000 6.5948e-02 2.05 6.5998e-00 1.00
32000 1.6203e-02 2.03 3.2658e-00 1.01

2

500 4.4773e-01 - 6.1493e-00 -
2000 1.2630e-01 1.83 1.3713e-00 2.16
8000 3.0209e-02 2.06 3.3353e-01 2.03
32000 7.4860e-03 2.01 8.2873e-02 2.01

3

500 1.6412e-01 - 4.5508e-00 -
2000 1.0449e-02 3.97 6.2226e-01 2.88
8000 6.3315e-04 4.05 8.1210e-02 2.95
32000 3.8188e-05 4.03 1.0205e-02 2.99

Table 4. Example 2. The errors ep = p− ph, and the orders of convergence with the
spaces Um

h (1 ≤ m ≤ 3).

Figure 3. The triangular meshes with 246 elements (left) and 984 elements (right) for
Example 3.

errors measured in the energy norm and L2 norm for both flux and pressure. Here we observe that
the error |||p − ph|||p decreases at the rate O(h2/3) which matches with the fact that p only belongs to

H5/3−ε(Ω). The computed orders of ‖p−ph‖L2(Ω), |||u−uh|||u and ‖u−uh‖L2(Ω) are about 1. A possible

explanation of the rates may be traced back to the lack of H3-regularity of the exact solution on the
whole domain.
Example 5. We consider a three-dimensional Poisson problem on a unit cube Ω = [0, 1]3. The domain
is partitioned into a series of tetrahedral meshes with mesh size h = 1/5, 1/10, 1/20, 1/40 by Gmsh [15].
The exact solution is taken as

u(x, y, z) = sin(2πx) sin(2πy) sin(2πz),

and the Dirichlet function g and the source term f are taken suitably. We use the spaces Um
h × V̂ mh (1 ≤

m ≤ 3) to approximate p and u, respectively. The numerical results are presented in Tab. 7. We still
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m ‖eu‖L2(Ω) order |||eu|||u order ‖ep‖L2(Ω) order |||ep|||p order

1

1 4.3807e-02 - 4.9822e-01 - 1.1553e-00 - 1.0256e+01 -

2 1.6473e-02 1.41 4.0917e-01 1.03 3.3347e-01 1.80 5.3347e+00 0.95

3 3.5661e-03 2.21 1.9515e-01 1.07 8.7712e-02 1.90 2.6486e+00 1.01

4 8.6682e-04 2.03 9.5962e-02 1.02 2.2647e-02 1.96 1.3231e+00 1.00

5 2.1263e-04 2.03 4.7761e-02 1.00 5.7033e-03 1.98 6.6057e-01 1.00

2

1 1.5200e-02 - 2.9032e-01 - 2.4411e-01 - 5.6918e+00 -

2 5.3703e-03 1.51 9.0132e-02 1.68 8.9263e-02 1.45 1.3870e+00 2.03

3 1.4510e-03 1.89 2.5011e-02 1.85 2.5413e-02 1.82 3.1295e-01 2.10

4 3.6778e-04 1.98 6.5013e-02 2.00 6.7113e-03 1.92 7.1999e-02 2.11

5 9.1211e-05 2.01 1.6380e-03 1.98 1.6989e-03 1.99 1.7550e-02 2.03

3

1 1.0333e-02 - 8.0091e-02 - 2.0391e-01 - 5.8500e+00 -

2 1.1023e-03 3.23 1.2076e-02 2.72 1.7701e-02 3.52 9.7265e-01 2.59

3 6.7612e-05 4.03 1.2368e-03 3.28 1.1398e-03 3.96 1.3999e-01 2.80

4 4.2528e-06 4.00 1.2956e-04 3.26 7.4761e-05 3.93 1.8073e-02 2.96

5 2.2322e-07 4.12 1.4319e-05 3.17 4.7259e-06 3.98 2.2425e-03 3.01

Table 5. Example 3. The errors eu = u−uh, ep = p−ph, and the orders of convergence

with the spaces Um
h × V̂ mh (1 ≤ m ≤ 3).

Figure 4. The triangular meshes with 250 elements (left) and 1000 elements for Example 3.

observe the optimal convergence rate for ph under L2 norm when m is odd, and all computed convergence
orders agree with the theoretical analysis.

5.2. Efficiency comparison. The number of the degrees of freedom of a discretized system is a suitable
indicator for the efficiency, as illustrated by Hughes et al in [17]. In our method, the accuracy of ph
determines the convergence behavior of the pressure. Thus, to show the efficiency of the proposed
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m ‖eu‖L2(Ω) order |||eu|||u order ‖ep‖L2(Ω) order |||ep|||p order

1

1 4.5059e-03 - 1.5490e-01 - 3.9382e-02 - 4.2524e-02 -

2 1.3528e-03 1.73 7.7746e-02 0.99 1.8681e-02 1.07 2.5539e-02 0.73

3 4.0795e-04 1.73 3.8900e-02 1.00 9.3165e-03 1.00 1.5859e-02 0.68

4 1.3376e-04 1.61 1.9563e-02 1.00 4.5537e-03 1.03 9.9689e-03 0.67

5 5.2105e-05 1.36 9.7263e-03 1.00 2.2927e-03 1.00 6.2815e-03 0.67

2

1 2.2627e-03 - 9.3186e-03 - 3.4672e-02 - 5.1619e-02 -

2 6.8183e-04 1.73 2.6548e-03 1.81 1.6061e-02 1.11 2.9373e-02 0.81

3 2.3956e-04 1.51 9.2329e-04 1.52 8.0869e-03 0.99 1.8481e-02 0.67

4 1.0011e-04 1.99 3.7505e-04 1.29 4.0509e-03 1.26 1.1383e-02 0.68

5 4.5381e-05 1.13 1.7137e-04 1.12 2.0293e-03 1.00 7.0855e-03 0.68

3

1 2.5557e-03 - 1.1823e-02 - 4.1292e-02 - 5.7175e-02 -

2 8.6799e-04 1.55 4.1778e-03 1.50 1.9767e-02 1.06 3.0635e-02 0.90

3 3.3653e-04 1.36 1.4712e-03 1.50 9.6459e-03 1.03 1.0801e-02 0.76

4 1.5550e-04 1.13 5.9787e-04 1.29 4.9361e-05 0.98 1.1136e-02 0.68

5 7.5031e-05 1.06 2.8188e-04 1.08 2.5011e-05 0.99 6.9361e-03 0.68

Table 6. Example 4. The errors eu = u−uh, ep = p−ph, and the orders of convergence

with the spaces Um
h × V̂ mh (1 ≤ m ≤ 3).

m ‖eu‖L2(Ω) order |||eu|||u order ‖ep‖L2(Ω) order |||ep|||p order

1

1 2.0159e-01 - 2.6227e-00 - 1.4772e-00 - 2.0737e+01 -

2 6.7739e-02 1.76 1.4117e-00 0.89 4.3453e-01 1.80 1.0927e+01 0.93

3 1.8200e-02 1.90 7.3125e-01 0.95 1.1641e-02 1.90 5.4683e+00 0.99

4 4.6456e-03 1.96 3.6691e-01 1.00 2.9923e-02 1.96 2.7331e+00 1.00

2

1 2.8293e-02 - 7.6111e-01 - 3.6002e-01 - 7.0288e+00 -

2 9.1341e-02 1.63 2.2963e-01 1.73 1.0421e-01 1.79 1.7895e+00 1.97

3 2.5926e-03 1.82 6.1281e-02 1.91 2.8129e-02 1.89 4.6372e-01 1.95

4 6.8012e-04 1.93 1.5021e-02 2.01 7.2823e-03 1.95 1.1599e-01 2.00

3

1 7.2877e-03 - 1.8326e-01 - 1.7658e-01 - 3.0434e+00 -

2 7.3997e-04 3.30 2.1873e-02 3.06 1.3510e-02 3.71 3.9250e-01 2.96

3 5.6061e-05 3.73 2.7168e-03 3.28 9.2336e-04 3.87 5.1203e-02 3.01

4 3.6203e-06 3.96 3.3962e-04 3.17 5.9170e-05 3.96 6.4123e-03 3.00

Table 7. Example 5. The errors eu = u−uh, ep = p−ph, and the orders of convergence

with the spaces Um
h × V̂ mh (1 ≤ m ≤ 3).

method, we make a comparison between the standard least squares discontinuous finite element method
presented in Section 2 and the proposed method by comparing the error of the numerical flux ph.
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For both methods, we select the finite element spaces of equal order for solving the Poisson problem.
Here we solve the problems that are taken from the Example 1 and Example 5 for two and three dimen-
sional case, respectively. We implement the two methods on successively refined meshes. In Fig. 5, we
plot the errors of numerical flux in the DLS energy norm ‖ · ‖p against the number of degrees of freedom
with 1 ≤ m ≤ 3 in two and three dimension. All convergence orders are in perfect agreement with the
theoretical results.

There are two points notable for us. To achieve the same accuracy, the proposed method uses much
less DOFs than the DLS finite element method. The saving of number of DOFs is more remarkable for
higher order approximation. For d = 2, the number of DOFs used in our method is about 36% of that
in DLS method for linear approximation to achieve the same accuracy. Meanwhile, the number of DOFs
used in our method is about 31% and 27% of the number of DOFs used in DLS method for m = 2 and
3, respectively (see Fig. 5). In Fig. 5, one may see that the saving of number DOFs for 3D problems is
even more significant than 2D problems. For d = 3, the percentages of number of DOFs reduce to about
30%, 12%, and 5% of that in DLS method for m = 1, 2, and 3, respectively.

Let us note at last that the numerical flux ph obtained by our method is locally irrotational, which is
a natural property as the gradient of a function.

10
3

10
4

10
5

number of DOFs

10
-4

10
-3

10
-2

10
-1

10
0

10
1

er
ro
r
in

en
er
g
y
n
o
rm

‖
·
‖
p

Our method

DLS method

m = 3

m = 2

m = 1

10
4

10
5

10
6

10
7

number of DOFs

10
-3

10
-2

10
-1

10
0

10
1

er
ro
r
in

en
er
g
y
n
o
rm

‖
·
‖
p

Our method

DLS method

m = 3

m = 2

m = 1

Figure 5. Comparison of the error ‖p−ph‖p in number of DOFs by two methods with
m = 1, 2, 3 in two dimension (left) and three dimension (right).

6. Conclusion

We proposed a sequential least squares finite element method for the Poisson equation. The novel
piecewisely irrotational approximation space is constructed by solving local least squares problem and
we use this space to decouple the least squares minimization problem. We proved the convergences for
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S0(K) = {K} S1(K)

S(K) S2(K)

Figure 6. Build patch for element K with #S(K) = 15

pressure and flux in L2 norm and energy norm. By a series of numerical results, not only the error
estimates are verified, but also we exhibited the flexibility and the great efficiency of our method.
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Appendix A.

In Appendix, we present some details of the reconstruction process. We first give an example of
constructing the element patch in two dimensional case. For element K, the construction of S(K) with
#S(K) = 15 is presented in Fig. 6. Then we give more details about the space Um

h . As we mentioned
before, the operator Rm embeds the space C0(Ω) ∩H(curl0; Ω) to the piecewise irrotational polynomial
space of degree m by solving the local least squares problem. We define wi

K(x) ∈ C0(Ω)(1 ≤ i ≤ d) that

wi
K(x) =

{
ei, x = xK ,

0, x ∈ K̃, K̃ 6= K,
∀K ∈ Th,

where ei is a d × 1 unit vector whose i-th entry is 1. Then Um
h = span{λiK | λ

i
K = Rmwi

K , 1 ≤ i ≤
d, K ∈ Th}, and one can write the operator Rm in an explicit way: for a function g = (g1, · · · , gd) ∈
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C0(Ω) ∩H(curl0; Ω) we have

Rmg =
∑
K∈Th

d∑
i=1

gi(xK)λiK(x).

Clearly, the number of DOFs of our method is always d times the number of elements in partition.
Further, we give some details about the computer implementation of the reconstructed space. We take

the case d = 2 to illustrate. We first outline the bases of the space Sm(D), it is easily verified that for
d = 2,

S1(D) =

{(
1
0

)
,

(
0
1

)
,

(
x
0

)
,

(
0
y

)
,

(
y
x

)}
.

Similarly for m = 2, 3, there is

S2(D) = S1(D)∪
{(

x2

0

)
,

(
2xy
x2

)
,

(
y2

2xy

)
,

(
0
y2

)}
,

S3(D) = S2(D)∪
{(

x3

0

)
,

(
3x2

y

)
,

(
2xy2

2x2y

)
,

(
y3

3xy2

)
,

(
0
y3

)}
.

Then we shall solve the least squares problem (11) on every element. We take K0 and m = 1 for an
instance (see Fig. 7), and we let S(K0) = {K0,K1,K2,K3} where Ki(i = 1, 2, 3) are the adjacent edge-
neighbouring elements of K0. We denote by xi = (xi, yi) the barycenter of the element Ki and we obtain
the collocation points set IK0 = {x0,x1,x2,x3}. Then for the function g = (g1, g2) ∈ C0(Ω)∩H(curl0; Ω)

K0

K1

K2

K3

Figure 7. K and its neighbours

the least squares problem on K0 reads

arg min
a∈R5

3∑
i=0

∥∥∥∥a0

(
1
0

)
+ a1

(
0
1

)
+ a2

(
xi
0

)
+ a3

(
0
yi

)
+ a4

(
yi
xi

)
−
(
g1(xi)
g2(yi)

)∥∥∥∥2

.

It is easy to obtain its unique solution

a = (ATA)−1ATq,

where

A =



1 0 x0 0 y0

0 1 0 y0 x0

1 0 x1 0 y1

0 1 0 y1 x1

1 0 x2 0 y2

0 1 0 y2 x2

1 0 x3 0 y3

0 1 0 y3 x3


, q =



g1(x0)
g2(y0)
g1(x1)
g2(y1)
g1(x2)
g2(y2)
g1(x3)
g2(y3)


.

We notice that the matrix (ATA)−1AT is independent of the function g and includes all information of

the function λiKj
(j = 0, 1, 2, 3, i = 1, 2) on the element K0. Thus we could store the matrix (ATA)−1AT
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for every element to represent our approximation space. The idea of the implementation could be adapted
to the high-order accuracy case and the high dimensional problem without any difficulty.
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