arXiv:1901.03456v5 [math.AP] 16 Jun 2019

Lagrangian coordinates for the sticky particle system

Ryan Hynd
June 18, 2019

Abstract

The sticky particle system is a system of partial differential equations which assert
the conservation of mass and momentum of a collection of particles that interact only
via inelastic collisions. These equations arise in Zel’dovich’s theory for the formation of
large scale structures in the universe. We will show that this system of equations has a
solution in one spatial dimension for given initial conditions by generating a trajectory
mapping in Lagrangian coordinates.

1 Introduction

In this paper, we will study the sticky particle system (SPS) in one spatial dimension

O+ 0x(pv) =0 (1.1)
Oi(pv) + 0.(pv?) = 0. ’
These equations hold in R x (0,00) and are typically supplemented with given initial condi-

tions

pli=o = po and  v|i—g = vp. (1.2)

The first equation listed in expresses the conservation of mass and the second expresses
the conservation of momentum. The unknowns are a pair p and v which represent the
respective mass density and velocity of a collection of particles that move along the real line
and interact via inelastic collisions. Likewise, pg is the associated initial mass distribution
and vy is the corresponding initial velocity.

The SPS first arose in cosmology in the study of galaxy formation. In particular,
Zel'dovich considered these equations in three spatial dimensions when he studied the evo-
lution of matter at low temperatures that wasn’t subject to pressure [I1), [16]. To get an
idea for the physics involved, we will study a simple scenario in which finitely many particles
are constrained to move on the real line. We assume that these particles move in straight
line trajectories when they are not in contact; however, particles undergo perfectly inelastic
collisions once they collide. For example, if the particles with masses mq,...,m; > 0 have
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Figure 1: Three point masses m, my, m3 undergo a perfectly inelastic collision at time s.
Here v satisfies myv; + mave + mgvs = (my + mg + mg)v. Also note that these masses are
displayed larger than points to emphasize that they are possibly distinct.

respective velocities vy, ..., v, before a collision, they will join to form a single particle of
mass mj + - - - + my, upon collision which moves with velocity v chosen to satisfy

mivy + -+ myog = (mq + -+ + my)v.

See Figure [I] for an example.

For eachi € {1,..., N} and t > 0, we write 7;(t) € R for the position of mass m; at time
t, which could be by itself or part of a larger mass if it has already collided with another
particle. This specification allows us to associate trajectories 71, ...,y : [0,00) — R that
track the positions of the respective point masses myq,..., my. See Figure [2| for a schematic
diagram. It turns out that these trajectories have various natural properties including

Yi(t) =7@), t>s

whenever 7;(s) = v;(s).

Moreover, sticky particle trajectories can be used to generate a solution pair p and v of
the SPS. Indeed, we may define the function p = p; which takes values in the space of Borel
measures on R via

N
pr=Y mibyw, t>0. (1.3)
=1
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Figure 2: Sticky particle trajectories 71,...,yn : [0,00) — R that track the positions of
the respective masses my, ..., my. Three trajectories 7v,,7; and vy corresponding to masses
my,m; and my are shown in dashed line segments for emphasis.
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Note that p is the mass distribution of the particles as p;(A) is the amount of mass within
the set A C R at time ¢ > 0. We can also set

o(o.8) = {%(H), r = %(t) 1.4

0, otherwise.

We note that v : R x [0,00) — R is Borel measurable and v(v;(t), ) is the right hand slope
of the particles located at position ~;(t) at time t.

While p and v are not smooth functions, they turn out to satisfy the SPS in a certain
sense that we will specify below. As we expect the total mass to be conserved for all times,
we will assume that it is always equal to 1 for convenience. Consequently, it will be natural
for us to work with the space 2(R) of Borel probability measures on R. We recall this space
has a natural topology: (u*)reny C P(R) converges to p narrowly provided

lim [ gdu® = / gdp
R R

k—o0
for each bounded, continuous g : R — R.

Definition 1.1. Suppose pg € P(R) and vy : R — R is continuous with

/ [vo|dpo < 0.
R
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A narrowly continuous p : [0, 00) = P(R);t — p; and a Borel measurable v : Rx [0,00) — R
is a weak solution pair of the sticky particle system with the initial conditions ([1.2)) if the

following conditions hold.
(1) For each T' > 0,
T
/ /vzdptdt < 00.
o Jr
(i1) For each ¢ € C°(R x [0, 00)),
/ /(0t¢+vax¢)dptdt + / ¢(+,0)dpo = 0.
0o Jr R
(i77) For each ¢ € C°(R x [0, 00)),

| [0a6+o.0)dpat+ [ ot 0pmdm ~o.
0 R R

It can be shown that the pair p and v specified in (1.3]) and (1.4)) is indeed a weak solution

pair with initial mass
N
po =D mids,)
i=1

and initial velocity vy : R — R chosen to satisfy

vo(7:(0)) = 4i(0+)

fori=1,..., N. A challenging problem is to show that there is a solution for a general set
of initial conditions. This was first accomplished by E, Rykov and Sinai [§] who identified a
variational principle for the SPS. Around the same the time, Brenier and Grenier established
a general existence theory by reinterpreting the SPS as a single scalar conservation law [4].
These two approaches appeared to be distinct until they were merged and extended upon
by Natile and Savaré [13]; see also Cavalletti, Sedjro and Westdickenberg’s paper [5] for
a refinement of [13]. In addition, we mention that these approaches are relevant to the
dynamics of collections of sticky particles with more general pairwise interactions as discussed
in 3] [10] 14} [15].

In this work, we will consider Lagrangian coordinates for the sticky particle system as
motivated by a probabilistic approach introduced by Dermoune [6]. This involves finding an
absolutely continuous mapping X : [0,00) — L?(pg) which satisfies the sticky particle flow
equation

X(t) = E,o[vo| X (t)] ae. t>0 (1.5)

and initial condition

X(0) = idg (1.6)

po almost everywhere. Here E, [v9|X (¢)] is the conditional expectation of vy : R — R
with respect to pp given X (t). In particular, we are asserting that (1.5) is the natural
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condition for collections of particles that move freely on the real line and undergo perfectly
inelastic collisions when they meet. We note that Dermoune considered a more general setup
involving an abstract probability space and showed the existence of a solution for a given
initial condition. With regard to his formulation, we content ourselves with the specific
probability space (R, B(R), pg), where B(R) is the Borel sigma algebra on R.

We will also use the notation

X(t):R—>Ryy— X(y,t)
when we wish to emphasize spatial dependence. Here X (y,t) denotes the position of the

particle at time ¢ which started at position y. In particular, we will show that we can design
a weak solution pair p and v of the SPS with

X(t) =v(X(t),t) ae. t>0.
In this sense, X is a Lagrangian coordinate. Our main theorem is as follows.

Theorem 1.2. Suppose py € P(R) with

/xzdpo(:v) < 0
R

and vy : R — R absolutely continuous. There is a solution X of the sticky particle flow
equation ((1.5)) which satisfies the initial condition (1.6) and has the following properties.

(i) For Lebesque almost every t,s > 0 with s <,
Lo Lo Ly
—X(t)*dpy < | =X(s)7dpy < | =vidpo.
R 2 R 2 R 2
(i) Fort >0 andy,z € supp(po) with y < z,
0<X(2,t)— X(y,t) < z —y+t/ lvp(x)|da.
y
(111) For each 0 < s <t and y,z € supp(po),
1 1

Remark 1.3. Since vy : R — R is absolutely continuous, it grows at most linearly on R. As

a result, / vadpy < oo. We also remind the reader that the support of py is defined
R

supp(po) == {y € R: po((y — d,y 4+ 0)) > 0 for all 6 > 0}.



A corollary of the above theorem is that there exists a weak solution of the SPS for given
initial conditions. We emphasize that the following result has already been proven or follows
from previous efforts such as [4, 8, 13]. Our goal is to verify this claim through proving
Theorem and in particular to give a more thorough analysis of than was done in

[6].
Corollary 1.4. Suppose py € P(R) with

/x2dp0(:c) < 00
R

and vy : R — R absolutely continuous. There is a weak solution pair p and v of the SPS
with initial conditions (|1.2)).

(i) For Lebesgue almost every t,s > 0 with s <,

—v(z, t)?dpi(z) < [ Zv(z,s)?dps(z) < | Zvolz)*dpo().
/. /. /.

R 2
(i1) For Lebesque almost every t € (0,00),

(v(zt) —v(y.t)(z —y) < S(z —y)* (1.7)

~ | =

for p; almost every x,y € R.

We will prove this corollary at the end of this paper, right after verifying Theorem [I.2]
This paper is organized as follows. First, we will briefly discuss the preliminary material
needed in our study and make some observations on sticky particle trajectories. Then we
will verify that solutions of the sticky particle low equation which are associated with
sticky particle trajectories are compact in a certain sense. Finally, we will show that we can
always find a subsequence of these particular types of solutions that converges to a general
solution.

2 Preliminaries

In this section, we will briefly outline some of the notation and review the few technical
preliminaries needed for our study.

2.1 Convergence of probability measures

We will denote P(RY) as the space of Borel probability measures on R? and write Cj(R?) for
the space of bounded continuous functions on R?. As noted in the introduction, P(R?) is



endowed with a natural topology defined as follows. A sequence (u*)ren C P(R?) converges
to p in P(RY) narrowly provided

k—o00

lim gd,uk:/ gdp (2.1)
RY Rd

for each g € C,(R?). It turns out that this topology can be metrized by a metric of the form

=1
(1, v) ::ZE /Rdhjd,u—/Rdhjdl/
j=1

Here each h; : R? — R satisfies |1l < 1 and Lip(h;) < 1 (Remark 5.1.1 of [1]). Moreover,
(P(RY), &) is a complete metric space.

It will be useful for us to know when a sequence of measures in P(R?) has a narrowly
convergent subsequence. Prokhorov’s theorem asserts that (u*)rey C P(R?) has a narrowly

convergent subsequence if and only if there is ¢ : R? — [0, 00] with compact sublevel sets
for which

. v € P(RY). (2.2)

sup/ pdu® < oo (2.3)
keN JRd

(Theorem 5.1.3 of [1]). It will also be convenient to know when (2.1]) holds for unbounded
g. It turns out that if g : R — R is continuous and |g| is uniformly integrable with respect
to (u*)ren then (2.1) holds. That is, provided

lim lgldp* =0
R0 Jig1> R

uniformly in £ € N (Lemma 5.1.7 of [1]).
We will also need the following lemma.

Lemma 2.1. Suppose (g¥)ren is a sequence of continuous functions on RY which converges
locally uniformly to g and (p*)ken C P(R?) converges narrowly to p. Further assume there
is h : RY — [0, 00) with compact sublevel sets, which is uniformly integrable with respect to
(1¥)ken and satisfies

" <h (2.4)

for each k € N. Then
lim ghduF = / gdp. (2.5)
R4 R

k—o0

Proof. Fix € > 0 and choose R > 0 so large that

€
hdpF < -
Juatt <

for all k£ € N. In view of (2.4)), |g| < h. Thus, |g| is uniformly integrable with respect to
(4*)ren and so there is N € N such that

/ gdu* — / gdp
R4 R4

7

<€
2




for all £ > N.
It follows that

/ g’“du’“—/ gdu‘ = / (g’“—g)duhr/ gduk—/ gdu’
R4 R4 RA Rd Rd
€
S/ 9" = gldp* + 5
Rd
€
=/ lgk—gldu’“r/ 19" — gldu* + 5
h<R h>R
S/ \gk—g!duk+2/ hdp® + ~
h<R >R 2

S/ 19" — gldp* + €
h<R

for k > N. As {h < R} is compact and ¢g* — ¢ uniformly on {h < R},

/ grdu* —/ gdu‘ <e
Rd R4

We conclude (2.5)) as € > 0 is arbitrary. O

lim sup
k—o0

2.2 The push-forward

For a Borel map f: R? — R" and pu € P(R?), we define the push-forward of u through f as
the probability measure fup € P(R™) which satisfies

[ stwdttant) = [ ar@hinto
for each g € C,(R™). We also note

fan(A) = p(f1(A)
for Borel A C R™.

Remark 2.2. (i) We will be primarily interested in the dimensions d,n € {1,2}. (i) We could
have easily have presented our remarks involving the convergence of probability measures
and the push-forward in terms of complete, separable metric spaces instead of focusing on
Euclidean spaces.

2.3 Conditional expectation

Suppose p € P(R), g € L*(u) and Y : R — R is Borel measurable. A conditional expectation
of g with respect to u given Y is an L*(u) function E,[g|Y] which satisfies

[ EulalY 1Yy = [ g 1) 2.6)
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for all Borel h: R — R with
/ h(Y)*du < oo (2.7)
R

and
ElglY] = F(Y) pae

for some Borel f: R — R which satisfies (with f replacing h).

The existence of a conditional expectation follows from a simple application of the Radon-
Nikodym theorem, and it is also not hard to show that conditional expectations are uniquely
determined up to a null set for . Moreover, choosing h(Y') = E,[g|Y] in and using the
Cauchy-Schwarz inequality gives

[ EadotyPan < [ gan 23)

R R

Finally, we recall that conditional expectation has the “tower property,” which asserts
EulE.[g[Y]e(Y)] = Eulgle(Y)] (2.9)

for any Borel e : R — R.

3 Sticky particle trajectories

We will now study the sticky particle trajectories mentioned in the introduction. To this
end, we will fix my,...,my > 0 with

N
E m; = 1,
i=1

distinct z1,...,xxy € R, and vy,...,vy € R throughout this section. These quantities
represent the respective masses, initial positions and initial velocities of a collection of par-
ticles that will move freely and undergo perfectly inelastic collisions when they collide. We
will ultimately argue that we can always associate a collection of sticky particle trajectories
1, . ..,7n to this initial data that has the necessary features in order to build a weak solution
pair of the SPS out of them.

3.1 Basic properties

We will first note that sticky particle trajectories exist. In the following proposition, we will
use the notation

ft£) = lim f(t+h)

for the right f(¢t+) and left f(t—) limits of f at t, respectively. However, we will omit a
proof of the following proposition as we have already justified this claim in a related work
(Proposition 2.1 in [12]).



Proposition 3.1. There are continuous, piecewise linear paths
Y1y -5 YN ¢ [07OO> —R

with the following properties.
(i) Fori=1,..., N,
7%(0) =z; and F;(0+) = v;.

(it) Fori,j7=1,...,N, 0 <s <t and v;(s) = v;(s) imply
7i(t) = 5 (t).
(iii) If t > 0, {ir,.... i} C {1,..., N}, and
Vi (1) = =, (8) # %(t)
fori & {iy,... i}, then

mi1;yi1 (t_) +oee mlk%k (t_)

Yi; () =

forj=1,... k.

Remark 3.2. Since ~; is piecewise linear, the limits 4;(¢t4) and 4;(t—) exist. Moreover, they
can be computed as follows

. . Yt +h) — ()
TiltE) = lim, n

We also note that property (iii) implies a more general averaging property, which is stated
below. This is the main tool that can be used to show that p and v defined in and
(1.4) constitute a weak solution pair of the SPS. We will omit the proof of this fact as we
have verified it in earlier work (Proposition 2.5 in [12]).

Corollary 3.3. Forg: R —- R and 0 < s <,

Z mig(vi(t))yi(t+) = Z mig(%i(t))yi(s+)-

3.2 Two estimates

We will now derive some estimates on +;(t) —~,(¢) in terms of the given initial data. We will
start with an elementary lemma.
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Lemma 3.4. Suppose T >0 and y : [0,T) — R is continuous and piecewise linear. Further
assume

y(i+) < g(i—) (3.1)
for each t € (0,T). Then
y(t) < y(0) +t5(0+). (3.2)
forte0,T).
Proof. Choose times 0 =ty < --- < t,, = T such that y is linear on each of the intervals

(0,t1),...,(tn_1,T). For ¢ € C°(0,T), we integrate by parts and compute

[ st =3 o) e — a0+ Y- [ it

= o(ts) (Gti+) — §ti—)) .

i=1
Thus,
T ..
| étwtar <o (3.3)
0
for ¢ > 0.
Now let n € C2°(R) be a standard mollifier. That is,

n(z) =n(=z) =0
Jandz=1
supp(n) C [=1,1].

Set

and define .
V(o) = [ s = Dyteyar
0

for s € (,T —¢) and 0 < € < T. Observe that y° is smooth and n°(s — -) € C(0,7T) for

s € (e, T —e). By, .
§(s) = /O (s — t)y(t)dt < 0.

Therefore, y° is concave on (¢, T—¢) for any 0 < € < T'. It is routine to check that y¢(t) — y(¢)
for each t € (0,7"). As a result, y is concave on [0,7") and we conclude (3.2)). O

The main application of Lemma is the following proposition. It will later provide us
with a modulus of continuity estimate for solutions of ([1.5]).
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Proposition 3.5. Suppose i,j € {1,...,N}, z; > x; andt > 0. Then

n—1

0 <yi(t) —%(t) S —aj+t > |k, — gl (3.4)
/=1

where ki, ..., k, € {1,..., N} are chosen so that
Tj=2Tp <- - < ZTg, =2

Proof. 1. We suppose 1 < --- < xy so that v < --- < yn. With this assumption, it
suffices to show

Yir1(t) —%i(t) < wip1 — x5 + t|vi — v (3.5)
for t > 0. Because if j,k € {1,..., N} with k£ > j, then

k—1
V(t) — () = Z(%‘H(t) — ()
e
< Z (Tig1 — T + tlvipr — vi)
i=j
k-1
=Tk — Tj + tz |Ui+1 - Uz'|-
i=j

With the goal of verifying in mind, we fix i € {1,..., N} and define
T :=inf{t > 0: v41(t) — v(t) = 0}.
In order to prove , it then suffices to show
Vi1 (t) — v (t) < xipq — x + (v —v;), t€10,7T). (3.6)
We will do this by applying to the previous lemma to
y(t) ==y (t) —%(t), t€[0,T).
We already know that y is continuous and piecewise linear. Let us now focus on showing
Yir1(s+) < Yipa(s—). (3.7)

2. Observe that if ;.1 does not have a first intersection time at s € (0,7), then v;,1 is
linear near s and so
Yir1(s) = Yir1(s+) = Yis1(s—).
Alternatively, if ;1 has a first intersection time at s there are trajectories ;.o ..., Viir
(some r > 2) such that
Vir1(8) = Yir2(s) = -+ = Yitr($)

12



and . _
M1 Yis1(5—) + -+ + Mg Figr (5—)
Miy1 + -+ Mgy
j=1,...,r. Recall part (i) of Proposition [3.1]
Also observe that since 7,41 < 7,4, for j =2,...,7,

Yiyj(s+) =

Rirr(s +h) = i (8) o Yirg (s + ) = iy (5)
h - h
for all h < 0 and close enough to 0. It follows from Remark [3.2] that

Yir1(s—) > Firj(s—).
It view of (3.8))

Mip1Yip1(5—) + - + Mg Yiga(s—)
M1 + o+ Mgy

Yi1(s+) < = Yip1(5—),

which is . A similar argument gives
Fi(s+) = Yi(s—) (3.9)
for each s € (0,7). Combining and
J(s+) = Yir1(s+) — i(s+) < Fira(s—) — Fi(s—) = y(s—)
for all s € (0,7). We then conclude by appealing to Lemma [3.4]

Remark 3.6. We can infer from proof of Proposition that if 77 < -+ < zy and v; <
- < wy, then (3.4)) can be improved to

0 <7i(t) =) < @ — x; + tv; — vy

for ¢« > j and t > 0. However, if vy, ..., vy are not nondecreasing then this estimate fails to
be true. To see this, let us consider the example of three particles each with mass equal to
1/3, and with respective initial positions

T = O,ZL’Q = ]_,Ig = 2,
and the initial velocities

V1 = 171)2:0,?)3 = 1.

The corresponding sticky particle trajectories for v, are and 3 are

w=lt 0<t<1
R I

13



Y172

4! Y2 3¢

Figure 3: Three sticky particle trajectories 7;,72,73 : [0,00) — R in which |y, (t) — v3(¢)| >
|zs — x1| + tlvg — vy] for ¢ > 1.

and 73(t) = 2 + t. Observe that for ¢t > 1

w(®) = () =2+ 0= (14 50-1)
:2+%(t—1)
> 2

= T3 — I +t|U3 — Ull.

See Figure [3]

We call the following assertion the quantitative sticky particle property as it quantifies
part (i) of Proposition [3.1]

Proposition 3.7. For eachi,j=1,...,N and 0 < s <,
1 1
S1ilt) = 35 (0)] < ) = 23]
We will see that this proposition is a simple consequence of the following lemma.

Lemma 3.8. Suppose T'> 0 and y : [0,T) — [0,00) is continuous and piecewise linear.
Further assume

y(t+) < y(t-) (3.10)

14



for each t € (0,T). Then

1 1

Zyt) < =

Lu(t) < ~y(s)
for0<s<t<T.
Proof. Let 0 < ty < --- < t, < T be such that y is linear on each of the intervals
(0,t1),...(t,, T). Tt then suffices to show

t
u(t) == #, te(0,7)

is nonincreasing on each of these intervals. First observe

i) = W0
i)y
< !
= it-)

for t € (0,7)\ {t1,...,t,}. Consequently,

S (a0)R) = 1 (@(0)t +2(1)) = 0 (3.11)

fort € (0,7)\ {t1,....tn}.
As y is nonnegative,

for t € (0,7)\ {t1,...,tn}. As a result,

limsup {u(s)s*} < limsup {y(s)s} = §(0+)0 = 0.

s—0t s—0+F

In view of (3.11)),
u(t)t* = limsup {u(s)s*} <0

s—0t
for t € (0,t1). Therefore, u(t) < 0 for t € (0,;).
So far, we have shown that u is nonincreasing on ¢t € (0, ¢1] which gives

a(t—) < 0.
And by B10),

w(t)t? < a(ty+H)8

15



<t —)t]
<0

for t € (t1,t2). Thus, u is nonincreasing on [¢;, 2] and
i(ts—) < 0.

Repeating this argument on [to, 3], [ts,t4], ..., [tn, T), we find u is nonincreasing on (0,7).

[]

Proof of Proposition |3.7. Without loss of generality, we may suppose 7; < --- < y. Then
it suffices to show

£ (®) = (0) < L ias) = () (3.12)

foreachi=1,...,N —1and 0 < s <t < co. In this case, we would have for k > j

N

1 -1

T () =5(0) = 2 5 (i (t) — (D))

IN
ol o~
(|
oS,
~+ | =

(Vir1(s) —7i(s))

» | =

<.
I

J
(Ve (s) = 75 (s))-
As for (3.12), we fix i € {1,..., N — 1} and set

y(t) == (t) —%(t), t€[0,T).

w | =

Here
T:=inf{t >0:y(t) =0}.

Observe that y : [0,7) — [0,00) is piecewise linear. Further, the proof of Proposition
gives
yt+) < y(t=).

By Lemma [3.§]

1 1 1 1

L) = (1) = 00 < Ty(5) = < (eea(s) ()
for 0 < s <t < T. Since v41(7) — (1) = 0 for all 7 > T, we conclude (3.12)) for all
0<s<t<oo. OJ

Corollary 3.9. For each 0 < s <t there is fi s : R = R such that
Vi(t) = frs(7i(s))
fori=1,...,N and
t
|ft,s(x) - ft,s(y)| S ;l(l] - yl (313)
for z,y € R.
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Proof. Since the number of distinct elements of {7;(7),...,vn(7)} is nonincreasing in 7 > 0,
the function

grs Am(s) - (s)} = {m), - ()5 7i(s) = ()
is well defined by part (i) of Proposition 3.1} Further, ~;(t) = gu5(vi(s)) for i = 1,..., N.
By Proposition 3.7, g, satisfies (3.13)) for 2,y € {71(s),...,7n(s)}. We can then extend g,

to all of R to obtain f; ;. For example, we can take

fts(x) = inf {gt,s(%(s)) + é’x —y(s)]:i=1,..., N} .

O
3.3 A trajectory map
Let us define
X: {l’l, C. ,ZL'N} X [O, OO) — R, (l’l,t) — ’)/Z(t)
For each t > 0, we will also set
X(@) :A{zy,...,an} = Rz — ()
so that
X(t)(xi) = X(xi,t) = 7(t)
for ¢ = 1,...,N. This is a trajectory map associated with the sticky particle trajectories
Y1,---5,7YN-

We will translate the properties we derived above for sticky particle trajectories in terms
of X and argue that X is a solution of the sticky particle flow equation (|1.5)). To this end,
we set

N
po =Y midy, (3.14)
i=1
and choose vy : R — R absolutely continuous with
vo(wi) = v
fori=1,...,N.
Proposition 3.10. The function X has the following properties.

(1) X(0) =idg and '
X(t) = Epg[vo] X (2)]

for all but finitely many t > 0. Both equalities hold on the support of po.

(i1) For everyt,s > 0 with s <t,



(iii) X :]0,00) — L*(po);t + X (t) is Lipschitz continuous.

(iv) Fort >0 and y, z € supp(py) with y < z,
0< X(z,t)— X(y,t) < Z—y+t/ lvg(x)|dz.
y
(v) For each 0 < s <t andy,z € supp(po)
1 1

(vi) For each 0 < s < t, there is a function fis : R — R which satisfies the Lipschitz
condition (3.13) and
X(y7t) = ft,s(X(y7S))

for y € supp(po).

Proof. Part (i): As X(z;,0) = x;, it is clear that we have

X(0) = idg

on the support of py. Furthermore, Corollary implies that if g : R — R and s < ¢, then

/ g(X(8)) X (t+)dpo = Zng i) %i(t+)
R

In particular,
[ s X®do = [ o X O
R R
for all but finitely many ¢ > 0. Also recall that
X(t+) = v(X(t),1)

on the support of py for ¢ > 0, where v is defined in (T.4)). Tt follows that X (t) = E,, [vo| X (¢)]
for all but finitely many ¢ > 0.
Part (i7) and (zii): Our proof of (i) also shows that

X(t4) = Epo[X (s4)|X ()]
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and

X(s+) = Epo[vo] X (s)]
for 0 < s <t. So part (ii) follows from inequality (2.8)). Moreover, for s <t

/R (X(t) — X(s))2dpo < (t — s) / t /R X (7)2dpodr < (t — s)? /R v2dpo. (3.15)

Therefore, X : [0,00) — L*(pg) is Lipschitz continuous.
Part (iv): By part (ii) of Proposition , X (-, t) is nondecreasing on the support of py.
In view of Proposition [3.5] we also have

n—1

0< X(23,t) — X(aj,t) Sy —aj+t Y |vo(k,,) — volak,)|
/=1

for x; > x;. Here ky,...,k, € {1,..., N} are chosen so that
Tj =2 < - < Tk, = Ty

Since v is absolutely continuous,

—

n— T;

n—1 Thyyy
o) =) < Y [ oo = [ uife)lde.
=1 Y Tky Zj

J

~
Il

1

We conclude part (iv).
Part (v) and (vi): Part (v) follows from Proposition [3.7|and part (vi) is due to Corollary
B.9 O

Remark 3.11. As vy : R — R is absolutely continuous,

w(r) = sup {/b (ol (2)|dz : 0<b—a< r}

tends to 0 as 7 — 0T. It is also easy to check that w is nondecreasing and sublinear, which
implies that w(r) grows at most linearly in r. By part (iv) of the above proposition,

(X (y, 1) = X(2,8)] < |y — 2 + tw(]y — 2]) (3.16)

for y, z belonging to the support of py. Therefore, X (¢) is uniformly continuous on the
support of pg. So we may extend X (¢) to obtain a uniformly continuous function on R which
satisfies and agrees with X (¢) on the support of py. Consequently, we will identify
X (t) with this extension and consider X () to be a uniformly continuous function on R.

Remark 3.12. The reader may wonder if the estimate
[ X(2,1) = X(y, )] < [z =yl +tlvo(y) — vo(2)]

holds for each y, z belonging to the support of pg. As we argued in Remark [3.6] such an
estimate is only guaranteed to hold when v, is nonincreasing.
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4 Existence theory

Our goal in this section is to prove Theorem [I.2] So we will assume throughout that py €
P(R) with

/xdeo(x) < 00
R

and vy : R — R absolutely continuous. We will also select a sequence (pf)reny C P(R) in
which each pf is of the form (3.14)), pf — po narrowly and

k—o0

lim szdplg(x) :/R:L‘2dpo(x) (4.1)

(see [2] for a short proof of how this can be done). In view of Proposition [3.10, there is a

mapping
XF:R x[0,00) = R

which satisfies the sticky particle flow equation and the initial condition with
pk replacing pg. In this section, we will show (X*).cy has a subsequence that converges in
various senses to a solution of the sticky particle low equation which satisfies the initial
condition for the given pg. Then we will finally show how to use this solution to design
a solution of the SPS that fulfills the initial conditions .

4.1 Compactness

Theorem will follow from two compactness lemmas for the sequence (X*)pen. The first
asserts that X*(¢) has a subsequence which converges in a strong sense for each t > 0.

Lemma 4.1. There is a subsequence (X%i);cy and a Lipschitz continuous mapping X :
[0,00) — L%(po); t > X(t) such that

lim [ A(idg, X% (t))dpy = / h(idg, X (t))dpo (4.2)

J—= Jp R
for each t > 0 and continuous h : R*> — R with

[h(z, )l
sup T 2. .2
(z,y)ER2 1+ 2%+ Yy

Moreover, X has the following properties.

(i) Fory,z € supp(po) withy < z and t > 0,

0< X(z,t) — X(y,t) §z—y+t/ |vg(x)|d.
Yy
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(ii) Fory,z € supp(py) and 0 < s <'t,
1 1

(111) For each 0 < s <, is there is a function f;s: R — R which satisfies (3.13) and
X(?J? t) = ft,s (X(y7 S)) (43)

for y € supp(po).
Proof. Step 1: “narrow” convergence. Inequality (3.15]) implies

(/RX’“(lt)%ip’g;)1/2 < (/R(X’“(t) _Xk(O))de’g>1/2+ (/R Xk(O)deg)lm
<o freat) "+ (f )"

As vp is uniformly continuous on R, vy grows at most linearly. Combining with (4.1]), we
find

( /R Xk(t)zdp’g) v < A(1+1) (4.4)

for some constant A > 0 independent of k£ € N and for each ¢t > 0. For k£ € N, we also define
o :10,00) = P(R?);t — oF via the formula

o) = (idz, X" (t)) 4.

Note that (4.1)) and (4.4]) give
sup [[ (@2 P)iofay) < o (4.5
R2

keN

for each ¢ > 0. By criterion (2.3)), (¢F)rey is narrowly precompact for each ¢ > 0.
Also observe that for h € C*(R?) and s < ¢

/ /R b y)dot(r.y) - / /R (gt (i) = /R hidz, X*(1))dpl — /R hidz, X*(s))dpf
— /R[h(idR,Xk(t)) — h(idg, X*(s))]dpg
_ /]R / t(‘)yh(idR,X’“(T))Xk(T)dePIS
— / t /R dyh(idg, X" (1)) X*(7)dpjdr
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< tip(t) [ ( [ 14 ash ) ar

< Lip(h)(t =) [ [l
< CLip(h)(t — s)

for some constant C' independent of k£ € N. By mollifying h, it is routine to show

‘//R2 h(z,y)doy (z,y) — //R2 h(I,y)dag(x,y)‘ < CLip(h)(t — s)

for Lipschitz continuous h : R? — R.

Using the metric defined in (2.2)), which metrizes the narrow topology on P(R?), we
additionally have

d(oF oF) < Ct — 5|
for t,s > 0 and k € N. In summary, (0*)rey is a uniformly equicontinuous family of
mappings from [0, 00) into (P(R?), ) which is also pointwise precompact. By the Arzela-
Ascoli theorem, there is a subsequence (0%/);cy and a narrowly continuous mapping o :
[0, 00) — P(R?) such that
ol = o (4.6)

narrowly in P(R?) for each ¢ > 0.

Step 2: “weak” convergence. A direct consequence of is

/ o(z)doy(x,y) = lim o(x dat x,y) = hm gb dpo /gb Ydpo(x
RQ

Jj—ro0 R2

for ¢ € Cy(R). By the disintegration theorem (Theorem 5.3.1 of [I]), there is a family of
probability measures (¢f),er C P(R) such that

//R2 h(z,y)doy(z,y) = /R (/R h(x,y)dgg(y)) dpo()

for h € Cy(R?). We define
X(a,t) = [ i (v
R

for x e Rand t > 0.
In view of (.5), (x,y) — |y| is uniformly integrable with respect to ((7;~C 7)jen. Indeed,

, 1 , 1 )
J[ it < g [ paotien < 4[] 0yt )
y|> y|> 2
dm [ plao ) =0
S Jyl=R
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uniformly in 7 € N. It follows that

I X5 () gdpy = i do}? (z, 47
m [ X500 oy = tim [y oot oy (1)

Jj—oo Jr Jj—r0o0

— //]R2 y ¢(z)doy(z,y)
-/ ( [ ¢<x>d<f<y>) dpo(z)

= /R X (t) ¢dpo

for ¢ € Cy(R) and each ¢t > 0.
Step 3: “strong” convergence. Fix ¢ > 0. By Remark 3.11}

(X (y, 1) = XF(2,1)| < |y — 2] + tw(ly — 2])
for y, z € R. Moreover,

<y — 2| +tw(ly — 2)) + | X*(z, 1)

Integrating over z € R gives
X401 < [ (ly= 21+ tally = o) + X0 dol).
In view of (4.1)), (4.4]), and the fact that w grows at most linearly,

X (y. )] < BL+1)(1+[y]) (4.8)

for some constant B > 0 independent of k£ € N and for each y € R and ¢t > 0.
It follows from the Arzela-Ascoli theorem that (X% (t)) ey has a subsequence (X% (t)) ey
that converges locally uniformly on R to a uniformly continuous function Y : R — R. We

also have by (4.7]) that

[ vam = i [ x50 odety = [ X(0) ooy
for ¢ € Cp(R). That is, X(t) =Y py almost everywhere. And for any another subsequence
of (X% (t))jen which converges locally uniformly to a continuous function Z, it must be that
Y = Z py almost everywhere.

If Y(xg) > Z(x) for some zy € supp(po), then continuity ensures Y > Z in some
neighborhood (xg — 0, xg + d) of x¢. This leads to a contradiction

0= [V Zldp = [ (v = Z)dpo > 0,
R (zo—08,x0+9)
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since po((zo — 0,29+ 0)) > 0. It follows that Z =Y on the support of py, and these limiting
values are uniquely determined on the support of py.

Without any loss of generality, we will redefine X () = Y as these functions agree pg
almost everywhere and now note

{X%@%ﬂ—»X@J)

. (4.9)
whenever y € supp(pg) and 3/ — y.

Moreover, in view of the bound (4.8]), we can also apply Lemma to get

lim Xkﬂ'é(t)delgj’“’ :/Ydeo :/X(t)deo < 0.
R R

L—o0 R

As this limit is independent of the subsequence, we actually have

lim [ X% (t)%dpy = / X (t)%dpy.
J7e Jr R
The limit now follows as we have shown that (x,y) — 2% + ¢? is uniformly integrable
with respect to o}’ (see Remark 7.1.1 of [I] for more on this technical point).
Step 4: verifying (i), (#4) and (4ii). Let us now define the mapping X : [0,00) — L*(po);t —
X(t) and let 0 < s <t. By (3.15)) and the assumption that vy : R — R is absolutely contin-
uous and grows at most linearly,

0000 = X(6) P = Jim [ (3% (0) = X4 (5)

Jj—o0 R
<t lim [ asy
j—oo IR
= (t—3)2/vgdp0.
R

It follows that X is Lipschitz continuous.

Suppose y,z € supp(pp) with y < z. By Proposition 5.1.8 of [I], there are sequences
(y7);en and (27)jen with 4, 27 € supp(pl?) such that 3/ — y and 27 — z. Without any loss
of generality, we may suppose that y/ < 27 for all j € N. By part (iv) of Proposition [3.10]

2
0< XFi(2dt) — XFi(yl 1) < 20—y —i—t/ lvg(x)|dx
Y
for j € N. In view of (4.9), we can send j — oo and conclude part (i) of this theorem. A
similar argument combined with part (v) of Proposition can be used to prove part (i)
of this theorem. We leave the details to the reader.

Let us finally verify part (ii7) of this theorem. To this end, we 0 < s < ¢ and recall from
part (vi) of Proposition that there is f% : R — R which satisfies

k; k; t
|fia(@) = fii(y)| < ;\:v—y\, z,y € R
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and ‘ ‘
X5 (g 1) = f(X5 (7, 5)) (4.10)

for 4 belonging to the support of plgj. Choose y € supp(po) and o/ — y. By (4.9),
XFi(yl, s) = X(y,s) and X% (37, t) — X(y,t). As

@) < ) = SR, )] + A2 (X5 (7, 5)
< §|x — XF (7, s)| + | XF (7, 1),

f* is locally uniformly bounded on R. It follows that f* has a subsequence (which we will
not relabel) which converges locally uniformly on R to a function f which satisfies the same
Lipschitz estimate. Sending k; — oo along an appropriate sequence in (4.10) gives (4.3). O

For the remainder of this subsection, we will denote X as the mapping and (X*),cy
as the sequence obtained in the previous lemma. We note that as X : [0,00) — L*(pg) is
Lipschitz continuous it is differentiable almost everywhere on [0, 00).

Corollary 4.2. For almost every t > 0, there is a Borel function u : R — R such that
X(t) = u(X(1))
po almost everywhere.

Proof. Choose a time ¢t > 0 for which

X(t) = lim n (X(t+1/n) - X(t))

exists in L?(pg). Without any loss of generality, we may assume this limit exists py almost
everywhere as it does for a subsequence. By part (iii) of Lemma

X(t) = Tim u, (X (1)) (4.11)

po almost everywhere. Here
Up =N (ft+1/n7t — idR)
is Borel measurable for each n € N.
Let S C R be a Borel subset such that po(S) = 1 and holds at each point in 5
such a subset can be found as detailed in Theorem 1.19 in [9]. Let us also define the Borel

sigma sub-algebra
F={{yeS: X(y,t)e A} : A C R Borel}.

We note that & is the sigma algebra generated by the restriction of X (¢) to S, so a Borel
function is # measurable if and only if it is a composition of a Borel function with X (¢)|s
(exercise 1.3.8 of [7]). Consequently, X (t)|g is the pointwise limit of % measurable functions
and therefore must be & measurable itself (Corollary 2.9 [9]). As a result, there is some
Borel u : R — R for which .

X(t)]s = u(X(t)]s)-

That is, X (t) = u(X(t)) po almost everywhere. O
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The final lemma needed for the proof of Theorem is as follows.

Lemma 4.3. Suppose t > 0 and g € Cy,(R). Then

hm/ /Xk g(X" (1 dp]dT—/ /X 7))dpodr.
j—00

F(z) = /O 9(y)dy (4.12)

for z € R and observe that F' is continuously differentiable and Lipschitz continuous. More-

J; Jom s onasbar = [[( [0 s opar) o
:/ (/ XN ))d7'> dpt

= [ (PO 0) - Flidw) dof.

Proof. Set

Since F' grows at most linearly, we can appeal to Lemma [.1] and send j — oo to find
i [ [ X5) ox it = [ (RO - P doy
R

N - [ ([ srecon) an
- [ ([ 2o <>>df) o
/ / X(r) g(X (7)) dpodr.

Proof of Theorem[I.3. We will show X : [0,00) — L?(pp) is the desired solution. First note
that Lemma implies

O

R Jj—=oo Jp J=® Jr R

for each ¢ € Cy(R). It follows that X satisfies the initial condition (|1.6)). It also follows from

(£2) that
1im/ /vog (XFi(r dp]dT_/ /vog ))dpodT
j—o00
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for each g € Cy(R) and ¢t > 0. Combining with Lemma gives

/ /vog 7))dpodT = hm/ /vog deJdT
J—00
= hm/ /Xk (7))dpt? dr
j—o0
:/ /X T))dpodT.

/ | X )amar = [ (FOX0) = Flid) dpo (4.13)

We may write

using an antiderivative F of ¢ as in (£.12). Recall that X (t) exists for almost every ¢ > 0.
At any such ¢, we can differentiate (4.13)) to find

/X dedT—/Rvog(X(t))dpo.

By Corollary (4.2)), there is also a Borel function u : R — R such that

for almost every ¢ > 0. These observations imply that X satisfies the sticky particle flow
equation ({1.5)).

Part (i) and (i4i) of this theorem follows from parts (i) and (i7) of Lemma respec-
tively. So all that we are left to show is part (¢). Fix two times s, > 0 with £ > s such
that ‘ .

X(s) = Ep[vol X (s)] and X (t) = Ep, [vo] X (2)]

po almost everywhere. By part (i7i) of Lemma and the tower property of conditional
expectation, (12.9))

By [X (5)| X (1)) = Epy [Epy [00] X ()] X ()] = Epo 1] X (1)) = X (2).

/ X t)*dpo < / X )?dpo < /§Uodﬂo

by appealing to (2.8]). ]

We then conclude

4.2 Generating a solution of the SPS

This final subsection is dedicated to the Proof of Corollary [1.4] which we will accomplish in
three steps.
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1. For each t > 0, set
pr = X (t)#po-

As X : [0,00) — L*(po) is continuous, p : [0,00) = P(R) is narrowly continuous. Let us
also define the Borel probability measure p on R X [0, 00)

/ /XS t)dpoe tdt = // dpetdt
S

and the signed Borel measure m on R x [0, 00)

/ /Uo XS )dﬂoe tdt

for S C R x [0, 00).

In view of Holder’s inequality,

AWS(AW$@OWu@W?

Therefore, 7 is absolutely continuous with respect to p. By the Radon-Nikodym theorem,
there is a Borel v : R x [0,00) — R such that

/ / (2, t)dr(z, 1) / / Dvodpoe"dt
_ /0 /R B, o, dp(z, t)
_ /0 h /R Wz, )o(z, £)dpy(x)e"dt
= [ [ X000 e at

It follows that for Lebesgue almost every ¢ > 0,
V(X (1), ) = Epy [00] X (8)] = X (1) (4.14)

po almost everywhere. Also note

/R o(, 1) 2dpy(x) = /R (X (1), 1)2dpo = /]R X (t)2dpo < /R wdpo,

for almost every ¢ > 0. Therefore

/O ' /]R o, )2dpy(2)dt < o
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2. Fix ¢ € C(R x [0,00)) and observe
/ N / (0,6 + v0,0)dpudt = / h / Dib(X (1), 1) + v(X (1), )0u(X(£), £))dpodt
= [ [@o0x(®).0)+ X@0.00X(0).)dpuct

/ / dtgzb t)dpodt
-/ / )dtdpo
= /R ¢(X(0),0)dpo

—/Rqﬁ(-,O)dpo-
We also have by (I.14),
/OOO/R(vﬁw—i-vZax(ﬁ)dptdt
= [ [00x(®.6)+ o(X (0 00:00X (@), (X 1), ot
_ / h / DB(X (1), £) + v(X (1), )9 d(X (1), 1) Juodpodt
= [ [@ox .0+ X000 ). )i

/ / ZO(X (1), vodpodt
/(/ GO (0,00t ) i
/ H(X(0), 0)undpy

= —/R¢ -, 0)vodpo.

As a result, the pair p and v is a weak solution of the SPS (|1.1)) with initial conditions (]1.2]).
3. In view of (.14) and (i) of Theorem [L.2]

/—Uxt dpi(x / X )2dpq
/ X dpo

/R %v(az, s)%dps ()

29



for almost every 0 < s < t. Moreover, part (iii) of Theorem implies

d1 )
0> gﬁ()((w,t) _ X(21) 2

= 2 (X, 1) = X (2 0)@X (1) = AX(2,1) — 5 (X(w,1) = X(2,0))

- t% (X (w, 1) — X (2, ) (0(X (w, 1), £) — v(X (2, 1), 1)) — %(X(w, B = X(24))

for Lebesgue almost every ¢t > 0 and w, z € E. Here E C R is py measurable and py(E) = 1.
Without loss of generality, we may assume E is a countable union of closed sets (part ¢ of
Theorem 1.19 in [9]).
In particular, we have shown that holds for x,y belonging to the forward image of
E under X (t)
X()(E) :={X(w,t) eR:w e E}.

By part (ii) of Theorem [1.2 we may assume that X (¢) : R — R is continuous. It follows
that X (¢)(F) is Borel measurable (see Proposition [A.1]). Furthermore,

X(t) [X(6)(E) D E,

p(X () (E)) = po(X () [X(1)(E)]) = po(E) = 1.

Consequently, ([1.7) holds on a Borel subset of full measure for p;, and we conclude part (i7)
of this corollary.

A Measurability of a continuous image

In this appendix, we will prove the following elementary assertion which was used in the
proof of Corollary [I.4]

Proposition A.1. Suppose f : R — R is continuous and C = |J;.y Ci and each C; C R s
closed. Then f(C') is Borel measurable.

Proof. For each ¢ € N, we may write

C;=RNC; = (U[k,k+1]> NnCi=J([kk+1nC).

keZ keZ

As the forward image distributes over unions,

F(C) = f([k k+1]nCy).

kEZ
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Since [k, k+1]NC; is compact and f is continuous, f([k,k+1]NC;) is compact. As a result,
f(C) is a countable union of compact subsets of R and is thus Borel measurable. Hence,

fe)y=Jrey

1€N

is also Borel. O
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