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Abstract. We consider shape optimization problems subject to elliptic partial differential
equations. In the context of the finite element method, the geometry to be optimized is represented
by the computational mesh, and the optimization proceeds by repeatedly updating the mesh node
positions. It is well known that such a procedure eventually may lead to a deterioration of mesh
quality, or even an invalidation of the mesh, when interior nodes penetrate neighboring cells. We
examine this phenomenon, which can be traced back to the ineptness of the discretized objective
when considered over the space of mesh node positions. As a remedy, we propose a restriction in
the admissible mesh deformations, inspired by the Hadamard structure theorem. First and second
order methods are considered in this setting. Numerical results show that mesh degeneracy can
be overcome, avoiding the need for remeshing or other strategies. FEniCS code for the proposed
methods is available on GitHub.
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1. Introduction. Shape optimization is ubiquitous in the design of structures of
all kinds, going from drug eluting stents Zunino, 2004 until aircraft wings Schmidt,
Schulz, et al., 2011 or horn-like structures appearing in devices for acoustic or electro-
magnetic waves Udawalpola, Berggren, 2008. All of these and many other applications
involve the solution u of a partial differential equation (PDE), so the general formulation
of shape optimization problems considered here is as follows:

(1.1) min
Ω
j(Ω, u(Ω)).

Here u(Ω) is the solution of the underlying PDE defined on the domain Ω, which is
to be optimized. In the following, we will mainly use the reduced objective J(Ω) :=
j(Ω, u(Ω)).

Computational approaches to solving PDE-constrained shape optimization prob-
lems usually proceed along the following lines. First, one derives an expression for the
shape derivative of the objective w.r.t. vector fields which describe the perturbation
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of the current domain Ω. The perturbations are carried out either in terms of the
perturbation of identity, or the velocity method. We refer the reader to Delfour,
Zolésio, 2011, Chapters 4.3–4.4 for details. The shape derivative can be stated either as
an expression concentrated on the boundary ∂Ω, or as a volume expression. The first
is due to the Hadamard structure theorem (Sokołowski, Zolésio, 1992, Theorem 2.27).
For volume expressions, we refer the reader, for instance, to Laurain, Sturm, 2016;
Hiptmair, Paganini, Sargheini, 2015. Second, the shape derivative, which represents
a linear functional on the perturbation vector fields, needs to be converted into a
vector field V itself, often referred to as the shape gradient. This can be achieved by
evaluating the Riesz representative of the derivative w.r.t. an inner product. The latter
is often chosen as the bilinear form associated with the Laplace-Beltrami operator on
∂Ω, or with the linear elasticity (Lamé) system on Ω, see e.g. Schmidt, Schulz, et al.,
2011; Schulz, Siebenborn, 2016; Schmidt, Schulz, 2010; 2009. More sophisticated tech-
niques include quasi-Newton or Hessian-based inner products; see Eppler, Harbrecht,
2005; Novruzi, Roche, 2000; Schulz, Siebenborn, Welker, 2015; Schulz, 2014. This
perturbation field is then used to update the domain Ω inside a line search method,
where the transformed domain

(1.2) Ωα = {x+ αV (x) : x ∈ Ω}

associated with the step size α is obtained from the perturbation of identity approach.

Using the boundary expression of the shape derivative provides an alternative to
the domain transformation approach described in the previous paragraph. In this case,
a normal vector field concentrated on the current domain boundary ∂Ω is obtained,
which provides a descent direction. In the presence of a PDE, modifications of the
domain boundary need to be accompanied by a deformation strategy in the interior (see
e.g. Schmidt, Ilic, et al., 2011). This two-stage process, however, causes discontinuities
in the discrete objective function and thus disturbs the performance of optimization
algorithms. On the other hand, the use of the volume expression has been shown to
exhibit superior regularity and better finite element approximation results compared
to the boundary expression (see e.g. Hiptmair, Paganini, Sargheini, 2015).

In any case, while the computation of the shape derivative is either based on the
continuous or some discrete formulation of problem (1.1), the computation of the
shape gradient and the subsequent updating steps will always be carried out in the
discrete setting. Typically, the shape Ω is represented by a computational mesh, and
the underlying PDE is solved, e.g., by the finite element method. The perturbation
field V is then expressed as a piecewise linear field, i.e., it is represented in terms
of a velocity vector attached to each vertex position. The domain Ω is subsequently
updated according to (1.2) inside a line search procedure.

It has been observed in many publications that this straightforward approach
has one major drawback: it often leads to a degeneracy of the computational mesh.
This degeneracy manifests itself in different ways, but mostly through degrading cell
aspect ratios, or even mesh nodes entering neighboring cells. Doǧan et al., 2007 for
instance observe that such mesh distortions impair computations and lead to numerical
artifacts. In practice, both phenomena often lead to a breakdown of computational
shape optimization procedures.

In section 4 we shed some light on this process of mesh destruction. We attribute it
to a discretization artifact, by which the positions of all mesh nodes of a computational
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mesh have an impact on the discrete solution of the PDE present in the problem. This
presents optimization routines with an opportunity to shift the mesh nodes in such a
way that the discrete solution of the PDE exhibits features which allow further descent
in the objective, but at the expense of mesh quality and solution accuracy of the PDE.
Notice that this issue does not arise in the continuous setting, where the redistribution
of material points in the interior of the domain has no effect on the PDE solution and
thus on the objective. In lack of a better name, we refer to the phenomenon described
above as “spurious descent directions” since they are, indeed, leading us further away
from the solution of the continuous problem.

Over the past 10 years, a range of various techniques have been proposed to
circumvent this major obstacle in computational shape optimization. A natural choice
is to remesh the computational domain; see for instance Wilke, Kok, Groenwold, 2005;
Morin et al., 2012; Sturm, 2016; Dokken et al., 2018; Feppon et al., 2018. Remeshing
can be carried out either in every iteration or whenever some measure of mesh quality
falls below a certain threshold. Drawbacks of remeshing include the high computational
cost and the discontinuity introduced into the history of the objective values.

Bänsch, Morin, Nochetto, 2005; Doǧan et al., 2007 describe several techniques such
as mesh regularization, space adaptivity, angle control in addition to a semi-implicit
Euler discretization for the velocity method, with time adaptivity and backtracking line
search. In a follow-up work, Morin et al., 2012 consider a line search method that aims
to avoid mesh distortion due to tangential movements of the boundary nodes, combined
with a geometrically consistent mesh modification (GCMM) proposed in Bonito,
Nochetto, Pauletti, 2010. Giacomini, Pantz, Trabelsi, 2017 address the issue of spurious
descent directions, attributed to discretization errors in the underlying PDE model, via
a goal-oriented mesh adaptation approach. Recently, Iglesias, Sturm, Wechsung, 2017
proposed to enforce shape gradients from nearly conformal transformations, which are
known to preserve angles and ensure a good quality of the mesh along the optimization
process.

Finally, we mention Schulz, Siebenborn, Welker, 2015; 2016; Schulz, Siebenborn,
2016, who advocate the linear elasticity model as the inner product to convert shape
derivative into a shape gradient. In particular in Schulz, Siebenborn, Welker, 2016
the authors propose to omit the assembly of interior contributions appearing in the
discrete volume expression of the shape derivative. This approach is related to but
conceptionally different from our idea and no analysis is provided there. A thorough
comparison is provided in subsection 5.3.

Our Contribution. In this paper we propose an approach to avoid spurious
descent directions in the course of numerical shape optimization procedures, which is
different from all of the above and does not require remeshing. The main idea is based
on the observation that—in the continuous setting—shape gradients are perturbation
fields which are generated exclusively by normal forces on the boundary of the current
domain. This follows from the Hadamard structure theorem. However, in the discrete
setting, the Hadamard structure theorem is not available, and thus classical discrete
shape gradients also contain contributions from interior forces and tangential boundary
forces. We therefore propose to project the shape gradient onto the subspace of
perturbation fields generated by normal forces. We refer to this approach as restricted
mesh deformations.
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We demonstrate that the proposed approach indeed avoids spurious descent
directions and degenerate meshes. As a consequence, we can solve discrete shape
optimization problems to high accuracy, i.e., very small norm of the restricted gradient.
Both gradient and Newton schemes in 2D and 3D are considered. An implementation
in the finite element software FEniCS is available as open-source on GitHub; see
Etling et al., 2018.

The paper is structured as follows. In section 2 we present a shape optimization
model problem and prove, as an auxiliary result, the existence of a globally optimal
domain. In section 3 we review the volume and boundary representations of the shape
derivative. In section 4 we consider the discrete counterpart of the model problem
and its shape derivative. We also illustrate the detrimental effect of spurious descent
directions. The main idea of restricted mesh deformations is introduced in section 5. An
associated restricted gradient scheme is also introduced and its performance is compared
to the classical shape gradient method in section 6. Sections 7 and 8 are devoted to
second-order shape derivatives in the restricted setting and the demonstration of the
associated Newton scheme. Conclusions are given in section 9.

We wish to point out that the model problem considered throughout the paper is
clearly academic. It was chosen since, as an auxiliary result of the present paper, we
present a new technique to prove the existence of optimal shapes, which requires certain
properties of the objective to hold; see Remark 2.3. It should be understood that
our main idea of considering restricted mesh deformations to avoid spurious descent
directions applies to a much broader class of PDE constrained shape optimization
problems.

2. Preliminaries. Throughout the paper, we consider the following model prob-
lem,

(2.1) Minimize
∫

Ω
udx s.t. Ω ⊂ D is open,

{
−∆u = f in Ω,

u = 0 on ∂Ω.

Here the optimization variable Ω ⊂ Rd is an admissible domain contained in some
bounded and open hold-all D ⊂ Rd, and f ∈ H1(D) is a given right hand side. The
elliptic state equation is understood in weak form,

(2.2) Find u ∈ H1
0 (Ω) such that

∫
Ω
∇u · ∇v dx =

∫
Ω
f v dx ∀v ∈ H1

0 (Ω).

The next result shows that our shape optimization problem (2.1) has a solution
if we slightly relax the class of admissible sets. We will see that it is sufficient to
consider quasi-open rather than open sets. For an introduction of quasi-open sets,
quasi-continuity, quasi-everywhere (q.e.) and related notions, we refer the reader to
Attouch, Buttazzo, Michaille, 2014, Section 5.8. We consider the slightly relaxed
problem

(2.3) Minimize
∫

Ω
udx s.t. Ω ⊂ D is quasi-open,−∆u = f in H−1(Ω).

Let us recall that H1
0 (Ω) = {u ∈ H1

0 (Rd) | u = 0 q.e. in Rd \ Ω} and H−1(Ω) is the
dual space of H1

0 (Ω). The PDE in (2.3) is also to be understood in the weak sense,
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i.e.,

Find u ∈ H1
0 (Ω) such that

∫
D

∇u · ∇v =
∫
D

f v dx ∀v ∈ H1
0 (Ω).

We emphasize that the main reason for this existence result is that the objective is
monotone w.r.t. the state u, see also Remark 2.3 below.

Theorem 2.1. Problem (2.3) admits a global minimizer (Ω̂, û).

Note that the extreme case (Ω̂, û) = (∅, 0) is possible.
Proof. First, we remark that it is sufficient to consider only pairs ({u < 0}, u)

with u ≤ 0 in (2.3). Indeed, if (Ω, u) is any admissible pair, we can consider ({u <
0},min(u, 0)) in its stead. Note that {u < 0} is quasi-open since u can chosen to be
quasi-continuous. This pair is again admissible due to∫

D

∇min(u, 0) · ∇v dx =
∫

Ω
∇u · ∇v dx =

∫
D

f v dx ∀v ∈ H1
0 ({u < 0}),

since v = 0 q.e. on Ω \ {u < 0}. Moreover, the objective value of ({u < 0},min(u, 0))
is not larger than the objective value of (Ω, u).

Now, let {(Ωn, un)} be a minimizing sequence for (2.3) with un ≤ 0 and Ωn =
{un < 0}. It is clear that the sequence {un} is bounded in H1

0 (D), therefore we
can extract a weakly convergent subsequence (without relabeling) with weak limit u.
Clearly, u ≤ 0. Now we define Ω̂ = {u < 0} and denote by û ∈ H1

0 (Ω̂) the solution
of −∆û = f in H−1(Ω̂). It remains to check that û ≤ u holds since this implies the
global optimality of û (due to the monotonicity of the objective). To this end, we
choose an arbitrary v ∈ H1

0 (D) such that −u ≥ v ≥ 0. For vn := min(−un, v) we
have vn ∈ H1

0 (Ωn) due to v ≥ 0. Moreover, vn ⇀ min(−u, v) = v in H1
0 (D), see

Wachsmuth, 2016, Lemma 4.1. Thus,∫
D

f v dx = lim
n→∞

∫
D

f vn dx = lim
n→∞

∫
D

∇un · ∇vn dx

= lim
n→∞

∫
D

∇(un + v) · ∇(vn − v) +∇un · ∇v −∇v · ∇(vn − v) dx

= lim
n→∞

∫
D

−∇|min(−un − v, 0)|2 +∇un · ∇v dx ≤
∫
D

∇u · ∇v dx.

Since v ∈ H1
0 (Ω̂), we can test the equation for û with v and we find∫
Ω̂
∇(û− u) · ∇v dx ≤ 0 ∀v ∈ H1

0 (D) satisfying −u ≥ v ≥ 0.

Now, we can use a density argument, see Mignot, 1976, Lemme 3.4, to obtain that
this inequality holds for all v ∈ H1

0 (Ω̂) which satisfy v ≥ 0. Using v = max(û− u, 0)
implies max(û− u, 0) = 0, i.e., û ≤ u. Finally, the optimality of (Ω̂, û) follows from∫

D

ûdx ≤
∫
D

udx = lim
n→∞

∫
D

un dx.



6 T. ETLING, R. HERZOG, E. LOAYZA, AND G. WACHSMUTH

Remark 2.2. There is a deeper reason for û ≤ u being true in the above proof.
Indeed, using the theory of relaxed Dirichlet problems, one can show that u satisfies
−∆u + µu = f for some capacitary measure µ. We refer to Attouch, Buttazzo,
Michaille, 2014, Section 5.8.4 for a nice introduction to capacitary measures. Due
to u ≤ 0 we have (in a certain sense) µu ≤ 0 and therefore û ≤ u follows from the
maximum principle since “−∆û = f ≤ f − µu = −∆u”. However, we included the
above direct proof because it does not rely on the notion of capacitary measures.

Remark 2.3. The above proof of existence generalizes to a larger class of objective
functionals. In fact, we can replace the objective in (2.3) with∫

Ω
j(x, u(x)) dx

if the integrand j satisfies

j(x, ·) is monotonically increasing on (−∞, 0] and non-negative on [0,∞),(2.4a)
j(·, u) ∈ L1(D) ∀u ∈ H1

0 (D),(2.4b)

un ⇀ u in H1
0 (D) implies

∫
D

j(u) dx ≤ lim inf
n→∞

∫
D

j(un) dx.(2.4c)

Under these general assumptions, one can use the same proof as the one given for
Theorem 2.1 above, but the final estimate has to be replaced by∫

Ω̂
j(·, û) dx ≤

∫
Ω̂
j(·, u) dx =

∫
D

j(·, u)− j(·, 0) dx+
∫
{u<0}

j(0) dx

≤ lim inf
n→∞

∫
D

j(·, un)− j(·, 0) dx+
∫
{un<0}

j(0) dx

= lim inf
n→∞

∫
Ωn

j(·, un) dx.

Note that Fatou’s lemma together with un → u a.e. (along a subsequence) implies∫
{u<0}

j(0) dx ≤ lim inf
n→∞

∫
{un<0}

j(0) dx.

Again, this shows the optimality of (Ω̂, û).

3. Shape Calculus. This section is devoted to the presentation of the shape
differentiability of problem (2.1). Since this is rather standard problem we will be able
to directly apply results from Ito, Kunisch, Peichl, 2008. To this end, we assume that
both the hold-all D ⊂ Rd and Ω ⊂ Rd are open and have C1,1-boundaries ∂D and
∂Ω, respectively. Moreover we assume Ω ⊂ D so that Ω has a positive distance to the
boundary of D.

We are describing variations of the domain Ω by the perturbation of identity
method, i.e., we consider a family of transformations {Tα}α∈[0,τ ] such that

(3.1) Tα = id + αV,

where V ∈ C1,1(D)d is a given vector field. The family {Tα} creates a family of
perturbed domains Ωα = Tα(Ω). In view of Banach’s fixed point theorem, there exists
a bound τ > 0 such that Tα is invertible for all α ∈ [0, τ ].
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By a straightforward application of Ito, Kunisch, Peichl, 2008, Theorem 2.1 we
obtain the following result.

Theorem 3.1. The shape functional given in (2.1) is shape differentiable and its
shape derivative in the direction of the perturbation field V is given by

(3.2) J ′(Ω;V ) =
∫

Ω
u (divV ) dx

+
∫

Ω
(∇u)>

[
(divV ) id−DV −DV >

]
∇p dx−

∫
Ω

div(f V ) p dx

where DV denotes the Jacobian of V and the adjoint state p is the unique solution of
the following adjoint problem,

(3.3) Find p ∈ H1
0 (Ω) such that

∫
D

∇p · ∇v dx = −
∫
D

v dx for all v ∈ H1
0 (Ω).

Notice that (3.2) is the so-called volume or weak formulation of the shape derivative
of (2.1). Besides the volume formulation, there exists an alternative representation of
(3.2) by virtue of the well known Hadamard structure theorem; see Delfour, Zolésio,
2011, Chapter 9, Theorem 3.6. We state it here in a particularized version for problem
(2.1). From now on, ν denotes the outer unit normal vector along the boundary ∂Ω of
Ω.

Corollary 3.2 (Hadamard structure theorem for (2.1)). The shape derivative
(3.2) of problem (2.1) has the representation

(3.4) J ′(Ω;V ) =
∫
∂Ω
gΩ (V · ν) ds with gΩ = −∂u

∂ν

∂p

∂ν
.

Notice that under the assumption that Ω has a C1,1-boundary, u and p belong to
H2(Ω) and thus their normal derivatives are in H1/2(∂Ω), which embeds into L4(∂Ω)
when d ≤ 3; see for instance Adams, Fournier, 2003, Theorem 4.12. Consequently,
gΩ = −∂u∂ν

∂p
∂ν belongs to L2(∂Ω) in this case.

Formula (3.4) is known as the boundary or strong representation of (3.2), and it can
be obtained from (3.2) by the divergence theorem; compare Sturm, 2015, Sokołowski,
Zolésio, 1992, Chapter 3.3, Haslinger, Mäkinen, 2003, Example 3.3. We also refer
the reader to Hiptmair, Paganini, Sargheini, 2015, where the volume and boundary
formulations are compared w.r.t. their order of convergence in a finite element setting.

4. Investigation of the Discrete Objective. In order to solve the shape
optimization problem (2.1) numerically, some kind of discretization has to be applied.
The most common choice in the literature consists in a discretization of the PDE by
some finite element space defined over a computational mesh, which we denote by Ωh
and whose nodal positions serve to represent the discrete unknown domain.

A common choice is to replace H1
0 (Ω) by the finite element space of piecewise

linear, globally continuous functions,

(4.1) S1
0(Ωh) = {u ∈ H1

0 (Ωh) : u
∣∣
T
∈ P1(T ) for all cells T in Ωh}



8 T. ETLING, R. HERZOG, E. LOAYZA, AND G. WACHSMUTH

defined over an approximation Ωh of Ω consisting of geometrically conforming simplicial
cells, i.e., triangles and tetrahedra in d = 2 or d = 3 space dimensions, respectively.
Consequently, the state equation (2.2) is replaced by

(4.2) Find uh ∈ S1
0(Ωh) such that

∫
Ω
∇uh ·∇vh dx =

∫
Ω
f vh dx ∀vh ∈ S1

0(Ωh).

This leads to the following discrete version of (2.1) frequently encountered in the
literature,

(4.3)
Minimize

∫
Ωh

uh dx w.r.t. uh ∈ S1
0(Ωh) and the nodal positions in Ωh

s.t. (4.2).

We refer the reader to Gangl et al., 2015; Sturm, 2016; Schulz, Siebenborn, Welker,
2016; Schulz, Siebenborn, 2016 for examples of this procedure.

Let us denote by Jh(Ωh) the reduced objective value in (4.3), i.e., Jh(Ωh) =∫
Ωh
uh dx, where uh is the unique solution of (4.2). In order to derive a discrete

variant of the volume formulation (3.2) of the shape derivative, we introduce the
discrete adjoint equation,
(4.4)
Find ph ∈ S1

0(Ωh) such that
∫

Ωh

∇ph·∇vh dx = −
∫

Ωh

vh dx for all vh ∈ S1
0(Ωh).

The following theorem shows that a straightforward replacement of the state u and
adjoint state p by their finite element equivalents uh and ph in (3.2) yields the correct
formula for the shape derivative J ′h(Ωh;Vh) of the discrete objective Jh, provided that
the perturbation field Vh is piecewise linear, i.e., Vh belongs to

(4.5) S1(Ωh)d = {u ∈ H1(Ωh)d : u
∣∣
T
∈ P1(T )d for all cells T in Ωh}.

Theorem 4.1. Suppose that uh and ph are the unique weak solutions of the discrete
state equation (4.2), and the discrete adjoint equation (4.4), respectively. Moreover,
let Vh ∈ S1(Ωh)d. Then

(4.6) J ′h(Ωh;Vh) =
∫

Ωh

uh (divVh) dx

+
∫

Ωh

(∇uh)>
[
(divVh) id−DVh −DV >h

]
∇ph dx−

∫
Ωh

div(f Vh) ph dx.

The proof of this theorem follows along the lines of the continuous case, see, e.g.,
Hiptmair, Paganini, Sargheini, 2015; Laurain, Sturm, 2016. A detailed derivation can
be found in Delfour, Payre, Zolesio, 1985, Section 4.

Remark 4.2. 1. Theorem 4.1 can be viewed as the statement that discretiza-
tion and optimization (in the sense of forming the shape derivative) commute
for problem (2.1).

2. The finite element analogue of the boundary expression (3.4) is not an exact
representation of the discrete shape derivative. This is since the integration
by parts necessary to pass from the volume to the boundary expression has to
be done element by element and it leaves inter-element contributions; see also
the discussion in Berggren, 2010.
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3. Theorem 4.1 remains true when higher order Lagrangian finite elements on
simplices are used in place of S1

0(Ωh). However it is essential that Vh remains
piecewise linear so piecewise polynomials are transformed into piecewise
polynomials of the same order.

4. Alternative expressions for (4.6) can be obtained following the so-called discrete
adjoint approach, in which the derivative of Jh(Ωh) w.r.t. the nodal positions
of Ωh is addressed by differentiating the finite element matrices. We refer to
Schneider, Jimack, 2008; Berggren, 2010; Roth, Ulbrich, 2013 for examples of
this procedure.

Despite the simplicity to obtain the shape derivative of the discrete problem, we
would like to emphasize here that the discrete problem (4.3) itself has the following
serious drawback. The search space obtained from utilizing the nodal positions of
the mesh Ωh as optimization variables includes meshes with very degenerate cells.
Those lead to poor approximations of solutions of the state equation, which may give
rise, however, to smaller values of the discrete objective. Therefore, any optimization
algorithm for the solution of (4.3) sooner or later is likely to encounter spurious descent
directions which typically have support in only a few mesh nodes and which lead to
degenerate meshes.

Example 4.3. Let us illustrate this behavior by means of problem (2.1) with data
f(x, y) = 2.5 (x+ 0.4− y2)2 + x2 + y2 − 1. The optimal domain Ω is unknown. We
begin with the computational mesh Ωh shown in Figure 2 (left). Consider for example
the piecewise linear vector field Vh represented by its nodal values

Vh =
{

(−0.9510,−0.3090)>, for the node v0,

(0, 0)>, for all other nodes

where the boundary node v0 can be easily identified from Figure 2.

We found that V is not only a descent direction for the objective at Ωh but in
fact that the line search function

α 7→ J
(
Tα(Ωh)

)
, Tα = id + αVh

decreases until the triangle formed by v0 and its two interior neighbors degenerates to a
line, which happens at α = 0.1; see Figure 1. At this point, finite element computations
break down.

In computational experience spurious descent directions do not usually occur during
the early iterates. Thus they can be, and often are, avoided by early stopping, at the
expense of a reduced tolerance. Alternatively, mesh quality control and remeshing can
help to avoid mesh destruction, but this introduces discontinuities in the objective
function’s history.

In any case, the existence of spurious descent directions is a structural disadvantage
of problem (4.3). Therefore we propose in the following section a new computational
approach. Our approach does not seek to solve (4.3) literally but in a certain relaxed
sense, which is inspired by the Hadamard structure theorem and which avoids spurious
descent directions.
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0 0.02 0.04 0.06 0.08 0.1

−1.25

−1.2

−1.15

·10−2

step size α

Objective function

Fig. 1: α 7→ J
(
Tα(Ωh)

)
for Example 4.3. The step sizes α = 0.00, α = 0.05, α = 0.10

belonging to the domains in Figure 2 are highlighted.

Fig. 2: Evolution of the mesh under α 7→ Tα(Ωh) with perturbation field Vh given in
Example 4.3 at α = 0.00, α = 0.05, α = 0.10 (from left to right). The solutions uh of
the state equation (4.2) are also shown.

5. Restricted Mesh Deformations. By the Hadamard structure theorem, the
shape derivative for the continuous problem consists of normal boundary forces only,
see (3.4) above. This is no longer the case for the discrete problem. The reason is that
the finite element solutions uh and ph are only of limited regularity, and thus a global
integration by parts necessary to pass from the volume expression (4.6) to a boundary
expression is not available. This has been pointed out, for instance, in Delfour, Zolésio,
2011, note on p. 562. Therefore, we are going to continue with the discretely exact
volume expression (4.6) but mimic the behavior of the continuous setting in the
evaluation of the shape gradient, where we alloy only for shape displacements which
are induced by normal forces.
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5.1. Continuous Setting. To illustrate the situation, we start by discussing the
continuous case. We have seen in (3.2) that the shape derivative J ′(Ω; ·) is an element
of a dual space, e.g. an element of (W 1,∞(Ω)d)?. In order to utilize this information
for moving the domain Ω, we have to convert this dual element into a proper function.
We follow the approach of Schulz, Siebenborn, Welker, 2016. To this end, we introduce
the elasticity operator E : H1(Ω)d → (H1(Ω)d)? via

(5.1) 〈E V, W 〉 :=
∫

Ω
2µ ε(V ) : ε(W ) + λ trace(ε(V )) trace(ε(W )) + δ V ·W dx

for all V,W ∈ H1(Ω)d. Here and throughout, D denotes the derivative (Jacobian) of a
vector valued function, ε(V ) = (DV +DV >)/2 is the linearized strain tensor, µ, λ are
the Lamé parameters and δ > 0 is a damping term. We assume µ > 0, d λ+ 2µ > 0
so that E becomes positive semi-definite on H1(Ω)d. Note that we do not consider
Dirichlet boundary conditions in the space H1(Ω)d. Therefore a positive damping
parameter δ > 0 is needed to ensure the coercivity of E, i.e., 〈E V, V 〉 ≥ c ‖V ‖2H1(Ω)d

with some c > 0. This result is due to Korn’s inequality, see for instance Attouch,
Buttazzo, Michaille, 2014, Proposition 6.6.1. Thus, E is an isomorphism and it
furnishes H1(Ω)d with an inner product (V, W )E := 〈E V, W 〉 so that E becomes the
associated Riesz isomorphism.

In order to avoid technical regularity issues, we assume that the shape derivative
(3.2) enjoys the higher regularity J ′(Ω; ·) ∈ (H1(Ω)d)?. This holds, e.g., if Ω is
sufficiently smooth, due to the higher regularity of u and p. In order to compute the
negative shape gradient w.r.t. the E-inner product on the continuous level, we solve

(5.2) Minimize J ′(Ω;V ) + 1
2 〈EV, V 〉 s.t. V ∈ H1(Ω)d.

The solution of this problem yields the negative shape gradient

(5.3) Vgrad := −E−1J ′(Ω; ·).

Now, we introduce the normal force operator N : L2(∂Ω)→ (H1(Ω)d)? given by

(5.4) 〈NF, V 〉 =
∫
∂Ω
F (V · ν) ds

for all F ∈ L2(∂Ω) and V ∈ H1(Ω)d. Using again (3.4), we find that J ′(Ω; ·) can be
written as J ′(Ω; ·) = NgΩ with

gΩ = −∂u
∂ν

∂p

∂ν
∈ L2(∂Ω).

Therefore, it is easy to see that problem (5.2) is equivalent to

(5.5)
Minimize J ′(Ω;V ) + 1

2 〈EV, V 〉

with respect to V ∈ H1(Ω)d, F ∈ L2(∂Ω)
such that E V −N F = 0.

Indeed, the additional constraint E V − N F = 0 is automatically satisfied by the
unconstrained solution of (5.2). However, we will see that this property is lost
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after discretization, i.e., the discrete counterparts of (5.2) and (5.5) are going to
differ. Note that the solution (V, F ) of (5.5) is unique due to coercivity of E and
injectivity of N . Moreover, since

[
E −N

]
is surjective, there exists a unique Lagrange

multiplier Π ∈ H1(Ω)d associated with the constraint E V −N F = 0; see for instance
Luenberger, 1969, Chapter 9.3, Theorem 1. We therefore obtain the following necessary
and sufficient optimality conditions for (5.5) in saddle-point form,

(5.6)

E 0 E
0 0 −N?

E −N 0

VF
Π

 =

−J ′(Ω; ·)
0
0

 .

Here, N? : H1(Ω)d → L2(∂Ω) is the adjoint of N , where we identified L2(∂Ω) with its
dual space. The multiplier Π in (5.6) necessarily satisfies Π = 0 since E is bijective.
Now, it is easy to see that (5.6) is equivalent to solving(

0 N?

N E

)(
F
Π

)
=
(

0
−J ′(Ω; ·)

)
,(5.7a)

V = −E−1J ′(Ω; ·)−Π.(5.7b)

Recall that −E−1J ′(Ω; ·) is the usual negative shape gradient w.r.t. E (i.e., the solution
of (5.2)), whereas −Π is a correction in order to obtain a shape displacement in the
subspace im(E−1N). Again, we emphasize that we have Π = 0 in the continuous
setting, due to −J ′(Ω; ·) = −N gΩ. Therefore, the solution of (5.7) is just the usual
shape gradient Vgrad = −E−1J ′(Ω; ·).

Before discussing the discretized setting, we note that (5.5) is equivalent to

(5.8)
Minimize 1

2
〈
E(V − Vgrad), V − Vgrad

〉
with respect to V ∈ H1(Ω)d, F ∈ L2(∂Ω)

such that E V −N F = 0.

Hence, the solution V is the orthogonal projection (w.r.t. the inner product induced
by E) of the usual shape gradient Vgrad = −E−1J ′(Ω; ·) into the space im(E−1N),
i.e., the space of deformations induced by normal forces. This motivates to denote the
solution of (5.5) by Vproj grad.

5.2. Discretized Setting. Next, we discuss the discretized setting. We refer to
section 4 above for the introduction of the finite-element discretization. In addition
to the FE space S1

0(Ωh) ⊂ H1
0 (Ωh), we recall from (4.5) the discrete space of mesh

deformations

S1(Ωh)d = {u ∈ H1(Ωh)d : u
∣∣
T
∈ P1(T )d for all cells T in Ωh}

and the boundary space

(5.9) S1(∂Ωh) = {u ∈ C(∂Ωh)d : u
∣∣
E
∈ P1(E)d for all edges E on ∂Ωh}.

We recall that the discrete shape derivative J ′h(Ωh; ·) ∈ (S1(Ωh)d)? was given in (4.6).
Moreover, the discretization directly leads to the discretized operators Eh : S1(Ωh)d →
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(S1(Ωh)d)?, Nh : S1(∂Ωh)→ (S1(Ωh)d)? which are defined via

〈Eh Vh, Wh〉 :=
∫

Ωh

2µ ε(Vh) : ε(Wh) + λ trace(ε(Vh)) trace(ε(Wh)) + δ Vh ·Wh dx,

〈Nh Fh, Vh〉 :=
∫
∂Ωh

Fh (Vh · ν) ds

for all Vh,Wh ∈ S1(Ωh)d and Fh ∈ S1(∂Ωh). Next, we will investigate the discrete
counterparts of (5.2) and (5.5). The straightforward discretization of (5.2) reads

(5.10) Minimize J ′h(Ωh;Vh) + 1
2 〈EhVh, Vh〉.

We denote its unique solution by Vgrad,h.

The important difference to the continuous case is that Hadamard’s structure
theorem is not available. The reason is that the discrete state uh has only the limited
regularity uh ∈ H1

0 (Ωh) and this regularity is not enough to transform the domain
integral into a boundary integral via integration by parts, see the last paragraph in
chapter 10, section 5.6 of Delfour, Zolésio, 2011. Therefore, unlike in the continuous
case, J ′h(Ωh; ·) does not belong, in general, to the image space of Nh. Consequently,
the solution Vh of (5.10) has contributions not only from normal forces in the shape
derivative J ′h(Ωh; ·), but also from interior forces as well as tangential boundary forces.
Numerical examples in section 6 will show that these interior and tangential forces are
responsible for spurious descent directions, which in turn lead to degenerate meshes.

Therefore, we conclude that it is not reasonable to try to solve

Minimize Jh(Ωh)

or its stationarity condition

(5.11) Find a triangulation Ωh such that Vgrad,h = −E−1
h J ′h(Ωh; ·) = 0

as a discretization of the continuous problem (1.1).

Hence, we consider the discretization of (5.5)

(5.12)
Minimize J ′h(Ωh;Vh) + 1

2 〈EhVh, Vh〉

with respect to Vh ∈ S1(Ωh)d, Fh ∈ S1(∂Ωh)
such that Eh Vh −Nh Fh = 0.

in which we restrict Eh Vh to the image space of the discrete normal force operator
Nh. As in the continuous setting, this problem is equivalent to the solution of

(5.13)

Eh 0 Eh
0 0 −N?

h

Eh −Nh 0

VhFh
Πh

 =

−J ′h(Ωh; ·)
0
0

 .

It is clear that (5.13) can also be reduced as in (5.7). For later reference, we mention
that the solution (Vproj grad,h, Fh,Πh) of (5.13) satisfies

〈Eh Vproj grad,h, Vproj grad,h〉 = −〈Eh Vproj grad,h, Πh〉 − J ′h(Ωh;Vproj grad,h)
= −〈Nh Fh, Πh〉 − J ′h(Ωh;Vproj grad,h)
= −J ′h(Ωh;Vproj grad,h)(5.14)
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since N?
h Πh = 0 holds. This shows that Vproj grad,h is always a descent direction for

the discrete objective Jh(Ωh; ·).

As we have seen in (5.8) for the continuous setting, the solution Vh of (5.12) also
solves

(5.15)
Minimize 1

2
〈
Eh(Vh − Vgrad,h), Vh − Vgrad,h

〉
with respect to Vh ∈ S1(Ωh)d, Fh ∈ S1(∂Ωh)

such that Eh Vh −Nh Fh = 0,

where Vgrad,h = −E−1
h J ′h(Ωh; ·) is the solution of (5.10). Again, the solution Vproj grad,h

of (5.15) can be interpreted as the projection (w.r.t. the Eh inner product) of Vgrad,h
onto the image space of E−1

h Nh. Therefore, the notation Vproj grad,h for the solution of
(5.12) is justified.

Our main idea is now to propose, instead of (5.11),

(5.16) Find a triangulation Ωh such that Vproj grad,h = 0

as an appropriate discrete version of (1.1). Note that this is fundamentally different
from the ad-hoc discretization (5.11) since we neglect the contributions of J ′h(Ωh; ·)
which do not belong to the image space of Nh. We will see via numerical examples
that this problem (5.16) can be solved to high accuracy by an iterative algorithm
using the solution Vproj grad,h of (5.12) for the displacement of the triangulation Ωh

(together with a line search).

For later use, we are going to characterize stationarity of Ωh in the sense of (5.16).
The deformation Vh = 0 solves the projection problem (5.15) if and only if

〈Eh Vgrad,h, E
−1
h Nh Fh〉 = 0 ∀Fh ∈ S1(∂Ωh).

This, in turn, is equivalent to

(5.17)
∫
∂Ωh

Fh (Vgrad,h · ν) ds = 0 ∀Fh ∈ S1(∂Ωh).

This means that Ωh is stationary in the sense of (5.16) if and only if the usual shape
gradient Vgrad,h is a tangential vector field on Ωh in a discrete sense.

We can now state a restricted gradient algorithm for the solution of (5.16), where
we use Vproj grad,h as the deformation field which provides the search direction in the
domain transformation. It is sufficient to utilize a simple a backtracking strategy to
comply with the Armijo condition

(5.18) Jh
(
(id + αVproj grad,h)(Ωh)

)
≤ Jh(Ωh) + σ αJ ′h(Ωh;Vproj grad,h).

Here, σ ∈ (0, 1) is a parameter.

Since we are using the perturbation of identity approach (1.2) instead of a more
sophisticated family of domain transformations, we also perform a mesh quality control
in order to avoid gradient steps which are too large. To this end, we check that the
conditions

(5.19) 1
2 ≤ det(id + αDVproj grad,h) ≤ 2, ‖αDVproj grad,h‖F ≤ 0.3
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are satisfied in every cell throughout the entire domain. Here, ‖ · ‖F denotes the
Frobenius norm of matrices. The first condition monitors the change of volume of the
cell, while the second additionally inhibits large changes of the angles. Note that this
amounts to checking three inequalities per cell. Due to (5.14), we use

(5.20) 〈EhVproj grad,h, Vproj grad,h〉 = −J ′h(Ωh;Vproj grad,h) ≤ ε2
tol

as a convergence criterion for some small εtol > 0. These considerations lead to
Algorithm 1.

Algorithm 1: Restricted gradient method for (5.16).
Data: Initial domain Ωh
Initial step size α, convergence tolerance εtol,
line search parameters β ∈ (0, 1), σ ∈ (0, 1)
Result: Improved domain Ωh on which (5.16) holds up to εtol

1 for i← 1 to ∞ do
2 Solve the discrete state equation (4.2) for uh;
3 Solve the discrete adjoint equation (4.4) for ph;
4 Solve (5.12) for Vproj grad,h with shape derivative J ′(Ωh; ·) from (4.6);
5 if 〈EhVproj grad,h, Vproj grad,h〉 ≤ ε2

tol then
6 STOP, the current iterate Ωh is almost stationary for (5.16);
7 end
8 Increase step size α← α/β;
9 while (5.18) or (5.19) is violated do

10 Decrease step size α← β α;
11 end
12 Transform the domain according to Ωh ← (id + αVproj grad,h)(Ωh);
13 end

5.3. Comparison with the approach of Schulz, Siebenborn, Welker,
2016. In Schulz, Siebenborn, Welker, 2016, the authors propose a different way
to convert J ′h(Ωh; ·) into a deformation field from S1(Ωh)d. Instead of solving (5.10)
directly, i.e.,

Find Vgrad,h ∈ S1(Ωh)d s.t. Eh Vgrad,h = −J ′h(Ωh,Wh) ∀Wh ∈ S1(Ωh)d,

they propose that “Only test functions whose support includes Γint are considered
[. . . ]”, see Schulz, Siebenborn, Welker, 2016, p. 2813. In their problem formulation,
Γint corresponds to ∂Ωh in our formulation. We interpret this as follows. We denote
by Dh : S1(Ωh)d → S1

0(Ωh)d the projection operator defined via

(DhWh)(x) =
{
Wh(x) if x is an interior node of Ωh
0 if x is a boundary node of Ωh

for all nodes x from the mesh Ωh. Note that Dh can be represented by a diagonal
matrix (with entries 0 and 1) in the standard basis of S1(Ωh)d. Then, the deformation
Vh,SSW is computed via the solution of

Find Vh,SSW ∈ S1(Ωh)d s.t. Eh Vh,SSW = −J ′h(Ωh, DhWh) ∀Wh ∈ S1(Ωh)d.

We compare this suggestion with our approach.
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• The deformation Vh,SSW can be computed faster than Vproj grad,h, since the
linear system is smaller than (5.13).

• The deformation Vh,SSW cannot be understood as a (negative) gradient di-
rection generated by an inner product on (a subspace of) S1(Ωh)d. What is
more, Vh,SSW may fail to be a descent direction, since

J ′h(Ωh, Vh,SSW) = −J ′h
(
Ωh, E−1

h J ′h(Ωh, Dh ·)
)

might be positive. This indeed does happen in our numerical examples, see
section 6 below. In contrast, our suggestion Vproj grad,h is generated by an inner
product on the subspace {Vh ∈ S1(Ωh)d : ∃Fh ∈ S1(∂Ωh) : Eh Vh = Nh Fh}.

• The deformation Vh,SSW is induced by the forces corresponding to the linear
mapWh 7→ −J ′h(Ωh, DhWh). Due to the operator Dh, these forces only act on
the boundary ∂Ωh. However, these forces may contain tangential components
and this is a crucial difference to our approach. Eventually, this will generate
tangential movement of boundary points leading to a deterioration of the mesh
quality. We see the onset of this in Figure 3 (center bottom), where boundary
nodes accumulate on the right part of the boundary and a rarefaction of nodes
occurs on the left.

6. Numerical Results: Comparison of Gradient Methods. The main goal
of this section is to compare our proposed restricted gradient method, see Algorithm 1,
to a classical shape gradient method. The latter is identical to Algorithm 1 except
that Vproj grad,h is replaced everywhere by the negative shape gradient Vgrad,h from
(5.10). In addition, we also compare it to a method utilizing the deformation fields
Vh,SSW obtained along the lines of Schulz, Siebenborn, Welker, 2016. We refer to
the latter as a gradient-like method since it may fail to produce descent directions.
Consequently, Vh,SSW cannot be a negative gradient direction w.r.t. any inner product
in this situation.

We consider our model problem (2.1) with data f as in Example 4.3. The line
search parameters β = 0.5 and σ = 0.1 are used and the initial step size is chosen
as α = 1. For the Lamé and damping parameters in the elasticity operator (5.1) we
choose

µ = E0

2 (1 + ν) , λ = E0 ν

(1 + ν)(1− 2ν) , δ = 0.2E0

where E0 = 1.0 is Young’s modulus and ν = 0.4 is the Poisson ratio. The initial shape
for all three methods is the same as in Figure 2 (left). For this first result, the mesh
has 864 triangles and 469 vertices but computations on refined meshes are reported
below in Table 1.

We implemented the restricted gradient method, Algorithm 1, its classical coun-
terpart as well as the gradient-like method from Schulz, Siebenborn, Welker, 2016 in
FEniCS, version 2018.1 (Logg, Mardal, Wells, et al., 2012). We report computational
results obtained on a machine with an Intel(R) Xeon(R) CPU E5–4640 at 2.4 GHz.

Our implementation is freely available on GitHub, see Etling et al., 2018. All
derivatives were automatically generated by the built-in algorithmic differentiation
capabilities of FEniCS. The restricted shape gradient Vproj grad,h, i.e., the solution
of (5.12), was computed via the discrete counterpart of (5.7). The linear system was
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solved using SciPy’s spsolve with the SuperLU solver (Li, 2005), i.e., with the
setting use_umfpack = False.

The restricted gradient method reached the desired tolerance

(6.1) ‖Vproj grad,h‖Eh
=
√
|J ′h(Ωh;Vproj grad,h)| ≤ εtol = 10−7

at iteration 864 after 40 seconds , while the classical gradient method was stopped at
iteration 1500 after 43 seconds , where it had only reached

‖Vgrad,h‖Eh
=
√
|J ′h(Ωh;Vgrad,h)| ≈ 4 · 10−3.

On the other hand, the gradient-like method from Schulz, Siebenborn, Welker, 2016
was stopped at iteration 1435 since it failed to generate a descent direction. This
process took 49 seconds, and at that point the method had reached√

|J ′h(Ωh;Vh,SSW)| ≈ 3 · 10−5.

Figure 4 shows the complete history of the objective and respective shape gradient
norms. The geometry condition (5.19) was violated only once for all methods, namely
in the first very iteration, leading to a reduction of the initial step size. The Armijo
condition (5.18) failed approximately once per iteration on average. Typical accepted
step sizes were α = 0.5 and occasionally α = 1.

Figure 3 shows the domains Ωh during the iteration of all three methods for
comparison. It can clearly be inferred that the initial iterates are virtually identical.
The classical gradient method begins to produce visibly different shapes around
iteration 500, when the objective value (shown in Figure 4) has practically converged
but the gradient norms are still

‖Vgrad,h‖Eh
≈ 5 · 10−3 and ‖Vproj grad,h‖Eh

≈ 4 · 10−6,

respectively. At this point, the classical gradient method starts to pursue spurious
descent directions, which results in a further decrease of the discrete objective at the
expense of increasingly degenerate meshes. Similarly, the gradient method from Schulz,
Siebenborn, Welker, 2016 produces some tangential movement on the boundary. This
decreases the mesh quality slightly and inhibits further decrease of the norm of the
gradient. As an indicator for the mesh quality, we used the “minimum radius ratio”,
which is provided by FEniCS and is defined as the minimum over all cells of two
(the geometric dimension) times the inradius divided by the circumradius of the cell.
This value lies between 0 and 1, where 0 corresponds to a degenerate cell and 1 to an
equilateral triangle. The results for the mesh quality are shown in Figure 5.

We conclude from this numerical experiment that the restricted gradient method
is slightly more expensive per iteration compared to the classical gradient method and
the one obtaining its search direction from Schulz, Siebenborn, Welker, 2016. However,
the proposed restricted gradient method reduces the norm of the restricted gradient
much more effectively than the other two methods. The cell aspect ratios for the
restricted gradient method and the one from Schulz, Siebenborn, Welker, 2016 are
equally good. However, the latter eventually failed to produce descent directions in
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Fig. 3: Intermediate shapes Ωh obtained with the classical gradient method (left), the
gradient method from Schulz, Siebenborn, Welker, 2016 (middle) and the restricted
gradient method (right) at iterations 300, 600, and 1500, 1435 and 864, respectively.

our experiment, while the classical gradient method created a distorted mesh and did
not converge.

To further illustrate this point, we show in Figure 6 visualizations of the shape
derivative J ′h(Ωh; ·) for the classical and restricted gradient methods; see (4.6). In
fact, this is a linear functional on the space of piecewise linear perturbation fields
Vh ∈ S1(Ωh)d. In Figure 6 we display the S1(Ωh)d representer of J ′h(Ωh; ·) w.r.t. the
L2 inner product, i.e., we solve a linear system governed by a block-diagonal mass
matrix.

Let us comment on the shape derivative for the restricted gradient method as
shown in the right column of Figure 6. It is apparent that the displacement field
Vgrad,h, i.e., the solution of (5.10), is non-zero and in fact essentially the same for the
iterations 300, 600, and 864 shown. However Vgrad,h also has essentially no component
in the space of deformations induced by normal forces. Therefore its projection into
this space, see (5.15), leaves us with a very small norm ‖Vproj grad,h‖Eh

, as shown in
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Fig. 4: History of the objective value Jh(Ωh) + 0.1 (left) and the norm of the gradients
‖Vgrad,h‖Eh

(for the gradient descent method), ‖Vproj grad,h‖Eh
(for the restricted

gradient method) and
√
J ′h(Ωh;Vh,SSW) (for the gradient-like method from Schulz,

Siebenborn, Welker, 2016) along the iterations (right).
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Fig. 5: History of the mesh quality indicator (minimum over all cells of two times the
inradius divided by the circumradius of the cell).

Figure 4. The images visualizing the shape derivative for the classical gradient method
in the left column of Figure 6 show that the method has allowed the spurious part of
the derivative to build up, which eventually dominates the search direction.

7. Restricted Newton-Like Method. In the previous two sections we have
seen that (5.16) is a reasonable discrete optimality condition and that it can be solved
to high accuracy via a first-order gradient descent method. However, as is well known
for the minimization of even mildly ill-conditioned quadratic polynomials, gradient
descent methods require a large number of iterations to achieve convergence. We
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Fig. 6: Visualization of the shape derivatives J ′h(Ωh; ·) obtained with the classical
gradient method (left), and the restricted gradient method (right) at iterations 300,
600, and 1500, and 864, respectively.

observed the same behavior in section 6.

Therefore, we are also investigating a Newton-like method for solving (5.16). First,
we focus on the continuous case and comment on its discretization afterwards. Let
Ω be our current iterate. As before, we denote by u the associated state, see (2.2),
and by p the adjoint state, see (3.3). The solution of the restricted shape gradient
problem (5.6) at Ω is denoted by (Vproj grad, F,Π). Recall that our goal is to achieve
Vproj grad = 0 or, equivalently, F = 0, cf. (5.16). In practice, we impose a stopping
criterion of the form ‖Vproj grad‖E ≤ εtol as we did for the gradient method.

In order to allow the reader to follow the derivation for the solution of (5.16)
of our Newton method more easily, we draw the parallel with Newton’s method for
Φ(x) = 0 for some Φ : Rn → Rn. We consider the equation Φ(x + δx) = 0 for the
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unknown update δx. In our context the iterate x represents the current domain Ω and
the update corresponds to a perturbation field W . Since the update takes Ω into a
new domain, we need to manipulate the expression Φ(x+ δx) = 0 and pull it back to
Ω. Finally, we linearize about δx = 0, which amounts to Φ(x) +DΦ(x) δx = 0.

In our Newton method we seek a deformation field W (taking the role of δx above)
such that the updated domain ΩW := (id +W )(Ω) is stationary in the sense that the
solution of (5.6) (at ΩW instead of Ω) satisfies VWproj grad = 0. As in section 5 we are only
considering updates W which are induced by a normal force G, i.e., EW −N G = 0
should hold.

In order to characterize the stationarity of the transformed domain ΩW , we
introduce the elasticity operator EW : H1(ΩW )d → (H1(ΩW )d)? and the normal
force operator NW : L2(∂ΩW )→ (H1(ΩW )d)? on ΩW analogously to (5.1) and (5.4).
With the transformation field TW := id + W : Ω → ΩW , we define the pull-backs
EW : H1(Ω)d → (H1(Ω)d)? of EW and NW : L2(∂Ω)→ (H1(Ω)d)? of NW via

〈EW W1, W2〉 := 〈EW (W1 ◦ T−1
W ), W2 ◦ T−1

W 〉,
〈NW F, W2〉 := 〈NW (F ◦ T−1

W ), W2 ◦ T−1
W 〉

for W1,W2,W ∈ H1(Ω)d.

Since we wish to achieve conditions defined on the current domain Ω, rather than
on the unknown transformed domain ΩW after the Newton step, we consider the
Lagrangian associated with problem (2.1) on ΩW = TW (Ω) and pull it back to Ω.
Using the usual integral substitution and chain rule, and denoting the pulled-back
solutions of the state and adjoint equations on ΩW by uW and pW , respectively, we
obtain L : W 1,∞(Ω)d ×H1

0 (Ω)×H1
0 (Ω)→ R, defined as

L(W,uW , pW ) =
∫

Ω
uW det(id +DW ) dx

+
∫

Ω
((id +DW )−>∇uW ) · ((id +DW )−>∇pW ) det(id +DW ) dx

−
∫

Ω
(f ◦ TW ) pW det(id +DW ) dx.

Notice that ∂
∂W L(W,uW , pW ) is the shape derivative J ′(ΩW ; ·). Thus we find that the

stationarity of ΩW is equivalent to the requirement that the solution of the nonlinear
system

· · · · ·
· · · · ·
· · EW · EW

· · · · −(NW )?
· · EW −NW ·




uW

pW

VWproj grad
FW

ΠW

+


∂
∂uL(W,uW , pW )
∂
∂pL(W,uW , pW )
∂
∂W L(W,uW , pW )

·
·

 = 0

satisfies VWproj grad = 0. In view of the injectivity of NW , this is equivalent to FW = 0.
Here, “·” stands for a zero block. We mention that the first two equations in this
system correspond to the adjoint and state equation on ΩW but pulled back to Ω,
respectively. Moreover, note that the solution (uW , pW , VWproj grad, F

W ,ΠW ) of the
above system is the pull-back of the solution of the state equation, adjoint equation
and the projected shape gradient of the system (5.6) formulated on the domain ΩW .
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Together with the requirement that the deformation field W itself is induced by
some normal force G, we have to solve the nonlinear system
(7.1)

· · · · · id ·
E −N · · · · ·
· · · · · · ·
· · · · · · ·
· · · · EW · EW

· · · · · · −(NW )?
· · · · EW −NW ·





W
G
uW

pW

VWproj grad
FW

ΠW


+



·
·

∂
∂uL(W,uW , pW )
∂
∂pL(W,uW , pW )
∂
∂W L(W,uW , pW )

·
·


= 0.

As before, N and E denote the normal force operator and the elasticity operator on Ω.

The system (7.1) for W and the further, auxiliary unknowns corresponds to the
nonlinear system Φ(x + δx) = 0 for the step δx. For convenience, we recall the
meaning of the seven equations in (7.1). The first equation requires FW = 0, i.e.,
the stationarity of the updated domain ΩW . The second equation is the requirement
that the displacement W is induced by the (normal) force G. The third and fourth
equation are the adjoint and state equation on ΩW . Finally, the last three equations
are the pull-back of the system (5.6) on ΩW to Ω.

We can now describe a step of our Newton-like procedure for the solution of the
nonlinear system (7.1). Suppose that Ω is the current domain and consider an iterate
of the form (0, 0, u, p, Vproj grad, F,Π) with the state, the adjoint state, and the solution
of (5.6) on Ω. Notice that for this iterate, the residual of (7.1) is (F, 0, 0, 0, 0, 0, 0).
Next we linearize the system (7.1) about this current iterate w.r.t. all seven variables.
We refrain from stating the lengthy formula for the linear system which results. In
practice, we generate this linear system governing the Newton step using the algorithmic
differentiation capabilities of FEniCS (Logg, Mardal, Wells, et al., 2012). From the
solution of that linear system we only extract the Newton update for the perturbation
field. We refer to it as W since its current value is zero. We then apply W to the
current domain Ω to obtain the new domain (id +W )(Ω). The six remaining variables
are updated in a different fashion. Rather than using the solution from the Newton
step, we solve again the state and adjoint state equations on the new domain, as well
as the system (5.6) returning the projected shape gradient. This procedure can be
understood as a Newton-like method with nonlinear updates for some of the variables.
It ensures that the new iterate is of the same form as above. Moreover, it allows us
access to the projected shape gradient and its norm in every iteration so that we can
use ‖Vproj grad‖E ≤ εtol as a stopping criterion as we did for the restricted gradient
method.

Numerically, we have observed some instabilities if the current iterate Ω is far
from being stationary. Moreover we wish to establish a step size control in order to
monitor the Armijo condition (5.18) and the mesh quality condition (5.19). To this



SHAPE OPTIMIZATION BASED ON RESTRICTED MESH DEFORMATIONS 23

end we added a regularization term −G/α to the first equation of (7.1), i.e., we obtain
(7.2)

· −α−1id · · · id ·
E −N · · · · ·
· · · · · · ·
· · · · · · ·
· · · · EW · EW
· · · · · · −N?

W

· · · · EW −NW ·





W
G
u
p

Vproj grad
F
Π


+



·
·

∂
∂uL(W,u, p)
∂
∂pL(W,u, p)
∂
∂W L(W,u, p)

·
·


= 0.

Thus, the update resulting from the solution of the Newton system satisfies −α−1δG+
δF = −F . Heuristically, this leads to δG ≈ αF for small α. Consequently, the trans-
formation field which is applied to the current domain Ω satisfies W = E−1N δG ≈
αVproj grad is essentially a scaled (restricted) gradient direction for small α. Therefore,
similar as in a Levenberg–Marquardt method, we will refer to α as the damping
parameter and it serves the same purpose as the step length parameter in Algorithm 1.

A discrete variant of our Newton-like method is readily derived and given as
Algorithm 2. In order to determine an appropriate damping parameter we consider
analogues of the Armijo condition (5.18) and the mesh quality criterion (5.19). For
the sake of clarity we re-state them with the relevant quantities for the Newton-like
method. In particular, we use the step length α = 1 therein, since the scaling of the
step is already realized by the damping in (7.2). The Armijo condition becomes

(7.3) Jh
(
(id +Wh)(Ωh)

)
≤ Jh(Ωh) + σ J ′h(Ωh;Wh).

with some parameter σ ∈ (0, 0.5). The mesh quality criterion holds if

(7.4) 1
2 ≤ det(id +DWh) ≤ 2, ‖DWh‖F ≤ 0.3.

is satisfied in every cell. In addition we verify that Wh yields a descent direction. If
any of the above conditions fails, we decrease the damping parameter α.

8. Numerical Results: Newton-Like Method. This section is devoted to
numerical results obtained by solving the same problem as in section 6 using the Newton-
like method as described in section 7. As mentioned in section 6, our implementation
is freely available, see Etling et al., 2018. For this approach the stopping criterion

(8.1) ‖Vproj grad,h‖Eh
≤ εtol = 10−9

was satisfied after 12 iterations and 6 seconds on the previously used mesh with
469 vertices and 864 elements. In this case we used the line search parameters β = 0.1
and σ = 0.1 and an initial value of α = 10−2. Young’s modulus and the Poisson ratio
are E0 = 1.0 and ν = 0.4 as before. Some of the intermediate shapes are shown in
Figure 7. As was already mentioned, we have the linear system in each Newton step
assembled using the algorithmic differentiation capabilities of FEniCS and solved
in the same way as we did for the gradient method. In this scenario the geometry
condition (7.4) led to a decrease in the damping parameter α four times total (in
iterations 3, 4, 5, and 7), while the Armijo condition (7.3) never necessitated a decrease
in α. We conjecture that the geometry condition (7.4) is triggered here more often
compared to the gradient methods since the Newton-like method tends to produce
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Algorithm 2: Restricted Newton method for (5.16).
Data: Initial domain Ωh
Initial damping parameter α, convergence tolerance εtol,
line search parameters β ∈ (0, 1), σ ∈ (0, 0.5)
Result: Improved domain Ωh on which (5.16) holds up to εtol

1 for i← 1 to ∞ do
2 Solve the discrete state equation (4.2) for uh;
3 Solve the discrete adjoint equation (4.4) for ph;
4 Solve (5.12) for Vproj grad,h with shape derivative J ′h(Ωh; ·) from (4.6);
5 if 〈EhVproj grad,h, Vproj grad,h〉 ≤ ε2

tol then
6 STOP, the current iterate Ωh is almost stationary for (5.16);
7 end
8 Increase damping parameter α← α/β;
9 Solve the Newton system associated with (7.2) with damping parameter α

and extract the first component as Wh;
10 while J ′h(Ωh;Wh) ≥ 0 holds, or (7.3) or (7.4) is violated do
11 Decrease damping parameter α← β α;
12 Solve the Newton system associated with (7.2) with damping parameter

α and extract the first component as Wh;
13 end
14 Transform the domain according to Ωh ← (id +Wh)(Ωh);
15 end

Mesh Level Restricted Gradient Restricted Newton
Vertices Cells Iter Time [s] Iter Time [s]

127 216 527 10 9 3
469 864 864 38 11 7
1801 3456 1481 244 13 48
7057 13824 2353 1733 14 319

Table 1: Number of iterations and time of execution for the 2D example at different
mesh levels to reach the tolerance (6.1) for the restricted gradient method. Moreover,
for the restricted Newton method we used the stopping criterion (8.1) with a tolerance
of 10−8 and an initial damping parameter α0 = 107.

steps with larger norm ‖Wh‖Eh
. However the perturbation of identity transformation

imposes a limit on the step size, which leads to a reduction of α. In the final iteration,
the value of α = 105 is reached.

The experiments up to here were obtained on a coarse mesh with 469 vertices
and 864 elements. We also studied the dependence of iteration numbers and CPU
time on the mesh level, both for the restricted shape gradient and restricted Newton
methods. Finer mesh levels are obtained by uniform refinement. Table 1 shows the size
of the mesh in terms of the number of cells and vertices together with the number of
iterations required for the convergence of both algorithms, and the time of execution.

Finally, we provide the results of the Newton-like method for an example in 3D.
This time, the right hand side of the state equation in (2.1) is given by f(x, y, z) =
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Fig. 7: Intermediate shapes Ωh obtained with the restricted Newton method at
iterations 0, 4, 9, 12.

2.5 (x+0.4−y2)2+x2+y2+z2−1. Moreover, the initial shape is a cube with 729 vertices
and 3072 elements. All other data remains the same as above. Figure 8 shows the
initial, some intermediate and the final shapes obtained using Algorithm 2 after
21 iterations and 286 seconds using the same tolerance as in the 2D case. Concerning
the Armijo and geometry conditions (7.3) and (7.4) and the value of the damping
parameter α, we observe a very similar behavior as in the 2D case. The final value is
α = 106.

9. Conclusions. In this paper we introduce the concept of restricted mesh
deformations for the computational solution of shape optimization problems involving
PDEs. In a nutshell, we only admit perturbations fields which are induced by normal
boundary forces. We argue that the stationarity condition (5.11) which does not
impose any restriction on the mesh deformations leads to degenerate meshes and
premature stopping. By contrast, we were able to solve the corresponding restricted
stationarity condition (5.16) to high accuracy even with a gradient method. We also
propose a Newton-like method based on restricted mesh deformations which exhibits
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Fig. 8: Intermediate shapes Ωh obtained with the restricted Newton method at
iterations 0, 7, 12, 21 for the 3D example.

fast convergence.

It is not clear whether (5.16) are the optimality conditions of a discrete optimization
problem in Euclidean space. We conjecture that (5.16) are the optimality conditions
for a problem defined on a discrete shape manifold, whose tangent space is represented
by restricted mesh deformations.
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