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Abstract

Total variation flow, total variation regularization and the taut string algo-
rithm are known to be equivalent filters for one-dimensional discrete signals.
In addition, the filtered signal simultaneously minimizes a large number of
convex functionals in a certain neighbourhood of the data. In this article we
study the question to what extent this situation remains true in a more gen-
eral setting, namely for data given on the vertices of an oriented graph and
the total variation being J(f) =

∑
i,j

|f(vi)−f(vj)|. Relying on recent results
on invariant ϕ-minimal sets we prove that the minimizer to the corresponding
Rudin-Osher-Fatemi (ROF) model on the graph has the same universal mini-
mality property as in the one-dimensional setting. Interestingly, this property
is lost, if J is replaced by the discrete isotropic total variation. Next, we relate
the ROF minimizer to the solution of the gradient flow for J . It turns out
that, in contrast to the one-dimensional setting, these two problems are not
equivalent in general, but conditions for equivalence are available.

1 Introduction

It is a well known fact that for one-dimensional discrete data total variation (TV)
regularization and TV flow are equivalent. More specifically, denote by

J(u) =

n−1∑

i=1

|ui − ui+1|

the total variation of u ∈ Rn, and let f ∈ Rn and α > 0 be given. Then, as was
shown in [37], the minimizer uα of the functional

1

2
‖f − u‖22 + αJ(u)

coincides with the solution to the Cauchy problem

u′(t) ∈ −∂J(u(t)), t > 0,

u(0) = f,

at time t = α. That is, uα = u(α) for all α > 0. On the other hand, it is known
that uα can also be obtained by means of the taut string algorithm (see [29]), which
reads as follows.
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1. Identify the vector f ∈ Rn with a piecewise constant function on the unit
interval and integrate it to obtain the linear spline F .

2. Find the “taut string” Uα, that is, the element of minimal graph length in a
tube of width 2α around F with fixed ends:

Uα = argmin

{∫ 1

0

√
1 + (U ′(x))2 dx : ‖U − F‖∞ ≤ α,U(0) = F (0), U(1) = F (1)

}

3. Differentiate Uα to obtain uα.

Problems which essentially can be modelled and solved by the taut string algorithm
appear in diverse applications. Examples include production planning, see for in-
stance [30], and energy and information transmission, e.g. [32] and [38]. Extensions
of the taut string algorithm to more general data have been studied in [20, 21, 23].
Further suggestions of generalizations of the taut string algorithm, in both discrete
and continuous settings, can be found in [35, Chap. 4.4].

It turns out that the taut string does not only have minimal graph length, but
actually minimizes every functional of the form

U 7→
∫ 1

0

ϕ(U ′(x)) dx,

where ϕ : R → R is an arbitrary convex function and U ranges over the 2α-tube
around F . Recently, this intriguing situation was studied in greater generality in
[26, 27]. The authors coined the term invariant ϕ-minimal for sets which, like the
2α-tube, have an element that simultaneously minimizes a large class of distances.
In addition they characterized these sets in the discrete setting.

In this article we study relations between TV regularization, TV flow and taut
strings in a setting that contains the one outlined above as a special case. More
specifically, we consider data f as given on the vertices of an oriented graph G =
(V,E) together with the total variation

J(f) =
∑

v,w

|f(v)− f(w)|, (1.1)

where the sum runs over all adjacent pairs of vertices v, w.
Our first result concerns the subdifferential of J . In Theorem 2.3 we prove that

∂J(f) is an invariant ϕ-minimal set for every f : V → R. It is noteworthy that, as
is shown in Remark 3.1, this property is not shared by the discrete isotropic total
variation, which for f ∈ Rm×n reads1

∑

i,j

√
(fi+1,j − fi,j)2 + (fi,j+1 − fi,j)2 (1.2)

and has been widely used in imaging applications, see [2, 3, 11] for instance.
Next we consider the Rudin-Osher-Fatemi (ROF) model [31] on the graph

min
u:V →R

1

2

∑

v∈V

|f(v)− u(v)|2 + αJ(u), α ≥ 0. (1.3)

From its dual formulation and Theorem 2.3 it follows that the solution uα of problem
(1.3) has a characteristic feature resembling the universal minimality property of
the taut string: It simultaneously minimizes

∑

v∈V

ϕ(u(v))

1Here, f ∈ Rm×n corresponds to f being defined on the vertices of an m× n Cartesian graph
as depicted in Figure 2.
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over the set f − α∂J(0) for every convex ϕ, see Theorem 3.2. We stress again that
the minimizer of the isotropic ROF model, where J(f) is given by (1.2), does not
have this property.

Because of its anisotropy different variants of model (1.3) have been used for
imaging problems with an underlying rectilinear geometry [8, 15, 33, 36]. Moreover,
in contrast to (1.2), J as given by (1.1) is submodular and for the minimization of
submodular functions many efficient algorithms are available, for instance, graph
cut algorithms [12, 13, 16, 24].

Finally, we examine the gradient flow for J and how it relates to the ROF
model. Such relations in higher dimensional settings have been the subject of re-
cent investigations. In [9] discrete variational methods and gradient flows for con-
vex one-homogeneous functionals are investigated and sufficient conditions for their
equivalence are provided. A sufficient condition for the equivalence of TV regular-
ization and TV flow with ℓ1-anisotropy in the continuous two-dimensional setting
is given in [28]. Considering the continuous setting with isotropic TV, it is shown
in [25] that TV regularization and TV flow coincide for radial data but in general
are non-equivalent.

Our results in this direction are the following. First and foremost TV regular-
ization and TV flow are not equivalent for general graphs and data f , see Theorem
5.3. This result is based on a constructed example for which we are able to explicitly
track the evolution of the two solutions uα and u(t) as α and t range over an interval
[0, L]. The example also shows that, in contrast to the one-dimensional setting, the
jump sets do not necessarily evolve in a monotone way. Moreover, we investigate
conditions for equality of uα and u(t = α) and discuss situations in which they
apply.

To summarize, let ψ : R → R by a strictly convex function, for the sake of
analogy pick ψ(x) =

√
1 + x2. Then the problem

min
u∈f−α∂J(0)

∑

v∈V

ψ(u(v))

may be seen as a generalization of the taut string algorithm to oriented graphs for
the following reasons.

• The set f − α∂J(0) reduces to the set of derivatives of the elements in the
2α-tube around F in case the underlying graph is a path, that is, it models the
one-dimensional situation described in the first paragraph of this introduction.

• The solution uα in fact minimizes
∑

v∈V ϕ(u(v)) for any convex function ϕ.

• uα minimizes the corresponding ROF model (1.3).

• Further, if α is either sufficiently small or sufficiently large, then uα equals
the TV flow solution at time t = α.

This article is organized as follows. In Section 2 we introduce the graph setting
and collect some properties of the total variation J . In particular we discuss the
concept of invariant ϕ-minimal sets in Section 2.1, while establishing a connection
to base polyhedra in Section 2.2. Sections 3 and 4 are dedicated to the two main
problems considered in this paper, that is, total variation regularization and total
variation flow, respectively. In Section 5 we compare the flow and ROF solutions.
The detailed calculations underlying several results of Section 5 are collected in the
appendix.
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2 Total variation on graphs

Throughout this article, following the terminology of [14], we consider oriented
connected graphs G = (V,E). That is, V = {v1, . . . , vn} and E ⊂ V × V with the
additional conditions that, first, (vi, vj) ∈ E implies (vj , vi) /∈ E and, second, there
is a path between every pair of vertices (ignoring edge orientations). Whenever we
simply write “graph” below, we implicitly mean a graph of this type. For v, w ∈ V
the edge (v, w) ∈ E is interpreted as directed from v to w. Let RV and RE be the
space of real-valued functions defined on the vertices and edges, respectively. We
consider the usual ℓp-norms on RV

‖u‖pp =
∑

v∈V

|u(v)|p, 1 ≤ p <∞,

‖u‖∞ = max
v∈V

|u(v)|.

Analogous ℓp-norms will be considered on RE . In particular, denote the closed
ℓ∞-ball of radius α ≥ 0 in RE by

Bα = {H ∈ RE : ‖H‖∞ ≤ α}.

Given H ∈ RE , define the divergence operator div : RE → RV according to

(divH)(v) =
∑

w∈V :(w,v)∈E

H((w, v)) −
∑

w∈V :(v,w)∈E

H((v, w)).

The divergence at the vertex v can be thought of as the sum of the flows on the
incoming edges minus the sum of the flows on the outgoing edges. We will frequently
apply div to the unit ball B1 ∈ RE and its subset B1,u defined, for given u ∈ RV ,
by

B1,u =



H ∈ RE : H((vi, vj)) ∈





{1}, u(vi) < u(vj),
[−1, 1] , u(vi) = u(vj),
{−1}, u(vi) > u(vj)



 .

Introduce further the natural scalar product on RV according to

〈u, h〉RV =
∑

v∈V

u(v)h(v).

For a closed and convex set A ⊂ RV the support function σA : RV → R is given by

σA(u) = sup
h∈A

〈u, h〉RV .

Definition 2.1. The total variation on RV is defined as the support function of
the set divB1,

J(u) = sup
h∈divB1

〈u, h〉RV .

Since J(u) = 〈u, divH〉RV for every H ∈ B1,u we can rearrange the inner product
to obtain

J(u) =
∑

(vi,vj)∈E

|u(vj)− u(vi)|. (2.1)

Remark 2.1. Equation (2.1) shows that J is independent of the orientation of
edges, even though the divergence is not. All subsequent results remain true regard-
less of edge orientation, and also apply to simple undirected graphs once each edge
has been oriented arbitrarily.
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Definition 2.2. For every u ∈ RV the subdifferential ∂J(u) is defined as the set
of all elements u∗ ∈ RV such that

〈h− u, u∗〉RV + J(u) ≤ J(h) for all h ∈ RV .

Since ∂J(u) is a closed, convex and non-empty subset of RV , we can highlight
one particular element.

Definition 2.3. The element of minimal ℓ2-norm in ∂J(u) will be referred to as
the minimal section of ∂J(u). It is denoted by ∂◦J(u), that is,

∂◦J(u) = argmin
u∗∈∂J(u)

‖u∗‖2.

The following lemma collects some results for the subdifferential ∂J which will
be used in the sequel.

Lemma 2.1.

1. ∂J(0) = divB1.

2. ∂J(u) = {u∗ ∈ ∂J(0) : 〈u, u∗〉RV = J(u)} for all u ∈ RV .

3. ∂J(u) = divB1,u for all u ∈ RV .

Proof. The functional J is the support function of the closed and convex set divB1

and therefore ∂J(0) = divB1.

Item 2 follows from Definition 2.2 and the absolute 1-homogeneity of J , that is,
J(tu) = |t|J(u) for all t ∈ R and u ∈ RV .

Regarding item 3, note that J(u) = 〈u, divH〉RV for H ∈ B1 if and only if
H ∈ B1,u. In view of item 2, it is then clear that ∂J(u) = divB1,u.

Remark 2.2.

1. Since, according to item 3 in Lemma 2.1, the set B1,u only depends on sgn(u(vi)−
u(vj)) for every edge (vi, vj) ∈ E, we have

∂J(u) = ∂J(h),

if and only if

sgn(u(vi)− u(vj)) = sgn(h(vi)− h(vj))

for each (vi, vj) ∈ E.

2. It now follows immediately that, if the subdifferentials of J at u and h coincide,
then they also coincide for every convex combination of u and h. That is,
∂J(u) = ∂J(h) implies ∂J(λu + (1− λ)h) = ∂J(u) for every λ ∈ (0, 1).

3. Lemma 2.1 also implies that the number of different subdifferentials of J is
finite. In particular,

∣∣{∂J(u) : u ∈ RV
}∣∣ ≤ 3|E|.

This must not be confused with the fact that for any given u ∈ RV the subdif-
ferential ∂J(u) might have infinitely many elements.
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2.1 Connections to invariant ϕ-minimal sets

In this subsection we recall the notion of invariant ϕ-minimal sets introduced in [26]
and show that the subdifferential ∂J(u) is an example of such a set.

Definition 2.4. A set Ω ⊂ Rn is called invariant ϕ-minimal if for every a ∈ Rn

there exists an element xa ∈ Ω such that

n∑

i=1

ϕ(xa,i − ai) ≤
n∑

i=1

ϕ(xi − ai) (2.2)

holds for all x ∈ Ω and all convex functions ϕ : R → R.

An interesting property of invariant ϕ-minimal sets is the following. By consid-
ering the particular convex function ϕ(x) = |x|p, 1 ≤ p <∞, in (2.2) we obtain

n∑

i=1

|xa,i − ai|p ≤
n∑

i=1

|xi − ai|p

for all x ∈ Ω. Taking the p-th root and including the case p = ∞, which follows by
limiting arguments, shows that the element xa satisfies

‖xa − a‖p ≤ ‖x− a‖p

for all x ∈ Ω and 1 ≤ p ≤ ∞. That is, xa is an element of best approximation of a
in Ω with respect to all ℓp-norms, 1 ≤ p ≤ ∞.

Before we can restate two characterizations of invariant ϕ-minimal sets from [26]
we have to introduce several notions about convex subsets of Rn.

A hyperplaneH supports a setM ⊂ Rn ifM is contained in one of the two closed
halfspaces with boundary H and at least one boundary point ofM is in H . Assume
that M ⊂ Rn is convex. Following the terminology of [22] a set F ⊂ M is called a
face ofM if F = ∅, F =M or if F =M ∩H where H is a supporting hyperplane of
M . A convex polytope P in Rn is a bounded set which is the intersection of finitely
many closed halfspaces. Note that a face of a convex polytope is itself a convex
polytope.

Let Ω ⊂ Rn be closed and convex and denote by {ei}ni=1 the standard basis of
Rn. For x ∈ Ω, consider all vectors y = ei − ej such that x + βy ∈ Ω for some
β > 0. Let Sx denote the set of all such vectors at x. Further, let Kx = {z : z =∑

y∈Sx
λyy, λy ≥ 0} be the convex cone generated by the vectors in Sx. We say

that Ω has the special cone property if Ω ⊂ x+Kx for each x ∈ Ω.

Remark 2.3. In [26] vectors of the type ei and ei + ej are considered in addition
to ei−ej in the definition of the special cone property. Including these vectors leads
to a characterization of the related notion of invariant K-minimal sets.

Theorem 2.2. Let Ω ⊂ Rn be a bounded, closed and convex set. Then the following
statements are equivalent.

1. Ω is invariant ϕ-minimal.

2. Ω has the special cone property.

3. Ω is a convex polytope where the affine hull of any of its faces is a shifted
subspace of Rn spanned by vectors of the type ei − ej.

Proof. Equivalence of statements 1 and 2 follows from combining Thms. 3.2 and
4.2 in [26]. Equivalence of statements 1 and 3 is precisely Thm. 4.3 in [26].
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x1

x2

1

1

−1

−1

x1

x2

P (g)

B(g)

Figure 1: Left: The slanted line segment is an example of an invariant ϕ-minimal
set as characterized by Theorem 2.2. In fact, identifying xi with u∗(vi), it is the
subdifferential ∂J(0) for J being defined on the graph with V = {v1, v2} and E =
{(v1, v2)}. All other invariant ϕ-minimal sets in R2 are translations and rescalings
of ∂J(0). Right: Submodular polyhedron (in grey) and base polyhedron (slanted
line segment) in the plane.

An example of an invariant ϕ-minimal set in the plane is depicted in Figure 1,
left panel. We are now ready to show

Theorem 2.3. The subdifferential ∂J(u) is an invariant ϕ-minimal set.

Proof. Consider first ∂J(0). In [27, Thm. 2.4, Rem. 2.5] it is established that the
bounded, closed and convex set divBα ⊂ RV is invariant ϕ-minimal by showing
that it has the special cone property. It follows that ∂J(0) = divB1 is an invariant
ϕ-minimal set.

Take next a general u ∈ RV . We have ∂J(u) = H ∩ ∂J(0) where H = {u∗ ∈
RV : 〈u∗, u〉RV = J(u)}, recall Lemma 2.1. Consider the halfspace Ĥ = {u∗ ∈ RV :

〈u∗, u〉RV ≤ J(u)} with boundary H . Note that (i) ∂J(0) ⊂ Ĥ , (ii) H ∩ ∂J(0) 6= ∅
and (iii) ∂J(0) is a convex polytope. So, H is a supporting hyperplane of ∂J(0) and
∂J(u) is a face of ∂J(0) and itself a convex polytope. Further, every face of ∂J(u)
is a face of ∂J(0). This follows from a general result on faces of convex polytopes,
see e.g. [22, Chap. 3.1, Thm. 5]. Therefore ∂J(u) satisfies statement 3 in Theorem
2.2.

Remark 2.4. As ∂J(u) is an invariant ϕ-minimal set, it follows that the minimal
section ∂◦J(u) not only has minimal ℓ2-norm in ∂J(u), but satisfies

∑

v∈V

ϕ(∂◦J(u)(v)) = min
u∗∈∂J(u)

∑

v∈V

ϕ(u∗(v))

for every convex function ϕ : R → R.

2.2 Invariant ϕ-minimal sets and submodular functions

To conclude this section, we present an interesting connection between submodular
functions and invariant ϕ-minimal sets. Submodular functions play an important
role in combinatorial optimization, similar to that of convex functions in continuous
optimization. See [4, 18] for more details.

Let S = {1, ..., n}. A set function g : 2S → R is submodular if

g(A) + g(B) ≥ g(A ∪B) + g(A ∩B)

7



for all sets A,B ⊂ S. Given a submodular function g, assuming g(∅) = 0, the
associated submodular polyhedron P (g) and base polyhedron B(g) are defined by

P (g) =

{
x ∈ Rn : ∀A ⊂ S,

∑

i∈A

xi ≤ g(A)

}
,

B(g) =

{
x ∈ P (g) :

∑

i∈S

xi = g(S)

}
.

Note that B(g) is a bounded set and therefore a convex polytope. In the plane we
can easily visualize submodular and base polyhedra, see Figure 1, right panel, for
an example.

Define the tangent cone TP (x) of a convex polytope P ⊂ Rn at x ∈ P by

TP (x) = {λz : λ ≥ 0, x+ z ∈ P} .

N. Tomizawa characterized, see [18, Thm. 17.1], base polyhedra according to

Theorem 2.4. A convex polytope P ⊂ Rn is a base polyhedron if and only if for
all x ∈ P , the tangent cone TP (x) is generated by vectors of the type ei − ej, i 6= j.

With this characterization at hand, the connection between invariant ϕ-minimal
sets and submodular functions can be revealed.

Proposition 2.5. A bounded, closed and convex set Ω ⊂ Rn is invariant ϕ-minimal
if and only if it is a base polyhedron associated to a submodular function g : 2S → R.

Proof. Recall from Theorem 2.2 that Ω is invariant ϕ-minimal if and only if it has
the special cone property. Next, it is straightforward to derive that Ω has the special
cone property if and only if the tangent cone TΩ(x), for every x ∈ Ω, is generated
by vectors of the type ei − ej, i 6= j. This is precisely the characterization of a base
polyhedron as given by Theorem 2.4.

Remark 2.5. Figure 1 illustrates the equivalence of invariant ϕ-minimal sets and
base polyhedra. Note that the subdifferential ∂J(0) is the base polyhedron B(g)
associated to the cut function g on the graph, see [4, Sec. 6.2].

3 The ROF model on the graph

With the graph setting introduced, we now turn to an analogue of the ROF image
denoising model on RV . Given f ∈ RV and α ≥ 0 we consider the following
minimization problem:

min
u∈RV

1

2
‖f − u‖22 + αJ(u). (3.1)

Throughout this article the unique solution to (3.1) will be denoted by uα.

3.1 Dual formulation and an invariance property of the ROF

minimizer

The next proposition remains true, if J is replaced by the support function of an
arbitrary closed and convex subset of RV .

8



Proposition 3.1. For every f ∈ RV and α ≥ 0 problem (3.1) is equivalent to

min
u∈f−α∂J(0)

‖u‖2. (3.2)

Proof. The corresponding dual problem of (3.1) can be expressed as

min
u∗∈RV

1

2
‖f − u∗‖22 + (αJ)∗(u∗), (3.3)

where (αJ)∗ denotes the convex conjugate of αJ . For general results underlying
the derivation of (3.3) and the optimality conditions (3.4) below, see [17, Chap. III,
Prop. 4.1, Rem. 4.2]. Let uα and u∗α denote solutions to the primal problem (3.1)
and the dual problem (3.3) respectively. The optimality conditions are

u∗α ∈ ∂(αJ)(uα) = α∂J(uα)

uα = f − u∗α.
(3.4)

As αJ(u) is the support function of divBα = α∂J(0), its convex conjugate (αJ)∗

is given by

(αJ)∗(u∗) =

{
0, u∗ ∈ α∂J(0),
+∞, u∗ /∈ α∂J(0).

Taking into account the characterization of (αJ)∗ in the dual formulation (3.3)
yields

u∗α = argmin
u∗∈α∂J(0)

‖f − u∗‖2.

That is, u∗α is the orthogonal projection of f onto the closed and convex set divBα.
For uα we now obtain using (3.4) that

‖uα‖2 = ‖f − u∗α‖2 = min
u∗∈α∂J(0)

‖f − u∗‖2 = min
u∈f−α∂J(0)

‖u‖2 .

Theorem 3.2. The ROF minimizer uα satisfies
∑

v∈V

ϕ(uα(v)) = min
u∈f−α∂J(0)

∑

v∈V

ϕ(u(v)) (3.5)

for every convex function ϕ : R → R.

Proof. According to Theorem 2.3 the set α∂J(0) is invariant ϕ-minimal, recall Def-
inition 2.4. From the above derivation of the dual formulation, we know that uα is
the ℓ2-minimizer in the set f − α∂J(0). Taken together, this gives (3.5).

While Proposition 3.1 is valid for every support function of a closed and convex
set, Theorem 3.2 fails in this more general case. The following remark discusses this
failure for the so-called discrete isotropic total variation.

Remark 3.1. Let G = (V,E) be an M×N Cartesian graph, as illustrated in Figure
2. On such graphs the following variant of J has been a popular choice, in particular
for image processing applications

Jiso(u) =

N−1∑

j=1

M−1∑

i=1

√
|u(vi+1,j)− u(vi,j)|2 + |u(vi,j+1)− u(vi,j)|2+

M−1∑

i=1

|u(vi+1,N )− u(vi,N )|+
N−1∑

j=1

|u(vM,j+1)− u(vM,j)| ,
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see, for instance, [2, 3, 11]. It can be shown that Jiso is the support function of
divBiso

1 , where

Biso

1 =

{
H ∈ RE : max

i,j
Cij(H) ≤ 1

}
,

and Cij(H) is given by

Cij(H) =





√
H((vi+1,j , vi,j))2 +H((vi,j+1, vi,j))2, i ≤M − 1, j ≤ N − 1,

|H((vi+1,N , vi,N ))|, i ≤M − 1, j = N,

|H((vM,j+1, vM,j))|, i =M, j ≤ N − 1,

0, i =M, j = N.

Let M,N > 1. From the construction of Biso

1 it follows that ∂Jiso(0) = divBiso

1

is not a polytope and therefore, by Theorem 2.2, it cannot be invariant ϕ-minimal.
Consequently, the minimizer of the isotropic ROF model, which can be characterized
as

argmin
u∈f−α∂Jiso(0)

‖u‖2,

in general does not have property (3.5).

v1,2 v2,2 v3,2

v2,3

v2,1

v1,3

v1,1 v3,1

v3,3

Figure 2: A 3× 3 Cartesian graph.

Remark 3.2. In the continuous setting it is known that an analogue of Theorem
3.2 holds for isotropic total variation, see [35, Thm. 4.46].

3.2 Further properties of the ROF minimizer

In this subsection we study further properties of the ROF minimizer uα. We first
give an auxiliary result.

Lemma 3.3. Let 0 ≤ β1 < β2. If ∂J(uβ1
) = ∂J(uβ2

), then for every α ∈ (β1, β2)
the ROF minimizer uα is a convex combination of uβ1

and uβ2
. That is,

uα =
β2 − α

β2 − β1
uβ1

+
α− β1
β2 − β1

uβ2
, β1 < α < β2. (3.6)

Proof. Denote the convex combination in (3.6) by c(α). It suffices to verify that c(α)
satisfies the optimality conditions (3.4), that is, f − c(α) ∈ α∂J(c(α)). First, note
that by item 2 in Remark 2.2 we have ∂J(c(α)) = ∂J(uβ1

). Next, let u∗βi
= f −uβi

,
i = 1, 2.

10



If β1 > 0, we compute

f − c(α)

α
=

1

α

[
β2 − α

β2 − β1
u∗β1

+
α− β1
β2 − β1

u∗β2

]

=
β1
α

β2 − α

β2 − β1

u∗β1

β1
+
β2
α

α− β1
β2 − β1

u∗β2

β2
.

It is straightforward to check that the last expression is a convex combination of
u∗β1

/β1 and u∗β2
/β2. By optimality of uβi

and the assumption that ∂J(uβ1
) =

∂J(uβ2
), both u∗βi

/βi lie in the same convex set ∂J(uβ1
). Therefore (f − c(α))/α is

in this set, too. We conclude that c(α) must be the ROF minimizer uα.
If β1 = 0, then u∗β1

= 0 and (f − c(α))/α = u∗β2
/β2 ∈ ∂J(c(α)).

We can now show the following properties of the ROF minimizer.

Proposition 3.4.

1. Problem (3.1) is mean-preserving, that is

∑

v∈V

uα(v) =
∑

v∈V

f(v) for all α ≥ 0.

2. The function α 7→ ‖uα‖2 is nonincreasing on [0,∞).

3. The solution uα is a continuous piecewise affine function with respect to α.
Its piecewise constant derivative duα/dα exists everywhere except for a finite
number of values of 0 < α1 < ... < αN <∞. In particular,

uα(v) =
1

|V |
∑

w∈V

f(w), for all α ≥ αN and v ∈ V. (3.7)

Proof.

1. According to Proposition 3.1 we have uα = f−divH for anH ∈ RE . Summing
this equation over all v ∈ V and using the fact that

∑
v∈V divH(v) vanishes

for every H ∈ RE gives
∑

v∈V uα(v) =
∑

v∈V f(v) for all α ≥ 0.

2. From the dual formulation of the ROF model, we know that uα is the ℓ2-
minimizer in the set f − divBα. Since f − divBβ1

⊂ f − divBβ2
, β1 ≤ β2, it

then follows that α 7→ ‖uα‖2 is nonincreasing.

3. We first prove that the map α 7→ uα is continuous. Consider a convergent
sequence of regularization parameters αn → α. According to the optimality
condition (3.4) the corresponding minimizers un := uαn

and u := uα can be
expressed as

un = f − αnu
∗
n,

u = f − αu∗,

for certain u∗n ∈ ∂J(un) and u
∗ ∈ ∂J(u). We compute

‖un − u‖22 = 〈un − u, un − u〉RV

= 〈un − u, αu∗ − αnu
∗
n〉RV

= α〈un, u∗〉RV − αn〈un, u∗n〉RV − α〈u, u∗〉RV + αn〈u, u∗n〉RV .

11



Using the fact that 〈u, u∗〉 = J(u) and 〈un, u∗n〉 = J(un) while 〈un, u∗〉 ≤
J(un) and 〈u, u∗n〉 ≤ J(u) according to Lemma 2.1, we obtain

‖un − u‖22 ≤ αJ(un)− αnJ(un)− αJ(u) + αnJ(u)

≤ |αn − α||J(u) + J(f)|,

and therefore un → u.

The piecewise affine structure of uα has been shown in [9, Thm. 4.6]. However,
since our proof relies on different arguments, we choose to include it.

From Lemma 3.3 as well as Remark 2.2, items 2 and 3, we can derive two
important facts. These two facts, combined with continuity of the map α 7→
uα, show that it must be piecewise affine on [0,∞). First, the subdifferential
∂J(uα) can only change a finite number of times. Second, in intervals where
it does not change, the minimizer uα is an affine function of α.

Finally, consider uα for α ≥ αN , where αN is the last time ∂J(uα) changes.
Let f̄ denote the averaged initial image f , i.e.

f̄(v) =
1

|V |
∑

w∈V

f(w), for all v ∈ V. (3.8)

For α ≥ C, where C > 0 is chosen large enough, it follows that f̄ ∈ f−divBα.
Clearly, f̄ is the ℓ2-minimizer in f−divBα. Combined with the piecewise affine
structure of uα, we conclude that uα = f̄ for α ≥ αN .

Remark 3.3. Recall that in Section 2 we have assumed the graph to be connected.
If this assumption is dropped, then (3.7) does not hold in general, since f̄ might not
be a minimizer for any α. If the graph is disconnected, however, the ROF problem
decouples into mutually independent subproblems, one for each connected component
of the graph. Statement (3.7) then applies to each subproblem. An analogous remark
can be made about property (4.3) of the TV flow.

4 The TV flow on the graph

In this section we consider the gradient flow associated to J . That is, given an
initial datum f : V → R we want to find a function u : [0,∞) → RV that solves the
Cauchy problem

u′(t) ∈ −∂J(u(t)) for a.e. t > 0,

u(0) = f.
(4.1)

The statements in the next theorem follow from general results on nonlinear evolu-
tion equations and semigroup theory. See [5, Chap. 4] for a detailed treatment and
[34, Sec. 2.1] for a brief introduction to the finite-dimensional setting.

Theorem 4.1. Solutions to problem (4.1) have the following properties.

1. For every f ∈ RV there is a unique solution and this solution depends con-
tinuously on f . In particular, if u1 and u2 are two solutions corresponding to
initial conditions f1 and f2, respectively, then

‖u1(t)− u2(t)‖2 ≤ ‖u1(s)− u2(s)‖2 for all t ≥ s ≥ 0.

2. The solution u lies in C([0,∞),RV ) ∩W 1,∞([0,∞),RV ) and satisfies

‖u′(t)‖2 ≤ ‖∂◦J(f)‖2 for a.e. t ≥ 0.

12



3. The solution is right differentiable everywhere. Its right derivative is right
continuous, it satisfies

d+

dt
u(t) = −∂◦J(u(t)), for all t ≥ 0, (4.2)

and the map

t 7→
∥∥∥d

+

dt
u(t)

∥∥∥
2

is nonincreasing.

4. Define St(f) = u(t). Then, for every f ∈ RV , we have

St(Ss(f)) = St+s(f) for all t, s ≥ 0.

5. The function u(t) ∈ RV converges to a minimizer of J as t→ ∞.

Equation (4.2) is a strengthening of the inclusion in (4.1). It implies, for instance,
that whenever u′ exists, it equals −∂◦J(u). Note that Theorem 4.1 actually holds
true for any convex real-valued functional, which admits a minimizer on RV , in place
of J . For J being the total variation, however, we have in addition the following
analogue of Proposition 3.4.

Proposition 4.2.

1. Problem (4.1) is mean-preserving, that is,
∑

v∈V

u(t)(v) =
∑

v∈V

f(v) for all t ≥ 0.

2. The function t 7→ ‖u(t)‖2 is nonincreasing on [0,∞).

3. The solution u is piecewise affine with respect to t. More specifically, the
derivative u′(t) does not exist for only a finite number of times 0 < t1 <
· · · < tM and it is constant in between. It follows that a stationary solution is
reached in finite time:

u(t)(v) =
1

|V |
∑

w∈V

f(w) for all t ≥ tM and v ∈ V. (4.3)

Proof.

1. Since the subdifferential of J consists entirely of divergences of edge functions,
for a.e. t ≥ 0 there is an H(t) ∈ RE such that

u′(t) = − divH(t).

Summing this equation over all v ∈ V and using the fact that
∑

v∈V divH(v)
vanishes for every H ∈ RE gives

d

dt

∑

v∈V

u(t)(v) = 0 for a.e. t ≥ 0.

Since u ∈W 1,∞([0,∞),RV ), the assertion follows.

2. From −u′(t) ∈ ∂J(u(t)) and the characterization of the subdifferential in
Lemma 2.1, it follows that 〈u(t),−u′(t)〉RV = J(u(t)). Therefore

−J(u(t)) = 〈u(t), u′(t)〉RV =
1

2

d

dt
‖u(t)‖22

for a.e. t > 0, which shows that t 7→ ‖u(t)‖2 is nonincreasing.

13



3. As for the ROF minimizer the piecewise affine behaviour has been shown in
[9, Thm. 4.6]. Our proof uses different arguments. According to item 3 in
Remark 2.2 the number of different values the right derivative of u can take is
finite. Since d+u/dt is also right continuous, there must be an ǫ > 0 for every
t0 ≥ 0 such that

d+

dt
u(t) = −∂◦J(u(t0)) for all t ∈ [t0, t0 + ǫ)

with d+u/dt = u′ on (t0, t0 + ǫ). This proves that t 7→ u(t) is piecewise affine
on [0,∞).

That d+u/dt only changes a finite number of times follows from the fact that,
if it changes, then its norm becomes strictly smaller. To see this let t̂ > 0 and
assume that d+u(t)/dt ≡ c is constant on (t̂ − ǫ, t̂) for some ǫ > 0 and that
d+u(t̂)/dt 6= c. We now have

J(u(t̂)) = lim
t→t̂−

J(u(t)) = lim
t→t̂−

〈u(t),−c〉 = 〈u(t̂),−c〉,

and therefore −c ∈ ∂J(u(t̂)). However, since −c = ∂◦J(u(t)) for t ∈ (t̂ −
ǫ, t̂) and the minimal section is the unique element of minimal norm in the
subdifferential, we must have ‖d+u(t)/dt‖2 > ‖d+u(t̂)/dt‖2. This combined
with the fact that d+u/dt can take only a finite number of values, implies that
it can change only a finite number of times.

Thus t 7→ u(t) is a continuous piecewise affine function with a finite number
of slope changes. Since, by item 5 in Theorem 4.1, u(t) is convergent, it must
reach its limit in finite time. Due to mean preservation, this limit has to be
the averaged initial datum.

5 Comparison of TV regularization and TV flow

In this section we first provide and analyze various conditions for the equivalence
of TV regularization and TV flow on graphs. We then show that they are non-
equivalent methods by constructing a counterexample.

5.1 Conditions for equivalence of TV regularization and TV

flow

Proposition 5.1 below relates the norms of the solutions of the TV regularization
and the TV flow to each other. Recall that f̄ denotes the averaged datum f , see
(3.8).

Proposition 5.1. For every α > 0 let uα and u(α) be the ROF and TV flow
solutions, respectively, both corresponding to the same datum f ∈ RV . They satisfy

‖f̄‖2 ≤ ‖uα‖2 ≤ ‖u(α)‖2 ≤ ‖f‖2, for all α > 0.

It follows that in general uα reaches f̄ before u(t), that is, αN ≤ tM , see Propositions
3.4 and 4.2.

Proof. Both ‖uα‖2 and ‖u(α)‖2 are nonincreasing functions of α, recall property 2
in Propositions 3.4 and 4.2, and therefore bounded from above by ‖f‖2. On the
other hand, due to mean preservation, recall property 1 in Propositions 3.4 and 4.2,
they are bounded from below by ‖f̄‖2. It remains to show that ‖uα‖2 ≤ ‖u(α)‖2.
To see this, observe that both uα and u(α) lie in f − divBα with uα being the
element of minimal norm in this set according to (3.2).
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The next proposition collects several conditions for equality of ROF and TV
flow solutions. The second condition is an adaptation of [28, Thm. 10] to the graph
setting.

Proposition 5.2. Let uα and u(t) be the ROF and TV flow solutions for a given
common datum f ∈ RV .

1. Let α > 0. We have uα = u(α) if and only if

− 1

α

∫ α

0

u′(t)dt ∈ ∂J(u(α)). (5.1)

2. Let α > 0. If

−〈u′(t), u(α)〉RV = J(u(α)) for a.e. t ∈ (0, α) (5.2)

then u(α) = uα. Moreover, condition (5.2) is always satisfied for α = t1,
where t1 is the first time u′(t) does not exist.

3. Define Tα(f) = uα. We have

uα = u(α) for all α ≥ 0

if and only if

Tt(Ts(f)) = Tt+s(f) for all t, s ≥ 0. (5.3)

Proof.

1. We can express u(α) = f +
∫ α

0 u′(t)dt. Recalling the optimality conditions
(3.4) for the ROF minimizer uα, it follows that u(α) = uα if and only if
− 1

α

∫ α

0 u′(t)dt ∈ ∂J(u(α)).

2. The proof is analogous to the one of [28, Thm. 10]. We include it for the sake
of completeness.

Integrating (5.2) from t = 0 to t = α gives

〈f − u(α), u(α)〉RV = αJ(u(α)). (5.4)

On the other hand, since −u′(t) lies in ∂J(0) for almost every t, so does its
average − 1

α

∫ α

0
u′(t) dt. Therefore

f − u(α) = −
∫ α

0

u′(t) dt ∈ α∂J(0). (5.5)

Combining (5.4) and (5.5) shows that f − u(α) ∈ α∂J(u(α)), recall Lemma
2.1. But this is just the optimality condition (3.4) for the ROF model, hence
u(α) = uα.

Next, recall that the flow solution satisfies

−u′(t) = ∂◦J(f) ∈ ∂J(u(t)), t ∈ [0, t1).

This implies by Lemma 2.1 that

〈∂◦J(f), u(t)〉 = J(u(t)), t ∈ [0, t1),

and since u is continuous in t

〈∂◦J(f), u(t1)〉 = J(u(t1)).

Therefore condition (5.2) is satisfied for every α ∈ [0, t1].
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...v1 v2 vn

Figure 3: Graph corresponding to a one-dimensional space-discrete signal with n
pixels.

3. Let uα = u(α) for all α ≥ 0. It then follows from property 4 in Theorem 4.1
that Tt(Ts(f)) = Tt+s(f) for all t, s ≥ 0.

Start now with the assumption Tt(Ts(f)) = Tt+s(f) for all t, s ≥ 0. As the
TV flow has an analogous property and the solutions to TV regularization
and TV flow always coincide for the interval [0, t1] according to item 2 it is
then immediate that they coincide for all α ≥ 0.

Remark 5.1.

1. Proposition 5.2, item 1, gives that u(α) = uα if and only if the average time
derivative 1

α

∫ α

0 u′(t)dt is in −∂J(u(α)). Compare with the pointwise inclusion
u′(t) ∈ −∂J(u(t)) which holds for a.e. t > 0. Note further that condition (5.1)
is strictly weaker than (5.2).

2. Condition (5.2) holds true, given any α > 0, for graphs of the type displayed in
Figure 3 corresponding to one-dimensional space-discrete signals. This follows
directly from the inclusion

∂J(u(s)) ⊂ ∂J(u(t)), s ≤ t, (5.6)

which applies in this setting. The derivation of (5.6) can be done with the
following arguments. Consider a pair of adjacent vertices vi and vi+1. In
[37, Prop. 4.1], it is shown that if u(s)(vi) = u(s)(vi+1) then u(t)(vi) =
u(t)(vi+1) for any t ≥ s. Taking into account the continuity of t 7→ u(t) and
the characterization of the subdifferential given by item 3 in Lemma 2.1, (5.6)
then follows.

3. Another family of instances where uα = u(α), for all α ≥ 0, arises from the
eigenvalue problem for the TV subdifferential. This problem seems to have
originally been studied in the continuous setting, where it was realized to give
rise to explicit solutions of both the TV flow and the ROF model. See, for
instance, [1, 6]. In the discrete setting the situation is similar. Following
[9, 19] we call f ∈ RV an eigenfunction of J , if it satisfies λf ∈ ∂J(f) for
some λ ≥ 0. If the datum of the ROF model has this property, then the
optimality condition (3.4) directly implies that

uα =

{
(1 − αλ)f, αλ < 1,

0, αλ ≥ 1.

See also [7, Thm. 5]. In other words Tα(f) is a nonnegative multiple of f ,
hence again an eigenfunction. A brief calculation now shows that (5.3) is
satisfied.
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5.2 Negative results

All results in this section are derived from the counterexample given by the graph
and datum displayed in Figure 4. While the corresponding solutions uα and u(t)
are illustrated in Figures 5 and 6, the underlying computations can be found in
the appendix. Our main considerations in constructing this counterexample are
explained below.

Proposition 3.1 together with the fact that Bα = −Bα implies that the ROF
minimizer uα can be written as

uα = f + divFα, (5.7)

for an Fα ∈ Bα. Regarding the TV flow, note that Lemma 2.1 and Proposition 4.2
guarantee the existence of a piecewise constant function t 7→ H(t) ∈ B1,u(t) with
finitely many discontinuities satisfying

u′(t) = − divH(t)

for all but a finite number of times. Integrating and setting F (t) = −
∫ t

0 H(s)ds we
obtain the following representation

u(t) = f + divF (t). (5.8)

Two properties concerning these representations are worth mentioning. First, the
edge functions Fα and F (t) are not uniquely determined in general. Second, F (t)
satisfies ∥∥∥d

+

dt
F (t)

∥∥∥
∞

≤ 1

for all t, while the derivative of Fα in general is not bounded by one. The coun-
terexample displayed in Figure 4 was constructed in such a way that Fα is uniquely
determined and satisfies ‖dFα/dα‖∞ > 1 for certain values of α. In fact, on the
edge e = (v32, v22) we have dFα(e)/dα = −3/2 for 2/5 < α < 2, see Figure 5.

5.2.1 Nonequivalence of TV flow and TV regularization

In spite of the similar qualitative properties of TV flow and TV regularization, recall
Propositions 3.4 and 4.2, the solutions u(α) and uα do not coincide in general.

Theorem 5.3. There exist graphs G = (V,E) and data f ∈ RV for which the TV
regularization problem and the TV flow problem are nonequivalent, i.e.

uα 6= u(α), for some α > 0.

Proof. Consider the graph and the datum f given in Figure 4. For this example,
the evolutions of uα and u(α) on the interval [0, 4] are displayed in Figure 5 and
Figure 6, respectively. Note that uα 6= u(α) for α ∈ (2/5, 4].

Remark 5.2.

1. Proposition 5.2, item 3, combined with Theorem 5.3 gives that the ROF model
in general does not possess the semigroup property (5.3). This is in contrast
to the situation for the TV flow, recall property 4 in Theorem 4.1.

2. Recall Theorem 4.1, item 3, stating that t 7→ ‖d+u(t)/dt‖2 is nonincreasing.
The ROF minimizer, in contrast, does not have an analogous property. Con-
sider Figure 5, from where it can be seen that ‖duα/dα‖2 increases from the
interval (2/5, 2) to (2, 4).
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Figure 4: Left: graph structure. Right: datum f .

0 ≤ α ≤ 2/5:

−α α

−α −α

−α α

−α

α

−α

α

−α

−α

100 + α 18 + 4α 20 − α

100 − α

100 + α

200 − 2α

200 − 2α 200 − 2α

2α

2/5 ≤ α ≤ 2:

−α
2−3α

2

−α −α

−α α

−α

α

−α

α

−α

−α

100 + α 19 + 3α
2

19 + 3α
2

100 − α

100 + α

200 − 2α

200 − 2α 200 − 2α

2α

2 ≤ α ≤ 4:

−α
−α

−α −α

−α α

−α

α

−α

α

−α

−α

100 + α 18 + 2α 20 + α

100 − α

100 + α

200 − 2α

200 − 2α 200 − 2α

2α

Figure 5: The evolution of the ROF minimizer uα (on the vertices) and the function
Fα (on the edges) on the interval 0 ≤ α ≤ 4. The underlying computations can be
found in the appendix.

0 ≤ t ≤ 2/5:

−t t

−t −t

−t t

−t

t

−t

t

−t

−t

100 + t 18 + 4t 20 − t
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2t

2/5 ≤ t ≤ 4:
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4
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− t

−t −t
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100 + t 94

5
+ 2t 96

5
+ t
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100 + t
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Figure 6: The evolution of the TV flow u(t) (on the vertices) and the function F (t)
(on the edges) on the interval 0 ≤ t ≤ 4. The underlying computations can be
found in the appendix.
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3. In [9, Thm. 4.7] the authors give a sufficient condition for equivalence of
the variational method and the gradient flow associated to a proper, convex,
lower semicontinuous and absolutely one-homogeneous function J on Rn. This
condition, called MINSUB, requires

〈∂◦J(u), ∂◦J(u)− u∗〉 = 0

to hold for all u ∈ Rn and u∗ ∈ ∂J(u). Theorem 5.3 implies that the total
variation as given in Definition 2.1 does not meet MINSUB on general graphs.

5.2.2 Nonmonotone behaviour of jump sets

For a given graph G = (V,E) and datum f ∈ RV we define the jump sets of the
ROF and TV flow solutions in the following way

Γα = {(v, w) ∈ E : uα(v) 6= uα(w)} , α ≥ 0,

Γ(t) = {(v, w) ∈ E : u(t)(v) 6= u(t)(w)} , t ≥ 0.

Clearly, for α or t large enough these two sets are empty. They do not, however,
necessarily evolve in a monotone way.

Proposition 5.4. There are graphs G = (V,E), data f ∈ RV and numbers β2 >
β1 ≥ 0, s2 > s1 ≥ 0, such that

Γβ1
( Γβ2

,

Γ(s1) ( Γ(s2).

Proof. Consider the graph and datum of Figure 4.
For the TV regularization, Figure 5 shows that

sgn(uα(v32)− uα(v22)) =





1, 0 ≤ α < 2/5,
0, 2/5 ≤ α ≤ 2,

−1, 2 < α ≤ 4.

That is, the jump between uα(v22) and uα(v32) disappears for 2/5 ≤ α ≤ 2 but
appears again, with reversed sign, for 2 < α ≤ 4. For all other edges (v, w) the
quantity sgn(uα(v) − uα(w)) is constant on [0, 4]. This shows that Γβ1

( Γβ2
for

every β1 ∈ [2/5, 2] and β2 ∈ (2, 4].
For the TV flow, see Figure 6, we have

sgn(u(t)(v32)− u(t)(v22)) =





1, 0 ≤ t < 2/5,
0, t = 2/5,

−1, 2/5 < t ≤ 4.

Here the jump between u(t)(v22) and u(t)(v32) disappears at t = 2/5 and then a
jump with reversed sign appears for 2/5 < t ≤ 4. Again, for all other edges (v, w)
the quantity sgn(u(t)(v) − u(t)(w)) is constant on [0, 4]. Thus, Γ(2/5) ( Γ(s2) for
every s2 ∈ (2/5, 4].

Remark 5.3. For one-dimensional graphs, however, the jump sets are nonincreas-
ing, see item 2 in Remark 5.1. On the other hand, in the continuous anisotropic
setting it is known that jumps can be created in the solution, see [10, Rem. 4] and
[28, Ex. 1].

Remark 5.4. We stress that β1 and s1 can be equal to zero in Proposition 5.4. To
see this consider the datum f̃ and solutions uα = u(α) given in Figure 7. Note that
f̃ is equal to f from Figure 4 except for v22 where f̃(v22) = 20. The underlying
calculations are analogous to the ones for f and are therefore omitted. A jump
between the vertices v22 and v32, which is not present in the datum f̃ , is created
in uα = u(α), 0 < α ≤ 4. Thus the jump set of an image resulting from TV
regularization or TV flow can strictly contain the jump set of the datum.
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Figure 7: Left: datum f̃ . Right: uα = u(α) (on the vertices) and Fα = F (α) (on
the edges) for α ∈ [0, 4].

6 Conclusion

In this article we have studied and compared TV regularization and TV flow for
functions defined on the vertices of an oriented connected graph. Our motivation
was the discrete one-dimensional setting, where the two problems are known to
be equivalent and their solution minimizes a large class of convex functionals in a
certain neighbourhood of the data.

It turns out that in the graph setting this situation can only be recovered for
α, t ∈ [0, t1] ∪ [tM ,∞), the reason being that on the complement (t1, tM ) the ROF
and flow solution are in general different. Here t1 and tM are the first and last
times, respectively, the time derivative of the flow solution changes.

In addition we have shown that for every α ≥ 0 the ROF minimizer uα simul-
taneously minimizes all functionals of the form

∑

v∈V

ϕ(u(v)) (6.1)

over the set f − α∂J(0), where ϕ : R → R is convex but otherwise arbitrary. In
doing so we have relied on the fact that ∂J is invariant ϕ-minimal. Since invariant
ϕ-minimal sets must be polyhedra, the subdifferential of discrete isotropic total
variation cannot be such a set. Consequently, the minimizer of the isotropic ROF
model in general does not have property (6.1).
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A Appendix: TV denoising on a particular graph

In this appendix we consider the graph and datum given by Figure 4 and compute
the solutions of the TV regularization problem and the TV flow problem on the
interval [0, 4].
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TV regularization

Recall that the ROF minimizer uα can be represented as

uα = f + divFα,

where Fα ∈ Bα, see equation (5.7). Below, Fα is computed for α ∈ [0, 4] which then
enables computation of uα on this interval.

We have for any v ∈ V ,

f(v)− deg(v)α ≤ uα(v) ≤ f(v) + deg(v)α, (A.1)

where deg(v) denotes the degree of v, that is, the number of edges incident to v.
Using (A.1) it is straightforward to show that

sgn(uα(vij)− uα(vkl)) = sgn(f(vij)− f(vkl)) ∈ {±1}

for all edges (vij , vkl) except (v32, v22) on the interval 0 ≤ α ≤ 4. The optimality
condition (3.4) together with the equality ∂J(u) = divB1,u (recall Lemma 2.1, item
3) then gives

Fα((vij , vkl)) = α sgn(f(vij)− f(vkl)),

for all (vij , vkl) ∈ E\ {(v32, v22)} and 0 ≤ α ≤ 4.
Consider now the special edge (v32, v22). Using the knowledge of Fα on the other

edges, uα(v22) and uα(v32) are given by

uα(v22) = f(v22) + Fα((v32, v22)) + Fα((v23, v22))− Fα((v22, v12))− Fα((v22, v21))

= 18 + Fα((v32, v22)) + 3α,

and

uα(v32) = f(v32)− Fα((v32, v22)) + Fα((v33, v32))− Fα((v32, v31))

= 20− Fα((v32, v22)),

for 0 ≤ α ≤ 4. Recall further that uα is the ℓ2-minimizer in the set f − divBα,
cf. Proposition 3.1, and that Fα((v32, v22)) only appears in the terms uα(v22) and
uα(v32). Minimizing (uα(v22))

2+(uα(v32))
2 subject to the constraint Fα((v32, v22)) ∈

[−α, α] then gives

Fα((v32, v22)) =





α, 0 ≤ α ≤ 2/5,
(2 − 3α)/2, 2/5 ≤ α ≤ 2,

−α, 2 ≤ α ≤ 4.

The function Fα is now determined on all edges on the interval α ∈ [0, 4]. The
ROF minimizer uα can then be computed according to (5.7). The results can be
seen in Figure 5.

TV flow

Recall that, according to (5.8), the solution u(t) of the TV flow problem can be
represented as

u(t) = f + div(F (t)),

where F (t) = −
∫ t

0
H(s)ds and H(s) ∈ B1,u(s). In particular, F (t) ∈ Bt. Below,

F (t) is computed for t ∈ [0, 4] which then enables computation of u(t) on this
interval.
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We have an analogous inequality to (A.1),

f(v)− deg(v)t ≤ u(t)(v) ≤ f(v) + deg(v)t (A.2)

for all v ∈ V . Using (A.2), we can derive that

sgn(u(t)(vkl)− u(t)(vij)) = sgn(f(vkl)− f(vij)) ∈ {±1} (A.3)

holds for any edge (vij , vkl) ∈ E\ {(v32, v22)} and 0 ≤ t ≤ 4. From (A.3) and
H(s) ∈ B1,u(s) it follows in turn that

H(s)((vij , vkl)) = sgn(f(vkl)− f(vij))

for all (vij , vkl) ∈ E\ {(v32, v22)} and 0 ≤ t ≤ 4. Hence,

F (t)((vij , vkl)) = −
∫ t

0

H(s)((vij , vkl))ds = t sgn(f(vij)− f(vkl)),

for all (vij , vkl) ∈ E\ {(v32, v22)} and 0 ≤ t ≤ 4.
Turn next to the computation of F (t)((v32, v22)) on 0 ≤ t ≤ 4. Knowledge of

F (t) on the other edges gives

u(t)(v22) = 18 + 3t+ F (t)((v32, v22)), (A.4)

and

u(t)(v32) = 20− F (t)((v32, v22)), (A.5)

on 0 ≤ t ≤ 4. From (A.4) and (A.5), together with F (t) ∈ Bt, follow the inequalities

u(t)(v22) ≤ 18 + 4t < 20− t ≤ u(t)(v32), 0 ≤ t < 2/5.

These inequalities imply that

sgn(u(t)(v22)− u(t)(v32)) = −1, 0 ≤ t < 2/5,

and therefore

H(t)((v32, v22)) = −1, 0 ≤ t < 2/5.

We then obtain

F (t)((v32, v22)) = −
∫ t

0

H(s)((v32, v22))ds = t, 0 ≤ t ≤ 2/5.

Consider now the interval 2/5 ≤ t ≤ 4 where we estimate

F (t)((v32, v22)) = F (2/5)((v32, v22))−
∫ t

2/5

H(s)((v32, v22))ds

≥ 2/5− (t− 2/5) = 4/5− t

This inequality together with (A.4) and (A.5) give

u(t)(v32) ≤ 96/5 + t < 94/5 + 2t ≤ u(t)(v22), 2/5 < t ≤ 4.

From these inequalities it follows that

H(t)((v32, v22)) = sgn(u(t)(v22)− u(t)(v32)) = 1, 2/5 < t ≤ 4,

which in turn gives

F (t)((v32, v22)) = 4/5− t, 2/5 ≤ t ≤ 4.

The function F (t) is now determined on all edges on the interval t ∈ [0, 4]. The
solution u(t) of the TV flow problem can then be computed according to (5.8). The
results can be seen in Figure 6.
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