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Abstract. We study the spatial discretization of Westervelt’s quasilinear strongly damped wave
equation by piecewise linear finite elements. Our approach employs the Banach fixed-point theorem
combined with a priori analysis of a linear wave model with variable coefficients. Degeneracy of the
semi-discrete Westervelt equation is avoided by relying on the inverse estimates for finite element
functions and the stability and approximation properties of the interpolation operator. In this way,
we obtain optimal convergence rates in L2-based spatial norms for sufficiently small data and mesh
size and an appropriate choice of initial approximations. Numerical experiments in a setting of a 1D
channel as well as for a focused-ultrasound problem illustrate our theoretical findings.
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1. Introduction. The goal of the present work is to analyze a spatial discretiza-
tion by piecewise linear finite elements in nonlinear acoustics. To this end, we study
a discretization of Westervelt’s wave equation for the acoustic pressure u

(1− 2ku)utt − c2∆u− b∆ut = 2ku2
t ,(1.1)

which represents a classical model for nonlinear ultrasound propagation through ther-
moviscous fluids [53]. Our research is motivated by a rising number of nonlinear ultra-
sound applications in medicine and industry [4, 15, 37, 39, 41]. In (1.1), the constant
c denotes the speed of sound, b is the sound diffusivity, and k = βa/(%c

2), where % is
the mass density and βa the coefficient of nonlinearity of the medium.

Westervelt’s equation is a strongly damped quasilinear wave equation with po-
tential degeneracy due to the factor 1 − 2ku next to the second time derivative.
For its derivation and the theoretical foundations of nonlinear acoustics, we refer
to [9, 13, 20, 53], while results on the existence of smooth solutions of (1.1) can be
found in [25, 26, 34]. Efficient simulation of the Westervelt equation and, in general,
nonlinear sound propagation by the finite element method has been an active area of
research. We refer to, e.g., [16, 22, 24, 29, 35, 36, 50, 52], which all focus on algorith-
mic aspects of finite element discretizations without any a priori analysis.

Error analysis for the standard finite element discretization of linear wave equa-
tions is an extensively studied topic; see, e.g., [1, 2, 3, 11, 18, 32, 49] and the references
given therein. In particular, we single out the work on a priori analysis in [1] which
provides L∞(0, T ;L2) error estimates for the undamped linear wave equation and the
results on error bounds for strongly damped linear wave equations [32, 49]. Results
on a class of nonlinear wave equations of a divergent type are also well-established.
In [10], error analysis is provided for a semi-discretization of nonlinear wave equations
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of the form

utt −
n∑
i=1

∂

∂xi
Ai(x,∇u) = f(x, t, u,∇u),

with a monotonicity condition on the corresponding bilinear form; cf. [10, Theorem
3.2]. In [47], semi-discretization for the following damped model is considered

utt −∆b(u) +
∂

∂t
(a(u)) = f(x, t),

with b′(u) ≥ M0 > 0. In [12], convergence of a full discretization for a class of non-
linear second-order in time evolution equations is provided where the operator acting
on the first time derivative is assumed to be hemicontinuous, monotone, coercive, and
to fulfill a certain growth condition. Moreover, the operator acting on the solution is
assumed to be linear, bounded, symmetric, and strongly positive. We also mention
the results in [33] on a class of problems of nonlinear elastodynamic and in [40] on
the discontinuous Galerkin methods for a class of divergent-type nonlinear hyperbolic
equations.

This work contributes to the finite element analysis of Westervelt’s equation in
two ways. We first prove that, coupled with non-zero initial conditions and homoge-
neous Dirichlet data, its semi-discretization by piecewise linear finite elements has a
unique solution which remains bounded in an appropriately chosen norm. Secondly,
we derive an optimal a priori error estimate that has the form

‖u− uh‖L∞(0,T ;L2(Ω)) + ‖ut − uh,t‖L∞(0,T ;L2(Ω)) + ‖utt − uh,tt‖L2(0,T ;L2(Ω))

+ h‖∇(u− uh)‖L∞(0,T ;L2(Ω)) + h ‖∇ut − uh,t‖L∞(0,T ;L2(Ω)) ≤ Chs.

where max{1, d/2} < s ≤ 2. Our results are intended to enhance the numerical
analysis of strongly damped quasilinear wave equations where the nonlinearities in
the equation involve the time derivatives of the solution. We note that a particular
feature of the present quasilinear equation is that the non-degeneracy is not a priori
given. In our proofs we have to ensure that the factor 1 − 2kuh next to the second
time derivative remains positive.

In the continuous analysis of the Westervelt equation, non-degeneracy is typically
achieved by a higher-regularity result for the solution and the use of an embedding,
e.g., H2(Ω) ↪→ L∞(Ω); see [25, Theorem 3.1]. Such a strategy is not possible here
since we use piecewise linear basis functions. Instead we employ inverse estimates for
finite element functions and the stability and approximation properties of the Scott–
Zhang interpolation operator [44].

Our analysis relies on the Banach fixed-point theorem combined with error esti-
mates for a linear wave equation with variable coefficients. Therefore, in this work,
we also obtain error estimates for strongly damped variable coefficient wave equations
that take coefficient error into account as relevant, e.g., in optimal control problems
in nonlinear acoustics [7, 28, 36].

The rest of the paper is organized as follows. Section 2 introduces the notation
and lays out the most important theoretical results in Sobolev and finite element
spaces that we often use in the analysis. In Section 3, we discuss the continuous
problem and its well-posedness. In Section 4, we then study a linearized Westervelt
equation with variable coefficients and prove that its semi-discretization has a unique
solution. Section 5 focuses on the a priori analysis of this linear model. In Section 6,
we show well-posedness and derive convergence rates for the semi-discrete Westervelt
equation. Finally, Section 7 contains numerical examples that illustrate our theory.
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2. Theoretical preliminaries. We begin by setting the notation and sum-
marizing some auxiliary properties of Sobolev and finite element spaces that we will
frequently use in the analysis.

2.1. Notation. We denote the standard L2 inner product by (·, ·). The norms
in Sobolev spaces Lp(Ω) and W q,p(Ω) are denoted by | · |Lp and | · |W q,p , respectively,
where 1 ≤ p ≤ ∞, 1 ≤ q <∞. The norms in Bochner spaces W q,p(0, T ;W r,s(Ω)) are
denoted by ‖ · ‖W q,pW r,s , where 0 ≤ q, r < ∞, 1 ≤ p, s ≤ ∞. We also introduce the
spaces Ḣs(Ω) = H1

0 (Ω) ∩Hs(Ω), for 1 ≤ s ≤ 2.
The constants 0 < Ci < ∞, i ∈ N, appearing in the estimates denote generic

constants that might depend on the coefficients in the equation and the domain Ω,
but not on the mesh size. Throughout the paper, we assume T > 0 to be a fixed time
horizon.

2.2. Auxiliary inequalities. Let Ω ⊂ Rd, where d ∈ {1, 2, 3}, be a bounded
domain with Lipschitz regular boundary. The nonlinear terms appearing in the West-
ervelt equation are of a quadratic type, so after variational testing, we often have
to employ Hölder’s inequality for a product of three functions. In particular, we
frequently make use of the following three special cases of Hölder’s inequality:

|fgh|L1 ≤ |f |Lp |g|Lq |h|Lr for f ∈ Lp(Ω), g ∈ Lq(Ω), h ∈ Lr(Ω),

with (p, q, r) ∈ {(2, 4, 4), (3, 6, 2), (∞, 2, 2)}. We also often employ a special case of
Young’s ε-inequality in the form

xy ≤ εx2 +
1

4ε
y2, where x, y > 0, ε > 0;(2.1)

see [14, Appendix B]. Let u and v be non-negative continuous functions and C1, C2 <
∞ non-negative constants such that

u(t) + v(t) ≤ C1 + C2

∫ t

0

u(s) ds for all t ∈ [0, T ].

Then the following modification of Gronwall’s inequality holds

(2.2) u(t) + v(t) ≤ C1e
C2T for all t ∈ [0, T ];

see [17, Lemma 3.1]. Finally, we recall the Sobolev embeddings

(2.3) f ∈ H1
0 (Ω) ↪→ Lp(Ω), |f |Lp ≤ CH1

0 ,L
p |f |H1 ,

for 1 ≤ p ≤ 6, where CH1
0 ,L

p <∞, noting that d ≤ 3.

2.3. Finite element spaces. We consider the discretization in space by con-
tinuous piecewise linear finite elements that vanish on the boundary. Let Ω ⊂ Rd,
d ∈ {2, 3}, be a convex polygonal domain. For h ∈ (0, h], let Th be a triangulation
of Ω made of triangles (in R2) or of tetrahedrons (in R3) so that Ω = ∪K∈ThK. We
denote by P1(K) the space of polynomials on K of degree no greater than 1. We
introduce the finite element space as

Sh = {uh ∈ H1
0 (Ω) : uh|K ∈ P1(K), ∀K ∈ Th}.(2.4)

We assume that {Th}0<h≤h is a quasiuniform family: there are constants 0 < c1, c2 <
∞ such that

c1h ≤ hK ≤ c2%K , K ∈ Th,



4 V. NIKOLIĆ AND B. WOHLMUTH

where hK denotes the diameter of the triangle (tetrahedron) K, %K stands for the
diameter of the greatest ball (sphere) included in K, and h = maxK∈Th hK .

It is known that there exists U ∈ Sh and 0 < C <∞ such that

(2.5)
|u− U|L2 ≤Chs|u|Hs ,

|∇(u− U)|L2 ≤Chs−1|u|Hs ,

for u ∈ Ḣs(Ω), 1 ≤ s ≤ 2; see [19].

Inverse estimates. Under the assumptions made above on the family {Sh}0<h≤h,
there is a 0 < Cinv <∞ such that

|χ|L∞ ≤ Cinvh
−d/p|χ|Lp , 1 ≤ p <∞,(2.6)

for every χ ∈ Sh; see [5, Theorem 4.5.11]. We will need the special cases p = 2 and
p = 4 in the proofs.

Bounds for the interpolation error. In our analysis, we will employ an interpolant
Ih : W l,p(Ω)→ Sh of Scott–Zhang type, where 0 ≤ l ≤ 1, 1 ≤ p ≤ ∞; cf. [5, 44]. The
following approximation and stability properties hold:

(2.7)
|v − Ihv|L2 ≤Capph

s|v|Hs , for v ∈ Hs(Ω), 1 ≤ s ≤ 2,

|Ihv|L∞ ≤Cst|v|L∞ , for v ∈ L∞(Ω),

where 0 < Capp, Csta <∞; see [5, Theorem 4.8.12 and Corollary 4.8.15].

3. The continuous problem. We start from the following initial-boundary
value problem for the Westervelt equation

utt − c2∆u− b∆ut = 2k
(
uutt + u2

t

)
in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

(u, ut) = (u0, u1) on Ω× {t = 0}.

(3.1)

The weak form of the problem is then given by
((1− 2ku)utt, φ) + c2(∇u,∇φ) + b (∇ut,∇φ)− 2k

(
u2
t , φ
)

= 0,

for all φ ∈ H1
0 (Ω) a.e. in time,

(u(0), ut(0)) = (u0, u1).

(3.2)

This problem is known to be well-posed for small data.

Theorem 3.1. [25, Theorem 3.1] Let T > 0, b, k, c2 > 0, 0 < m < 1
4k , and

M > 0 be arbitrary. Assume that

|u0|2H2 + |u1|2H2 ≤ %T ,

with %T sufficiently small. Then there exists a unique solution u of (3.2) such that

(3.3)
u ∈ B = {u ∈ L∞(Ω× (0, T )) : ‖u‖L∞(Ω×(0,T )) ≤ m, ‖utt‖L2H1 ≤M,

‖ut‖CH1 ≤M, (u(0), ut(0)) = (u0, u1)} ,

and such that ∆u, utt, ∇ut ∈ L∞(0, T ;L2(Ω)), ∇utt ∈ L2(0, T ;L2(Ω)).
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We also refer to [34] where the results of Theorem 3.1 are generalized by employing the
maximal Lp regularity approach. Results on the existence of very smooth solutions
for a reformulation of the problem in terms of the acoustic velocity potential ψ, where
u = %ψt, can be found in [27, 30].

Note that the well-posedness holds for sufficiently small data which by continuity
implies smallness of u in the appropriate norms. The condition ‖u‖L∞(Ω×(0,T )) ≤ m <
1/(4k) in (3.3) ensures that the equation does not degenerate. For the well-posedness
of the semi-discrete problem, we will also need smallness of data and a bound on the
approximate solution that guarantees non-degeneracy. It is also worth noting that
the strong damping (i.e., b > 0) is needed for the continuous problem to be well-posed
and the same will hold for the semi-discrete equation.

Going forward, we assume that (3.1) has a unique solution. We will impose
additional conditions on the regularity of u when needed for the convergence results.

4. Finite element approximation of the linearized Westervelt equa-
tion with variable coefficients. We first provide numerical analysis of an initial-
boundary value problem for a linear wave equation with variable coefficients which can
be interpreted as a linearization of the Westervelt equation. We study the following
initial boundary value problem for a non-degenerate equation:

α(x, t)utt − c2∆u− b∆ut + β(x, t)ut = f(x, t) in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

(u, ut) = (u0, u1) on Ω× {t = 0},

(4.1)

where 0 < α0 ≤ α(x, t) ≤ α1 a.e. in Ω × (0, T ). Analysis of the linearization (4.1)
allows to later define an iterative map on which we will apply the Banach fixed-point
theorem. However, finite element approximation of the partial differential equation
in (4.1) is also of independent interest. For example, this model with b = f = 0
appears in [6] and is motivated by the study of the transonic gas dynamics. The
adjoint problems for the Westervelt equation which arise in the optimal control and
shape optimization works [7, 28, 36] have (after time reversal) the form of this PDE
as well.

We refer to [27, Proposition 7.2] for the sufficient conditions under which problem
(4.1) has a unique solution (u, ut) in C([0, T ];Hj(Ω)×Hj−1(Ω)), where j ∈ {2, 4}. We
therefore proceed with the assumption that problem (4.1) has a unique solution. The
conditions on the regularity of u are specified when needed for the a priori estimates.
It is implicitly assumed that the coefficients α and β, the initial data (u0, u1), and
the source term f are sufficiently smooth for such a regularity to hold.

Results on the error estimates for special cases of (4.1) with constant coefficients
are available in the literature. Analysis of the Galerkin approximation of (4.1) for the
case α = 1, b = 0, and β = 0 is performed in [1]. The case of a strongly damped wave
equation (i.e. with a fixed positive constant b) and with α = 1, β = f = 0 is analyzed
in [32, 46, 49].

Let {Sh}0<h≤h be a family of subspaces of H1
0 (Ω) defined in (2.4) with basis

{wi}Nh
i=1. We consider Galerkin approximations in space

uh(x, t) =

Nh∑
i=1

ξi(t)wi(x),

where ξi : (0, T ) → R are coefficient functions for i ∈ [1, Nh]. Let αh, βh, and fh be
approximations of functions α, β, and f , respectively, in Sh.
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Assumption 4.1. We assume that the approximate coefficients and the source
term satisfy the following conditions

• αh ∈ L∞(0, T ;L∞(Ω)), ∃ α0 : αh ≥ α0 > 0 a.e. in Ω× (0, T ),

• βh ∈ L∞(0, T ;L3(Ω)),

• fh ∈ L2(0, T ;L2(Ω)).

For a given h ∈ (0, h], we next study a semi-discretization of (4.1) in Sh and prove
that it has a unique solution.

Theorem 4.2. Let c2, b > 0 and let Assumption 4.1 hold. For each h ∈ (0, h],
there exists a unique function uh ∈ H2(0, T ;Sh) which satisfies

(4.2) (αhuh,tt, φ) + c2(∇uh,∇φ) + b (∇uh,t,∇φ) + (βhuh,t, φ) = (fh, φ),

for all φ ∈ Sh, a.e. in time, and

(4.3) (uh(0), uh,t(0)) = (uh,0, uh,1),

where uh,0 and uh,1 are approximations of u0 and u1 in Sh. Moreover, the following
a priori bound holds

(4.4)
‖uh,tt‖2L2L2 + ‖∇uh‖2L∞L2 + ‖∇uh,t‖2L∞L2 + ‖∇uh,t‖2L2L2

≤C(αh, βh, T )
(
|∇uh,0|2L2 + |∇uh,1(0)|2L2 + ‖fh‖2L2L2

)
.

The constant above is given by

(4.5) C(αh, βh, T ) = C1 exp(C2 (‖αh‖2L∞L3 + ‖βh‖2L∞L3 + 1)T ).

Proof. The proof follows a general framework of the well-posedness proofs for
the linearizations of the classical nonlinear acoustic equations that are based on the
Galerkin approximations in space. In particular, we refer to [28, Theorem 1] and
[16, Proposition 1]. However, for the continuous problem, the basis functions have
to be in H2(Ω) to later guarantee the non-degeneracy of the nonlinear model via the
embedding H2(Ω) ↪→ L∞(Ω). Our basis functions are only H1 regular which changes
the a priori estimates that we will derive.

Step 1: Existence of a solution. We denote by ξh,0 = [ξ1,0 . . . ξNh,0]T and ξh,1 =
[ξ1,1 . . . ξNh,1]T the components of the given initial approximations uh,0 and uh,1,
respectively. Then our semi-discrete problem is to find ξh = [ξ1 . . . ξNh

]T such that
Mh(t)ξh,tt +Khξh + Ch(t)ξh,t = Fh,

ξh(0) = ξh,0,

ξh,t(0) = ξh,1,

(4.6)

where the matrices are given by

Mh(t) = [Mij ], Mij = (αh(t)wi, wj),

Kh = [Kij ], Kij = c2 (∇wi,∇wj),
Ch(t) = [Cij ], Cij = b (∇wi,∇wj) + (βh(t)wi, wj),
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and the source term is given by Fh = [F1 . . . FNh
]T , Fj = (fh, wj), with 1 ≤ i, j ≤ Nh.

Note that the matrices and the right-hand side vector are all well-defined since

|(αh wi, wj)| ≤ |αh|L2 |wi|L4 |wj |L4 ,

|(βh wi, wj)| ≤ |βh|L2 |wi|L4 |wj |L4 ,

|(fh, wi)| ≤ |fh|L2 |wi|L2 ,

a.e. in time. Furthermore, the matrix Mh(t) is invertible for a.e. t ∈ [0, T ]; cf. [28,
Theorem 1]. The statement follows from the fact that Mh(t) is positive definite.
Indeed, for any z ∈ RNh \ {0}, we have

zTMh(t)z =

∫
Ω

αh(t)

∣∣∣∣∣
Nh∑
i=1

ziwi

∣∣∣∣∣
2

dx ≥ α0

∣∣∣∣∣
Nh∑
i=1

ziwi

∣∣∣∣∣
2

L2

> 0,

for a.e. t ∈ [0, T ]. Thanks to the fact that Mh is invertible, the matrix equation in
(4.6) can be rewritten as

ξh,tt +M−1
h (t)Ch(t)ξh,t +M−1

h (t)Khξh = M−1
h (t)Fh.

Now the existence of a solution uh ∈ H2(0, Th;Sh) follows from the standard ODE
theory; see, for example, [43, Chapter 1]. To extend the existence interval to [0, T ],
we next show that uh remains bounded on [0, T ] in the appropriate norms.

Step 2: A priori estimate. We want to derive an priori bound for uh. To this
end, we test our problem with two different test functions. We first test (4.2) with
φ = λuh,t ∈ Sh, where λ > 0, and integrate with respect to time from 0 to t, t ≤ Th.
After some standard manipulations, this action results in

(4.7)

λ
c2

2
|∇uh(t)|2L2 + λb ‖∇uh,t‖2L2L2

≤λc
2

2
|∇uh,0|2L2 + ε ‖uh,tt‖2L2L2 +

1

4ε
λ2C2

H1
0 ,L

2‖fh‖2L2L2

+

(
1

4ε
C2
H1

0 ,L
6λ

2
(
‖αh‖2L∞L3 + C2

H1
0 ,L

2‖βh‖2L∞L3

)
+ 2ε

)
‖∇uh,t‖2L2L2 ,

where ε > 0 and λ > 0 will be conveniently chosen. To be able to bound the
term ‖uh,tt‖2L2L2 that appears on the right-hand side above, we next test (4.2) with
φ = uh,tt ∈ Sh. After integrating over (0, t), this action yields the second inequality

(4.8)

(α0 − 2ε) ‖uh,tt‖2L2L2 +
b

4
|∇uh,t(t)|2L2

≤ c2

2
|∇uh,0|2L2 +

c2 + b

2
|∇uh,1|2L2 +

c4

b
|∇uh(t)|2L2

+

(
1

4ε
C2
H1

0 ,L
6‖βh‖2L∞L3 + c2

)
‖∇uh,t‖2L2L2 +

1

4ε
‖fh‖2L2L2 .

Above, we have estimated the c2 term by first integrating by parts with respect
to time and then employing Hölder’s inequality and Young’s ε-inequality with ε ∈
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{b/4, 1/2}:

(4.9)

− c2
∫ t

0

∫
Ω

∇uh · ∇uh,tt dxds

= − c2
∫

Ω

∇uh(s) · ∇uh,t(s) dx
∣∣∣t
0

+ c2
∫ t

0

∫
Ω

|∇uh,t|2 dxds

≤ c2|∇uh(t)|L2 |∇uh,t(t)|L2 + c2|∇uh,0|L2 |∇uh,1|L2 + c2 ‖∇uh,t‖2L2L2

≤ c4

b
|∇uh(t)|2L2 +

b

4
|∇uh,t(t)|2L2 +

c2

2
|∇uh,0|2L2 +

c2

2
|∇uh,1|2L2

+ c2 ‖∇uh,t‖2L2L2 .

To absorb
c4

b
|∇uh(t)|2L2 by the corresponding term on the left side in (4.7), we need

to choose λ > 0 sufficiently large so that λc2/2 > c4/b. By adding the derived
inequalities (4.7) and (4.8), we then obtain

(4.10)

(α0 − 3ε) ‖uh,tt‖2L2L2 +

(
λ
c2

2
− c4

b

)
|∇uh(t)|2L2 +

b

4
|∇uh,t(t)|2L2

+ λb ‖∇uh,t‖2L2L2

≤ (λ+ 1)
c2

2
|∇uh,0|2L2 +

c2 + b

2
|∇uh,1|2L2 +

1

4ε

(
λ2C2

H1
0 ,L

2 + 1
)
‖fh‖2L2L2

+ ‖∇uh,t‖2L2L2

(
2ε+ c2 +

1

4ε
C2
H1

0 ,L
6

(
1 + λ2C2

H1
0 ,L

2

)
‖βh‖2L∞L3

+
1

4ε
C2
H1

0 ,L
6λ

2‖αh‖2L∞L3

)
.

We choose λ = 4c2/b and ε = α0/6, apply Gronwall’s inequality to (4.10), and take
the essential supremum over t ∈ (0, Th). In this way, we obtain

(4.11)

‖uh,tt‖2L2(0,Th;L2) + ‖∇uh‖2L∞(0,Th;L2) + ‖∇uh,t‖2L∞(0,Th;L2)

+ ‖∇uh,t‖2L2(0,Th;L2)

≤C1 exp
(
C2

(
‖αh‖2L∞(0,T ;L3) + ‖βh‖2L∞(0,T ;L3) + 1

)
T
)

×
(
|∇uh,0|2L2 + |∇uh,1|2L2 + ‖fh‖2L2(0,T ;L2)

)
.

The right-hand side of (4.11) does not depend on Th, so we can show by an argument
of contradiction that we are allowed to extend the existence interval of uh to [0, T ];
i.e., Th = T and estimate (4.4) holds.

5. A priori estimates for the linearized Westervelt equation with vari-
able coefficients. We now focus on proving a priori estimates for the linearized
Westervelt equation that also take into account approximation error of the coefficients
and the source term. We wish to estimate u − uh. We follow the usual approach in
the finite element analysis and split this difference into

u− uh = u−Rhu︸ ︷︷ ︸
%

+Rhu− uh︸ ︷︷ ︸
θ

,
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where Rh denotes the elliptic projection; cf. [5, 48]. The idea is to rely on the existing
results on elliptic projectors to bound % = u − Rhu, whereas θ = Rhu − uh will be
seen as a solution of a wave PDE with a source term. By deriving estimates for this
PDE, we will find a bound for θ.

5.1. Auxiliary results for the elliptic projection. We first recall two useful
results for an auxiliary elliptic problem for %. We employ the Ritz projection Rh, i.e.,
the orthogonal projection with respect to the product (∇u,∇φ).

Lemma 5.1. [1, Lemma 2.1] Let u be the solution of (4.1). Then there exists a
unique mapping Rhu ∈ L2(0, T ;Sh) which satisfies

(∇Rhu,∇φ) = (∇u,∇φ) for all φ ∈ Sh, t ≥ 0.(5.1)

Let 1 ≤ p ≤ ∞. If for some integer k ≥ 0, ∂ku
∂tk
∈ Lp(0, T ;Hs(Ω)), then ∂kRhu

∂tk
∈

Lp(0, T ;Sh), and ∥∥∥∥ ∂k∂tk (u−Rhu)

∥∥∥∥
LpL2

≤ Chs
∥∥∥∥∂ku∂tk

∥∥∥∥
LpHs

,

for some constant C > 0 independent of h and u, and 1 ≤ s ≤ 2.

We also need a bound on the gradient of % to be able to later derive H1 bounds for
u− uh.

Lemma 5.2. Let u be the solution of (4.1) such that u ∈ Lp(0, T ;Hs(Ω)), where
1 ≤ s ≤ 2, 1 ≤ p ≤ ∞. Then it holds

(5.2) ‖∇(u−Rhu)‖LpL2 ≤Chs−1‖u‖LpHs ,

Proof. The estimate follows directly from the Galerkin orthogonality of u−Rhu
a.e. in time, Céa’s lemma and the approximation property (2.5).

We note that analogous bounds can be obtained for %t and %tt by differentiating (5.1)
once and twice with respect to time.

5.2. Bounds for θ = Rhu−uh. Since we are able to estimate %, we now focus
on deriving two a priori bounds for θ.

At this point, we choose the approximate initial data as Ritz projections of u0,
u1 in order to have θ(0) = θt(0) = 0.

Proposition 5.3. Let c2, b > 0. Let u be the solution of (4.1) which satisfies

u ∈ L∞(0, T ; Ḣs(Ω)), ut, utt ∈ L2(0, T ; Ḣs(Ω)),

where 1 ≤ s ≤ 2. Let Assumption 4.1 hold and αh,t ∈ L∞(0, T ;L3(Ω)). Fur-
thermore, let (uh,0, uh,1) = (Rhu0, Rhu1). Then there exists a positive constant
C = C(αh, βh, T ) such that

(5.3)

‖θt‖L∞L2 + ‖∇θ‖L∞L2 + ‖∇θt‖L2L2

≤C {hs ‖ut‖L2Hs + hs ‖utt‖L2Hs + ‖f − fh‖L2L2

+‖α− αh‖L∞L2 ‖utt‖L2L3 + ‖β − βh‖L∞L2 ‖ut‖L2L3} .

Proof. The main idea of the proof is to see θ as a solution of a wave equation with
variable coefficients and a source term and then test that equation with a suitable
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test function. Compared to the similar results for solutions of linear wave equations
with constant coefficients [1, 32], we also take into account the error of the varying
coefficients.

By subtracting the weak forms for u and uh and recalling the definition of Rhu,
we find that θ solves

(5.4)

(αhθtt, φ) + c2(∇θ,∇φ) + b (∇θt,∇φ) + (βhθt, φ)

= − (αh%tt, φ)− (βh%t, φ) + (f − fh, φ)

− ((α− αh)utt, φ)− ((β − βh)ut, φ) ,

for all φ ∈ Sh a.e. in time. We next want to test (5.4) with φ = θt, noting that θt ∈ Sh
a.e. in time. To get optimal error estimates for uh, it is important to only employ the
L2 spatial norm of %t and %tt in our estimates. We also have to pay special attention
to estimating the last two terms on the right-hand side. Having in mind the nonlinear
problem where we will know that

‖α− αh‖L∞L2 + ‖β − βh‖L∞L2 + h‖∇(α− αh)‖L∞L2 + h‖∇(β − βh)‖L∞L2 ≤ Chs,

we should only have the terms α − αh and β − βh in the L2 spatial norm in our
estimates to ensure optimal error rates for the nonlinear Westervelt equation. Testing
(5.4) with θt, integrating over (0, t), and employing Hölder’s inequality then results
in

α0

2
|θt(t)|2L2 +

c2

2
|∇θ(t)|2L2 + b ‖∇θt‖2L2L2

≤‖βh‖L∞L3 (‖θt‖L2L2 + ‖%t‖L2L2) ‖θt‖L2L6 + ‖αh‖L∞L3 ‖%tt‖L2L2 ‖θt‖L2L6

+
1

2
‖αh,t‖L∞L3 ‖θt‖L2L2 ‖θt‖L2L6 + ‖f − fh‖L2L2 ‖θt‖L2L2

+ (‖α− αh‖L∞L2 ‖utt‖L2L3 +‖β − βh‖L∞L2 ‖ut‖L2L3) ‖θt‖L2L6 ,

for a.e. t ∈ [0, T ]. Above, we have used the identity∫ t

0

∫
Ω

αhθttθt dx ds =
1

2

(∫
Ω

αh(s) |θt(s)|2 dx
) ∣∣∣∣t

0

− 1

2

∫ t

0

∫
Ω

αh,t |θt|2 dxds,

and the fact that θ(0) = θt(0) = 0. By further employing the embedding results (2.3)
and Young’s ε-inequality (2.1) with ε ∈ {b/8, 1} to handle the product terms, we get

(5.5)

α0

2
|θt(t)|2L2 +

c2

2
|∇θ(t)|2L2 +

b

2
‖∇θt‖2L2L2

≤ ‖θt‖2L2L2 +
4

b
C2
H1

0 ,L
6‖βh‖2L∞L3

(
‖θt‖2L2L2 + ‖%t‖2L2L2

)
+

1

4
‖f − fh‖2L2L2

+
1

2b
C2
H1

0 ,L
6 ‖αh,t‖2L∞L3 ‖θt‖2L2L2 +

2

b
C2
H1

0 ,L
6‖αh‖2L∞L3 ‖%tt‖2L2L2

+
4

b
C2
H1

0 ,L
6

(
‖α− αh‖2L∞L2 ‖utt‖2L2L3 + ‖β − βh‖2L∞L2 ‖ut‖2L2L3

)
.

Applying Gronwall’s inequality (2.2) to the above estimate and taking the essential
supremum over (0, T ) then leads to

‖θt‖2L∞L2 + ‖∇θ‖2L∞L2 + ‖∇θt‖2L2L2

≤C(αh, βh, T )
{
‖βh‖2L∞L3 ‖%t‖2L2L2 + ‖αh‖2L∞L3 ‖%tt‖2L2L2 + ‖f − fh‖2L2L2

+‖α− αh‖2L∞L2 ‖utt‖2L2L3 + ‖β − βh‖2L∞L2 ‖ut‖2L2L3

}
,
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with C(αh, βh, T ) = C3 exp
(
C4

(
‖αh,t‖2L∞L3 + ‖βh‖2L∞L3 + 1

)
T
)

. Thanks to the

results on the elliptic projector stated in Lemma 5.1 which provide the upper bounds
on ‖%t‖L2L2 and ‖%tt‖L2L2 , we then obtain the final bound (5.3), where the constant
is given by

C(αh, βh, T )

=C5 (‖αh‖L∞L3 + ‖βh‖L∞L3 + 1) exp
(
C6

(
‖αh,t‖2L∞L3 + ‖βh‖2L∞L3 + 1

)
T
)
.

Remark 5.4. We note that if αh ∈ C([0, T ];L∞(Ω)), the same error order can be
obtained if we choose any u1,h such that |u1 − u1,h|L2 ≤ Chs. This is due to the fact
that we would then have an additional term on the right-hand side of (5.5) that is of
order hs:

|αh(0)|L∞ |θt(0)|2L2 ≤ C|αh(0)|L∞(|u1 − u1,h|2L2 + ‖%(0)‖2L2).

To be able to later employ a fixed-point approach and derive an a priori estimate for
the nonlinear model, we also need to bound ‖θtt‖L2L2 .

Proposition 5.5. Let c2, b > 0 and let u to be the solution of (4.1) that satisfies

(5.6)
u ∈ L∞(0, T ; Ḣs(Ω)), ut ∈ L2(0, T ;L∞(Ω)) ∩ L∞(0, T ; Ḣs(Ω)),

utt ∈ L2(0, T ;L∞(Ω) ∩ Ḣs(Ω)),

where s ∈ [1, 2]. Let Assumption 4.1 hold and let βh ∈ L2(0, T ;L∞(Ω)) and αh,t ∈
L∞(0, T ;L3(Ω)). Assume that (uh,0, uh,1) = (Rhu0, Rhu1). Then there exists a posi-
tive constant C = C(αh, βh, T ) such that

(5.7)

‖∇θ‖L∞L2 + ‖θt‖L∞L2 + ‖∇θt‖L∞L2 + ‖θtt‖L2L2

≤C {hs ‖ut‖L∞Hs + hs‖utt‖L2Hs + ‖f − fh‖L2L2

+ ‖utt‖L2L∞ ‖α− αh‖L∞L2 + ‖ut‖L2L∞ ‖β − βh‖L∞L2}.

Proof. To obtain the higher order estimate, we additionally test (5.4) with φ = θtt.
After integrating over (0, t) and recalling that θ(0) = θt(0) = 0, we find

(5.8)

(α0 − 6ε) ‖θtt‖2L2L2 +
b

4
|∇θt(t)|2L2

≤ 1

4ε
‖βh‖2L∞L3C2

H1
0 ,L

6 ‖∇θt‖2L2L2 +
1

4ε
‖αh‖2L∞L∞ ‖%tt‖2L2L2 ,

+
1

4ε
‖βh‖2L2L∞ ‖%t‖2L∞L2 +

1

4ε
‖α− αh‖2L∞L2 ‖utt‖2L2L∞

+
1

4ε
‖β − βh‖2L∞L2 ‖ut‖2L2L∞ +

1

4ε
‖f − fh‖2L2L2 +

c4

b
|∇θ(t)|2L2

+ c2 ‖∇θt‖2L2L2 ,

for t ∈ [0, T ]. Above we have estimated c2
∫ t

0

∫
Ω

∇θ · ∇θtt dx in the same manner as

(4.9). Since θ(0) = 0, we can further infer that

|∇θ(t)|L2 =

∣∣∣∣∫ t

0

∇θt(s) ds

∣∣∣∣
L2

≤
∫ t

0

|∇θt(s)|L2 ds ≤
√
T‖∇θt‖L2L2 , t ∈ [0, T ].
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Note that, compared to Proposition 5.3, we had to introduce additional assumptions
(5.6) on the L∞ regularity of ut and utt. This is again due to the fact that we do not
want to have higher than L2 spatial norms of α − αh and β − βh on the right-hand
side of (5.8).

We choose ε < α0/6 and add (5.8) to estimate (5.5) multiplied by λ > 0 such
that λc2/2 > c4/b. We then apply Gronwall’s inequality to the resulting estimate to
obtain

‖θtt‖2L2L2 + ‖θt‖2L∞H1 + ‖∇θt‖2L2L2 + ‖∇θ‖2L∞L2

≤C7 exp
(
C8

(
‖αh,t‖2L∞L3 + ‖βh‖2L∞L3 + T + 1

)
T
) {
‖βh‖2L2L∞ ‖%t‖2L∞L2

+ ‖βh‖2L∞L3 ‖%t‖2L2L2 + ‖αh‖2L∞L∞ ‖%tt‖2L2L2 + ‖utt‖2L2L∞ ‖α− αh‖2L∞L2

+ ‖ut‖2L2L∞ ‖β − βh‖2L∞L2 + ‖f − fh‖2L2L2

}
,

where we have also used that |v|L3 ≤ CL∞,L3 |v|L∞ , for v ∈ L∞(Ω). Employing
the bounds on ‖%t‖L∞L2 and ‖%tt‖L2L2 then leads to the estimate (5.7), where the
constant is given by

C(αh, βh, T )

=C9 (‖αh‖L∞L∞ + ‖βh‖L∞L3 + ‖βh‖L2L∞ + 1)

× exp
(
C10

(
‖αh,t‖2L∞L3 + ‖βh‖2L∞L3 + T + 1

)
T
)
.

5.3. A priori estimate for the linear equation. We can now state the a
priori estimate for the linearized Westervelt equation with variable coefficients.

Theorem 5.6. Let the assumptions of Proposition 5.5 hold. Then the following
a priori estimate is satisfied

(5.9)

‖u− uh‖L∞L2 + ‖ut − uh,t‖L∞L2 + ‖utt − uh,tt‖L2L2

+ h‖∇(u− uh)‖L∞L2 + h ‖∇(ut − uh,t)‖L∞L2

≤C(αh, βh, T ) {hs‖u‖L∞Hs + hs‖ut‖L∞Hs + hs‖utt‖L2Hs + ‖f − fh‖L2L2

+ ‖utt‖L2L∞ ‖α− αh‖L∞L2 + ‖ut‖L2L∞ ‖β − βh‖L∞L2},

where uh solves (4.2), (4.3). The constant appearing above is given by

(5.10)

C(αh, βh, T )

=C11

{
(‖αh‖L∞L∞ + ‖βh‖L2L∞ + ‖βh‖L∞L3 + 1)

×exp
(
C12

(
‖αh,t‖2L∞L3 + ‖βh‖2L∞L3 + T + 1

)
T
)

+ 1
}
.

Proof. The estimate follows directly by splitting the difference u− uh into the θ
and % terms, and then employing Proposition 5.5, Lemma 5.1, and Lemma 5.2, and
the fact that

‖∇%t‖L∞L2 ≤ Chs−1‖ut‖L∞Hs ,

for some constant C > 0 independent of h and u.

We note that Theorem 5.6 also includes, as a special case where α = 1, β = f = 0, the
a priori estimate for strongly damped linear wave equations with constant coefficients;
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this result corresponds to [32, Theorem 3.4]. If we do not have to take the coefficient
error into account, regularity conditions (5.6) for u can be relaxed to

u, ut ∈ L∞(0, T ; Ḣs(Ω)), utt ∈ L2(0, T ; Ḣs(Ω)),

since we lose the last two terms in the estimate (5.9).

6. Finite element approximation of Westervelt’s equation. We are now
ready to study discretization in space of the initial-boundary value problem (3.1)
for the Westervelt equation. We want to prove that it has a unique solution in a
neighbourhood of u. To this end, we rely on the Banach fixed-point theorem.

Theorem 6.1. [A priori error estimate] Let c2, b, k > 0, and T > 0. Assume
that the initial-boundary value problem (3.2) for the Westervelt equation has a unique
solution which satisfies

u ∈ L∞(0, T ;L∞(Ω) ∩ Ḣs(Ω)), ut ∈ L2(0, T ;L∞(Ω)) ∩ L∞(0, T ; Ḣs(Ω)),

utt ∈ L2(0, T ;L∞(Ω) ∩ Ḣs(Ω)),

where max{1, d/2} < s ≤ 2. Then for sufficiently small

m = ‖u‖L∞L∞ ,

M = max {‖u‖L∞Hs , ‖ut‖L∞Hs , ‖ut‖L2L∞ , ‖utt‖L2Hs , ‖utt‖L2L∞} ,

and h, there exists a unique uh ∈ H2(0, T ;Sh) in a neighbourhood of u which satisfies
equation

(6.1) ((1− 2kuh)uh,tt, φ) + c2(∇uh,∇φ) + b (∇uh,t,∇φ) = 2k
(
u2
h,t, φ

)
,

for all φ ∈ Sh a.e. in time, and (uh(0), uh,t(0)) = (Rhu0, Rhu1) . Furthermore, there
exists a positive constant C that depends on m, M , and T , but not on h, such that

(6.2)
‖u− uh‖L∞L2 + ‖ut − uh,t‖L∞L2 + ‖utt − uh,tt‖L2L2

+ h‖∇(u− uh)‖L∞L2 + h ‖∇ut − uh,t‖L∞L2 ≤ Chs.

Proof. The main idea of the proof is to define an iterative map on which we will
apply the Banach fixed-point theorem while relying on the results for the linearized
problem. We first introduce the set

Bh =
{
vh ∈ Xh : ‖utt − vh,tt‖L2L2 + ‖ut − vh,t‖L∞L2 + ‖u− vh‖L∞L2

+ h‖∇(u− vh)‖L∞L2 + h ‖∇(ut − vh,t)‖L∞L2 ≤ Lhs,

(vh(0), vh,t(0)) = (Rhu0, Rhu1)
}
,

the constant L > 0 is independent of h and h ≤ h. Note that the set Bh is non-empty
since Rhu ∈ Bh. For vh ∈ Bh, we then consider the following linearization of our
semi-discrete problem

(6.3)



((1− 2kvh)uh,tt, φ) + c2(∇uh,∇φ) + b (∇uh,t,∇φ)

= 2k (vh,t uh,t, φ) ,

for every φ ∈ Sh, pointwise a.e. in (0, T ),(
uh(0), ∂uh

∂t (0)
)

= (Rhu0, Rhu1) .
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We introduce an iterative map F : vh 7→ uh, noting that F will be well-defined thanks
to the uniqueness result from Theorem 4.2. Clearly a fixed point of F would solve
(6.1), so we proceed with verifying the conditions of the Banach fixed-point theorem.

(Bh, d) is a complete metric space. Bh is closed in X = W 1,∞(0, T ;H1
0 (Ω)) ∩

H2(0, T ;L2(Ω)) with respect to the metric d induced by

|||v|||X := max
{
‖vtt‖L2L2 , ‖v‖W 1,∞H1

0

}
,

from which completeness follows.

F is a self-mapping. Take any vh ∈ Bh. We want to show that uh = Fvh ∈ Bh.
We set

αh(x, t) = 1− 2kvh, βh = −2kvh,t, fh = 0,

and check that the conditions of Theorem 4.2 and Theorem 5.6 are satisfied. We first
show that the non-degeneracy condition on αh is fulfilled. Employing the identity
vh = vh − Ihu+ Ihu and relying on the inverse estimate (2.6) yields

‖vh‖L∞L∞ ≤‖vh − Ihu‖L∞L∞ + ‖Ihu‖L∞L∞

≤h−d/2Cinv‖vh − Ihu‖L∞L2 + ‖Ihu‖L∞L∞ .

Then by additionally using the identity vh− Ihu = vh− u+ u− Ihu and the stability
and approximation properties (2.7) of the interpolant, we conclude that

(6.4)

‖vh‖L∞L∞ ≤h−d/2Cinv‖vh − u‖L∞L2 + h−d/2Cinv‖u− Ihu‖L∞L2

+ Cst‖u‖L∞L∞

≤CinvLh
s−d/2 + CinvCapph

s−d/2‖u‖L∞Hs + Cst‖u‖L∞L∞

≤CinvLh
s−d/2

+ CinvCapph
s−d/2

M + Cstm.

By choosing h, M , and m sufficiently small so that

m0 := CinvLh
s−d/2

+ CinvCapph
s−d/2

M + Cstm < 1/(2k),

we can guarantee that ‖vh‖L∞L∞ ≤ m0 < 1/(2k). In this way, the non-degeneracy
condition in Assumption 4.1 is fulfilled since

0 < α0 = 1− 2km0 ≤ αh(x, t) ≤ α1 = 1 + 2km0 in Ω× (0, T ).

We next want to bound ‖βh‖L2L∞ , ‖βh‖L∞L3 , ‖αh‖L∞L3 , and ‖αh,t‖L∞L3 uniformly
with respect to h. Similarly to (6.4), we derive the following estimate

(6.5)

‖vh,t‖L2L∞ ≤ ‖vh,t − Ihut‖L2L∞ + ‖Ihut‖L2L∞

≤Cinvh
s−d/2 ‖vh,t − ut + ut − Ihut‖L2L2 + ‖Ihut‖L2L∞

≤
√
TCinvLh

s−d/2 + CinvCapph
s−d/2 ‖ut‖L2Hs + Cst ‖ut‖L2L∞ ,

from which we have ‖βh‖L2L∞ ≤ 2k(
√
TCinvLh

s−d/2
+CinvCapph

s−d/2
M +M). Fur-

thermore, it holds that

‖βh‖L∞L3 = ‖2kvh,t‖L∞L3 ≤ 2kCH1
0 ,L

3(Lh
s−1

+ CM),

‖αh‖L∞L3 = ‖1− 2kvh‖L∞L3 ≤ C(Ω) + 2kCH1
0 ,L

3(Lh
s−1

+ CM),



A PRIORI ERROR ESTIMATES FOR WESTERVELT’S WAVE EQUATION 15

and
‖αh,t‖L∞L3 = ‖βh‖L∞L3 ≤ 2kCH1

0 ,L
3(Lh

s−1
+ CM).

According to Theorem 4.2, there exists a unique solution uh ∈ Xh of (6.3). Thanks
to the a priori bound for the linearized Westervelt equation stated in Theorem 5.6,
we have

(6.6)

‖u− uh‖L∞L2 + ‖ut − uh,t‖L∞L2 + ‖utt − uh,tt‖L2L2

+ h‖∇(u− uh)‖L∞L2 + h ‖∇ut − uh,t‖L∞L2

≤C∗ {hs‖u‖L∞Hs + hs‖ut‖L∞Hs + hs‖utt‖L2Hs

+k ‖utt‖L2L∞ ‖u− vh‖L∞L2 + k ‖ut‖L2L∞ ‖ut − vh,t‖L∞L2

}
,

where the constant appearing above is computed according to (5.10) and the derived
uniform bounds on αh and βh:

C∗ =C13

{
((1 +

√
T )Lh

s−d/2
+M(1 + h

s−d/2
) + Lh

s−1
+m+ 1)

× exp(C14 (L2h
2(s−1)

+M2 + T + 1)T ) + 1
}
.

Therefore, from (6.6) and the fact that vh ∈ Bh we infer that

‖u− uh‖L∞L2 + ‖ut − uh,t‖L∞L2 + ‖utt − uh,tt‖L2L2

+ h‖∇(u− uh)‖L∞L2 + h ‖∇ut − uh,t‖L∞L2

≤C∗{3 + 2kL}Mhs ≤ Lhs,

for sufficiently small m, M , and h. We can conclude that uh ∈ Bh and, therefore,
F(Bh) ⊂ Bh.

F is a contraction. Let v
(1)
h , v

(2)
h ∈ Bh and u

(1)
h = Fv1

h, u
(2)
h = Fv(2)

h . We want to
show that

‖Fv(1)
h −Fv

(1)
h ‖X ≤ q‖v(1)

h − v
(2)
h ‖X , 0 < q < 1.

We note that the difference ψh = u
(1)
h − u

(2)
h satisfies

((1− 2kv
(1)
h )ψh,tt, φ) + c2(∇ψh,∇φ) + b(∇ψh,t,∇φ)− 2k

(
v

(2)
h,tψh,t, φ

)
=
(

2ku
(1)
h,t

(
v

(1)
h,t − v

(2)
h,t

)
+ 2ku

(2)
h,tt

(
v

(1)
h − v

(2)
h

)
, φ
)
,

with zero initial conditions, for all φ ∈ Sh. The equation can be seen as a special case
of the PDE we considered in Theorem 4.2 if we choose

αh = 1− 2kv
(1)
h , βh = −2k v

(2)
h,t ,

fh = 2ku
(1)
h,t

(
v

(1)
h,t − v

(2)
h,t

)
+ 2ku

(2)
h,tt

(
v

(1)
h − v

(2)
h

)
,

and zero initial conditions. Owing to Theorem 4.2, we then have the a priori bound

(6.7)

‖ψh,tt‖2L2L2 + ‖∇ψh‖2L∞L2 + ‖∇ψh,t‖2L∞L2 + ‖∇ψh,t‖2L2L2

≤C∗k2‖u(1)
h,t(v

(1)
h,t − v

(2)
h,t) + u

(2)
h,tt(v

(1)
h − v

(2)
h )‖2L2L2

≤C∗k2C2
H1

0 ,L
4

(
‖u(1)

h,t‖
2
L∞L4‖v(1)

h,t − v
(2)
h,t‖

2
L2H1

0

+‖u(2)
h,tt‖

2
L2L4‖v(1)

h − v
(2)
h ‖

2
L∞H1

0

)
,
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where the constant above is computed according to (4.5),

C∗ = C15 exp(C16 (L2h
2(s−1)

+M2 + 1)T ).

We next show that ‖u(1)
h,t‖L∞L4 and ‖u(2)

h,tt‖L2L4 in (6.7) can be made small so that F
is a contraction. On account of the inverse properties (2.6) of {Sh}0<h≤h , we first
find that

‖u(2)
h,tt‖L2L4 ≤‖u(2)

h,tt −Rhutt‖L2L4 + ‖Rhutt‖L2L4

≤h−d/4Cinv‖u(2)
h,tt −Rhutt‖L2L2 + ‖Rhutt‖L2L4

≤h−d/4Cinv‖u(2)
h,tt − utt‖L2L2 + h−d/4Cinv‖utt −Rhutt‖L2L2 + ‖Rhutt‖L2L4 .

We can then bound %tt = utt −Rhutt by employing Lemma 5.1 to get

(6.8)
‖u(2)

h,tt‖L2L4 ≤Cinvh
−d/4(Lhs + Chs‖utt‖L2Hs) + ‖Rhutt‖L2L4

≤Cinv(L+ CM)h
s−d/4

+ CM.

Above, we have also made use of the fact that ‖Rhutt‖L2L4 ≤ C‖utt‖L2Hs for some

C > 0 independent of h and u. Furthermore, since u
(1)
h ∈ Bh, we can bound the term

‖u(1)
h,t‖L∞L4 as follows

(6.9)
‖u(1)

h,t‖L∞L4 ≤CH1
0 ,L

4

(
‖ut‖L∞H1 + ‖ut − u(1)

h,t‖L∞H1
0

)
≤C(M + Lh

s−1
),

where C > 0 is independent of h and u. Altogether from (6.7), (6.8), and (6.9), for
sufficiently small M and h, we can conclude that F is contractive with respect to
the topology induced by ||| · |||. The statement now follows by applying the Banach
fixed-point theorem.

We note that due to the presence of the strong damping in the model, the assumed
regularity of the solution u is to be realistically expected. The higher the sound
diffusivity b is, the less pronounced nonlinear effects are in the propagation, such
as the steepening of the wave. We refer the interested reader to, e.g., [16, Section
7.1.1] for a detailed discussion on how the b-damping influences the behavior of the
nonlinear acoustic models.

Remark 6.2. If Ω is a bounded interval in R, we can rely on the embedding
H1

0 (Ω) ↪→ L∞(Ω) to avoid degeneracy of the semi-discrete Westervelt equation and
then we do not need to employ the inverse properties of {Sh}0<h≤h. Indeed, the L∞

bounds (6.4) and (6.5) in the proof of Theorem 6.1 can be replaced by

‖vh‖L∞L∞ ≤ CH1
0 ,L

∞(Lh
s−1

+ CM), ‖vh,t‖L2L∞ ≤ CH1
0 ,L

∞(Lh
s−1

+ CM),

respectively, for vh ∈ Bh. Similarly, when proving contractivity, we can replace esti-
mate (6.7) by

‖ψh,tt‖2L2L2 + ‖∇ψh‖2L∞L2 + ‖∇ψh,t‖2L∞L2 + ‖∇ψh,t‖2L2L2

≤C∗k2C2
H1

0 ,L
∞

(
‖u(1)

h,t‖
2
L∞H1

0
‖v(1)
h,t − v

(2)
h,t‖

2
L2L2

+‖u(2)
h,tt‖

2
L2L2 ‖v(1)

h − v
(2)
h ‖

2
L∞H1

0

)
.
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Since u
(1)
h , u

(2)
h ∈ Bh, we can easily show that F is a contraction for sufficiently small

M and h. Therefore, the a priori bound (6.2) holds in 1D as well with 1 < s ≤ 2.

Although beyond the scope of the present work, we expect that the error analysis
of a fully discrete scheme would rely on similar theoretical tools and an analogous
fixed-point approach. We refer to [42, Chapter 8] which may serve as a first step in
the direction of the error analysis for the Newmark time-stepping scheme that is often
used in practice.

7. Numerical results. To illustrate the theory, we conduct two numerical ex-
periments using a MATLAB implementation based on the GeoPDEs package [51].

7.1. Propagation in a channel. We first perform an experiment in a 1D chan-
nel setting. For the medium, we choose water with the parameter values

c = 1500 m/s, ρ = 1000 kg/m3, b = 6 · 10−9 m2/s, βa = 3.5;

cf. [29]. Following [36, Algorithm 1], to resolve the nonlinearities, we employ a fixed-
point iteration with respect to the second time derivative. The tolerance is set to
TOL = 10−8. Time stepping is performed by employing the Newmark method [38]
with the parameters (β, γ) = (0.45, 0.75). The values are chosen in this way since they
were shown to provide good results in simulations of the nonlinear acoustic equations;
see [16, 36]. For all spatial refinements, we have 2001 grid points in time with the
final time set to T = 37µs. We conduct this experiment with the initial data

(u0, u1) =

(
A1 exp

(
− (x− µ)2

2σ2
1

)
, A2(x− µ) exp

(
− (x− µ)2

2σ2
2

))
,

where A1 = 1.2 · 108 Pa, A2 = −1011 Pa, σ1 = 0.015, σ2 = 0.02, and µ = 0.1. We
note that in this setting the upper bound for the acoustic pressure that guarantees
non-degeneracy amounts to 1/(2k) ≈ 214 MPa.

We use piecewise linear elements in space to compute solutions on different dis-
cretization levels. The numerical solution is computed on level N , N ∈ [1, 6], by
employing 100 · 2N−1 elements for the channel length of 0.2 m. The reference solution
is taken to be the solution on a very fine mesh, where N = 8. After obtaining the
numerical solution on a coarse mesh, we interpolate it linearly to the mesh on level
N = 8 and compare to the reference. Figure 1 displays snapshots of the reference
pressure wave as it propagates.

Let eN denote the error in a certain norm on level N . We determine the order of
convergence on this level via

orderN =
log(eN−1/eN )

log(2)
.

The numerical error orders obtained in the experiments are stated in Table 1 and Ta-
ble 2. We see that they agree with our theoretically predicted bounds in Theorem 6.1.
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Fig. 1: Snapshots of the reference pressure wave in a channel

level N ‖u− uh‖L∞L2 ‖∇(u− uh)‖L∞L2

2 1.9997 0.9993
3 2.0011 1.0003
4 2.0042 1.0021
5 2.0168 1.0085
6 2.0692 1.0352

Table 1: Order of discretization errors for uh.

level N ‖ut − uh,t‖L∞L2 ‖∇(ut − uh,t)‖L∞L2 ‖utt − uh,tt‖L2L2

2 2.0068 1.2258 2.0172
3 2.0039 1.0691 2.0076
4 2.0050 1.0201 2.0059
5 2.0171 1.0131 2.0173
6 2.0697 1.0363 2.0694

Table 2: Order of discretization errors for uh,t and uh,tt.

7.2. Focused ultrasound. In our second example, we consider a more
application-oriented setting of a focused-ultrasound problem. In ultrasound applica-
tions, the sound is often excited by transducers arranged on a spherical surface [8, 29].
The wave then self-focuses as it propagates; see Figure 2. This approach results in
localized high-pressure values, and is therefore often used in non-invasive treatments
of kidney stones and certain types of cancer [21, 23, 31].

In the present experiment, our computational domain is a rectangle [0, 0.04] m ×
[0, 0.05] m with a curved bottom side that belongs to the circle centered at
(0.02 m, 0.04 m) with radius R2 = 0.002 m2. On this bottom side we impose Neu-
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mann boundary conditions as a modulated sinusoidal wave:

∂u

∂n
=

{
g0 sin(ωt) (1 + sin(wt/4)), t > 2π/w,

g0 sin(ωt), t ≤ 2π/w.
on ΓN.

The angular frequency is taken to be w = 2πf with f = 60 kHz, and we set g0 =
107 Pa/m. On the rest of the domain sides, we impose linear absorbing boundary
conditions, i.e.

∂u

∂n
= −1

c
ut on ∂Ω \ ΓN.

Fig. 2: Propagation and self-focusing of a sound wave

We mention that nonlinear absorbing conditions for the Westervelt equation have
also been derived and investigated in [35, 45]. Discretization in time is performed
with 3500 time steps for the final time T = 40µs and we again employ the Newmark
scheme for time stepping with the same parameters as before. For the discretization
is space, we employ a quadrilateral mesh which on the discretization level N has
2N−1 · 35 elements in the propagation direction and 2N−1 · 20 elements in the other
direction, where N ∈ {1, . . . , 5}.

On each discretization level N we compute

q(uh) = ‖uNh ‖L∞L2 ,

noting that eN = |q(u)− q(uNh )| ≤ ‖u− uNh ‖L∞L2 . Thus we have

q(uh) ≤ ‖u‖L∞L2 + Chs.

Figure 3 displays how the function q changes with respect to h. The data has been then
fitted to a curve α + βhγ by employing the nonlinear least-squares solver lsqcurvefit
in MATLAB with the starting point (1, 1, 2). We obtain γ ≈ 1.82 for the order of
convergence. In Table 3, we have the orders of discretization errors for |q(u)− q(uh)|
if we take the value on the highest level N = 5 as the reference, i.e., u = u5

h, which
are again around 2.
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Fig. 3: q(uh) for different h

level N |q(u)− q(uNh )|

2 1.8386
3 2.0179
4 2.3046

Table 3: Order of error eN .
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[27] B. Kaltenbacher, V. Nikolić, and M. Thalhammer, Efficient time integration methods
based on operator splitting and application to the Westervelt equation, IMA Journal of
Numerical Analysis, 35 (2014), pp. 1092–1124.

[28] B. Kaltenbacher and G. Peichl, The shape derivative for an optimization problem in
lithotripsy, Evolution Equations & Control Theory, 5 (2016).

[29] M. Kaltenbacher, Numerical simulation of mechatronic sensors and actuators, Springer,
2015.

[30] S. Kawashima and Y. Shibata, Global existence and exponential stability of small solutions to
nonlinear viscoelasticity, Communications in mathematical physics, 148 (1992), pp. 189–
208.

[31] J. Kennedy, G. Ter Haar, and D. Cranston, High intensity focused ultrasound: surgery of
the future?, The British journal of radiology, 76 (2003), pp. 590–599.

[32] S. Larsson, V. Thomée, and L. B. Wahlbin, Finite-element methods for a strongly damped
wave equation, IMA Journal of Numerical Analysis, 11 (1991), pp. 115–142.

[33] C. G. Makridakis, Finite element approximations of nonlinear elastic waves, Mathematics of
Computation, 61 (1993), pp. 569–594.

[34] S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the
Westervelt equation, Applied Mathematics & Optimization, 64 (2011), pp. 257–271.
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