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Abstract. A discrete-to-continuum analysis for free-boundary problems related to crys-

talline films deposited on substrates is performed by Γ-convergence. The discrete model
here introduced is characterized by an energy with two contributions, the surface and the

elastic-bulk energy, and it is formally justified starting from atomistic interactions. The sur-

face energy counts missing bonds at the film and substrate boundaries, while the elastic energy
models the fact that for film atoms there is a preferred interatomic distance different from

the preferred interatomic distance for substrate atoms. In the regime of small mismatches

between the film and the substrate optimal lattices, a discrete rigidity estimate is established
by regrouping the elastic energy in triangular-cell energies and by locally applying rigidity

estimates from the literature. This is crucial to establish pre-compactness for sequences with
equibounded energy and to prove that the limiting deformation is one single rigid motion. By

properly matching the convergence scaling of the different terms in the discrete energy, both

surface and elastic contributions appear also in the resulting continuum limit in agreement
(and in a form consistent) with literature models. Thus, the analysis performed here is a

microscopical justifications of such models.
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1. Introduction

In this paper a discrete model for crystalline films deposited on substrates in the presence of a
mismatch between the parameters of the film and the substrate crystalline lattices is introduced
and a discrete-to-continuum passage is performed by Γ-convergence. Thin films find nowadays an
ever-growing number of applications, such as for optoelectronics, photovoltaic devices, solid oxide
fuel/hydrolysis cells, and any advancement in the modeling of thin films can, in principle, induce
a significant technological innovation. As the obtained continuum Γ-limit of our analysis is in
accordance with the theory of Stress-Driven Rearrangement Instabilities (SDRI) (see [1, 17]), and
in particular with the variational thin-film models introduced in [8, 12, 23, 24], our investigation
represents also a microscopical justification of such models.

The Transition-Layer model and the Sharp-Interface model for epitaxially strained films
introduced in [23, 24] for regular film profiles, and then analytically derived in [8, 12] for general
profiles by Γ-convergence and by relaxation, are characterized by energies displaying both surface
and elastic-bulk terms. Including in the model elastic bulk deformations is crucial in the presence
of a mismatch between the crystalline lattices of the film and the substrate. In fact, even though
the minimum energy configuration for the bulk occurs at a stress-free structure for each material,
the relaxation to the respective elastic equilibria of the two materials leads to a discontinuous
crystalline structure that is associated to an extremely high energy contribution at the interface
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between the film and the substrate. Thus, in order to match the crystalline lattices, bulk
deformations and mass rearrangement take place in the bulk. As a consequence, discontinuities,
such as corrugations or cracks, can be induced at the film profile. This is possible to some extent,
as they have an energetic price in terms of the surface tension that is (at least in the isotropic
case) proportional to the surface area. The resulting configuration is therefore a compromise
between the roughening effect of the elastic energy and the regularizing effect of the surface
energy, with the former prevailing when the thickness of the film is large enough as discussed in
[16].

In the same spirit of the SDRI theory [1, 17] and of [23, 24], also the discrete variational
model here introduced is characterized by an energy Eε that displays both a surface term ESε
and a elastic term Eelε , i.e.,

Eε(y, h) := ESε (y, h) + Eelε (y, h), (1)

where ε > 0 is a scaling parameter, h measures the hight of the film, and y represents the bulk
deformation. More precisely, in the discrete setting we fix a reference lattice L, here chosen
to be a equilateral triangular lattice, and Eε depends on discrete functions h and y denoted
discrete profiles and discrete deformations, respectively, that are defined with respect to εL.
Given the discrete set Sε := εL∩ ((0, L)×{x2 = 0}) for a parameter L > 0 fixed, a film discrete
profile is a function h : Sε → R+ such that the elements in {x = (i, x2) ∈ εL : x2 ∈ (0, h(i))}
are assumed to be film atoms for every i ∈ Sε. We also identify each discrete profile h with a
properly characterized lower-semicontinuous piecewise constant interpolation over the interval
(0, L) so that,

Ω+
h :=

{
(x1, x2) ∈ R2 : 0 < x1 < L, 0 < x2 < h(x1)

}
represents the region occupied by films with profile h. The substrate is instead assumed to
occupy the region Ω− := (0, L) × (−R, 0] ⊂ R2 for some parameter R > 0, with εL ∩ Ω−

representing the reference substrate atoms. Furthermore, we call discrete deformation every
function y : Lε(Ωh)→ R2 where Lε(Ωh) := Lε ∩ Ωh with Ωh := Ω+

h ∪ Ω−.

The surface energy ESε in (3) takes into account the missing bonds at the boundary of Ωh
and it is defined for each discrete profile h by

ESε (h) :=
∑

x∈Lε(Ωh)

εγ(x)(6−#Nε(x)), (2)

where Nε(x) = {x̃ ∈ Lε(Ωh) \ {x} : |x̃− x| ≤ ε or |x̃± (L, 0)− x| ≤ ε} denotes the set of near-
est neighbors (with L-periodic condition) of x ∈ Lε(Ωh), and

γ(x) :=

{
γf if x ∈ Ω+

h ,

γs if x ∈ Ω−

for some positive constants γf and γs depending on the film and substrate material, respectively.
Notice that it would be equivalent to introduce a dependence on discrete deformations y also
in the definition of ESε by considering the sum in (2) as extended over the elements of the
deformed lattice y(Lε(Ωh)), if we restrict to small deformations y, i.e., deformations y that do
not change the topology of the lattice or, in other words, such that #Nε(y(x)) = #Nε(x) for
every x ∈ Lε(Ωh).

The ε-rescaled elastic energy Eelε in (3), which model the elastic energy contribution due
to elongation and compression of bonds, is defined on pairs (y, h) by

Eelε (y, h) :=
∑

x∈Lε(Ωh)

∑
x̃∈Nε(x)

εV εx,x̃

(
|y(x)− y(x̃)|

ε

)
, (3)
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where the potential Vx,x̃ : [0,∞)→ R is chosen to be a nonlinear elastic potentials attaining its
minimum at different lengths for film or substrate atoms x. If x ∈ Ω− the bonding equilibrium
length is ε, while, if x ∈ Ω+

h , it is ελε > 0. Therefore, the possibility of a nonzero lattice
mismatch

δε := λε − 1

is taken into consideration.

The aim of the paper is to pass to the limit of Eε in the sense of Γ-convergence [4] with respect
to a proper topology and under the hypotheses that the discrete profiles h satisfy a ε-volume
constraint, i.e., ‖h‖L1 = Vε for some Vε ∈ ε2

√
3/2N chosen so that Vε → V > 0. Notice that

the ε-scaling of Eelε is here chosen to properly match the convergence scaling of ESε so that both
surface and elastic contributions appear in the resulting continuum limit E in agreement with
the SDRI theory and literature models [1, 8, 12, 17, 23, 24].

Rigorous Γ-convergence results [7] on the derivation of linear-elastic theories from nonlinear
elastic discrete energies have been obtained in [5, 22] without the presence of surface energies.
A key instrument in the analysis consists in establishing a discrete rigidity result that allows to
globally estimate the closeness of the deformation gradients to a single rotation by only knowing
that locally deformation gradients are close to the family of rotations, and to pass from the
deformations y to the rescaled (ε-dependent) associated displacements u. For this reason we
denote in the following discrete triples those triples (y, u, h) where h is a discrete profile, y is
a discrete deformation, and u is a discrete displacement associated to y, i.e., u : Lε(Ωh) → R2

is given by u(x) = ε−1/2(y(x) − (Rx + b)) for some rotation R ∈ SO(2) and b ∈ R2. The
discrete rigidity estimate is obtained by regrouping the elastic energy in triangular-cell energies
accounting for all the elastic contributions related to each triangle in the film and substrate
lattices, and by locally applying the rigidity estimate in [15] (see also [22]). For this to be
implemented the orientation-preserving condition,

det (y(x̃)− y(x), y(x̄)− y(x)) det (x̃− x, x̄− x) ≥ 0,

as shown in [2], must be imposed on the discrete displacements y for every mutual nearest
neighbors x, x̃, x̄ ∈ Lε(Ωh), in order to avoid local reflection of the reference lattice, which might
be otherwise energetically convenient (see [5]). Without such condition rigidity would fail and a
more complex description of the Γ-limit would be needed that do not find currently any examples
in the literature to the best of our knowledge.

Moreover, the discrete rigidity estimates is obtained under the hypothesis that

δεε
−1/2 → δ ∈ R (4)

and hence, from the three lattice-mismatch regimes that we can characterize:

a) |δε| < ε1/2,
b) |δε| ∼ ε1/2,
c) |δε| > ε1/2,

we are here treating only a) and b). This is due to the fact that the rigidity estimate allows to
linearize around one single rotations both for the substrate and the film (by also introducing
a tensor, the so-called mismatch strain, that accounts for the error due to the mismatch in
equilibrium length). In regime c) where lattice mismatches are very large, imposing smooth
deformations on a reference lattice without dislocations, i.e., extra half-lines of atoms appearing
in one of the lattice directions, creates a too high energy contribution at the film-substrate
interface (in fact infinite) [11, 14]. Therefore, the basic modeling assumption here considered of
describing both film and substrate lattices as parametrized through deformations on the same
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periodic reference lattice seems not feasible in regime c). We refer the reader to [13, 19] for
experimental evidence, especially for films with larger thickness, of formation of dislocation-
patterns as a further mode of strain relief, and to [20] where the presence of dislocations is taken
into account in a discrete-to-continuum passage for a model of nanowires (in the absence of a
free boundary for one of the crystalline phases).

In order to perform a discrete-to-continuum analysis it is convenient to embed discrete
triples (y, u, h) to the larger configurational space

X :=
{

(y, u, h) : h is l.s.c. with Varh < +∞, and y, u ∈ L2
loc(Ωh;R2)

}
by identifying not only each h with proper piecewise interpolations in (0, L), but also y and u
with properly defined piecewise affine interpolations in Ωh, and by extending Eε to be +∞ on
non-discrete triples in X. In particular, we consider in X the metrizable topology τX associated
to the notion of convergence: (hε, yε, uε) → (y, u, h) ∈ X if and only if yε → y and uε → u
in L2

loc(Ωh;R2), and R2 \ Ωhε converge to R2 \ Ωh with respect to the Hausdorff-distance (see
Definition 2.1). The pre-compactness with respect to this topology in X of energy equi-bounded
sequences, i.e., sequences (hε, yε, uε) such that sup{Eε(hε, yε, uε) : ε > 0} < ∞, follows (apart
from redefining the displacements associated to yε) from the rigidity estimate. However, the fact
that admissible profile functions h are in general not Lipschitz represents a further difficulty as
it is not guaranteed that the rigidity estimate of [15] can be applied uniformly. It is only possible

to apply it for sets Ω̃ that are smooth and compactly contained in Ωhε for ε small enough. In
view of the discrete graph constraint though, we are then able to invade the film region and
obtain a rigidity result with a fixed rotation on the substrate as well as the film.

We now discuss the interesting features of the limiting energy E that is defined by

E(y, u, h) :=


Eel(y, u, h) + ES(y, u, h) if ‖h‖L1 = V and y = Rx+ b

for some (R, b) ∈ SO(2)× R2

+∞ otherwise,

for every (y, u, h) ∈ X, where Eel and ES denote the elastic and surface energy, respectively.
The elastic energy Eel is given by

Eel(y, u, h) =

ˆ
Ωh

Wy(x,Eu(x))dx (5)

where the elastic density is Wy(x2, A) := 16√
3
K(x2)

(
|A− E0(x2, y)|2 + 1

2Tr
2(A− E0(x2, y))

)
for

K(x2) :=

{
Kf if x2 > 0,

Ks if x2 ≤ 0,

and for the mismatch strain

E0(x2, y) :=

{
δ∇y if x2 > 0,

0 if x2 ≤ 0.

We observe that the elastic energy density Wy(x2, ·) corresponds to linear elastic isotropic ma-
terials with Lamé parameters λα and µα for α = f, s referring, respectively, to the film and the
substrate, with λα = µα. We notice that Lamé coefficients independent from each other could
be obtained for the Γ-limit by considering in the discrete model also longer range interactions or
changing the reference lattice. Furthermore, we observe that the elastic energy density depends
on both x2 and y. The y-dependence in Wy(x2, ·) is due to the fact that the mismatch strain
needs to be measured with respect to the limiting orientation of the reference lattice (our discrete
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energies are frame indifferent), while the x2-dependence is related to the fact that the mismatch
strain is only nonzero in the film region, where the atoms in the reference lattice are not at
the optimal film bonding distance. Moreover, it is for the y-dependence that it is necessary to
double the elastic variables already at the discrete level, and keep track of the deformations y
as well as the associated rescaled displacements u. In the limit their dependence decouples and
they are independent from each other, but note that their energy is not.

The surface energy ES is defined by

ES(h) = γf

(ˆ
∂Ωh∩Ω

1/2
h ∩{x2>0}

ϕ(ν)dH1 + 2

ˆ
∂Ωh∩Ω1

h

ϕ(ν)dH1

)

+ γs ∧ γf
ˆ
∂Ωh∩Ω

1/2
h ∩{x2=0}

ϕ(ν)dH1 (6)

for some constants γf , γs > 0, the he anisotropic surface tension

ϕ(ν) := 2
√

3/3
(
|ν2|+ 1/2

∣∣∣√3ν1 − ν2

∣∣∣+ 1/2
∣∣∣√3ν1 + ν2

∣∣∣) ,
and the sets Ωsh denoting the set of points of Ωh with density s ∈ [0, 1]. We observe that ϕ

depends on the choice of the reference lattice. Furthermore, the first term in the surface energy
relates to the essential boundary of Ωh and appears with the factor γf , while the second, which
relates to the cuts in the boundary in Ωh, presents the factor 2γf since cuts need to be counted
double as they correspond at the discrete level to cracks of infinitesimal width. Finally, the
factor of the third term that is related to the portion of the boundary intersecting the substrate
surface, distinguishes two regimes: in the wetting regime, for γs > γf , it is energetically more
convenient to cover, namely to wet, the substrate with an infinitesimal layer of film atoms, while
in the dewetting regime, for γs < γf , it is better to leave the substrate exposed.

In order to establish the Γ-convergence result we establish the lower bounds for the surface
energy and the elastic energy separately. For the surface energy we use the result in [21] in order
to obtain a semi-continuity result for surface energies defined on sets. Furthermore the lower
bound for the elastic energy is performed in the interior of the set Ωh, where the compactness
and rigidity results ensure good convergence and equi-integrability properties. We then Taylor-
expand our interaction energies close to the limiting deformation y. From this estimate in the
interior we pass to a global estimate by invading the set Ωh. The upper bound for the limiting
energy is obtained by performing careful density arguments. The first one ensures that for
every profile h there exists a sequence Lipschitz profiles {hk}k converging from below to h in
such a way that the surface energy converges. Here we use the Yosida transform of h to obtain
Lipschitz profiles {hk}k (not satisfying the volume constraints) such that ES(hk)→ ES(h). The
calculations to check this are much in the spirit of [6]. In this way also the elastic energy of the
approximation (which is just the function restricted to Ωhk) converges to the limiting elastic
energy. Once this sequence is constructed we still need to modify hk as well as u (now depending
on k) so that the sets Ωhk satisfy the volume constraints. This involves refining arguments used
in [12] or [8] in order to deal with anisotropic surface energies. Finally, we observe that for
a Lipschitz profile h and a general displacement u with finite energy there exists a sequence
{uk}k ∈ C∞(Ωh) converging to u in L2(Ωh) such that also the energy converges, and for such
(u, h) we construct the recovery sequence explicitly. The recovery sequence is obtained by
interpolating u at the lattice nodes, considering the piecewise constant interpolations of h, and
then rising them to match the volume constraint.
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The article is organized as follows. In Section 2 we introduce the mathematical setting and
the discrete model. In Section 3 we prove coercivity of our energies. Finally, in Section 4 we
perform the asymptotic analysis by proving the lower and the upper bound.

2. The mathematical setting

In this section we introduce the main notation and the mathematical setting of the discrete
and continuum models. We begin by recalling the definition of Γ-convergence that represents
the main instrument to derive effective theories for discrete systems (see [4, 7] for a detailed
introduction to the theory of Γ-convergence).

Given a metric space (X, dX) and a sequence of functionals {Eε} : X → [0,+∞], we say that
Eε Γ-converge to a functional E : X → [0,+∞] if the following two conditions hold:

(i) For all {xε}ε ⊂ X converging to x ∈ X with respect to d there holds

lim inf
ε→0

Eε(xε) ≥ E(x).

(ii) For all x ∈ X there exists a sequence {xε}ε converging to x with respect to d such that

lim sup
ε→0

Eε(xε) ≤ E(x).

In this case we write E = Γ- lim
ε→0

Eε. Furthermore, we consider the functionals E′, E′′ : X →
[0,+∞] defined by

E′(x) := inf
{

lim inf
ε→0

Eε(xε) : dX(xε, x)→ 0
}

and

E′′(x) := inf

{
lim sup
ε→0

Eε(xε) : dX(xε, x)→ 0

}
for every x ∈ X, respectively. We observe that E′, E′′ always exist, and that there exists
E : X → [0,+∞] with E′ = E′′ = E(x) for all x ∈ X if and only if E = Γ- lim

ε→0
Eε [4, 7]. In the

following we denote E′ and E′′ by Γ- lim infε→0Eε and Γ- lim supε→0Eε, respectively.

The main result of the paper is a Γ-convergence result (see Theorem 4.1). In the rest of this
section we introduce the metric space (X, dX), the sequence {Eε}, and the limit functional E
for which we establish the Γ-convergence results. Notice that this result represents a discrete-to-
continuum passage as the functionals Eε are defined with respect to reference lattices Lε, while
the E depends on functions defined on continuum sets.

To this aim let us recall from the Introduction some notation. We fix two parameters L,R > 0
and we denote the scaling parameter by ε > 0. In the following, we denote by C > 0 a generic
constant that may change from line to line. We consider S1

L = R/LZ endowed with its usual
distance, Q = (0, L) × (−R,+∞), and Q+ = (0, L) × (0,+∞). For A,B ⊂ R2 we denote the
Hausdorff-distance between the set A and the set B by

distH(A,B) = sup {sup{dist(x,B) : x ∈ A}, sup{dist(x,A) : x ∈ B}} ,

and by SO(2) = {R ∈ R2×2 : RRT = Id,det(R) = 1} the set of all rotations in R2.
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2.1. The discrete model. In this subsection we define the discrete triples of profiles, deforma-
tions, and displacements, and the general configurational space with the topology with respect
to the Γ-convergence is carried out, and we introduce the discrete energy (also starting form
atomistic interactions).

Discrete profiles. We say that h :
√

3
2 ε(Z + 1

2 ) ∩ S1
L → R+ is a discrete profile if

h

(√
3

2
ε

(
i+

1

2

))
∈

{
ε
2 + εN i even,

εN i odd.
(7)

Furthermore, we identify every discrete profile h with the lower-semicontinuous piecewise-constant
interpolation defined as

h(x) =

{
h(i) i−

√
3

4 ε < x < i+
√

3
4 ε, i ∈

√
3

2 ε(Z + 1
2 ) ∩ S1

L,

min{h(i), h(i+
√

3
2 ε)} x = i+

√
3

4 ε, i ∈
√

3
2 ε(Z + 1

2 ) ∩ S1
L.

(8)

The set of admissible profiles is denoted by AP (S1
L) and characterized as

AP (S1
L) =

{
h : S1

L → R+ : h is lower-semicontinuous and Varh < +∞
}
. (9)

For every profile h ∈ AP (S1
L) we set

Ωh := {(x1, x2) ∈ Q : x2 < h(x1)} ,
Ω− = {(x1, x2) ∈ Q : −R < x2 ≤ 0} ,
Ω+
h = Ωh \ Ω−.

(10)

We notice that for every discrete profile h we have h(0) = h(L) = min{h(
√

3
4 ε), h(L−

√
3

4 ε)}
and, by considering the identified interpolation (8), h ∈ AP (S1

L) (see Figure 1).

Reference lattice. We choose a triangular lattice as the reference lattice. More precisely,
let

A =
1

2

(√
3 0

1 2

)
and set Lε = ε

(
AZ2 +

(√
3

4 , 0
))

. Furthermore, for any set B ⊂ R2 we denote Lε(B) = Lε ∩B.

For i ∈ Lε(Ωh) we define

Nε(i) = {j ∈ Lε(Ωh) \ {i} : |j − i| ≤ ε or |j ± Le1 − i| ≤ ε} (11)

the set of nearest neighbours of the point i ∈ Lε(Ωh). Note that by this definition points on
the vertical boundary may be identified as neighbors, so that also interactions across the lateral
boundaries will be allowed. Henceforth we assume that

L =
√

3kεε (12)

for some kε ∈ N for all ε > 0. Next we define the set of triangles of Lε(Q) by

Tε =
{
{i1, i2, i3} : (i1, i2, i3) ∈ (Lε(Q))3, ij ∈ Nε(ik), j 6= k,

}
.

Discrete deformations. We refer to any map y : Lε(Ωh) → R2 as discrete deformation,
and we reduce to only discrete deformations that are orientation preserving, i.e., such that

det (y(i2)− y(i1), y(i3)− y(i1)) det (i2 − i1, i3 − i1) ≥ 0 (13)

for any |ik − ij | = ε and k 6= j.
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y = 0

(0, L)

Figure 1. The set Ωh for a discrete profile h. The black atoms are substrate
atoms, whereas the white atoms belong to the film.

The discrete energy. For any discrete profile h :
√

3
2 ε(Z + 1

2 ) ∩ S1
L → εN and orientation-

preserving discrete deformation y : Lε(Ωh) → R2 we define the energy of the pair (y, h) by the
sum

Eε(y, h) = ESε (h) + Eelε (y, h), (14)

where

ESε (h) = γf
∑

i∈Lε(Ω+
h )

ε(6−#Nε(i)) + γs
∑

i∈Lε(Ω−)

ε(6−#Nε(i)),

where γf , γs > 0. The elastic energy of the system is given by

Eelε (y, h) =
∑

i∈Lε(Ωh)

∑
j∈Nε(i)

εV εi,j

(
|y(i)− y(j)|

ε

)
, (15)

where V εi,j : R→ R is defined by

V εi,j(r) =


Ks
2 (r − 1)2 i ∈ Lε(Ω−), |i− j| ≤ ε,
Ks
2 (r − r1)2 i ∈ Lε(Ω−), |i− j| > ε,
Kf
2 (r − λε)2 i ∈ Lε(Ω+

h ), |i− j| ≤ ε,
Kf
2 (r − r2(λε))

2 i ∈ Lε(Ω+
h ), |i− j| > ε.

(16)
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for Kf ,Ks, λε > 0, with r1 := (3k2
ε − 3kε + 1)1/2 and r2(λε) := (3k2

ε − 3(2 − λε)kε + 3(5/4 −
λε/2)2))1/2 being by (12) the lengths of the vectors (L/ε −

√
3, 0) + (1

2

√
3,± 1

2 ) and (L/ε −√
3, 0) + λε(

1
2

√
3,± 1

2 ), respectively. The constant ελε, ε > 0 describe the equilibrium length
of the film and the equilibrium length of the substrate respectively, Kf ,Ks describe the elastic
constant of the film and the substrate and γf , γs describe the vapor-film and vapor-substrate
surface tension respectively.

One reference frame. Let us denote the elastic contribution related to film atoms by

Eel,filmε (y, h) :=
∑

i∈Lε(Ω+
h )

∑
j∈Nε(i)

εV εi,j

(
|y(i)− y(j)|

ε

)
, (17)

and the one related to the substrate by Eel,subε (y, h) := Eelε (y, h) − Eel,filmε (y, h). We observe
that

Eel,filmε (ȳ, h) = min
y
Eel,filmε (y, h) = 0,

and

Eel,subε (ỹ, h) = min
y
Eel,subε (y, h) = 0,

for any ȳi := λεR̄i+ z̄ and ỹi := R̃i+ z̃ with R̄, R̃ ∈ SO(s) and z̄, z̃ ∈ R2. This means that we
are considering a reference frame with respect to the substrate and not with respect to the film.
Indeed, we have that Eel,filmε (ỹ, h) > 0.

Relation to atomistic interactions. We now observe that under certain assumptions
below described the energies Eε can be justified starting from renormalized interatomic energies,
here denoted by Eε, where the energy contribution related to the bonding of film and substrate
particles is characterized by interatomic potentials, for example of Lennard-Jones type (see

Figure 2). We introduce Eε as the energy defined for every discrete profile h :
√

3
2 ε(Z+ 1

2 )∩S1
L →

R+ and discrete deformation y : Lε(Ωh)→ R2 by

Eε(y, h) =
∑

i∈Lε(Ω+
h )

∑
j∈Nε(i)

εV εf

(
|yi − yj |

ε

)
+

∑
i,j∈Lε(Ω−)

∑
j∈Nε(i)

εVs

(
|yi − yj |

ε

)
, (18)

where Vs and V εf are phenomenological potentials from R+ to R∪{∞} describing the interactions
between substrate- and film-atoms. More precisely we assume the following properties on Vs
and V εf :

(i) Vs, V
ε
f ∈ C2((0,+∞)),

(ii) Vs(1) = −γs = min
r>0

Vs(r), V
ε
f (λε) = −γf = min

r>0
V εf (r),

(iii) (Vs)
′′(1) = Ks, (V εf )′′(λε) = Kf .

Notice that interactions between not nearest neighbors are not considered in (18). This can
be considered as an approximation when the decay of the two potentials Vs and V εf is fast
enough. Furthermore, we observe also that under the volume constraint on the film atoms, i.e.,
||h||L1 = Vε ∈ R, #Lε(Ω+

h ) and #Lε(Ω−) are constants independent of h and y. Therefore, the
quantity

mε := −ε(6γs#Lε(Ω−) + 6γf#Lε(Ω+
h ),
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which corresponds to the (theoretical) bonding energy of a configuration where all particles are
in equilibrium (have 6 nearest neighbors), is a real value. We observe that

Eε(y, h)−mε =
∑

i,j∈Lε(Ω−)

∑
j∈Nε(i)

ε

(
Vs

(
|yi − yj |

ε

)
+ γs

)
+ γs

∑
i∈Lε(Ω−)

ε(6−#Nε(i))

+
∑

i∈Lε(Ω+
h )

∑
j∈Nε(i)

ε

(
V εf

(
|yi − yj |

ε

)
+ γf

)
+ γf

∑
i∈Lε(Ω+

h )

ε(6−#Nε(i)). (19)

By (i)-(iii) and under the assumptions that

1. the discrete deformations y are small, i.e.,∣∣∣∣∣∣∣∣y(i)− y(j)

ε

∣∣∣∣− 1

∣∣∣∣ ≤ C√ε (20)

for every deformation y and for all i, j ∈ Lε(Ωh) with j ∈ Nε(i),
2. the lattice mismatches are small, i.e., |λε − 1| ≤ C

√
ε,

we can Taylor expand Vs and V εf around their respective minimum points obtaining

Vs

(∣∣∣∣yi − yjε

∣∣∣∣) = Vs(1) + V ′s (1)

(∣∣∣∣yi − yjε

∣∣∣∣− 1

)
+

1

2
V ′′s (1)

(∣∣∣∣yi − yjε

∣∣∣∣− 1

)2

+ o(ε)

= −γs +
1

2
Ks

(∣∣∣∣yi − yjε

∣∣∣∣− 1

)2

+ o(ε), (21)

and, similarly,

Vf

(∣∣∣∣yi − yjε

∣∣∣∣) = −γf +
1

2
Kf

(∣∣∣∣yi − yjε

∣∣∣∣− λε)2

+ o(ε). (22)

Therefore, from (19), (21), and (22) it follows that

Eε(y, h)−mε =
Ks

2

∑
i,j∈Lε(Ω−)

∑
j∈Nε(i)

ε

(∣∣∣∣yi − yjε

∣∣∣∣− 1

)2

+ γs
∑

i∈Lε(Ω−)

ε(6−#Nε(i))

+
Kf

2

∑
i∈Lε(Ω+

h )

∑
j∈Nε(i)

ε

(∣∣∣∣yi − yjε

∣∣∣∣− λε)2

+ γf
∑

i∈Lε(Ω+
h )

ε(6−#Nε(i)) + o(1),

(23)

where we also used that #Lε(Ωh) ≤ Cε−2. In view of (23) we can say that, at least at a formal
level, the energies Eε of the discrete model introduced in this paper are justified starting from
atomistic interactions for ε > 0 small enough.

Rescaled displacements. Another important quantity will be the rescaled discrete dis-
placements u associated to a deformation y. For a rotation R ∈ SO(2) and b ∈ R2 we define
the rescaled displacement u : Lε(Ωh)→ R2 (omitting the dependence on ε) associated to y by

u(x) =
y(x)− (Rx+ b)√

ε
. (24)

The configurational space X. In the following we refer to triples (y, u, h) where h is a
discrete profile defined in , y is a orientation-preserving discrete deformation, u is a discrete
displacement associated to y, as discrete triples and we denote the space of discrete triples by
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r

V (r)

Figure 2. The Lennard–Jones potential and the interaction potential of har-
monic springs

Xd. In order to perform a discrete-to-continuum analysis it is convenient to embed Xd in the
larger configurational space

X :=
{

(y, u, h) : h ∈ AP (S1
L),Ωh given by (10), y, u ∈ L2

loc(Ωh;R2)
}
. (25)

To do that we identify each discrete profile h with the lower semicontinuous interpolation
given by (8), the discrete deformations y : Lε(Ωh)→ R2 with the piecewise affine interpolation
defined in the following way: For every T = {i1, i2, i3} ∈ Tε we set

y(x) =

3∑
k=1

λky(ik) (26)

for every x that can be written as

x =

3∑
k=1

λkik

for some λk ≥ 0, k = 1, 2, 3, such that ∑
k

λk = 1,

and y(x) = 0 if there is no (unique) triple i1, i2, i3 ∈ Lε(Ωh) with |ik − ij | ≤ ε, j 6= k and
x ∈ conv(i1, i2, i3). Note that, for neighbors though the boundaries x1 = 0 and x1 = L, if
{i1, i2, i3} such that |i1 ± Le1 − ik| ≤ ε, k = 2, 3 we define y in the same way as in (26) with
x ∈ conv(i1,∓Le1 + i2,∓Le1 + i3), while if {i1, i2, i3} are such that |i1 ± Le1 − i2|, |i1 − i3| ≤ ε
we define y in the same way as in (26) with x ∈ conv(i1,∓Le1 + i2, i3). This procedure is well
defined up to a set of lebesgue-measure 0 and we can therefore interpret y ∈ L2

loc(Ωh). Notice
that in this way y(0, x2) = y(L, x2) for H1-a.e. x2 ∈ (−R, h(0)).

Similarly, every discrete displacement u : Lε(Ωh) → R2 can be interpreted as an element of
L2

loc(Ωh) by identifying it with its piecewise constant interpolation as for y above. We write
that Xd ⊂ X.

Definition 2.1 (Convergence in X). We consider in X the topology τX related to the following
definition of convergence: A sequence (yε, uε, hε) ⊂ X is said to converge to (y, u, h) ∈ X in X,
and we write (yε, uε, hε)→ (y, u, h), if

(i) the sets Q \ Ωhε converge to Q \ Ωh with respect to the Hausdorff-distance;
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(ii) yε → y in L2
loc(Ωh;R2);

(iii) uε → u in L2
loc(Ωh;R2).

We notice that the condition (ii) and (iii) in Definition 2.1 are well defined, since by i) it
follows that for Ω′ ⊂⊂ Ωh we have that Ω′ ⊂⊂ Ωhε for ε > 0 sufficiently small. Furthermore,
observe that that this convergence is metrizable with a metric that we denote by dX .

The extended energy. Fix Vε > 0 such that there exist a discrete profile h such that
||h||L1(S1

L) = Vε. Now we extend the energy Eε defined in (14) for discrete profiles h and

deformations y to the whole space X by extending it to +∞ outside Xd. More precisely, we
write (with slight abuse of notation) Eε : X → [0,+∞] given by

Eε(y, u, h) =

{
Eε(y, h) if (y, u, h) ∈ Xd and ||h||1 = Vε,

+∞ otherwise.
(27)

2.2. The limiting model. In this subsection we introduce the continuum limiting model. To
this end let us assume that the discrete lattice mismatch δε := (λε − 1) satisfy

lim
ε→0

ε−
1
2 δε = δ ∈ R. (28)

In the following we refer to δ ∈ R as the lattice mismatch. For a triple (y, u, h) ∈ X we define
the limit elastic energy by

Eel(y, u, h) =

ˆ
Ωh

Wy(x,Eu(x))dx, (29)

where Eu = 1
2 (∇u +∇uT ) is the symmetric part of the gradient of u and Wy : Ωh × R2×2 →

[0,+∞] is given by

Wy(x,A) =

{
8Kf√

3

(
2|A− δEy|2 + (trace(A− δEy))2

)
x ∈ Ω+

h , A ∈ R2×2,
8Ks√

3

(
2|A|2 + (trace(A))2

)
x ∈ Ω−, A ∈ R2×2.

The limiting surface energy ES : AP (S1
L)→ [0,+∞] is defined by

ES(h) = γf

(ˆ
∂Ωh∩Ω

1/2
h ∩Q+

ϕ(ν)dH1 + 2

ˆ
∂Ωh∩Ω1

h∩Q
ϕ(ν)dH1

)

+ γs ∧ γf
ˆ
∂Ωh∩Ω

1/2
h ∩{x2=0}

ϕ(ν)dH1

(30)

where the surface tension ϕ : R2 → [0,+∞) is defined by

ϕ(ν) =
2

3

√
3

(
|ν2|+

1

2
|
√

3ν1 − ν2|+
1

2
|
√

3ν1 + ν2|
)
. (31)

Here ν(x) ∈ S1 is defined as τ⊥(x) = (−τ2(x), τ1(x)) where τ(x) = (τ1(x), τ2(x)) is the unit
tangent vector to the set ∂Ωh at the point x ∈ ∂Ωh. Since ∂Ωh is connected and H1(∂Ωh) <
+∞ due to [10] Theorem 3.8 the tangent τ is well-defined for H1-a.e. x ∈ ∂Ωh. For points

x ∈ ∂Ωh ∩ Ω
1/2
h the vector ν(x) is the unit inner normal to the set Ωh whenever it exists. The

function x 7→ ν(x) is Borel-measurable so that for every continuous function ϕ : R2 → [0,+∞)
the functional (30) is well defined. We also observe that a discontinuity for the surface tension
in (30) (apart from the cuts in the graph of h) may occur when γs > 0, representing the surface
tension between the substrate and the vapor, is lower than the surface tension γf between the
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film and the vapor. If γf < γs, the surface energy density is no longer discontinuous and in fact
is equal to γfϕ(ν).

We define the limit energy E : X → [0,+∞] for every V > 0 such that Vε → V > 0 by

E(y, u, h) =

{
Eel(y, u, h) + ES(h) if (y, u, h) ∈ Xc and ||h||1 = V ,

+∞ if (y, u, h) ∈ X \Xc,
(32)

where

Xc := {(y, u, h) ∈ X :u ∈ H1
loc(Ωh;R2), y = Rx+ b for some (R, b) ∈ SO(2)× R2,

h(0) = h(L), and u(0, x2) = u(L, x2) for H1-a.e. x2 ∈ (−R, h(0))}.

3. Compactness

In this section we show that τX is a good choice of topology, since sequences with equi-
bounded energies are pre-compact in X with respect to this topology (see Proposition 3.4).
The main tool is represented by the rigidity estimate proved in [15] that we recall here for the
reader’s convenience.

Theorem 3.1 ([15] Theorem 3.1). Let N ≥ 2 and let 1 < p < ∞. Suppose that U ⊂ RN
is a bounded Lipschitz domain. Then there exists a constant C = C(U) such that for every
u ∈W 1,p(U), there exists a constant matrix R ∈ SO(N) such that

||∇u−R||Lp(U ;RN×N ) ≤ C(U)||dist(∇u, SO(N))||Lp(U).

The constant C(U) is invariant under dilation or translation of U .

In order to apply Theorem 3.1 we regroup the elastic energy as the sum of cell-energies on
the triangular faces of the lattice. We denote the family of triangles in Lε by Tε.

and the cell energy of such a triangle T = {i1, i2, i3} ∈ Tε by

Wε,cell(F, T ) =

3∑
k,j=1

k 6=j

Ṽ εik,ij (F (ik − ij)),

where Ṽ εi,j : R2 → R is given by

Ṽ εi,j(ξ) =

{
1
2V

ε
i,j(|ξ|) i, j ∈ Lε(Ωh), ξ ∈ R2,

0 if i or j /∈ Lε(Ωh), ξ ∈ R2

with V εi,j defined by (16). For any T = {i1, i2, i3} ∈ Tε we set x̂T = 1
3 (i1 + i2 + i3). Note that

now by this definition and (15) we have that

Eelε (y, h) =
∑
i∈Tε

εWε,cell (∇y(x̂T ), T ) .

Note that ∇y is the gradient of its piecewise affine interpolation given by (26). In order to show
that cell energies Wε,cell(∇y(x̂T ), T ) control the distance of ∇y(x̂T ) (see Proposition 3.3) from
the set of rotations we need the following Lemma.
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Lemma 3.2. There exists a constant C > 0 such that for all λ > 0 and all F ∈ R2×2 with
detF ≥ 0 there holds

dist2(F, λSO(2)) ≤ CWλ(F ),

where Wλ : R2×2 → [0,+∞] is defined by

Wλ(F ) :=

{
(|Fe| − λ)2 + (|Fv| − λ)2 + (|F (v − e)| − λ)2 detF ≥ 0,

+∞ otherwise,

with e = (1, 0) and v = 1
2 (1,
√

3).

Proof. The statement follows by checking that Wλ satisfies

i) Wλ(RF ) = Wλ(F ) for all F ∈ R2×2, R ∈ SO(2).
ii) {Wλ = 0} ∩ {detF ≥ 0} = λSO(2)
iii) Wλ ∈ C2 in a neighbourhood of λSO(2) and D2Wλ(λId) is positive definite on the

orthogonal complement of the subspace spanned by infinitesimal rotations, that is F 7→
AF , AT = −A.

iv) lim
F→+∞

Wλ(F )

|F |2
> 0.

The rest of the proof is similar to the one given in [22] for Lemma 3.2. �

The following proposition will be crucial to prove the compactness result 3.4.

Proposition 3.3. Let y : Lε(Ωh) → R2 be orientation preserving and let T ∈ Tε be such that
T = {i1, i2, i3} with i1, i2, i3 ∈ Lε(Ωh), then

Wε,cell(∇y(x̂T ), T ) ≥ c
(
dist2(∇y(x̂T ), SO(2))− ε

)
. (33)

Proof. Since i1, i2, i3 ∈ Lε(Ωh) we have that V εi,j(ξ) = V εi (|ξ|). By convexity there holds

(|ξ| − λ)2 = (|ξ| − 1 + 1− λ)2 ≥ c(|ξ| − 1)2 − c(1− λ)2 = c(|ξ| − 1)2 − cε. (34)

Now the claim follows by applying Lemma 3.2 and (34) to Wε,cell(F, T ) to obtain

Wε,cell(∇y(x̂T ), T ) =

3∑
k,j=1

k 6=j

Ṽ εik,ij (∇y(x̂T )(ik − ij)) ≥ c
3∑

k,j=1

k 6=j

V εik(|∇y(x̂T )(ik − ij)|)

≥ cW1(∇y(x̂T ))− cε ≥ c
(
dist2(∇y(x̂T ), SO(2))− ε

)
.

This concludes the proof. �

We now state the compactness results which is based to the rigidity estimate 3.1. Since we
have domains with varying boundary profile it is not possible, however, to apply the rigidity
estimate to the whole domain. This is also reflected by the topology that we have chosen. We
need to prove that rigid motions around which we linearize can be chosen independently of the
compact set Ω′ ⊂⊂ Ωh.

Proposition 3.4 (Compactness). Let λε → 1 be such that

sup
ε>0

ε−
1
2 |1− λε| < +∞
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and let (yε, uε, hε) ⊂ X be such that

sup
ε>0

Eε(yε, uε, hε) < +∞

Then there exists (Rε, bε) ⊂ SO(2) × R2, a subsequence (not relabelled) and (y, u, h) ∈ X,R ∈
SO(2), b ∈ R2, ||h||1 = V, u(0, x2) = u(L, x2) for H1-a.e. x2 ∈ (−R, h(0)) such that Rε →
R,bε → b, y = Rx+ b and (

yε,
yε − (Rεx+ bε)√

ε
, hε

)
→ (y, u, h),

with respect to the convergence given in Definition 2.1. Moreover we have that

yε − (Rεx+ bε)√
ε

⇀ u, in H1
loc(Ωh). (35)

Proof. Let δε = (1 − λε) → 0, (yε, uε, hε) ⊂ X satisfy the assumptions of Proposition 3.4, that
is there exists 0 < C < +∞ such that

sup
ε>0

ε−
1
2 |δε| ≤ C and sup

ε>0
Eε(yε, uε, hε) ≤ C.

We first prove i) of Definition 2.1. One can check that for piecewise constant functions it holds

|Dhε|(S1
L) = Varhε =

∑
i∈
√

3
2 ε(Z+ 1

2 )∩S1
L

∣∣∣∣hε(i+
1

2

√
3ε)− hε(i)

∣∣∣∣ .
Fix i ∈

√
3

2 ε(Z + 1
2 ) ∩ S1

L, we have that∑
(j1,j2)∈Lε(Ω+

h )

j1∈{i,i+ 1
2

√
3ε}

ε(6−#Nε((j1, j2)) ≥
∣∣∣∣hε(i+

1

2

√
3ε)− hε(i)

∣∣∣∣ , (36)

since for all j2 ∈ {min{hε(i), hε
(
i+ 1

2

√
3ε
)
}, . . . ,max{hε(i), hε

(
i+ 1

2

√
3ε
)
}} we have that either

#Nε((i, j2) < 6 or #Nε((i+ 1
2

√
3ε, j2) < 6. Summing over i ∈

√
3

2 ε(Z + 1
2 ) ∩ S1

L and using (36)
we obtain

Varhε ≤ C(Eε(yε, hε) + 1) ≤ C < +∞.

Moreover, since there exist {xε}ε ⊂ [0, L] such that

sup
ε>0

hε(xε) ≤ sup
ε

 L

0

hε(x)dx ≤ C

we have that hε(x) ≤ hε(xε) + Varhε ≤ C for all x ∈ [0, L]. Now for all ε > 0 we have that
Ωhε ⊂ {(x1, x2) : 0 < x1 < L,−R < x2 < l} for some l > 0. Hence the compactness of the
sets Q \ Ωhε is equivalent to the compactness of the equibounded sets {(x1, x2) : 0 < x1 <
L,−R < x2 ≤ l} \ Ωhε , which follows from the Blaschke Compactness Theorem (cf. Theorem
6.1 in [3]). Thus we may assume that, up to subsequecens (not relabelled) Q \Ωhε converges in
the Hausdorff-metric to a set Q \ Ω. Next we identify Ω with Ωh, where

h(x) = inf
{

lim inf
ε→0

hε(xε) : xε → x
}
. (37)

Note that a sequence Kε of compact sets contained in a compact set U converge to K in the
Hausdorff-metric if and only if the following hold true

i) for all x ∈ K, there exists xε → x such that xε ∈ Kε,
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ii) for all {xε} such that xε ∈ Kε and xε → x we have that x ∈ K.

Let x = (x1, x2) ∈ Q\Ω, by i) there exist xε = (xε1, x
ε
2) ∈ Q\Ωhε and xε → x. Since xε ∈ Q\Ωhε

and we have that xε → x we obtain

h(x1) ≤ lim inf
ε→0

hε(x
1
ε) ≤ lim inf

ε→0
x2
ε = x2.

Hence x ∈ Q \ Ωh which implies Q \ Ω ⊂ Q \ Ωh. Now let x = (x1, x2) ∈ Q \ Ωh. We have

h(x1) = inf{lim inf
ε→0

hε(yε) : yε → x1} ≤ x2.

Let xε = (x1
ε, x

2
ε) be such that hε(x

1
ε) → h(x1) and x1

ε → x1 and x2
ε = max{x2, hε(x

1
ε)}. We

have that xε ∈ Q\Ωhε and xε → x. By ii) it follows that x ∈ Q\Ω which implies Q\Ωh ⊂ Q\Ω.
Finally we need to show that h is lower semicontinuous and Varh < +∞. We have that (up to
a subsequence) Q \ Ωhε → Q \ Ωh with respect to the Hausdorff-distance with h given by (37).

By its definition it is easy to check that h is a lower-semicontinuous function. Due to [12]
Lemma 2.5 we have that hε → h in L1(S1

L) and therefore

V = lim
ε→0

Vε = lim
ε→0
||hε||L1(S1

L) = ||h||L1(S1
L).

The constraint ||h||L1(S1
L) = V is therefore satisfied. By Blaschke’s Compactness Theorem we

have that there exists K ⊂ R2 compact and a subsequence (not relabelled) such that ∂Ωhε → K
with respect to the Hausdorff-convergence. It can be checked that ∂Ωh ⊂ K. By Golab’s
Theorem there holds

H1(∂Ωh) ≤ H1(K) ≤ lim inf
ε→0

H1(∂Ωhε).

By Lemma 2.1 in [12] we have that Varh < +∞ and i) follows.

Next we prove ii) and iii). We show that there exists {Rε}ε ⊂ SO(2), {bε}ε ⊂ R2 such that
for any Ω′ ⊂⊂ Ωh there exists a constant C = C(Ω′) such that

||uε||H1(Ω′) ≤ C, (38)

where uε : Ωh → R2 is defined by

uε(x) =
yε(x)− (Rεx+ bε)√

ε
.

Note that each Ω′ ⊂⊂ Ωh is contained in Ωhλ for λ > 0 big enough, where hλ : S1
L → [0,+∞)

is the λ-Yosida Transform of h given by

hλ(x) = inf
{
h(y) + λ|x− y|, y ∈ S1

L

}
.

This follows, since h is lower semicontinuous and therefore hλ Γ-converges to h (with respect
to the usual distance on R). The Γ-convergence is equivalent to the Kuratowski-convergence of
the epigraphs ([7], Theorem 4.16) which in turn is equivalent to the Hausdorff-convergence of
the sets Q \Ωhλ to Q \Ωh (already noted in the proof of Ω = Ωh above). Moreover we translate
hλ away from h such that we are sure not touch the profile

h̃λ(x) = hλ(x)− 1

λ

In the following Cλ (resp. Cλ,µ) denotes a constant depending on λ (resp. on λ and µ). It still
holds true that every Ω′ ⊂ Ωh̃λ for λ > 0 big enough and furthermore we have that Ω+

h̃λ
⊂ Ω+

h .

It suffices to prove the claim for

Ωλ = Ωh̃λ ∩ ((0, L)× R)
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since for any Ω′ ⊂⊂ Ωh there exists λ > 0 big enough such that Ω′ ⊂ Ωλ. We now have that
there exists Rλε ∈ SO(2) such that

Eε(yε, uε, hε) ≥
∑
T∈Tε

T∩Ωλ 6=∅

εWε,cell(∇yε(x̂T ), T )

≥ C
∑
T∈Tε

T∩Ωλ 6=∅

ε
(
dist2(∇yε(x̂T ), SO(2))− ε

)

≥ C

ε

ˆ
Ωλ

dist2(∇yε(x), SO(2))dx− C|Ωh|

≥ Cλ
ε

ˆ
Ωλ

|∇yε(x)−Rλε |2dx− C|Ωh|.

(39)

Where the first inequality is due to the fact that Wε,cell ≥ 0 and the fact the do not count such
cell-energies in the second term. The second follows since for all T ∈ Tε such that T ∩ Ωλ 6= ∅
we have that i1, i2, i3 ∈ Lε(Ωh) and Proposition 3.3. The third inequality is due to the fact
the the summation can be seen as an integration of piecewise constant function on the triangles
T ∈ Tε, where |T | ∼ ε2 together with Ωλ ⊂ Ωh and the last inequality follows due to Theorem
3.1. Since Ωλ is a Lipschitz set by Poincarés inequality we have that there exists bε ∈ R2 such
that ˆ

Ωλ

|yε(x)− (Rλεx+ bλε )|2dx ≤ Cλ
ˆ

Ωλ

|∇yε(x)−Rλε |2dx. (40)

Now fix µ > λ > 0. We have that there exist Rλε , R
µ
ε ∈ SO(2) such that (39) holds true. We

have

|Rλε −Rµε |2 ≤ Cλ,µ
( 

Ωλ

|Rλε −∇y(x)|2dx+

 
Ωλ

|Rµε −∇y(x)|2dx

)
≤ Cλ,µε (Eε(yε, uε, hε) + |Ωh|) ≤ Cλ,µε

(41)

and again by convexity and (40) we have

|bλε − bµε |2 ≤ Cλ,µ
(
|Rλε −Rµε |2 +

 
Ωλ

|Rλεx+ bλε − y(x)|2dx+

 
Ωλ

|Rµεx+ bµε − y(x)|2dx
)

≤ Cλ,µ
(
ε+

 
Ωλ

|Rλε −∇y(x)|2dx+

 
Ωλ

|Rµε −∇y(x)|2dx

)
≤ Cλ,µε. (42)

Assume that Ω1 6= ∅ and define uε : Ωh → R2 by

uε(x) =
yε(x)− (R1

εx+ b1ε)√
ε

.

Now again by convexity (39),(41) and (42) we obtain for λ > 0

||uε||2H1(Ωλ) ≤
Cλ
ε

(ˆ
Ωλ

|∇yε(x)−Rλε |2dx+ |b1ε − bλε |2 + |R1
ε −Rλε |2

)
≤ Cλ,1 (Eε(yε, uε, hε) + 1) ≤ Cλ

(43)

and the claim follows. This implies (35) and by the Rellich–Kondrachov Theorem ii) as well
as iii). It remains to prove that u(0, x2) = u(L, x2) for H1-a.e. x2 ∈ (−R, h(0)). Now by the
definition of uε we have that uε(0, x2) = uε(L, x2) for H1-a.e. x2 ∈ (−R, hλ(0)). Now by (43)
we have ||uε||H1(Ωλ) ≤ Cλ and therefore also uε ⇀ u weakly in H1(Ωλ). By the continuity of

the trace operator with respect to weak convergence in H1 we have that u(0, x2) = u(L, x2)



18 PAOLO PIOVANO AND LEONARD KREUTZ

for H1-a.e. x2 ∈ (−R, hλ(0)). Now, since hλ → h pointwise, for any x2 < h(0) there exists
λ > 0 such that x2 ≤ hλ(0). We can therefore conclude that u(0, x2) = u(L, x2) for H1-a.e.
x2 ∈ (−R, h(0)). This concludes the proof.

�

4. Asymptotic Analysis

In this section we state the main result and perform all the analysis to proof it in a rigorous
way.

Theorem 4.1 (Main Theorem). Let ε→ 0 and let δε → 0 satisfy (28). Let Eε : X → [0,+∞]
be defined by (27) and E : X → [0,+∞] be defined by (32). Then Eε Γ-converges to E with
respect to the topology defined in Definition2.1.

Proof. The proof follows from the definition of Γ-convergence (see Section 2), Proposition 4.2
and Proposition 4.9.

�

4.1. Lower Bound. In this chapter we proof the Γ-lim inf-inequality, i.e., for all {xε}ε ⊂ X
converging to x ∈ X with respect to d there holds

lim inf
ε→0

Eε(xε) ≥ E(x).

The proof of the liminf-inequality decouples into proving both the liminf-inequality for the
surface part as well as the elastic part of the energy.

Proposition 4.2 (Γ-lim inf-inequality). Let (y, u, h) ∈ X. We have

E′(y, u, h) ≥ E(y, u, h).

Proof. The Proof follows from Proposition 4.4 and Proposition 4.5 and by applying the super-
additivity of the Γ-liminf (see [7, Proposition 6.17]). We have

Γ- lim inf
ε→0

Eelε (y, u, h) ≥ Eel(y, u, h)

Γ- lim inf
ε→0

ESε (h) ≥ ES(h).

Now since Eε(y, u, h) = Eelε (y, u, h) + ESε (y, u, h) we have

E′(y, u, h) ≥ Γ- lim inf
ε→0

Eelε (y, u, h) + Γ- lim inf
ε→0

ESε (h) ≥ Eel(y, u, h) + ES(h) = E(y, u, h)

and the claim follows. �

For the surface part we need a semi-continuity result for a class of functionals F defined on
the family of sets

Ac := {A ⊂ Q̄ : ∂A is H1-rectifiable, connected, and H1(∂A) < +∞}. (44)

More precisely, we consider F : Ac(R2)→ [0,+∞] defined by

F (Ω) :=

ˆ
∂Ω∩Ω1/2

ψ(x, ν)dH1 + 2

ˆ
∂Ω∩Ω1

ψ(x, ν)dH1

for every Ω ∈ Ac, where ψ : R2 ×R2 → [0,+∞) is a continuous surface tensions. Such a result,
which we recall here for reader’s convenience, is obtained in [21] as a corollary from a more
general setting which includes not only thin films, but also other stress-driven rearrangement
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instabilities. Notice that in (44) ν = τ⊥, which exists and it is well-defined for H1-a.e. x ∈ ∂Ω
whenever ∂Ω is connected and H1(∂Ω) < +∞.

Theorem 4.3. Let R′ > 0 and QR′ := Q ∩ {x2 < R′}. If ϕ ∈ C(QR′ × R2; [0,+∞)) is convex,
even, positively 1-homogeneous in the second argument, and there exists C > 0 such that

1

C
|ν| ≤ ϕ(x, ν) ≤ C|ν|,

for every ν ∈ R2, then F is lower-semicontinuous with respect to the Hausdorff convergence of
the complements of sets, i.e.,

lim inf
n→+∞

F (Ωn) ≥ F (Ω)

whenever QR′ \ Ωn → QR′ \ Ω with respect to the Hausdorff-distance.

We are now ready to prove the Γ-lim inf-inequality for the surface energy.

Proposition 4.4 (Γ-lim inf-surface-inequality). We have

Γ- lim inf
ε→0

ESε (h) ≥ ES(h).

Proof. Note that if hε → h we have that Q \ Ωhε → Q \ Ωh with respect to the Hausdorff-
convergence of sets, ||h||L1(S1

L) = V and

sup
ε>0

Varhε < +∞. (45)

Furthermore we can assume that

sup
ε>0

ESε (hε) < +∞. (46)

For i ∈ Lε denote by Vε(i) the Voronoi cell of i in Lε given by

Vε(i) = {x ∈ R2 : |x− i| ≤ |x− j| for all j ∈ Lε}.

Define Ωε ⊂ R2 by

Ωε =
⋃

i∈Lε(Ωhε )

Vε(i).

Notice that from (45) and (46) we deduce that hε are uniformly bounded in BV (0, L) and
hence, there exists R′ > 0 such that Ωε ⊂ QR′ , Ω ⊂ QR′ , and QR′ \ Ωhε → QR′ \ Ωh, where
QR′ := Q ∩ {x2 < R′}. We also observe that there holds

distH(Lε(Ωhε),Ωhε) ≤ Cε, distH(Lε(Ωhε),Ωε) ≤ Cε

and therefore Q\Ωε → Q\Ωh with respect to the Hausdorff-distance. Now fix η > 0 and define
ϕη : R2 × R2 → [0,+∞] by

ϕη((x1, x2), ν) =


γfϕ(ν) x2 > 2η

(tγf + (1− t)γf ∧ γs)ϕ(ν) x2 = t2η + (1− t)η, t ∈ (0, 1)

(γf ∧ γs)ϕ(ν) otherwise,

with ϕ defined by (31). There holds

ESε (hε) ≥
ˆ
∂Ωε∩Ω

1/2
ε

ϕη(x, ν)dH1 + 2

ˆ
∂Ωε∩Ω1

ε

ϕη(x, ν)dH1 =: Eη(Ωε).
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By Theorem 4.3 we have that Eη is lower-semicontinuous and therefore

lim inf
ε→0

ESε (hε) ≥ lim inf
ε→0

Eη(Ωε) ≥ Eη(Ωh).

Using the monotone convergence theorem we obtain that Eη → ES increasingly as η → 0 and
therefore we have

lim inf
ε→0

ESε (hε) ≥ sup
η>0

Eη(Ωh) = ES(h).

Hence the claim follows.

�

For the elastic part of the energy we localize first on sets Ω′ ⊂⊂ Ωh in order to have good
convergence properties of uε to u (namely weakly in H1(Ω′) by the previous compactness propo-
sition). We then localize on sets where the gradient of the rescaled displacement is less than a
certain threshold kε. The threshold kε is suitably chosen so that one can Taylor expand on the
set where the gradient is less than kε, and show that the set invades the whole Ω′.

Proposition 4.5 (Γ-lim inf-elastic-inequality). We have

Γ- lim inf
ε→0

Eelε (y, u, h) ≥ Eel(y, u, h).

Proof. Let {yε, uε, hε} ⊂ X converge to (y, u, h). Without loss of generality we can assume that

sup
ε>0

Eε(yε, uε, hε) < +∞.

Furthermore we assume that

lim
ε→0

Eelε (yε, uε, hε) = lim inf
ε→0

Eelε (yε, uε, hε).

By Proposition 3.4 we have that there exist {Rε}ε ⊂ SO(2), {bε}ε ⊂ R2 such that the functions
uε : Lε(Ωh)→ R2 defined by

uε(x) =
yε(x)− (Rεx+ bε)√

ε

converge to u in H1
loc(Ωh). Fix Ω′ ⊂⊂ Ωh. For ε > 0 small enough there holds Ω′ ⊂⊂ Ωhε we

therefore have

Eelε (yε, uε, hε) ≥
∑
T∈Tε

T∩Ω′∩Ω+
h 6=∅

εWε,cell(∇yε(x̂T ), T ) +
∑
T∈Tε

T∩Ω′∩Ω− 6=∅

εWε,cell(∇yε(x̂T ), T )

= I+
ε + I−ε .



MICROSCOPIC VALIDATION OF THIN-FILM MODELS 21

Now fix η > 0 and define Ω+
η =

(
Ω′ ∩ Ω+

h ∩ {x2 > η}
)
⊂⊂ Ω+

hε
. For every T ∈ Tε such that

T ∩ Ω+
η 6= ∅ we have that Wε,cell(F, T ) =

Kf
4 Wλε(F ). Now

I+
ε ≥ ε−1 4√

3

∑
T∈Tε

T∩Ω+
η 6=∅

ˆ
T

Wε,cell(∇yε(x), T )dx = ε−1 16√
3
Kf

∑
T∈Tε

T∩Ω+
η 6=∅

ˆ
T

W1+δε(∇yε(x))dx

≥ ε−1 16√
3
Kf

ˆ
Ω+
η

W1+δε(∇yε(x))dx

= ε−1 16√
3
Kf

ˆ
Ω+
η

W1+δε

(
(1 + δε)Rε +

√
ε(∇uε −

δε√
ε
Rε)

)
dx

≥ ε−1 16√
3
Kf

ˆ
Ω+
η

χε(x)W1+δε

(
(1 + δε)Rε +

√
ε(∇uε −

δε√
ε
Rε)

)
dx

(47)

where we set χε(x) = χ{|∇uε|(x)≤kε}(x) with kε > 0 to be chosen later. Now by Taylor expanding

W1+δε around (1 + δε)Rε, using the assumptions on W1+δε one can check that D2W (F ) =
D2W1+δε((1 + δε)Rε)(F, F ) = D2W1(Rε)(F, F ). Therefore we obtain we obtain

W1+δε ((1 + δε)Rε + F ) =
1

2
D2W (F ) + w (|F |) ,

where sup{w(F )
|F |2 : |F | ≤ ρ} → 0 as ρ→ 0 independent of ε. Using (47) we have that

I+
ε ≥

8√
3
Kf

ˆ
Ω+
η

D2W

(
χε(x)(∇uε −

δε√
ε
Rε)

)
+ ε−1χε(x)w

(√
ε|∇uε −

δε√
ε
Rε|
)

dx.

The second term is bounded by

|∇uε −
δε√
ε
Rε|2χε(x)

w
(√

ε|∇uε − δε√
ε
Rε|
)

ε|∇uε − δε√
ε
Rε|2

.

If we choose kε → +∞ such that kε
√
ε → 0, then |∇uε δε√εRε| is bounded in L2(Ω′) and

χε(x)
w
(√

ε|∇uε− δε√
ε
Rε|

)
ε|∇uε− δε√

ε
Rε|2

converges to zero uniformly in ε. We therefore deduce that

lim inf
ε→0

I+
ε ≥ lim inf

ε→0

8√
3
Kf

ˆ
Ω+
η

D2W

(
χε(x)(∇uε −

δε√
ε
Rε)

)
dx

Noting that δε√
ε
→ δ,Rε → R and χε converges to 1 in measure in Ω+

η we have

χΩ+
η
χε

(
∇uε −

δε√
ε
Rε

)
⇀ ∇u− δR in L2(Ω+

η )

By lower-semicontiuity of convex functionals with respect to weak convergence we obtain

lim inf
ε→0

I+
ε ≥

8√
3
Kf

ˆ
Ω+
η

D2W (∇u− δR) dx.

Now letting η → 0 we obtain

lim inf
ε→0

I+
ε ≥

8√
3
Kf

ˆ
Ω+
h∩Ω′

D2W (∇u− δR) dx. (48)
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The proof of

lim inf
ε→0

I−ε ≥
8√
3
Ks

ˆ
Ω′∩Ω−

D2W (∇u) dx (49)

follows exactly the same steps. Using (48) and (49) we obtain

lim inf
ε→0

Eelε (yε, uε, hε) ≥ lim inf
ε→0

I+
ε + lim inf

ε→0
I−ε

≥ 8√
3

(
Kf

ˆ
Ω′∩Ω+

h

D2W (∇u− δR) dx+Ks

ˆ
Ω′∩Ω−

D2W (∇u) dx

)

=

ˆ
Ω′∩Ωh

Wy(x,Eu)dx

Letting Ω′ → Ωh we obtain the claim. �

4.2. Upper Bound. In this section we prove the Γ-lim sup-inequality, i.e., for all x ∈ X there
exists a sequence {xε}ε converging to x with respect to d such that

lim sup
ε→0

Eε(xε) ≤ E(x).

The result is based on density results. In a first step we use the Yosida-transform of the
profile h in order to obtain a Lipschitz approximation.

To this aim we begin by observing that ϕ : R2 → [0,+∞) defined in 31 is a convex, even,
and positively homogeneous function of degree one and such that

1

C
|ν| ≤ ϕ(ν) ≤ C|ν|. (50)

Furthermore, let us define h− : S1
L → [0,+∞) by

h−(x) := inf{lim inf
n→+∞

h(xn) : xn → x, xn 6= x}.

If Varh < +∞, then {x : h(x) < h−(x)} is at most countable.

Lemma 4.6. Let h : S1
L → R+ be a lower semicontinuous function such that ||h||L1(S1

L) < +∞.

Then there exist a sequence of Lipschitz functions hn : S1
L → R+ such that hn ≤ hn+1 ≤ h,

hn → h in L1(S1
L), Q \ Ωhn → Q \ Ωh with respect to the Hausdorff-distance and

ES(hn)→ ES(h),

where ES is defined by (30).

Proof. Define hn : S1
L → R+ as the Yosida-transform of h given by

hn(x) = inf {h(y) + n|x− y|} .

We then have that hn ≤ hn+1 ≤ h and hn → h pointwise and hence, hn → h in L1(S1
L) and in

the sense of Γ-convergence (cf. [7]). Let us assume without loss of generality that ES(h) < +∞.
By (50) we have that Varh < +∞, which in turns together with ||h||L1(S1

L) < +∞ yields that

||h||∞ < +∞. One can check that Q \ Ωhn → Q \ Ωh with respect to the Hausdorff-distance.
Now fix η > 0 and define ϕη : R2 × R2 → [0,+∞] by

ϕη((x1, x2), ν) =


γfϕ(ν) x2 > 2η

(tγf + (1− t)γf ∧ γs)ϕ(ν) x2 = t2η + (1− t)η, t ∈ (0, 1)

(γf ∧ γs)ϕ(ν) otherwise,



MICROSCOPIC VALIDATION OF THIN-FILM MODELS 23

with ϕ defined by (31). Now define ESη : AP ([0, L])→ [0,+∞] by

ESη (h) =

ˆ
∂Ωh∩Ω

1/2
h

ϕη(x, ν)dH1 + 2

ˆ
∂Ωh∩Ω1

h

ϕη(x, ν)dH1.

Since Q \ Ωhn → Q \ Ωh with respect to the Hausdorff-distance and Theorem 4.3 we have
that

lim inf
n→+∞

ESη (hn) ≥ ESη (h).

Now by the Monotone Convergence Theorem there holds

lim
η→0

ESη (h) = sup
η>0

ESη (h) = ES(h)

for all h ∈ AP (S1
L). Now

lim inf
n→+∞

ES(hn) ≥ lim inf
n→+∞

ESη (hn) ≥ ESη (h).

Letting η → 0 we therefore have

lim inf
n→+∞

ES(hn) ≥ ES(h).

It remains to prove the other inequality. We first prove that {hn = 0} = {h = 0}. Suppose
that hn(x) = 0, then there exists x′ ∈ [0, L] such that 0 = h(x′) + n|x − x′| ≥ n|x − x′| ≥ 0.
Hence x′ = x and h(x) = 0. On the other hand if h(x) = 0, since 0 ≤ hn(x) ≤ h(x) = 0 it follows

hn(x) = 0. And therefore the claim is proven. Moreover this set is essentially
(
∂Ωh ∩ Ω

1
2

h

)
\Q+.

Noting that the set Ωh is Lipschitz we have that ∂Ωh = ∂Ωh and using {hn = 0} = {h = 0} we
obtain

ES(hn) = γf

ˆ
∂Ωhn∩Q+

ϕ(ν)dH1 + γf ∧ γs
ˆ
∂Ωhn\Q+

ϕ(ν)dH1

= γf

ˆ
∂Ωhn∩Q+

ϕ(ν)dH1 + γf ∧ γs
ˆ
∂Ωh\Q+

ϕ(ν)dH1.

(51)

We now need to estimate the first term. To this end we split ∂Ωhn into two parts, ∂Ωhn ∩ ∂Ωh
and ∂Ωhn \ ∂Ωh. First notice that ∂Ωh ∩ ∂Ωhn is essentially equal to ∂Ωh ∩ ∂Ωhn . Indeed let
(x1, x2) ∈ ∂Ωhn ∩ (∂Ωh \ ∂Ωh). We have x2 = hn(x1) ≤ h(x1) and h(x1) ≤ x2 < h−(x1), thus
x2 = h(x1) and h(x1) < h−(x1), but this happens for at most a countable number of points.
Thus ∂Ωhn ∩ (∂Ωh \ ∂Ωh) is at most countable. Therefore we can write

γf

ˆ
∂Ωhn∩Q+

ϕ(ν)dH1 = γf

ˆ
∂Ωh∩Ωhn∩Q+

ϕ(ν)dH1 + γf

ˆ
∂Ωhn\∂Ωh∩Q+

ϕ(ν)dH1. (52)

It remains to estimate the second term on the right hand side. We have Ln = {x1 : (x1, x2) ∈
∂Ωhn \ ∂Ωh} = {x1 ∈ [0, L] : hn(x1) < h(x1)} which is an open set. It can be written as a
disjoint union of open intervals:

Ln =

K⋃
k=1

(ak, bk),

with ak = ank , bk = bnk ∈ [0, L] ak < bk ≤ ak+1 for all k ∈ {1, . . . ,K} and K = K(n) ∈
N0 ∪ {+∞}. Fix k ∈ N and consider (ak, bk). We claim that for x ∈ (ak, bk) there holds

hn(x) = min{h(ak) + n(x− ak), h(bk) + n(bk − x)}. (53)
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Let us prove (53). By testing with ak, bk respectively we obtain that

hn(x) ≤ min{h(ak) + n(x− ak), h(bk) + n(bk − x)}.

Now for the other inequality. Assume there exists x′ < ak such that hn(x) = h(x′) +n|x−x′| <
h(a) + n|x − a| but this contradicts hn(a) = h(a). The same way we can prove that there
does not exist x′ > bk such that hn(x) = h(x′) + n|x − x′|. It remains to prove the claim for
x ∈ (ak, bk). Let us assume that there exist x′ ∈ (ak, bk) such that hn(x) = h(x′) + n|x − x′|.
Then, since Liphn ≤ n we have

h(x′) + n|x− x′| = hn(x) ≤ hn(x′) + n|x− x′| ≤ h(x′) + n|x− x′|

so that hn(x′) = h(x′) which contradicts x′ ∈ (ak, bk). There are now two cases to consider:

a) hn(x) = h(ak) + n|x− ak| (or similar hn(x) = h(bk) + n|x− bk|)
b) There exists x0 = xk0 ∈ (ak, bk) such that

hn(x) =

{
h(ak) + n|ak − x| x ∈ [ak, x0),

h(bk) + n|bk − x| x ∈ [x0, bk).

bkak

hn

h(ak) = hn(ak)

h(bk) = hn(bk)

h

bkak

h hn

Figure 3. The case a) on the left and the case b) on the right

In the first case the graph of hn in [ak, bk]×R is a straight line lk from (ak, h(ak)) to (bk, h(bk)),
while the set ∂Ωh ∩ ([ak, bk] × R) contains a curve γk : (0, Lk) → [ak, bk] × R parametrized by
arc-length connecting those two points, that is γk(0) = (ak, h(ak)), γk(Lk) = (bk, h(bk)) and by
[10], Lemma 3.12 and Theorem 3.8 the curve has a tangent γ̇k at H1-a.e. point and it satifies
|γ̇k| = 1 L1-a.e. in (0, Lk). We set ξk = (ak, h(ak)) − (bk, h(bk)). Now by convexity and the
positively one homogeneity we have

ˆ
∂Ωhn∩[ak,bk]×R

ϕ(ν)dH1 =

ˆ
lk

ϕ(νlk)dH1 = |ξk|ϕ
(
ξ⊥k
|ξk|

)
= ϕ(ξ⊥k )

= ϕ
((ˆ Lk

0

γ̇k(t)dt

)⊥ )
≤
ˆ Lk

0

ϕ(γ̇⊥k (t))dt.

(54)

In case b) the graph of hn is made of two straight lines, one going from (ak, h(ak)) to (x0, hn(x0))
and the other one going from (x0, hn(x0)) to (b, h(b)). The set ∂Ωh ∩ ([ak, bk] × R) contains a
curve γk : (0, Lk)→ [ak, bk]×R parametrized by arc-length connecting the two endpoints, that
is γk(0) = (ak, h(ak)), γk(Lk) = (bk, h(bk)) and (again using [10], Lemma 3.12 and Theorem 3.8)
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|γ̇k| = 1 L1-a.e. in (0, Lk). We prolongate the line connecting (ak, h(ak)) and (x0, hn(x0)) until
it intersects the curve γ say at γ(t0). Setting ξk = γ(t0)− (ak, h(ak)) we have

|ξk|ϕ
(
ξ⊥k
|ξk|

)
= ϕ(ξ⊥k ) = ϕ

((ˆ t0

0

γ̇k(t)dt

)⊥ )
≤
ˆ t0

0

ϕ(γ̇⊥k (t))dt. (55)

We define the curve γ̃k : (0, L̃k) → [ak, bk] × R parametrized by arc-length that connects
(x0, h(x0)) with γk(t0) through a straight line and then follows γk until (bk, h(bk)). Setting
ζk = (bk, h(bk))− (x0, hn(x0)) we obtain

|ζk|ϕ
(
ζ⊥k
|ζk|

)
= ϕ(ζ⊥k ) = ϕ

((ˆ L̃k

0

˙̃γk(t)dt

)⊥ )
≤
ˆ L̃k

0

ϕ( ˙̃γ⊥(t))dt

=

ˆ L̃k−Lk+t0

0

ϕ( ˙̃γ⊥(t))dt+

ˆ L̃k

L̃k−Lk+t0

ϕ( ˙̃γ⊥(t))dt

= |ξk − ζk|ϕ
(
ξ⊥k
|ξk|

)
+

ˆ Lk

t0

ϕ(γ̇⊥(t))dt.

(56)

Here we used the fact that ξk, ζk point in the same direction and γ̃ connects (x0, h(x0)) with

γk(t0) through a straight line and that γ̃k(L̃k−Lk + t) = γk(t), t ∈ (t0, Lk). Using (55) and (56)
we obtain

ˆ Lk

0

ϕ(γ̇⊥k (t))dt ≥ |ζk|ϕ
(
ζ⊥k
|ζk|

)
+ (|ξk| − |ξk − ζk|)ϕ

(
ξ⊥k
|ξk|

)
=

ˆ
∂Ωhn∩[ak,bk]×R

ϕ(ν)dH1.

(57)

The last inequality follows, since the first term on the left side is equal to the integration
of ϕ over the line segment connecting (x0, h(x0)) and (bk, h(bk)), while (|ξk| − |ξk − ζk|) =
||(x0, h(x0))− (ak, h(ak))||2 and the second term equals therefore the integration of ϕ over the
line segment connecting (ak, h(ak)) and (x0, h(x0)). Summing over all k ∈ {1, . . . ,K} we obtain

ˆ
∂Ωhn\∂Ωh

ϕ(ν)dH1 ≤
K∑
k=1

ˆ Lk

0

ϕ(γ̇⊥k (t))dt.

Note that
ˆ Lk

0

ϕ(γ̇⊥k (t))dt ≤
ˆ
∂Ωh∩[ak,bk]×R

ϕ(ν)dH1.

Summing over k we obtain
ˆ
∂Ωhn\Ωh

ϕ(ν)dH1 ≤
∑
k

ˆ
∂Ωh∩[ak,bk]×R

ϕ(ν)dH1.

Now for any k such that γk used above for estimating the energy in [ak, bk] contains a vertical
component connecting (bk, y1) with (bk, h(bk)) and γk+1 contains a vertical component connect-
ing (bk, h(bk)) = (ak+1, h(ak+1)) with (ak+1, y2) we show that the line segment [(bk, h(bk)), (bk,min{y1, y2})] ⊂
∂Ωh\∂Ωh. Since both the segments are contained in a continuous curve γk, γk+1 respectively we
have that h−(bk) ≥ min{y1, y2} > h(bk). It therefore follows that [(bk, h(bk)), (bk,min{y1, y2})] ⊂
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∂Ωh \ ∂Ωh. Since ϕ is even we haveˆ
∂Ωhn\Ωh

ϕ(ν)dH1 ≤
∑
k

ˆ
∂Ωh∩(ak,bk)×R

ϕ(ν)dH1 + 2

ˆ
∂Ωh\∂Ωh

ϕ(ν)dH1

≤
ˆ

(∂Ωh∩∂Ωh)\∂Ωhn

ϕ(ν)dH1 + 2

ˆ
∂Ωh\∂Ωh

ϕ(ν)dH1.

(58)

Using (51),(52) and (58) we obtain

ES(hn) ≤ ES(h).

Taking the lim sup as n→ +∞ yields the claim. �

The following lemma is needed in order to match the volume constraint and was established
in [8, Lemma 3.1].

Lemma 4.7. Let hn ∈ L1(S1
L;R+) such that hn → h in L1(S1

L). For every sequence {λn}
converging to 0, there exist a constant µ > 0 (depending on the sequences {λn}, {hn}, and h)
and an integer Nµ such that

|Hλn | +
1

λn

ˆ
[0,L]\Hλn

hn(x1) dx1 > µ (59)

for every n ≥ Nµ, where Hλn := {x1 ∈ [0, L] : hn(x1) ≥ λn}.

Proof. By contradiction, up to passing to a subsequence (not relabeled) both for {λn} and {hn}
we have that

|Hλn | +
1

λn

ˆ
[0,L]\Hλn

hn(x1) dx1 ≤ µn (60)

for some µn converging to zero. Fixed η ∈ (0, ‖h‖L1(S1
L)). By Vitali’s Theorem there exists

µη > 0 such that

‖hn‖L1(S) ≤ ‖h‖L1(S1
L) − η

for every measurable set S with |S| ≤ µη and n ∈ N. From (60) it follows that |Hλn | ≤ µη for
n large enough, and hence we obtain that

‖hn‖L1(Hλn ) ≤ ‖h‖L1(S1
L) − η. (61)

However, by (60) we also have that

0← µn ≥
1

λn

ˆ
[0,L]\Hλn

hn(x1) dx1 =
1

λn

(
‖hn‖L1(S1

L) − ‖hn‖L1(Hλn )

)
≥ 1

λn

(
‖hn‖L1(S1

L) − ‖h‖L1(S1
L)) + η

)
where we used (61) in the last inequality. We reached a contradiction with the fact that

1

λn

(
‖hn‖L1(S1

L) − ‖h‖L1(S1
L) + η

)
→ +∞

since λn → 0 and hn → h in L1(S1
L). �

In order to prove the upper bound we need the following density result whose proof relies on
some ideas of both [8] and [12], also adapted to the anisotropic case.
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Proposition 4.8. Let (y, u, h) ∈ X such that ||h||L1(S1
L) = V . Then there exists a sequence of

Lipschitz functions hn : S1
L → R+ such that ||hn||L1(S1

L) = V , and a sequence un ∈ H1(Ωhn ;R2)
such that:

(i) (y, un, hn)→ (y, u, h) in X as n→ +∞;
(ii) E(y, un, hn)→ E(y, u, h) as n→ +∞.

Proof. Without loss of generality we assume that

E(y, u, h) < +∞. (62)

By Lemma 4.6 there exists a sequence of Lipschitz functions h̃n : [0, L]→ R+ such that h̃n → h

in L1(S1
L), h̃n ≤ h̃n+1 ≤ h,

Q \ Ωh̃n → Q \ Ωh (63)

with respect to the Hausdorff-distance, and

ES(h̃n)→ ES(h). (64)

Note that the functions h̃n do not satisfy the L1-constraint. We introduce a parameter λn to
measure how much each h̃n differs from such L1-constraint, as

λn :=
(
V − ||h̃n||L1(S1

L)

)β
≥ 0 (65)

for every n ∈ N, where β is fixed number in (0, 1). We then define the functions hn : [0, L]→ R+

by

hn(x1) :=


h̃n(x1) if h̃n(x1) = 0,

h̃n(x1) + εn if h̃n(x1) ≥ λn,(
1 + εn

λn

)
h̃n(x1) if h̃n(x1) ∈ (0, λn)

(66)

for every x1 ∈ [0, L] and for a number εn ≥ 0 which will be chosen so that ||hn||L1(S1
L) = V .

More precisely, by a straightforward computation one finds

εn :=
1

µn

(
V − ||h̃n||L1(S1

L)

)
, (67)

where µn is given by

µn := |H̃λn | +
1

λn

ˆ
[0,L]\H̃λn

h̃n(x1) dx1

with H̃λn := {x1 ∈ [0, L] : h̃n(x1) ≥ λn}. Since λn → 0 by the L1-convergence of the h̃n, we
can applied Lemma 4.7 and obtain a µ > 0 and an integer Nµ such that

µn > µ

for every n ≥ Nµ. Then, from (67) it easily follows that

0 ≤ εn ≤
1

µ

(
V − ||h̃n||L1(S1

L)

)
→ 0, (68)

and

0 ≤ εn
λn
≤ 1

µ

(
V − ||h̃n||L1(S1

L)

)1−β
→ 0 (69)

since β ∈ (0, 1). Note that in particular (63) together with (68) and h̃n ≤ hn ≤ h̃n + εn implies
that

Q \ Ωhn → Q \ Ωh (70)
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with respect to the Hausdorff-distance. Furthermore, by also employing Bolzano’s Theorem one
can prove that

|hn(x1)− hn(x′1)| ≤ Cn
(

1 +
εn
λn

)
|x1 − x′1|

for every x1, x
′
1 ∈ [0, L], where Cn > 0 denotes the Lipschitz constant associated to h̃n and

hence, hn are also Lipschitz. We now prove that

ES(hn)→ ES(h). (71)

By (30) and (66) we have that

|ES(h̃n)− ES(hn)| ≤ γf

∣∣∣∣∣
ˆ
∂Ωh̃n∩Ω

1/2

h̃n
∩{λn+εn>x2>0}

ϕ(ν)dH1 −
ˆ
∂Ωhn∩Ω

1/2
hn
∩{λn>x2>0}

ϕ(ν)dH1

∣∣∣∣∣
= γf

∑
i∈In

ˆ bni

ani

∣∣∣∣ϕ(ν(h̃n))

√
1 + (h̃′n)2 − ϕ(ν(hn))

√
1 + (h′n)2

∣∣∣∣ dx1

≤ γf
∑
i∈In

(ˆ bni

ani

An dx1 +

ˆ bni

ani

Bn dx1

)
(72)

for some index set In and ani < bni with (ani , b
n
i ) ∩ (anj , b

n
j ) = ∅ for all i, j ∈ In, i 6= j such that⋃

i∈In
(ani , b

n
i ) = {x1 ∈ [0, L] : 0 < h̃n(x1) < λn},

An := ϕ(ν(hn))

∣∣∣∣√1 + (h̃′n)2 −
√

1 + (h′n)2

∣∣∣∣ ,
and

Bn :=

√
1 + (h̃′n)2

∣∣∣ϕ(ν(h̃n))− ϕ(ν(hn))
∣∣∣ ,

where ν(g) for a Lipschitz function g : [0, L] → R+ here denotes the normal on the graph of g
with respect to the graph parametrization, i.e.,

ν(g)(x1) :=
(−g′(x1), 1)√
1 + (g′(x1))2

(73)

for every x1 ∈ [0, L]. We observe that

An ≤ C σn(h̃′n)2√
1 + (h̃′n)2 +

√
1 + (h′n)2

≤ Cσn(h̃′n)2

2
√

1 + (h̃′n)2

≤ C

2
σn

√
1 + (h̃′n)2, (74)

where in the first inequality we used (50) and

σn :=

[(
εn
λn

)2

+ 2
εn
λn

]
.
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We now observe that for every x1 ∈
⋃
i∈In(ani , b

n
i )

|ν(h̃n)− ν(hn)| ≤
|(−h̃′n

√
1 + (h′n)2 + h′n

√
1 + (h̃′n)2,

√
1 + (h′n)2 −

√
1 + (h̃′n)2)|

1 + (h′n(x1))2

≤ 1√
1 + (h′n(x1))2

√(
σn
2

+
εn
λn
|h′n|

)2

+
σ2
n

4

≤ 1√
2

[(
εn
λn

)2

+ 3
εn
λn

]
≤
√

2σn, (75)

where in the first inequality we used (73), and in second the fact that h′n(x1) = h̃′n(x1) +
εn
λn
h̃′n(x1) and the same reasoning employed in (74). Therefore, by (69) and (75) we have that

|ν(h̃n)− ν(hn)| → 0 as n→ +∞. Since ϕ is bounded and convex and hence, Lipschitz, we then
obtain that

Bn ≤ Cϕ
√

1 + (h̃′n)2|ν(h̃n)− ν(hn)|

≤
√

2Cϕσn

√
1 + (h̃′n)2, (76)

for large n ∈ N, where Cϕ is the Lipschitz constant of ϕ. Therefore, from (72), (74), and (76) it
follows that there exists a constant C ′ > 0 such that

|ES(h̃n)− ES(hn)| ≤ C ′γfσn
∑
i∈In

ˆ bni

ani

√
1 + (h̃′n)2 dx1 ≤ C ′γfσnH1(Γn),

where Γn denotes here the graph of h̃n. Therefore, since H1(Γn) are uniformly bounded because
of (50) and (64), and σn tends to 0 by (69), we can conclude that

|ES(h̃n)− ES(hn)| → 0

from which (71) follows in view of (64).

Let us now define un : Ωhn → R2 by

un(x1, x2) :=


u(x1, x2 − εn) if x2 > x0

2 + εn,

u(x1, x
0
2) if x0

2 + εn ≥ x2 > x0
2,

u(x1, x2) if x0
2 ≥ x2,

(77)

for a x0
2 ∈ (−R,−εn) chosen in such a way that u(·, x0

2) ∈ H1(S1
L;R2) (which we can by (62)).

Note that un are well defined in Ωhn since hn ≤ h̃n+εn ≤ h+εn. Furthermore, by (68) and (77)
we have that un → u in L2

loc(Ωhn ;R2) as n → +∞, which together with (70) yields Assertion
(i).

The remaining part of the proof is devoted to prove

Eel(y, un, hn)→ Eel(y, u, h) (78)

which together with (71) implies Assertion (ii). We begin by observing that

lim
n→+∞

Eel(y, u, h̃n) = lim
n→+∞

ˆ
Ωh̃n

Wy(x,Eu(x))dx

=

ˆ
Ωh

Wy(x,Eu(x))dx = Eel(y, u, h).

(79)



30 PAOLO PIOVANO AND LEONARD KREUTZ

where we applied the Monotone Convergence Theorem. Furthermore, by (77) we observe that

|Eel(y, un, h̃n)−Eel(y, u, h̃n)| ≤ C
[ ˆ

[0,L]×[x0
2,x

0
2+εn]

Wy(x,Eu(x1, x
0
2))dx

+

ˆ
{h̃n>0}×[0,εn]

|δ∇y|2 dx+

ˆ
{h̃n=0}×[−εn,0]

Wy(x,Eu(x))dx

+

ˆ
En

Wy(x,Eu(x))dx
]

≤ C
[
εn

ˆ
[0,L]

|Eu(x1, x
0
2)|2dx1 +

ˆ
[0,L]×[0,εn]

|δ∇y|2 dx

+

ˆ
[0,L]×[−εn,0]

|Eu|2 dx+

ˆ
En

|Eu|2 + |δ∇y|2dx
]

(80)

where {h̃n = 0} := {x1 ∈ [0, L] : h̃n(x1) = 0}, {h̃n > 0} := [0, L] \ {h̃n = 0}, {λn > h̃n > 0} :=

{x1 ∈ [0, L] : λn > h̃n(x1) > 0}, and

En :=
(
Ωh̃n \ (Ωh̃n − εne2)

)
∩
(
{λn > h̃n > 0} × (0,+∞)

)
.

Notice that |En| ≤ Cεn for some constant C > 0, since by (66) 0 < h̃n − (hn − εn) ≤ +εn for

x1 ∈ {λn > h̃n > 0}. Therefore, from (68) and (80) it easily follows that

|Eel(y, un, h̃n)− Eel(y, u, h̃n)| → 0

as n → +∞, and hence, also in view of (79), we obtain (78). This concludes the proof of
Assertion (ii) and of the Proposition. �

In view of previous density results, and in particular because we can reduce to Lipschitz
profile functions (matching the volume constraint), by Korn’s inequality displacements of energy-
bounded sequences are in W 1,2(Ωh) and hence, by Serrin’s Theorem we can restrict to the case
of smooth displacements u. In this regard, notice also that due to the growth and continuity
properties of Wy strong convergence in W 1,2(Ωh) implies convergence of the elastic energies. For
such pairs of regular profiles and displacement we construct the recovery sequence explicitly. The
convergence of the elastic energy then follows by Taylor expanding the discrete cell-energy and
the convergence of the surface energy can also be reduced to the computation of the surface
energy of (a part of) a half space.

Proposition 4.9. Let (y, u, h) ∈ X we then have

E′′(y, u, h) ≤ E(y, u, h).

Proof. We use a density argument. Note that for general (y, u, h) ∈ X it is not true, that for
any such u there exist {uk} ⊂ C∞(Ωh) and such that uk → u strongly in H1(Ωh), since h might
not be Lipschitz continuous. However, by Proposition 4.8 there exists a sequence of Lipschitz
functions hn : S1

L → R+ such that ||hn||L1(S1
L) = V , and a sequence un ∈ H1(Ωhn ;R2) such that

(y, un, hn)→ (y, u, h) in X and E(y, un, hn)→ E(y, u, h) as n→ +∞.

We can therefore assume that h ∈ Lip([0, L]).

Now by [12], Theorem 4.2 there exists a A = A(u) ∈ R2×2 such that A = −AT and a constant
C = C(h) such that ˆ

Ωh

|∇u−A|2dx ≤ C
ˆ

Ωh

|Eu|2dx,
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moreover by Poincareés Inequality there exist a vector b = b(u) ∈ R2 such thatˆ
Ωh

|u− (Ax+ b)|2dx ≤ C
ˆ

Ωh

|∇u−A|2dx,

with C = C(h) as above. We therefore obtain that v(x) = u(x)− (Ax+ b) ∈ H1(Ωh) and with
that u ∈ H1(Ωh). Hence there exist {uk} ⊂ C∞(Ωh) converging to u strongly in H1(Ωh). Since
Wy(x, ·) is continuous and satisfies

Wy(x, ξ) ≤ C(1 + |ξ|2)

we have that

lim
k→+∞

Eel(y, uk, h) = Eel(y, u, h).

Further we reduce to the setting where h : [0, L]→ R is piecewise affine. Fix δ > 0. There exists
Aδ ⊂ S1

L open such that {h = 0} ⊂ Aδ and

|Aδ| ≤ |{h = 0}|+ δ. (81)

As {h = 0} is compact and Aδ is open we can assume that

Aδ =

Nδ⋃
k=1

Iδk ,

with Nδ ∈ N, Iδk open intervals and dist(Iδk , I
δ
j ) ≥ dδ > 0 for all j 6= k. Since the Iδk are disjoint

and {h = 0} ⊂ Aδ, by (81) we have that

Nδ∑
k=1

|Iδk \ {h = 0}| =
Nδ∑
k=1

|Iδk | − |{h = 0}| = |Aδ| − |{h = 0}| ≤ δ.

Define δk = |Iδk \ {h = 0}| and η = min{δk, dδ2 : k = 1, . . . , Nδ}. Now set ∆δ = ∂Aδ ∪ ∂(Aδ)η ∪
(([0, L] \ (Aδ)η) ∩ δZ) and we order ∆δ by writing ∆δ = {xi}Mδ

i=1 with 0 ≤ x1 ≤ . . . ≤ xi ≤
xi+1 . . . ≤ L. Now define hδ : [0, L]→ R+ by

hδ(xi) =

{
0 xi ∈ ∂Aδ,
h(xi) otherwise

and interpolate linearly between the function values of hδ(xi). Note that if hδ(xi) 6= h(xi) we
have that xi ∈ ∂Aδ and therefore xi ∈ ∂Iδk for some k = 1, . . . , Nδ. Since |Iδk\{h = 0}| = δk there
exists x with h(x) = 0 such that |x− xi| ≤ δk. Since h is Lipschitz have that |hδ(xi)− h(xi)| ≤
Cδk. Now let x ∈ S1

L if x ∈ Iδk we have that Iδk \ {h = 0} = δk, so there exist x′ ∈ {h = 0},
|x − x′| ≤ δk, we therefore have h(x) ≤ Cδk ≤ δ. On the other hand if x /∈ Aδ there exists
xi, xi+1 ∈ ∆δ with |x−xi|, |x−xi+1| ≤ δ and |h(xi)−hδ(xi)| ≤ Cδ. By the Lipschitz continuity
of both hδ and h we have that |h(x) − h(xδ)| ≤ Cδ. We therefore have that hδ → h uniformly
on S1

L and also hδ → h with respect to the convergence given in Definition 2.1. Note that hδ
is a piecewise affine function so we are done with the reduction to piecewise affine profiles if we
show that

lim
δ→0

E(y, u, hδ) = E(y, u, h).

Since Q \ Ωhδ → Q \ Ωh we have that

lim
δ→0

Eel(y, u, hδ) = Eel(y, u, h).
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Moreover by the semicontinuity of the surface energy we have that

lim inf
δ→0

ES(hδ) ≥ ES(h).

It thus remains to show that

lim sup
δ→0

ES(hδ) ≤ ES(h).

Now we have by the Area formula and noting that h′δ = 0 we have thatˆ
∂Ωhδ∩(Iδk×R)

ϕ(ν)dH1 =

ˆ
Iδk

ϕ((1, h′δ)
⊥)dx

=

ˆ
Iδk∩{h=0}

ϕ((1, h′δ)
⊥)dx+

ˆ
Iδk\{h=0}

ϕ((1, h′δ)
⊥)dx

≤
ˆ
Iδk

ϕ((1, h′)⊥)dx+ C|Iδk \ {h = 0}|

=

ˆ
∂Ωh∩(Iδk×R)

ϕ(ν)dH1 + Cδk.

(82)

Connecting (xi, hδ(xi)) with (xi, h(xi)), and (xi+1, hδ(xi+1)) with (xi+1, h(xi+1)) noting |h(xi)−
hδ(xi)|, |h(xi+1)− hδ(xi+1)| ≤ Cδk and using convexity of ϕ we obtainˆ

∂Ωhδ∩((Iδk)η\Iδk×R)

ϕ(ν)dH1 ≤
ˆ
∂Ωh∩((Iδk)η\Iδk×R)

ϕ(ν)dH1 +

ˆ
[(xi,hδ(xi)),(xi,h(xi))]

ϕ(ν)dH1

+

ˆ
[(xi+1,hδ(xi+1)),(xi+1,h(xi+1))]

ϕ(ν)dH1

≤
ˆ
∂Ωh∩((Iδk)η\Iδk×R)

ϕ(ν)dH1 + Cδk.

(83)

Now outside of (Aδ)η by convexity we have for a subinterval I of S1
L \ (Aδ)ηˆ

∂Ωhδ∩(I×R)

ϕ(ν)dH1 =

ˆ
I

ϕ((1, h′δ)
⊥)dx = ϕ

(ˆ
I

(1, h′δ)
⊥dx

)
= ϕ

(ˆ
I

(1, h′)⊥dx

)
≤
ˆ
I

ϕ((1, h′)⊥)dx.

(84)

Noting that Aδ is a finite union of intervals, so S1
L\(Aδ)η is (up to finitely many points) the finite

union of intervals with nonempty interior. Summing over k and all intervals I using (82)-(84)
and noting that

∑
k δk = δ we obtain

ES(hδ) ≤ ES(h) + C
∑
k

δk ≤ ES(h) + Cδ.

Repeating the same arguments as in Lemma 4.8 we can assume that ||hδ||L1(S1
L) = V . Taking

the lim sup as δ → 0 the claim follows. We therefore have that for every (y, u, h) ∈ X there
exist (y, uk, hk) ∈ X with y = Rx+ b, R ∈ SO(2), b ∈ R2, uk ∈ C∞(R2) and hk piecewise affine,
||hk||L1(S1

L) = V such that

lim
k→+∞

E(y, uk, hk) = E(y, u, h). (85)

It therefore suffices to construct the recovery sequence for h : [0, L] → R+ piecewise affine,
u ∈ C∞(Ωh) and for y = Rx + b, with R ∈ SO(2) and b ∈ R2. We extend u to a function
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u ∈ C∞(Q). In the choice of hε there are two cases two consider, either γf ≤ γs or γf > γs. We

define hε :
√

3
2 ε(Z + 1

2 ) ∩ S1
L → εN by

hε(i) =



ε
⌊
ε−1h

(√
3

2 ε(i+ 1
2 )
) ⌋

i even, γs < γf ,

ε
⌊
ε−1h

(√
3

2 ε(i+ 1
2 )
) ⌋

+ ε
2 i odd, γs < γf ,

ε
⌊
ε−1h

(√
3

2 ε(i+ 1
2 )
) ⌋

+ ε i even, γs ≥ γf ,

ε
⌊
ε−1h

(√
3

2 ε(i+ 1
2 )
) ⌋

+ 3ε
2 i odd, γs ≥ γf .

and finally we define

yε(i) = (Ri+ b) +
√
εu(i), i ∈ Lε(Ωhε).

We then have that uε(i) = u(i) for all Lε(Ωhε). Moreover we have that yε → y in L2
loc(Ωh),

uε → u in L2
loc(Ωh) and hε → h in the sense of Definition 2.1. First note that ||∇u||∞ ≤ C and

therefore we for ε small enough

Wε,cell(∇yε|T, i) ≤ Cε||∇u||2∞ ≤ Cε. (86)

Furthermore since h is Lipschitz we have for η > 0 and ε small enough that

#
(
Lε(Ωhε) ∩ {x ∈ R2 : dist(x, ∂Ωh) ≤ η}

)
≤ Cηε−2.

Finally note that #((∂+Lε(Ω−) ∪ ∂−Lε(Ω−))η) ≤ Cηε−2. Splitting the interactions into
Lε(Ωhε) ∩ {x ∈ R2 : dist(x, ∂Ωh) ≤ η}, (∂+Lε(Ω−) ∪ ∂−Lε(Ω−))η, L◦(Ω+

h ) ∪ L◦(Ω−h ) using
(86) and using the fact that F 7→ ε−1Wε,cell(R+ εF, i) converges uniformly on compact subsets
to Wy(i, Eu) for i ∈ L◦(Ω+

h ) ∪ L◦(Ω−h ) we obtain that

lim sup
ε→0

Eelε (yε, uε, hε) ≤ Eel(y, u, h) + Cη.

The claim for the elastic energy follows by taking η → 0. Now since h is a piecewise affine
function we have that Ωh has a polygonal boundary. We proof the inequality for an interval I
in which h′ = const. First note that for such an interval it is easy to check that∑

j∈Lε(Ωhε∩(I×R))

ε(6−#Nε(j)) ≤
ˆ
∂Ωh∩(I×R)

ϕ(ν)dH1.

We distinguish between the case γf ≤ γs and the case γf > γs. In the case γf ≤ γs we have

that hε(i) ≥ ε for all i ∈
√

3
2 ε(Z + 1

2 ) ∩ S1
L and therefore

ESε (hε) ≤ ES(h) + Cε,

where the error Cε is due to the finite number of points, where h′ jumps. In the case γf > γs
the same argument shows that

γf
∑

j∈Lε(Ωhε∩(I×R))

ε(6−#Nε(j)) ≤ γf
ˆ
∂Ωh∩(I×R)

ϕ(ν)dH1, (87)

for all h such that h > 0. On the other hand if there is an interval for which h = 0 by the
definition of hε we have that also hε = 0 and we have

γs
∑

j∈Lε(Ωhε∩(I×R))

ε(6−#Nε(j)) ≤ γs
ˆ
∂Ωh∩(I×R)

ϕ(ν)dH1. (88)

Using (87) and (88) we obtain as before

ESε (hε) ≤ ES(h) + Cε.
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It remains to modify hε such that ||hε||L1(S1
l ) = Vε. By Lemma 2.5 in [12] we have that hε → h

in L1(S1
L). We therefore have that ||hε||, Vε ∈

√
3

2 ε
2N and

√
3

2
Nεε

2 = Vε − ||hε||L1(S1
L) = V − Vε + V − ||hε||L1(S1

L) → 0. (89)

This implies |Nε|
1
2 ε → 0. Now fix an interval (a, b) ⊂ S1

L such that h′ = const, h > 0 on (a, b)

and fix iε ∈ ε
√

3
2 (Z + 1

2 ) ∩ (a, b) such that

dist(iε, {a, b}) ≥
√

3

2
|Nε|

1
2 ε.

Set Iε =
(
iε −

√
3

2 b|Nε|
1
2 cε, iε +

√
3

2 (b|Nε|
1
2 c − 1)ε

)
and define h̃ε :

√
3

2 ε(Z + 1
2 ) ∩ S1

L → εN

h̃ε(i) =


hε(i) i /∈ Iε,
hε(iε) + ε

(
sign(Nε)b|Nε|

1
2 c+Nε − sign(Nε)b|Nε|

1
2 c2
)

i = iε,

hε(iε) + ε sign(Nε)b|Nε|
1
2 c otherwise.

Now it is clear that ||h̃ε||L1(S1
L) = Vε. Furthermore

ESε (h̃ε)− ESε (hε) ≤ Cε
∑

j∈Lε(Ωh̃ε∩(Iε×R))

(6−#Nε(j)) ≤ C(h)ε|Nε|
1
2 → 0.

The last estimate follows by elementary geometry and estimating the number of points in Lε
that have edges crossing the boundary of the parallelogram with slope determined by h′.

This yields the claim for (y, u, h) ∈ X, y = Rx+b, with R ∈ SO(2), b ∈ R2, h piecewise affine
and u ∈ C∞(R2). Now by (85) for general (y, u, h) ∈ X there exist (y, uk, hk) → (y, u, h) such
that

lim
k→+∞

E(y, uk, hk) = E(y, u, h).

Since

E′′(y, uk, hk) ≤ E(y, uk, hk).

we have

E′′(y, u, h) ≤ lim inf
k→+∞

E′′(y, uk, hk) ≤ lim inf
k→+∞

E(y, uk, hk) = E(y, u, h)

and the claim follows. �
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