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Abstract. We analyze linear McKean--Vlasov forward-backward SDEs arising in leader-follower
games with mean-field type control and terminal state constraints on the state process. We establish
an existence and uniqueness of solutions result for such systems in time-weighted spaces as well as
a convergence result of the solutions with respect to certain perturbations of the drivers of both the
forward and the backward component. The general results are used to solve a novel single player
model of portfolio liquidation under market impact with expectations feedback as well as a novel
Stackelberg game of optimal portfolio liquidation with asymmetrically informed players.
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1. Introduction and overview. Mean field games (MFGs) are a powerful tool
to analyze strategic interactions in large populations when each individual player has
only a small impact on the behavior of other players. Introduced independently by
Huang, Malham\'e, and Caines [31] and Lasry and Lions [37], MFGs have received
considerable attention in the probability and stochastic control literature in the last
decade. A probabilistic approach to solving MFGs was introduced by Carmona and
Delarue in [13]. Using a maximum principle of Pontryagin type, they showed that
solving the MFG reduces to solving a McKean--Vlasov forward-backward SDE (FB-
SDE) of the form

(1.1)

\left\{ 
  
  

dXt = b(t,Xt, Yt,\scrL (Xt, Yt)) dt+ \sigma dWt,

 - dYt = h(t,Xt, Yt,\scrL (Xt, Yt)) dt - Zt dWt,

X0 = \chi , YT = l(XT ,\scrL (XT )),

where X is the state of the representative player, Y is the adjoint variable, and \scrL (\cdot )
denotes the law of a stochastic process. In MFGs with common noise [2, 3], the de-
pendence of the coefficients on the law of the process (X,Y ) is of conditional form.
FBSDEs of the form (1.1) also arise in mean-field control (MFC) problems [1, 4, 14]
and in MFGs with a major player [9, 10, 16] when formulating stochastic maximum
principles. Different types of MFGs with a major player have been considered in the
literature. Nash equilibria in games between many small players and a single major
player have been analyzed in, e.g., [12, 15, 29, 30, 39]. Leader-follower (``Stackelberg"")
games of mean-field type between a major and many minor players have been studied

\ast Received by the editors January 30, 2019; accepted for publication (in revised form) April 3,
2020; published electronically July 27, 2020.

https://doi.org/10.1137/19M1241878
Funding: This work was financially supported by the TRCRC 190, Rationality and Competi-

tion: The Economic Performance of Individuals and Firms. The first author was supported by a Tier
2 grant, Nonstandard BSDEs in Mathematical Finance: Theory, Application, Numerical Methods.

\dagger Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong (fuguanxing725@gmail.com).

\ddagger Department of Mathematics, and School of Business and Economics, Humboldt-Universit\"at zu
Berlin, Unter den Linden 6, 10099 Berlin, Germany (horst@math.hu-berlin.de).

2078

D
ow

nl
oa

de
d 

04
/0

3/
23

 to
 1

58
.1

32
.1

61
.1

85
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/19M1241878
mailto:fuguanxing725@gmail.com
mailto:horst@math.hu-berlin.de


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MFG WITH STATE CONSTRAINT 2079

in, e.g., [9, 10]. These games can be viewed as leader-follower games between the
major player and a representative minor player in which the leader's (major player's)
optimization problem is a MFC control problem where the state dynamics follows
a controlled FBSDE that characterizes the follower's (minor player's) optimal re-
sponse to the leader's control. A very different class of leader-follower games, namely
principal-agent games, has been considered in, e.g., [19, 20, 21, 22]. In these models,
optimal contracts can be characterized by (F)BSDE without mean-field terms. A
mean-field principal-agent model has been studied in the recent work by [23].

1.1. McKean--Vlasov FBSDE with terminal state constraint. In this pa-
per, we study a novel class of leader-follower games with asymmetrically informed
players and terminal state constraint on the state processes in which both the leader
and the follower solve mean-field control problems. Our games naturally arise in
Stackelberg games of optimal portfolio liquidation.

Formulating a novel stochastic maximum principle we show that the analysis of
the leader-follower game reduces to solving linear McKean--Vlasov FBSDEs of the
form

(1.2)

\left\{ 
  
  

dQt =
\bigl( 
 - \Lambda 1

tRt  - \Lambda 2
t\BbbE 
\bigl[ 
\gamma tQt| \scrF 0

t

\bigr] 
+ f t

\bigr) 
dt,

 - dRt =
\bigl( 
\Lambda 4
tQt + \Lambda 3

t\BbbE [\zeta tRt| \scrF 0
t ] + \Lambda 5

t\BbbE [\varrho tQt| \scrF 0
t ] + gt

\bigr) 
dt - Zt dWt,

Q0 = \chi , QT = 0,

with given initial and terminal conditions for the forward and unspecified terminal con-
dition for the backward process. Here, W = (W,W 0) is a multidimensional Brownian
motion generating the filtration \BbbF = (\scrF t)t\geq 0 and \BbbF 0 = (\scrF 0

t )t\geq 0 is the filtration gen-
erated by W 0. The special case \Lambda 2 = \Lambda 3 = \Lambda 5 = f = g = 0 arises in the single
player portfolio liquidation models under market impact studied in, e.g., [5, 27]. The
special case \Lambda 2 = \Lambda 5 = f = g = 0 was recently analyzed in [25] in the framework
of a MFG of optimal portfolio liquidation. In such models, both the initial and the
terminal condition of the state sequence are given. The terminal state constraint on
the state process results in a singular terminal value of the value function and hence
an unspecified terminal value of the adjoint equation arising in the stochastic maxi-
mum principle, which is usually given by the derivative of the terminal payoff. A class
of stochastic optimal control problems with the terminal states being constrained to
a convex set was studied by [33]. They assumed a strict invertibility of the diffu-
sion term with respect to the control. This assumption is not satisfied in portfolio
liquidation models where the state dynamic is degenerate.

We prove a general existence and uniqueness of solutions result for the system
(1.2) under boundedness assumptions on the model parameters that allows us to solve
single player portfolio liquidation problems with private information and expectations
feedback. The existence and uniqueness result is complemented by a convergence
result for the solution of (1.2) with respect to the parameters (f, g) that allows us
to formulate a stochastic maximum principle for leader-follower games of portfolio
liquidation with asymmetrically informed players.

The existence and uniqueness of solutions to (1.2) is obtained via two nested con-
tinuation arguments. Standard continuation methods for McKean--Vlasov FBSDEs
established in, e.g., [3, 11] do not apply to the system (1.2), due to the unknown
terminal value of the backward process. In order to overcome this problem we make
a linear ansatz R = AQ+H, from which we derive an exogenous BSDE with singular
terminal condition for the process A, and a BSDE with known asymptotic behavior
at the terminal time for the process H. The driver of the latter BSDE depends on
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2080 GUANXING FU AND ULRICH HORST

the unbounded process A. The nature of the FBSDE for (Q,H) is different from
[25] where a similar ansatz gave a BSDE with known terminal condition. Analyzing
simultaneously the triple (Q,H,R) allows us to prove the fixed-point condition arising
in the application of the continuation method in a suitable space.

Our second main result is a convergence result for the solution (Q,R) to the
system (1.2) with respect to the ``input"" (f, g). Our convergence is not in the L2 sense
as in the standard FBSDE literature [38, 42] but rather in the L\nu (1 < \nu < 2) sense.
Specifically, we consider the convergence of the solutions (Qn, Rn) to a penalized
version of (1.2) under a uniform L2 boundedness assumption on the sequence (f

n
, gn).

For such inputs a result of Koml\'os [35] guarantees the Cesaro convergence of (f
n
, gn)

along a subsequence in L\nu (1 < \nu < 2). We prove the convergence of the solutions
in the same sense. To this end, we define auxiliary processes to decouple the system
(1.2) and then show that these processes solve the system (1.2) in the right spaces.
The convergence result then follows from the previously established uniqueness result.

1.2. Applications to optimal portfolio liquidation. Models of optimal port-
folio liquidation have received substantial attention in the financial mathematics and
stochastic control literature in recent years; see [5, 26, 27, 36, 41] among many others.
In such models, the controlled state sequence typically follows a dynamic of the form

Xt = x - 
\int t

0

\xi s ds,

where x \in \BbbR is the initial portfolio and \xi is the trading rate. The set of admissible
controls is confined to those processes \xi that satisfy almost surely the liquidation
constraint XT = 0. It is typically assumed that the unaffected price process against
which the trading costs are benchmarked follows some Brownian martingale S and
that the trader's transaction price is given by

\widetilde St = St  - 
\int t

0

\kappa s\xi s ds - \eta t\xi t.

The integral term accounts for permanent price impact; the term \eta t\xi t accounts for
instantaneous impact that does not affect future transactions. The trader's objective
is then to minimize the cost functional

J(\xi ) = \BbbE 

\Biggl[ \int T

0

\bigl( 
\kappa s\xi sXs + \eta s| \xi s| 2 + \lambda s| Xs| 2

\bigr) 
ds

\Biggr] 

over all admissible liquidation strategies. We refer to [5, 27] for an interpretation of
the processes \eta , \kappa , \lambda .

1.2.1. Single player model with expectations feedback. Standard port-
folio liquidation models assume that a trader's permanent price impact is driven by
his observable transactions. If the transactions are not directly observable, then it is
natural to assume that the permanent impact is driven by the market's expectation
about the trader's transactions as in [1, 6], given the publicly observable information.

In section 3 we solve a single player liquidation model with expectations feed-
back where uncertainty is generated by the multidimensional Brownian motion W =
(W,W 0). The Brownian motion W 0 describes a commonly observed random factor
that drives market dynamics; the Brownian motion W is private information to the
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MFG WITH STATE CONSTRAINT 2081

trader. Specifically, we assume that the trader's transaction price is given by

(1.3) \widetilde St = St  - 
\int t

0

\bigl\{ 
\kappa s\BbbE [\xi s| \scrF 0

s ] + \widetilde gs
\bigr\} 
ds - \eta t\xi t,

where S is an \BbbF 0 martingale, \BbbE [\xi s| \scrF 0
s ] is the market's expectation about the trader's

strategy, and \widetilde g is an \BbbF 0-adapted process that will be endogenized in the next subsec-
tion. Assuming a standard quadratic running cost function as in [5, 27], the objective
of the trader is then to minimize the functional

(1.4) J(\xi ) = \BbbE 

\Biggl[ \int T

0

\kappa tXt\BbbE [\xi t| \scrF 0
t ] + \widetilde gtXt + \eta t\xi 

2
t + \lambda tX

2
t dt

\Biggr] 
,

subject to the state dynamics

dXt =  - \xi t dt,

X0 = x, XT = 0.
(1.5)

We allow the cost coefficients to be private information, i.e., to be \BbbF adapted. This
justifies the conditional expectation term in the price dynamics. A standard stochastic
maximum principle suggests that the optimal strategy is given by

(1.6) \xi \ast t =
Yt  - \BbbE [\kappa tXt| \scrF 0

t ]

2\eta t
,

where X is the portfolio process, Y is the adjoint variable, and (X,Y ) solves (1.2)
with f = 0, g = \widetilde g:
(1.7)\left\{ 
      
      

dXt =  - Yt  - \BbbE [\kappa tXt| \scrF 0
t ]

2\eta t
dt,

 - dYt =

\biggl( 
\kappa t\BbbE 

\biggl[ 
Yt

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
 - \kappa t\BbbE 

\biggl[ 
1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\kappa tXt| \scrF 0

t ] + 2\lambda tXt + \widetilde gt
\biggr) 

dt - Zt dWt,

X0 = x, XT = 0.

If the terms \BbbE [\kappa tXt| \scrF 0
t ] and \kappa t\BbbE 

\Bigl[ 
1

2\eta t

\bigm| \bigm| \bigm| \scrF 0
t

\Bigr] 
\BbbE [\kappa tXt| \scrF 0

t ] drop out of the FBSDE

system, then the system reduces to that arising in the MFG analyzed in [25]. In the
next subsection we introduce a model extension where the privately informed trader
is the follower in a Stackelberg game of optimal portfolio liquidation.

1.2.2. Mean-field type Stackelberg game with asymmetric information.
In section 4 we solve a Stackelberg game of optimal portfolio liquidation with asym-
metrically informed players. The leader (she) has the first-mover advantage while the
follower (he) has an informational advantage.

We assume again that uncertainty is generated by the multidimensional Brownian
motion W = (W,W 0) and that W 0 describes a commonly observed market factor
while W is private information to the follower. For a given \BbbF 0-adapted strategy \xi 0 of
the Stackelberg leader, we assume that the follower's liquidation problem is the same
as in the previous subsection with

\widetilde g = \widetilde \kappa 0\xi 0
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2082 GUANXING FU AND ULRICH HORST

for some \BbbF 0-adapted process \widetilde \kappa 0 that measures the impact of the leader on the follower's
transaction price.1 Let \xi \ast (\cdot ) be the follower's optimal response function to the leader's
strategy and put \mu \ast = \BbbE [\xi \ast (\cdot )| \scrF 0]. Following the standard approach we assume that
the leader's transaction price is

(1.8) \widetilde S0
t = St  - 

\int t

0

\kappa 0
s\mu 

\ast 
s ds - 

\int t

0

\kappa 0
s\xi 

0
s ds - \eta 0t \xi 

0
t

for \BbbF 0-adapted coefficients \eta 0, \kappa 0, \kappa 0. The difference is that now the leader controls the
transaction price both directly and indirectly through the dependence of the follower's
optimal response on her trading strategy.

We assume that the leader's cost functional is given by

(1.9) J0(\xi 0) = \BbbE 

\Biggl[ \int T

0

\bigl( 
\kappa 0
t\mu 

\ast 
tX

0
t + \kappa 0

tX
0
t \xi 

0
t + \eta 0t (\xi 

0
t )

2 + \lambda 0
t (X

0
t )

2 + \lambda t(\mu 
\ast 
t )

2
\bigr) 
dt

\Biggr] 
,

where X0 denotes her portfolio process and \lambda 0, \lambda are \BbbF 0-adapted. The additional cost
term \lambda t(\mu 

\ast 
t )

2 serves two purposes. Mathematically, it guarantees that the optimiza-
tion problem is convex if \lambda t is large enough; economically it prevents the followers
from excessive liquidity provision in equilibrium.2

The leader's control problem is a MFC problem with state process (X0, X, Y ),
where (X,Y ) solves the FBSDE (1.7) with \widetilde g = \widetilde \kappa 0\xi 0 and

dX0
t =  - \xi 0t dt,

X0
0 = x, X0

T = 0.
(1.10)

In particular, the dynamics of the controlled state processes in the leader's problem
follow an ODE-FBSDE system rather than an SDE as is usually the case in single
player optimization problems. This renders the analysis of the leader's problem chal-
lenging when one imposes a strict liquidation constraint. In order to overcome this
problem we combine two methods that have previously been applied to solve liquida-
tion problems, namely solving an FBSDE system with unknown terminal condition
on the backward component of the form (1.2) and the penalization approach where
the liquidation constraint is replaced by an increasing penalization of open positions
at the terminal time. The latter leads to a sequence of FBSDE systems of the form
(1.2) where the terminal condition on the forward process is replaced by a terminal
condition on the backward process that reflects the penalization. The solutions to
the unconstrained problems converge to the solution of the corresponding constrained
problem under suitable conditions.

Having solved the follower's problem by solving a system of the form (1.2), by
using the penalization approach we then solve a family of unconstrained problems
of the leader whose optimal strategies converge to some limit \xi 0,\ast in a Cesaro sense.
Subsequently, we prove that the limit admits the representation

(1.11) \xi 0,\ast t =
pt + \BbbE [\widetilde \kappa 0

t qt| \scrF 0
t ] - \kappa 0

tX
0,\ast 
t

2\eta 0t

1It is implicitly assumed that \xi 0 is observable to the follower. This seems customary in Stackel-
berg games. Relaxing this assumption of ``sunshine trading"" would result in a leader-follower game
with incomplete information that would be even more complex to study.

2We thank C.A. Lehalle for providing this interpretation.
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MFG WITH STATE CONSTRAINT 2083

in terms of the state equation (1.10) and the adjoint equations
(1.12)

 - dpt =

\biggl( 
\kappa 0
t\BbbE 
\biggl[ 
Yt

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
 - \kappa 0

t\BbbE 
\biggl[ 

1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\kappa tXt| \scrF 0

t ] + \kappa 0
t \xi 

0,\ast 
t + 2\lambda 0

tX
0,\ast 
t

\biggr) 
dt - Zt dW

0
t

and
(1.13)\left\{ 
      
      

 - dqt =

\biggl( 
 - rt
2\eta t

 - \BbbE 
\bigl[ 
\kappa tqt| \scrF 0

t

\bigr] 1

2\eta t
+ f t

\biggr) 
dt,

 - drt =

\biggl( 
 - 2\lambda tqt + \kappa t\BbbE 

\biggl[ 
rt
2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
+ \kappa t\BbbE 

\biggl[ 
1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\kappa tqt| \scrF 0

t ] + gt

\biggr) 
dt - Zt dWt,

q0 = 0, qT = 0,

where

f t =
\kappa 0
tX

0,\ast 
t

2\eta t
+

\lambda t

\eta t
\BbbE 
\biggl[ 
Yt

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
 - \lambda t

\eta t
\BbbE 
\biggl[ 

1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\kappa tXt| \scrF 0

t ]

and

gt = - \kappa t\BbbE 
\biggl[ 

1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\kappa 0
tX

0,\ast 
t  - 2\lambda t\kappa t\BbbE 

\biggl[ 
1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] \biggl( 
\BbbE 
\biggl[ 
Yt

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 

 - \BbbE 
\biggl[ 

1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\kappa tXt| \scrF 0

t ]

\biggr) 
.

The system (1.13) is again a special case of (1.2); it depends on the previously con-
structed process \xi 0,\ast . We finally prove a novel maximum principle that states that if
for some process \xi 0,\ast the system (1.10), (1.12), and (1.13) has a solution, then \xi 0,\ast is
an optimal strategy for the leader. Here, p is the adjoint variable to the ODE compo-
nent of the state process and (q, r) are the adjoint variables to the FBSDE component
of the state process.

To the best of our knowledge, no numerical methods for simulating the mean-field
FBSDEs arising in our Stackelberg game are yet available. In order to get some quan-
titative insight into the equilibrium dynamics, we therefore simulate a deterministic
benchmark model with constant coefficients. In this case, our conditional mean-field
FBSDEs reduce to deterministic forward-backward ODEs for which numerical meth-
ods exist. Our simulations suggest that the solution to the Stackelberg game is very
different from the solution to single player models. In particular, beneficial round-
trips may exist for the follower. This is not the case in deterministic single player
models; in the Stackelberg game the follower may act as a liquidity provider for the
leader. Furthermore, depending on the strength of interaction the presence of the
follower may (or may not) reduce the leader's trading cost.

Remark 1.1. A special case of the system (1.5), (1.7), (1.10), (1.12), and (1.13)
arises in MFGs of optimal portfolio liquidation between a major and many minor
players. Thus, as a byproduct we obtain an extension of the MFG in [25] to a MFG
with a major player. A related model without liquidation constraint and without
any feedback of the major player's strategy on the minor players' transaction price
has been considered in, e.g., [24, 32]. MFGs of optimal trading with incomplete
information but without the strict liquidation constraint have also been considered
in [17, 18]. The incompleteness of information arises from an unobservable latent
process. The nature of the FBSDEs arising in our work and [17, 18] is very different:
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2084 GUANXING FU AND ULRICH HORST

the mean-field terms in [17, 18] are exogenous (see [17, equation (3.16)] and [18,
equation (3.11)]) while the mean-field term in our work is endogenous. Moreover, in
[17, 18] there are multiple groups of traders with heterogeneous beliefs (as in [7]),which
is not the case in our model.

The rest of this paper is organized as follows. Our general existence, uniqueness,
and convergence results for the FBSDE (1.2) are established in section 2. The MFC
problem and the Stackelberg game of optimal portfolio liquidation introduced above
are solved in sections 3 and 4, respectively. Our numerical simulations are reported
in section 4.3.

Notation and conventions. Throughout, we work on probability space (\Omega ,\scrF ,
\BbbP ), on which there exist two independent Brownian motions W 0 and W . We denote
by \BbbF 0 = (\scrF 0

t )0\leq t\leq T and \BbbF = (\scrF t)0\leq t\leq T the filtrations generated by W 0 and W ,
augmented by the \BbbP null sets, respectively, where W = (W,W 0). For a subspace
\BbbI \subseteq \BbbR and a filtration \BbbG , we introduce the following spaces:

L0
\BbbG ([0, T ]\times \Omega ; \BbbI ) =\{ X : X : [0, T ]\times \Omega \rightarrow \BbbI and X is \BbbG progressively measurable

and \BbbI valued\} 

Lk
\BbbG ([0, T ]\times \Omega ; \BbbI ) =

\Biggl\{ 
X \in L0

\BbbG ([0, T ]\times \Omega ; \BbbI ) : \BbbE 

\Biggl[ \int T

0

| Xt| k dt
\Biggr] 
< \infty 

\Biggr\} 
, k \geq 1,

L\infty 
\BbbG ([0, T ]\times \Omega ; \BbbI ) =

\Biggl\{ 
X \in L0

\BbbG ([0, T ]\times \Omega ; \BbbI ) : ess sup
(t,\omega )\in [0,T ]\times \Omega 

| Xt(\omega )| < \infty 
\Biggr\} 
.

The space L0
\BbbG ([0, T ) \times \Omega ; \BbbI ) is defined similarly as L0

\BbbG ([0, T ] \times \Omega ; \BbbI ). For k \geq 1, the

space Lk
\BbbG ([0, T ]\times \Omega ; \BbbI ) is equipped with the norm \| X\| Lk =

\bigl( 
\BbbE 
\bigl[ \int T

0
| Xt| k dt

\bigr] \bigr) 1/k
. The

spaces

S2
\BbbG ([0, T ]\times \Omega ; \BbbI ) =

\biggl\{ 
X \in L0

\BbbG ([0, T ]\times \Omega ; \BbbI ) : \BbbE 
\biggl[ 

sup
0\leq t\leq T

| Xt| 2
\biggr] 
< \infty 

\biggr\} 
,

S2, - 
\BbbG ([0, T )\times \Omega ; \BbbI ) =

\biggl\{ 
X \in L0

\BbbG ([0, T )\times \Omega ; \BbbI ) : sup
\epsilon >0

\BbbE 
\biggl[ 

sup
0\leq t\leq T - \epsilon 

| Xt| 2
\biggr] 
\leq C

\biggr\} 

are equipped with the respective norms

\| X\| S2 =

\biggl( 
\BbbE 
\biggl[ 

sup
0\leq t\leq T

| Xt| 2
\biggr] \biggr) 1/2

, \| X\| S2, - = sup
\epsilon \geq 0

\biggl( 
\BbbE 
\biggl[ 

sup
0\leq t\leq T - \epsilon 

| Xt| 2
\biggr] \biggr) 1/2

.

For \beta \in \BbbR we introduce the space

\scrH \beta ([0, T ]\times \Omega ; \BbbI ) =

\Biggl\{ 
X \in \BbbS 2\BbbF ([0, T ]\times \Omega ; \BbbI ) : \BbbE 

\Biggl[ 
sup

t\in [0,T ]

\bigm| \bigm| \bigm| \bigm| 
Xt

(T  - t)\beta 

\bigm| \bigm| \bigm| \bigm| 
2
\Biggr] 
< \infty 

\Biggr\} 

with

\| X\| \beta =

\Biggl( 
\BbbE 

\Biggl[ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| 
Xt

(T  - t)\beta 

\bigm| \bigm| \bigm| \bigm| 
2
\Biggr] \Biggr) 1/2

.

Finally, we put

L2, - 
\BbbG ([0, T )\times \Omega ; \BbbI ) =

\Biggl\{ 
X \in L0

\BbbG ([0, T )\times \Omega ; \BbbI ) : for each \epsilon > 0 \BbbE 

\Biggl[ \int T - \epsilon 

0

| Xt| 2 dt
\Biggr] 
< \infty 

\Biggr\} 
.
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For \phi \in L\infty 
\BbbG ([0, T ] \times \Omega ; \BbbI ), we denote by \| \phi \| = esssup(t,\omega )\in [0,T ]\times \Omega | \phi (t, \omega )| and \phi  \star =

essinf(t,\omega )\in [0,T ]\times \Omega \phi (t, \omega ) its upper and lower bounds, respectively. When \BbbI = \BbbR , for
simplicity we will write L2

\BbbF instead of L2
\BbbF ([0, T ]\times \Omega ;\BbbR ); the same convention holds for

other spaces. Finally, we adopt the convention that a positive constant C may vary
from line to line but always depends on the underlying generic constants.

2. The McKean--Vlasov FBSDE. In this section, we prove a general existence
and uniqueness of solutions result (in a suitable space) for the FBSDE (1.2) along with
the convergence result with respect to the processes (f, g). We assume throughout
that the system's coefficients satisfy the following assumption.

Assumption 2.1. (i) The stochastic processes \gamma , \zeta , \varrho , and \Lambda i (i = 1, . . . , 5)
belong to L\infty 

\BbbF .
(ii) There exist constants \theta i > 0 (i = 1, 2) such that (recall that \phi  \star denotes the

lower bound of an L\infty 
\BbbF random variable)

\biggl( 
\Lambda 1  - \| \gamma \| | \Lambda 2| 2

2\theta 1
 - \| \Lambda 3\| | \zeta | 2

2\theta 2

\biggr) 

 \star 

> 0

and \biggl( 
\Lambda 4  - \| \gamma \| \theta 1

2
 - \| \Lambda 3\| \theta 2

2
 - \| \Lambda 5\| \| \varrho \| 

\biggr) 

 \star 

> 0.

(iii) The initial condition \chi belongs to L2
\BbbF and (f, g) \in S2

\BbbF \times L2
\BbbF .

The linear ansatz R = AQ+H on [0, T ) results in the following FBSDE for the
triple (Q,H,R):

(2.1)

\left\{ 
          
          

dQt =
\bigl( 
 - \Lambda 1

tRt  - \Lambda 2
t\BbbE 
\bigl[ 
\gamma tQt| \scrF 0

t

\bigr] 
+ f t

\bigr) 
dt,

 - dHt =
\bigl( 
 - \Lambda 1

tAtHt  - \Lambda 2
tAt\BbbE [\gamma tQt| \scrF 0

t ] +Atf t + \Lambda 3
t\BbbE [\zeta tRt| \scrF 0

t ]

+\Lambda 5
t\BbbE [\varrho tQt| \scrF 0

t ] + gt
\bigr) 
dt - ZH

t dWt,

 - dRt =
\bigl( 
\Lambda 4
tQt + \Lambda 3

t\BbbE [\zeta tRt| \scrF 0
s ] + \Lambda 5

t\BbbE [\varrho tQt| \scrF 0
t ] + gt

\bigr) 
dt - ZR

t dWt,

R = AQ+H, t \in [0, T ),

Q0 = \chi , QT = 0,

where A satisfies the singular BSDE

(2.2)  - dAt =
\bigl( 
\Lambda 4
t  - \Lambda 1

tA
2
t

\bigr) 
dt - ZA

t dWt, lim
t\nearrow T

At = \infty .

The singular terminal condition on A results from the terminal state constraint on Q.
By Assumption 2.1(i,ii) both \Lambda 1 and (\Lambda 1) - 1 are bounded. Thus, it follows from [27,
Proposition 6.1 and Theorem 6.3] that there exists a unique pair (A,ZA) \in \scrH  - 1\times L2, - 

\BbbF 
that satisfies (2.2) as well as the following estimate:

(2.3) 0 <
1

\BbbE 
\Bigl[ \int T

t
\Lambda 1
u du

\bigm| \bigm| \bigm| \scrF t

\Bigr] \leq At \leq 
1

(T  - t)2
\BbbE 

\Biggl[ \int T

t

1

\Lambda 1
u

+ (T  - u)2\Lambda 4
u du

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] 
.

It follows from (2.3) that A is nonnegative and that for all 0 \leq t1 < t2 \leq T ,
(2.4)

e - 
\int t2
t1

\Lambda 1
sAs ds \leq C

\biggl( 
T  - t2
T  - t1

\biggr) \beta 

\leq C

\biggl( 
T  - t2
T  - t1

\biggr) \tau 

, where \beta = \Lambda 1
 \star /\| \Lambda 1\| and 0 \leq \tau \leq \beta .
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2086 GUANXING FU AND ULRICH HORST

2.1. Existence and uniqueness of solutions. In view of [25], we expect to
find a solution (Q,H,R,ZH , ZR) to (2.1) such that (Q,R) \in \scrH \alpha \times L2

\BbbF for some \alpha > 0.
Unlike in [25] the process H is only defined on [0, T ). The following argument shows
that if we can find a solution such that (Q,R) \in \scrH \alpha \times L2

\BbbF , then there exists a process

H \in S2, - 
\BbbF that satisfies the second backward equation in (2.1). In fact, for any

0 \leq t < T , let us put

Ht = \BbbE 

\Biggl[ \int T

t

e - 
\int s
t
\Lambda 1

uAu duKs ds

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] 
,

with

Ks =
\bigl( 
 - \Lambda 2

sAs\BbbE [\gamma sQs| \scrF 0
s ] +Asfs + \Lambda 3

s\BbbE [\zeta sRs| \scrF 0
s ] + \Lambda 5

s\BbbE [\varrho sQs| \scrF 0
s ] + gs

\bigr) 
.

The following argument shows that the conditional expectation is in fact well defined
and that H \in S2, - 

\BbbF . By (2.3) and (2.4),

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int T

t

e - 
\int s
t
\Lambda 1

uAu duKs ds

\bigm| \bigm| \bigm| \bigm| \bigm| 

\leq C

\int T

t

(T  - s)\beta  - 1

(T  - t)\beta 
\bigl( 
\BbbE [| Qs| | \scrF 0

s ] + | fs| 
\bigr) 
ds+ C

\int T

0

\bigl( 
\BbbE [| Rs| + | Qs| | \scrF 0

s ] + | gs| 
\bigr) 
ds

\leq C sup
0\leq s\leq T

\BbbE [| Qs| | \scrF 0
s ] + C sup

0\leq s\leq T
| fs| + C

\int T

0

\bigl( 
\BbbE [| Rs| + | Qs| | \scrF 0

s ] + | gs| 
\bigr) 
ds.

(2.5)

From this and Doob's maximal inequality, we obtain a constant C > 0 such that for
any \epsilon > 0

\BbbE 
\biggl[ 

sup
0\leq t\leq T - \epsilon 

| Ht| 2
\biggr] 
\leq C

\bigl( 
\| Q\| 2\alpha + \| f\| 2S2 + \| R\| 2L2 + \| g\| 2L2

\bigr) 
.

Moreover, the martingale representation theorem yields the existence of a process
ZH \in L2, - 

\BbbF such that (H,ZH) satisfies the second equation in (2.1).

Remark 2.2. We notice that it is not clear if the limit limt\rightarrow T

\int T

t
e - 

\int s
t
\Lambda 1

uAu duKs ds
exists. That is, from the definition of the processH it is not clear if the limit limt\rightarrow T Ht

exists. This is why we consider S2, - 
\BbbF as the (canonical) state space for the process H.

In view of the preceding argument our goal is to establish the existence and
uniqueness of a solution (Q,H,R,ZH , ZR) \in \scrH \alpha \times S2, - 

\BbbF \times L2
\BbbF \times L2, - 

\BbbF \times L2, - 
\BbbF . To this

end, we apply a nested continuation method to the system

(2.6)

\left\{ 
          
          

dQt =
\bigl( 
 - \Lambda 1

tRt  - \Lambda 2
t\BbbE 
\bigl[ 
\gamma tQt| \scrF 0

t

\bigr] 
+ f t

\bigr) 
dt,

 - dHt =
\bigl( 
 - \Lambda 1

tAtHt  - \Lambda 2
tAt\BbbE [\gamma tQt| \scrF 0

t ] +Atf t + p\Lambda 3
t\BbbE [\zeta tRt| \scrF 0

t ]

+p\Lambda 5
t\BbbE [\varrho tQt| \scrF 0

t ] + gt + ft
\bigr) 
dt - ZH

t dWt,

 - dRt =
\bigl( 
\Lambda 4
tQt + p\Lambda 3

t\BbbE [\zeta tRt| \scrF 0
s ] + p\Lambda 5

t\BbbE [\varrho tQt| \scrF 0
t ] + gt + ft

\bigr) 
dt - ZR

t dWt,

R = AQ+H, t \in [0, T ),

Q0 = \chi , QT = 0.

In a first step, we prove the existence of a unique solution to the above system
for p = 0. Subsequently, we show that the solution result extends to p = 1.
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Lemma 2.3. If p = 0, then the FBSDE (2.6) has a solution in \scrH \alpha \times S2, - 
\BbbF \times L2

\BbbF \times 
L2, - 
\BbbF \times L2, - 

\BbbF for any f \in L2
\BbbF , where 0 < \alpha < \beta .

Proof. Notice that the system (2.6) is still coupled for p = 0. To solve it, we
apply a continuation method to the following system:
(2.7)\left\{ 
       
       

dQt =
\bigl( 
 - \Lambda 1

tRt  - p\Lambda 2
t\BbbE 
\bigl[ 
\gamma tQt| \scrF 0

t

\bigr] 
+ f t + b\prime t

\bigr) 
dt,

 - dHt =
\bigl( 
 - \Lambda 1

tAtHt  - p\Lambda 2
tAt\BbbE [\gamma tQt| \scrF 0

t ] +Atf t + gt + ft + f \prime 
t

\bigr) 
dt - ZH

t dWt,

 - dRt =
\bigl( 
\Lambda 4
tQt + gt + ft + f \prime 

t  - Atb
\prime 
t

\bigr) 
dt - ZR

t dWt,

R = AQ+H, t \in [0, T ),

Q0 = \chi , QT = 0.

Step 1. For p = 0, the system (2.7) is solvable in \scrH \alpha \times S2, - 
\BbbF \times L2

\BbbF \times L2, - 
\BbbF \times L2, - 

\BbbF 
for any (b\prime , f \prime ) \in \scrH \alpha \times \scrH \alpha  - 1.

If p = 0, then the system (2.7) is decoupled, and we let H be

Ht = \BbbE 

\Biggl[ \int T

t

e - 
\int s
t
\Lambda 1

uAu du
\bigl( 
Asfs + gs + fs + f \prime 

s

\bigr) 
ds

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] 
, 0 \leq t < T.(2.8)

Moreover, by the estimate (2.4) and Doob's maximal inequality, we have for any \epsilon > 0,

(2.9) \BbbE 
\biggl[ 

sup
0\leq t\leq T - \epsilon 

| Ht| 2
\biggr] 
\leq C

\bigl( 
\| f\| 2S2 + \| g\| 2L2 + \| f\| 2L2 + \| f \prime \| 2\alpha  - 1

\bigr) 
,

where C is independent of \epsilon . Thus, H belongs to S2, - 
\BbbF . For each \epsilon > 0, martingale

representation implies the existence of a unique ZH \in L2
\BbbF ([0, T  - \epsilon ]\times \Omega ;\BbbR ) such that

(H,ZH) satisfies the second equation in (2.7). Uniqueness implies ZH \in L2, - 
\BbbF .

We now turn to the process Q. Taking R = AQ+H into the SDE for Q yields

(2.10) Qt = \chi e - 
\int t
0
\Lambda 1

uAu du +

\int t

0

e - 
\int t
s
\Lambda 1

uAu du
\bigl( 
 - \Lambda 1

sHs + fs + b\prime s
\bigr) 
ds, 0 \leq t \leq T.

Using monotone convergence and the estimate (2.9) this implies

\BbbE 

\Biggl[ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| 
Qt

(T  - t)\alpha 

\bigm| \bigm| \bigm| \bigm| 
2
\Biggr] 

\leq C

\left( 
 \| \chi \| 2L2 + \BbbE 

\left[ 
 
\Biggl( \int T

0

| Hs| 
(T  - s)\alpha 

ds

\Biggr) 2
\right] 
 + \| f\| 2S2 + \| b\prime \| 2\alpha 

\right) 
 

= C

\left( 
 \| \chi \| 2L2 + lim

\epsilon \searrow 0
\BbbE 

\left[ 
 
\Biggl( \int T - \epsilon 

0

| Hs| 
(T  - s)\alpha 

ds

\Biggr) 2
\right] 
 + \| f\| 2S2 + \| b\prime \| 2\alpha 

\right) 
 

\leq C

\biggl( 
\| \chi \| 2L2 + lim

\epsilon \searrow 0
\BbbE 
\biggl[ 

sup
0\leq t\leq T - \epsilon 

| Ht| 2
\biggr] 
+ \| f\| 2S2 + \| b\prime \| 2\alpha 

\biggr) 

\leq C
\bigl( 
\| \chi \| 2L2 + \| f\| 2S2 + \| g\| 2L2 + \| f\| 2L2 + \| f \prime \| 2\alpha  - 1 + \| b\prime \| 2\alpha 

\bigr) 
.

(2.11)

This shows that Q \in \scrH \alpha .
Moreover, since RT - \epsilon = AT - \epsilon QT - \epsilon +HT - \epsilon is square integrable and because the

coefficients in the third equation of (2.7) satisfy standard conditions for the solvability
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2088 GUANXING FU AND ULRICH HORST

of BSDEs on [0, T - \epsilon ] there exists a unique ZR \in L2
\BbbF ([0, T - \epsilon ]\times \Omega ;\BbbR ) such that (R,ZR)

satisfy the third equation of (2.7). Uniqueness implies ZR \in L2, - 
\BbbF .

We now show that R \in L2
\BbbF . To do so, we use a similar argument as in [25].

Integration by parts for the product QR on [0, T  - \epsilon ] yields

HT - \epsilon QT - \epsilon \leq AT - \epsilon Q
2
T - \epsilon +HT - \epsilon QT - \epsilon = QT - \epsilon RT - \epsilon 

= Q0R0  - 
\int T - \epsilon 

0

\Lambda 4
tQ

2
t dt - 

\int T - \epsilon 

0

Qt (gt + ft + f \prime 
t  - Abb

\prime 
t) dt

+

\int T - \epsilon 

0

QtZ
R
t dWt  - 

\int T - \epsilon 

0

\Lambda 1
tR

2
t dt+

\int T - \epsilon 

0

Rt(f t + b\prime t) dt,

which implies that

\int T - \epsilon 

0

\bigl( 
\Lambda 4
tQ

2
t + \Lambda 1

tR
2
t

\bigr) 
dt \leq | HT - \epsilon QT - \epsilon | + | Q0(A0Q0 +H0)| 

+

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int T - \epsilon 

0

Qt (gt + ft + f \prime 
t  - Abb

\prime 
t) dt

\bigm| \bigm| \bigm| \bigm| \bigm| 

+

\int T - \epsilon 

0

QtZ
R
t dWt +

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int T - \epsilon 

0

Rt(f t + b\prime t) dt

\bigm| \bigm| \bigm| \bigm| \bigm| .

(2.12)

Next, we show \BbbE 
\Bigl[ \int T - \epsilon 

0
QtZ

R
t dWt

\Bigr] 
= 0. Indeed, by the BDG inequality

\BbbE 
\biggl[ 

sup
0\leq t\leq T - \epsilon 

\bigm| \bigm| \bigm| \bigm| 
\int t

0

QsZ
R
s dWs

\bigm| \bigm| \bigm| \bigm| 
\biggr] 
\leq C\BbbE 

\Biggl( \int T - \epsilon 

0

Q2
t (Z

R
t )2 dt

\Biggr) 1
2

\leq C\BbbE 

\left[ 
 sup
0\leq t\leq T

| Qt| 
\Biggl( \int T - \epsilon 

0

(ZR
t )2 dt

\Biggr) 1
2

\right] 
 

\leq C\BbbE 
\biggl[ 

sup
0\leq t\leq T

| Qt| 2
\biggr] 
+ C\BbbE 

\Biggl[ \int T - \epsilon 

0

| ZR
t | 2 dt

\Biggr] 

< \infty .

(2.13)

For a localizing sequence of stopping times Tn it holds by dominated convergence that

\BbbE 

\Biggl[ \int T - \epsilon 

0

QtZ
R
t dWt

\Biggr] 
= lim

n\rightarrow \infty 
\BbbE 

\Biggl[ \int (T - \epsilon )\wedge Tn

0

QtZ
R
t dWt

\Biggr] 
= 0.

Taking expectations on both sides of (2.12) we thus have

\BbbE 

\Biggl[ \int T - \epsilon 

0

\bigl( 
\Lambda 4
tQ

2
t + \Lambda 1

tR
2
t

\bigr) 
dt

\Biggr] 

\leq \BbbE [| HT - \epsilon QT - \epsilon | ] + \| A0\| \BbbE [Q2
0] +

1

2
\BbbE [Q2

0] +
1

2
\BbbE [H2

0 ]

+ \delta \BbbE 

\Biggl[ \int T

0

R2
t dt

\Biggr] 
+

1

4\delta 
\BbbE 

\Biggl[ \int T

0

| f t + b\prime t| 2 dt
\Biggr] D
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+ \BbbE 

\Biggl[ 
sup

0\leq t\leq T
| Qt| 

\int T

0

| gt + ft + f \prime 
t  - Atb

\prime 
t| dt

\Biggr] 
(by Young's inequality)

\leq \BbbE [| HT - \epsilon QT - \epsilon | ] + C\BbbE [Q2
0] +

1

2
\BbbE [H2

0 ] + \delta \BbbE 

\Biggl[ \int T

0

R2
t dt

\Biggr] 

+ C\BbbE 

\Biggl[ \int T

0

| f t| 2 + | b\prime t| 2 dt
\Biggr] 

(\| A0\| is bounded by (2.3))

+ \BbbE 

\Biggl[ 
sup

0\leq t\leq T
| Qt| 

\int T

0

\bigm| \bigm| \bigm| \bigm| 
f \prime 
t

(T  - t)\alpha  - 1
(T  - t)\alpha  - 1 +

b\prime t
(T  - t)\alpha 

(T  - t)\alpha  - 1

\bigm| \bigm| \bigm| \bigm| dt
\Biggr] 

+ \BbbE 

\Biggl[ 
sup

0\leq t\leq T
| Qt| 

\int T

0

| gt + ft| dt
\Biggr] 

\leq \delta \BbbE 

\Biggl[ \int T

0

| Rt| 2 dt
\Biggr] 
+ C

\bigl( 
\BbbE [Q2

0] + \BbbE [| H2
0 | ] + \| Q\| 2\alpha + \| g\| 2L2 + \| f\| 2S2

+ \| f\| 2L2 + \| f \prime \| 2\alpha  - 1 + \| b\prime \| 2\alpha 
\bigr) 
+ \BbbE [| HT - \epsilon QT - \epsilon | ].

Assumption 2.1(ii) implies \Lambda 1
 \star > 0 and \Lambda 4

 \star > 0. Thus, by taking \delta = \Lambda 1
 \star /2 and taking

\epsilon \rightarrow 0, from (2.9) and (2.11) we get R \in L2
\BbbF .

Step 2. If (2.7) admits a solution for some p \in [0, 1] and for any (b\prime , f \prime ) \in 
\scrH \alpha \times \scrH \alpha  - 1, then there exists a constant d > 0, which does not depend on p, b\prime or f \prime ,
such that p+ d \in [0, 1] and the same result holds for p+ \widehat d for any \widehat d \in [0, d].

For fixed Q \in \scrH \alpha , since

 - d\Lambda 2\BbbE 
\bigl[ 
\gamma Q| \scrF 0

\bigr] 
+ b\prime \in \scrH \alpha ,  - d\Lambda 2A\BbbE [\gamma Q| \scrF 0] + f \prime \in \scrH \alpha  - 1,

there exists a solution ( \widetilde Q, \widetilde H, \widetilde R,Z
\widetilde H , Z

\widetilde R) \in \scrH \alpha \times S2, - 
\BbbF \times L2

\BbbF \times L2, - 
\BbbF \times L2, - 

\BbbF to the
following system:

(2.14)

\left\{ 
              
              

d \widetilde Qt =
\Bigl( 
 - \Lambda 1

t
\widetilde Rt  - p\Lambda 2

t\BbbE 
\Bigl[ 
\gamma t \widetilde Qt

\bigm| \bigm| \bigm| \scrF 0
t

\Bigr] 
 - d\Lambda 2

t\BbbE 
\bigl[ 
\gamma tQt| \scrF 0

t

\bigr] 
+ f t + b\prime t

\Bigr) 
dt,

 - d \widetilde Ht =
\Bigl( 
 - \Lambda 1

tAt
\widetilde Ht  - p\Lambda 2

tAt\BbbE [\gamma t \widetilde Qt| \scrF 0
t ] - d\Lambda 2

tAt\BbbE [\gamma tQt| \scrF 0
t ]

+Atf t + gt + ft + f \prime 
t

\Bigr) 
dt - Z

\widetilde H
t dWt,

 - d \widetilde Rt =
\Bigl( 
\Lambda 4
t
\widetilde Qt + gt + ft + f \prime 

t  - Atb
\prime 
t

\Bigr) 
dt - Z

\widetilde R
t dWt,

\widetilde R = A \widetilde Q+ \widetilde H, t \in [0, T ),

\widetilde Q0 = \chi , \widetilde QT = 0.

It remains to prove that the mapping \Phi : \scrH \alpha \rightarrow \scrH \alpha , Q \mapsto \rightarrow \widetilde Q is a contraction
when d is small enough and independent of p, b\prime , and f \prime . For any Q, Q\prime \in \scrH \alpha , let

( \widetilde Q, \widetilde H, \widetilde R,Z
\widetilde H , Z

\widetilde R) and ( \widetilde Q\prime , \widetilde H \prime , \widetilde R\prime , Z \widetilde H\prime 
, Z

\widetilde R\prime 
) be the corresponding solutions. Integra-
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2090 GUANXING FU AND ULRICH HORST

tion by parts for ( \widetilde Q - \widetilde Q\prime )( \widetilde R - \widetilde R\prime ) on [0, T  - \epsilon ] implies

( \widetilde QT - \epsilon  - \widetilde Q\prime 
T - \epsilon )( \widetilde HT - \epsilon  - \widetilde H \prime 

T - \epsilon ) \leq ( \widetilde QT - \epsilon  - \widetilde Q\prime 
T - \epsilon )(AT - \epsilon ( \widetilde QT - \epsilon  - \widetilde Q\prime 

T - \epsilon )

+( \widetilde HT - \epsilon  - \widetilde H \prime 
T - \epsilon ))

= ( \widetilde QT - \epsilon  - \widetilde Q\prime 
T - \epsilon )( \widetilde RT - \epsilon  - \widetilde R\prime 

T - \epsilon )

=  - 
\int T - \epsilon 

0

\Lambda 4
t ( \widetilde Qt  - \widetilde Q\prime 

t)
2 dt - 

\int T - \epsilon 

0

\Lambda 1
t ( \widetilde Rt  - \widetilde R\prime 

t) dt

 - 
\int T - \epsilon 

0

p\Lambda 2
t ( \widetilde Rt  - \widetilde R\prime 

t)\BbbE [\gamma t( \widetilde Qt  - \widetilde Q\prime 
t)| \scrF 0

t ] dt

 - 
\int T - \epsilon 

0

d\Lambda 2
t ( \widetilde Rt  - \widetilde R\prime 

t)\BbbE [\gamma t(Qt  - Q\prime 
t)| \scrF 0

t ] dt+

\int T - \epsilon 

0

( \widetilde Qt  - \widetilde Q\prime 
t)(Z

\widetilde R
t  - Z

\widetilde R\prime 

t ) dWt.

The same argument as (2.13) implies the expectation of the stochastic integral is 0.
Thus, by taking expectations on both sides and Young's inequality one has

\BbbE 

\Biggl[ \int T - \epsilon 

0

\Lambda 4
t ( \widetilde Qt  - \widetilde Q\prime 

t)
2 dt

\Biggr] 
+ \BbbE 

\Biggl[ \int T - \epsilon 

0

\Lambda 1
t ( \widetilde Rt  - \widetilde R\prime 

t)
2 dt

\Biggr] 

\leq \BbbE | ( \widetilde QT - \epsilon  - \widetilde Q\prime 
T - \epsilon )( \widetilde HT - \epsilon  - \widetilde H \prime 

T - \epsilon )| + \delta \BbbE 

\Biggl[ \int T - \epsilon 

0

( \widetilde Rt  - \widetilde R\prime 
t)

2 dt

\Biggr] 

+
\| \Lambda 2\| 2\| \gamma \| 2d

4\delta 
\BbbE 

\Biggl[ \int T - \epsilon 

0

(Qt  - Q\prime 
t)

2 dt

\Biggr] 

+ \BbbE 

\Biggl[ \int T - \epsilon 

0

\| \gamma \| 
\Biggl( 
\theta 1
2
( \widetilde Qt  - \widetilde Q\prime 

t)
2 +

(\Lambda 2
t )

2( \widetilde Rt  - \widetilde R\prime 
t)

2

2\theta 1

\Biggr) 
dt

\Biggr] 
,

which implies by rearranging terms

\BbbE 

\Biggl[ \int T - \epsilon 

0

\biggl( 
\Lambda 4
t  - 

\theta 1\| \gamma \| 
2

\biggr) 
( \widetilde Qt  - \widetilde Q\prime 

t)
2 dt

\Biggr] 

+\BbbE 

\Biggl[ \int T - \epsilon 

0

\biggl( 
\Lambda 1
t  - 

\| \gamma \| (\Lambda 2
t )

2

2\theta 1

\biggr) 
( \widetilde Rt  - \widetilde R\prime 

t)
2 dt

\Biggr] 

\leq \BbbE | ( \widetilde QT - \epsilon  - \widetilde Q\prime 
T - \epsilon )( \widetilde HT - \epsilon  - \widetilde H \prime 

T - \epsilon )| + \delta \BbbE 

\Biggl[ \int T - \epsilon 

0

( \widetilde Rt  - \widetilde R\prime 
t)

2 dt

\Biggr] 

+
\| \Lambda 2\| 2\| \gamma \| 2d

4\delta 
\BbbE 

\Biggl[ \int T - \epsilon 

0

(Qt  - Q\prime 
t)

2 dt

\Biggr] 
.

Assumption 2.1(ii) implies \Lambda 4
t  - \theta 1\| \gamma \| 

2 \geq 
\bigl( 
\Lambda 4  - \theta 1\| \gamma \| 

2

\bigr) 
 \star 

> 0 and \Lambda 1
t  - \| \gamma \| (\Lambda 2

t )
2

2\theta 1

\geq 
\bigl( 
\Lambda 1  - \| \gamma \| (\Lambda 2)2

2\theta 1

\bigr) 
 \star 
> 0. Thus, by choosing \delta small enough and letting \epsilon \rightarrow 0 we

have

(2.15) \BbbE 

\Biggl[ \int T

0

( \widetilde Qs  - \widetilde Q\prime 
s)

2 ds

\Biggr] 
+ \BbbE 

\Biggl[ \int T

0

( \widetilde Rs  - \widetilde R\prime 
s)

2 ds

\Biggr] 
\leq Cd\BbbE 

\Biggl[ \int T

0

(Qt  - Q\prime 
t)

2 dt

\Biggr] 
.
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Considering the SDE for \widetilde Q in terms of \widetilde R, by (2.15) we have

(2.16) \BbbE 
\biggl[ 

sup
0\leq t\leq T

| \widetilde Qt  - \widetilde Q\prime 
t| 2
\biggr] 
\leq Cd\BbbE 

\Biggl[ \int T

0

(Qt  - Q\prime 
t)

2 dt

\Biggr] 
.

Since \widetilde H \in S2, - 
\BbbF , we have the following expression:

\widetilde Ht = \BbbE 
\biggl[ \int T

t

e - 
\int s
t
\Lambda 1

uAu du

\biggl( 
 - p\Lambda 2

sAs\BbbE [\gamma s \widetilde Qs| \scrF 0
s ] - d\Lambda 2

sAs\BbbE [\gamma sQs| \scrF 0
s ]

+ Asfs + gs + fs + f \prime 
s

\biggr) 
ds
\bigm| \bigm| \scrF t

\biggr] 
.(2.17)

From (2.17), Doob's maximal inequality and (2.16) yield that for any \epsilon > 0

\BbbE 
\biggl[ 

sup
0\leq t\leq T - \epsilon 

| \widetilde Ht  - \widetilde H \prime 
t| 2
\biggr] 

\leq C\BbbE 

\Biggl\{ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE 
\Biggl[ \int T

t

(T  - s)\beta  - 1

(T  - t)\beta 
\BbbE [| \widetilde Qs  - \widetilde Q\prime 

s| | \scrF 0
s ] ds

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 

2\Biggr\} 

+ Cd\BbbE 

\Biggl\{ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE 
\Biggl[ \int T

t

(T  - s)\beta  - 1

(T  - t)\beta 
\BbbE [| Qs  - Q\prime 

s| | \scrF 0
s ] ds

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 

2\Biggr\} 

\leq C\BbbE 

\Biggl\{ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \BbbE 
\biggl[ 

sup
0\leq s\leq T

\BbbE [| \widetilde Qs  - \widetilde Q\prime 
s| | \scrF 0

s ]

\bigm| \bigm| \bigm| \bigm| \scrF t

\biggr] \bigm| \bigm| \bigm| \bigm| 
2
\Biggr\} 

+ Cd\BbbE 

\Biggl\{ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \BbbE 
\biggl[ 

sup
0\leq s\leq T

\BbbE [| Qs  - Q\prime 
s| | \scrF 0

s ]

\bigm| \bigm| \bigm| \bigm| \scrF t

\biggr] \bigm| \bigm| \bigm| \bigm| 
2
\Biggr\} 

\leq Cd\BbbE 

\Biggl[ \int T

0

(Qt  - Q\prime 
t)

2 dt

\Biggr] 
+ Cd\BbbE 

\biggl[ 
sup

0\leq t\leq T

\bigm| \bigm| Qt  - Q\prime 
t

\bigm| \bigm| 2
\biggr] 
,

(2.18)

where C is independent of \epsilon . Finally, considering the SDE for \widetilde Q in terms of \widetilde H, by
(2.16), (2.18), and the same argument as (2.11), we have

\| \widetilde Q - \widetilde Q\prime \| \alpha \leq Cd\| Q - Q\prime \| \alpha .

Thus, when d is small enough, \Phi is a contraction.
Step 3. Note that d does not depend on p, b\prime , or f \prime . Iterating the argument in

Step 2 finitely often, we finally conclude that there is a solution to (2.7) with p = 1.
The desired result then follows by setting f \prime = b\prime = 0.

Theorem 2.4. The FBSDE system (2.1) admits a unique solution (Q,H,R,ZH ,
ZR) \in \scrH \alpha \times S2, - 

\BbbF \times L2
\BbbF \times L2, - 

\BbbF \times L2, - 
\BbbF , where 0 < \alpha < \beta ; the constant \beta was defined

in (2.4).

Proof. We first prove the existence of a solution. In a second step we prove the
uniqueness of solutions.

Step 1. Existence of a solution. By Lemma 2.3, the FBSDE system (2.6) admits
a solution (Q,H,R,ZH , ZR) \in \scrH \alpha \times S2, - 

\BbbF \times L2
\BbbF \times L2, - 

\BbbF \times L2, - 
\BbbF when p = 0, for any

f \in L2
\BbbF . Hence, it remains to prove that if for some p \in [0, 1] the system (2.6) admits a

solution for any f \in L2
\BbbF , then there exists a positive constant d > 0 that is independent
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2092 GUANXING FU AND ULRICH HORST

of p and f such that p + d \in [0, 1] and the same result holds true for p + \widehat d for any
\widehat d \in [0, d]. The proof is similar to the proof of Lemma 2.3.

For any fixed (Q,R, f) \in \scrH \alpha \times L2
\BbbF \times L2

\BbbF , we introduce the following system:

(2.19)

\left\{ 
                     
                     

d \widetilde Qt =
\Bigl( 
 - \Lambda 1

t
\widetilde Rt  - \Lambda 2

t\BbbE 
\Bigl[ 
\gamma t \widetilde Qt

\bigm| \bigm| \bigm| \scrF 0
t

\Bigr] 
+ f t

\Bigr) 
dt,

 - d \widetilde Ht =
\Bigl( 
 - \Lambda 1

tAt
\widetilde Ht  - \Lambda 2

tAt\BbbE [\gamma t \widetilde Qt| \scrF 0
t ] +Atf t + p\Lambda 3

t\BbbE [\zeta t \widetilde Rt| \scrF 0
t ]

+ p\Lambda 5
t\BbbE [\varrho t \widetilde Qt| \scrF 0

t ] + gt

\Bigr) 
dt,

+
\bigl( 
ft + d\Lambda 3

t\BbbE [\zeta tRt| \scrF 0
t ] + d\Lambda 5

t\BbbE [\varrho tQt| \scrF 0
t ]
\bigr) 
dt - Z

\widetilde H
t dWt,

 - d \widetilde Rt =
\Bigl( 
\Lambda 4
t
\widetilde Qt + p\Lambda 3

t\BbbE [\zeta t \widetilde Rt| \scrF 0
s ] + d\Lambda 3

t\BbbE [\zeta tRt| \scrF 0
s ] + p\Lambda 5

t\BbbE [\varrho t \widetilde Qt| \scrF 0
t ]

+ d\Lambda 5
t\BbbE [\varrho tQt| \scrF 0

t ] + gt + ft

\Bigr) 
dt - Z

\widetilde R
t dWt,

\widetilde R = A \widetilde Q+ \widetilde H, t \in [0, T ),

\widetilde Q0 = \chi , \widetilde QT = 0.

Since f+d\Lambda 3\BbbE [\zeta R| \scrF 0]+d\Lambda 5\BbbE [\varrho Q| \scrF 0] \in L2
\BbbF , there exists a solution ( \widetilde Q, \widetilde H, \widetilde R,Z

\widetilde H , Z
\widetilde R)

\in \scrH \alpha \times S2, - 
\BbbF \times L2

\BbbF \times L2, - 
\BbbF \times L2, - 

\BbbF by assumption. This defines a mapping

(2.20) \Phi : (Q,R) \in \scrH \alpha \times L2
\BbbF \rightarrow ( \widetilde Q, \widetilde R) \in \scrH \alpha \times L2

\BbbF .

It is sufficient to prove the existence of a fixed point of \Phi . To this end, for any
Q, Q\prime \in \scrH \alpha , R, R\prime \in L2

\BbbF , by integration by parts and using the same arguments
leading to the estimate (2.15) we get

\BbbE 

\Biggl[ \int T

0

\biggl( 
\Lambda 1
t  - 

\| \gamma \| | \Lambda 2
t | 2

2\theta 1
 - \| \Lambda 3\| | \zeta t| 2

2\theta 2

\biggr) 
( \widetilde Rt  - \widetilde R\prime 

t)
2 dt

\Biggr] 

+ \BbbE 

\Biggl[ \int T

0

\biggl( 
\Lambda 4
t  - 

\theta 1\| \gamma \| 
2

 - \theta 2\| \Lambda 3\| 
2

 - \| \Lambda 5\| \| \varrho \| 
\biggr) 
( \widetilde Qt  - \widetilde Q\prime 

t)
2 dt

\Biggr] 

\leq 2\delta \BbbE 

\Biggl[ \int T

0

| \widetilde Q - \widetilde Q\prime 
t| 2 dt

\Biggr] 
+

d\| \Lambda 5\| 2\| \varrho \| 2
4\delta 

\BbbE 

\Biggl[ \int T

0

(Qt  - Q\prime 
t)

2 dt

\Biggr] 

+
d\| \Lambda 3\| 2\| \zeta \| 2

4\delta 
\BbbE 

\Biggl[ \int T

0

(Rt  - R\prime 
t)

2 dt

\Biggr] 
.

(2.21)

Assumption 2.1(ii) implies \Lambda 1
t  - \| \gamma \| | \Lambda 2

t | 2
2\theta 1

 - \| \Lambda 3\| | \zeta t| 2
2\theta 2

\geq 
\bigl( 
\Lambda 1  - \| \gamma \| | \Lambda 2| 2

2\theta  - \| \Lambda 3\| | \zeta | 2
2\theta 2

\bigr) 
 \star 
> 0

and \Lambda 4
t  - \theta 1\| \gamma \| 

2  - \theta 2\| \Lambda 3\| 
2  - \| \Lambda 5\| \| \varrho \| \geq 

\bigl( 
\Lambda 4  - \theta 1\| \gamma \| 

2  - \theta 2\| \Lambda 3\| 
2  - \| \Lambda 5\| \| \varrho \| 

\bigr) 
 \star 
> 0. So we

can choose \delta small enough such that
\bigl( 
\Lambda 4 - \theta 1\| \gamma \| 

2  - \theta 2\| \Lambda 3\| 
2  - \| \Lambda 5\| \| \varrho \| 

\bigr) 
 \star 
 - 2\delta > 0, which

implies

\BbbE 

\Biggl[ \int T

0

( \widetilde Rt  - \widetilde R\prime 
t)

2 dt

\Biggr] 
+ \BbbE 

\Biggl[ \int T

0

( \widetilde Qt  - \widetilde Q\prime 
t)

2 dt

\Biggr] 
\leq Cd\BbbE 

\Biggl[ \int T

0

(Qt  - Q\prime 
t)

2 dt

\Biggr] 

+ Cd\BbbE 

\Biggl[ \int T

0

(Rt  - R\prime 
t)

2 dt

\Biggr] 
.
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The preceding estimate and the dynamic for \widetilde Q allow us to estimate \widetilde Q in terms of \widetilde R
as follows:

\BbbE 
\biggl[ 

sup
0\leq t\leq T

| \widetilde Qt  - \widetilde Q\prime 
t| 2
\biggr] 

\leq C\BbbE 

\Biggl[ \int T

0

| \widetilde Rs  - \widetilde R\prime 
s| 2 ds

\Biggr] 
+ C

\int T

0

\BbbE 
\Bigl[ 
| \widetilde Q\prime 

s  - \widetilde Qs| 2
\Bigr] 
ds

\leq dC\BbbE 

\Biggl[ \int T

0

(Qt  - Q\prime 
t)

2 dt

\Biggr] 
+ dC\BbbE 

\Biggl[ \int T

0

(Rt  - R\prime 
t)

2 dt

\Biggr] 
.

(2.22)

By (2.22), a similar argument as in (2.18) yields the existence of a uniform C such
that for any \epsilon > 0,

\BbbE 
\biggl[ 

sup
0\leq t\leq T - \epsilon 

\bigm| \bigm| \bigm| \widetilde Ht  - \widetilde H \prime 
t

\bigm| \bigm| \bigm| 
2
\biggr] 
\leq C\BbbE 

\biggl[ 
sup

0\leq s\leq T
| \widetilde Qs  - \widetilde Q\prime 

s| 2
\biggr] 
+ C\BbbE 

\Biggl[ \int T

0

| \widetilde Rt  - \widetilde R\prime 
t| 2 dt

\Biggr] 

+ Cd\BbbE 
\biggl[ 

sup
0\leq s\leq T

| Qs  - Q\prime 
s| 2
\biggr] 
+ Cd\BbbE 

\Biggl[ \int T

0

| Rt  - R\prime 
t| 2 dt

\Biggr] 
.

(2.23)

Now we return to the expression of \widetilde Q in terms of \widetilde H, from which we have by (2.22),
(2.23), and the same argument as in (2.11) that

\BbbE 

\left[ 
 sup
0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \bigm| 
\widetilde Qt  - \widetilde Q\prime 

t

(T  - t)\alpha 

\bigm| \bigm| \bigm| \bigm| \bigm| 

2
\right] 
 \leq Cd\| Q - Q\prime \| 2\alpha + Cd\BbbE 

\Biggl[ \int T

0

| Rt  - R\prime 
t| 2 dt

\Biggr] 
.(2.24)

We choose d small enough such that \Phi is a contraction. Thus, we have a fixed point
which is a solution to (2.6) when p is replaced by p+ d.

Since d does not depend on p or f , iterating the above argument finitely often,
we see that (2.6) admits a solution. Taking p = 1 and f = 0 then yields the existence
of a solution to (2.1).

Step 2. Uniqueness of solutions. Let us assume to the contrary that there exist
two solutions (Q,H,R,ZH , ZR) \in \scrH \alpha \times S2, - 

\BbbF \times L2
\BbbF \times L2, - 

\BbbF \times L2, - 
\BbbF and (Q\prime , H \prime , R\prime , ZH\prime 

, ZR\prime 
)

\in \scrH \alpha \times S2, - 
\BbbF \times L2

\BbbF \times L2, - 
\BbbF \times L2, - 

\BbbF to (2.1). As in the proof of Step 1, integration by
parts for (Q - Q\prime )(R - R\prime ) yields

(2.25) \BbbE 

\Biggl[ \int T

0

(Rt  - R\prime 
t)

2 + (Qt  - Q\prime 
t)

2 dt

\Biggr] 
= 0.

Second, by the expression of (Q - Q\prime ) in terms of R - R\prime , (2.25) yields that

(2.26) \BbbE 
\biggl[ 

sup
0\leq t\leq T

| Qt  - Q\prime 
t| 2
\biggr] 
= 0.

Third, the expression for (H  - H \prime ), (2.25), and (2.26) yield that for any \epsilon > 0

(2.27) \BbbE 
\biggl[ 

sup
0\leq t\leq T - \epsilon 

| Ht  - H \prime 
t| 2
\biggr] 
= 0.
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Finally, by the expression for (Q  - Q\prime ) in terms of (H  - H \prime ), (2.25), (2.26), (2.27),
and arbitrariness of \epsilon yield that

(2.28) \BbbE 

\Biggl[ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| 
Qt  - Q\prime 

t

(T  - t)\alpha 

\bigm| \bigm| \bigm| \bigm| 
2
\Biggr] 
= 0.

By a standard estimate for linear BSDEs we have for each \epsilon > 0,

\BbbE 

\Biggl[ \int T - \epsilon 

0

| ZH
t  - ZH\prime 

t | 2 dt
\Biggr] 
= 0, \BbbE 

\Biggl[ \int T - \epsilon 

0

| ZR
t  - ZR\prime 

t | 2 dt
\Biggr] 
= 0.

Remark 2.5. From the proof of Lemma 2.3 and Theorem 2.4 (see, e.g., (2.8) and
(2.10)), we see that for f \equiv 0, the regularity of the solution can be increased to
(Q,H) \in \scrH \beta \times \scrH \varsigma , where \varsigma < 1

2 \wedge \beta . This is the case in [25].

The following corollary is important for the analysis of our leader-follower game
of optimal portfolio liquidation analyzed below. It implies that the follower's optimal
response function is linear convex and hence that the leader's control problem is
convex.

Corollary 2.6. For each (f, g) \in S2
\BbbF \times L2

\BbbF , denote by (Q,H,R)(f, g) the solution

to (2.1). Then, the mapping (f, g) \in S2
\BbbF \times L2

\BbbF \rightarrow (Q,H,R)(f, g) \in \scrH \alpha \times S2, - 
\BbbF \times L2

\BbbF is
well defined and for \rho \in [0, 1],

(Q,H,R)(\rho (f, g) + (1 - \rho )(f
\prime 
, g\prime )) = \rho (Q,H,R)(f, g) + (1 - \rho )(Q,H,R)(f

\prime 
, g\prime ).

Proof. By Theorem 2.4, for each (f, g) \in S2
\BbbF \times L2

\BbbF , there exists a unique solution
(Q,H,R) to (2.1). Thus, the mapping is well defined. Uniqueness of the solution and
linearity of the system yield the desired equality.

Using the same arguments as in the proof of Theorem 2.4 we can also get existence
of a unique solution to the ``penalized version"" of (2.1) where the terminal state
constraint on the forward process is replaced by the terminal condition of the backward
process RT = 2nQT . To this end, we introduce the BSDE,

 - dAn
t =

\bigl( 
\Lambda 4
t  - \Lambda 1

t (A
n
t )

2
\bigr) 
dt - ZAn

t dWt, An
T = 2n.

Existence and uniqueness of a solution to this equation has been established in [5].
Moreover, for each t \in [0, T ),

(2.29) lim
n\rightarrow \infty 

An
t = At, a.s..

When the terminal state constraint is replaced by the penalty term introduced above,
the system (2.1) translates into the following system:

(2.30)

\left\{ 
          
          

dQn
t =

\Bigl( 
 - \Lambda 1

tR
n
t  - \Lambda 2

t\BbbE 
\bigl[ 
\gamma tQ

n
t | \scrF 0

t

\bigr] 
+ f

n

t

\Bigr) 
dt,

 - dHn
t =

\Bigl( 
 - \Lambda 1

tA
n
t  - \Lambda 2

tA
n
t \BbbE [\gamma tQn

t | \scrF 0
t ] +An

t f
n

t + \Lambda 3
t\BbbE [\zeta tRn

t | \scrF 0
t ]

+ \Lambda 5
t\BbbE [\varrho tQn

t | \scrF 0
t ] + gnt

\Bigr) 
dt - ZHn

t dWt,

 - dRn
t =

\bigl( 
\Lambda 4
tQ

n
t + \Lambda 3

t\BbbE [\zeta tRn
t | \scrF 0

s ] + \Lambda 5
t\BbbE [\varrho tQn

t | \scrF 0
t ] + gnt

\bigr) 
dt - ZRn

t dWt,

Qn
0 = \chi , Hn

T = 0, Rn
T = 2nQn

T .
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Corollary 2.7. Assume that for each fixed n \in \BbbN , (fn
, gn) \in S2

\BbbF \times L2
\BbbF . Then, for

each n \in \BbbN the FBSDE (2.30) admits a unique solution (Qn, Hn, Rn) \in \scrH \alpha ,n\times S2
\BbbF \times L2

\BbbF ,
where

\scrH \alpha ,n =

\Biggl\{ 
X \in S2

\BbbF : \BbbE 

\Biggl[ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| 
Xt

(T  - t+ 1
n )

\alpha 

\bigm| \bigm| \bigm| \bigm| 
2
\Biggr] 
< \infty 

\Biggr\} 
.

Remark 2.8. Note that in (2.30), the terminal condition for Hn is 0 so Hn is
defined on [0, T ]. In (2.1) the processH is only defined on [0, T ), due to the singularity
of the process A at the terminal time.

2.2. Convergence. We now prove an approximation result for the system (2.1)
in terms of the systems (2.30) as n \rightarrow \infty . The convergence result is established under
the additional assumption that for any 0 \leq t1 < t2 \leq T ,

(2.31) e - 
\int t2
t1

\Lambda 1
uAu du \leq C

T  - t2
T  - t1

and e - 
\int t2
t1

\Lambda 1
uA

n
u du \leq C

T  - t2 +
1
n

T  - t1 +
1
n

.

We refer the reader to [25] for sufficient conditions on the model parameters under
which this assumption is satisfied.

The proof of the following lemma can be found in [25, Lemma 4.4].

Lemma 2.9. Let f
n \in S2

\BbbF and gn \in L2
\BbbF be two sequences of progressively measur-

able stochastic processes, and let (Qn, Hn, Rn) be the solution to the system (2.30). If
the sequences f

n
and gn are bounded in S2

\BbbF and L2
\BbbF uniformly in n, respectively, then

sup
n

\| Qn\| \alpha ,n + sup
n

\| Hn\| S2, - + sup
n

\| Rn\| L2 \leq C

\biggl( 
sup
n

\| fn\| S2 + sup
n

\| gn\| L2

\biggr) 
< \infty .

Lemma 2.10. Let f
n
and gn be two sequences of stochastic processes satisfying the

conditions in Lemma 2.9. Then there exists f \in L2
\BbbF , g \in L2

\BbbF and a convex combination

of a subsequence of (f
n
, gn) converging to (f, g) in L\nu with 1 < \nu < 2, i.e.,

(2.32) lim
N\rightarrow \infty 

\BbbE 

\Biggl[ \int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| 
1

N

N\sum 

k=1

(f
nk

t , gnk
t ) - (f t, gt)

\bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\Biggr] 
= 0.

Proof. Since the sequence (f
n
, gn) is L2 uniformly bounded, the proof of [8, Theo-

rem 2.1] (see also [35]) tells us there exists a subsequence of (f
n
, gn) and a progressively

measurable stochastic processes (f, g) such that

lim
N\rightarrow \infty 

1

N

N\sum 

k=1

(f
nk
, gnk) - (f, g) = 0 a.e. a.s. on [0, T ]\times \Omega .

Fatou's lemma implies that

\BbbE 

\Biggl[ \int T

0

| (f t, gt)| 2 dt
\Biggr] 
\leq lim inf

N\rightarrow \infty 
1

N

N\sum 

k=1

\BbbE 

\Biggl[ \int T

0

| (fnk

t , gnk
t )| 2 dt

\Biggr] 
< \infty .

Thus, Vitali's convergence result implies (2.32).

The following theorem proves a convergence result for the FBSDE systems as-
sociated with the unconstrained penalized control problems to the system associated
with the constrained one. The result is key to our maximum principle for the leader-
follower game introduced above.
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Theorem 2.11. Let (f
n
, gn) be a sequence satisfying the conditions in Lemma

2.10 and (f, g) \in L2
\BbbF \times L2

\BbbF be the limit. Let (Qn, Hn, Rn) and (Q,H,R) be the solution
to (2.30) and (2.1), respectively. We further assume the limit f belongs to S2

\BbbF . Then

there exists a convex combination of a subsequence of
\bigl( 

1
N

\sum N
k=1 Q

nk , 1
N

\sum N
k=1 H

nk ,
1
N

\sum N
k=1 R

nk
\bigr) 
converging to (Q,H,R) in S\nu 

\BbbF \times L1
\BbbF \times L\nu 

\BbbF with 1 < \nu < 2, i.e.,

lim
N \prime \rightarrow \infty 

\BbbE 

\left[ 
 sup
0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Qnk
t  - Qt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu \right] 
 = 0,

lim
N \prime \rightarrow \infty 

\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Hnk
t  - Ht

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
dt

\right] 
 = 0,

lim
N \prime \rightarrow \infty 

\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Rnk
t  - Rt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\right] 
 = 0.

Proof. The uniform boundedness of f
n
and gn implies the uniform boundedness of

Rn in L2 (Lemma 2.9) and the uniform boundedness of 1
N

\sum N
k=1 R

nk in L2. Thus, [8,

Theorem 2.1] again yields the existence of a progressively measurable process R \in L2
\BbbF 

and a subsequence of 1
N

\sum N
k=1 R

nk such that

(2.33) lim
N \prime \rightarrow \infty 

\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Rnk
t  - Rt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\right] 
 = 0.

By (2.32), the convergence of the same convex combination holds for (f
n
, gn):

(2.34) lim
N \prime \rightarrow \infty 

\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

(f
nk

t , gnk
t ) - (f t, gt)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\right] 
 = 0.

Define Q as the unique solution in S2
\BbbF to the following mean field SDE in terms of the

limits f and R:

(2.35) Qt = \chi +

\int t

0

\bigl( 
 - \Lambda 1

sRs  - \Lambda 2
s\BbbE [\gamma sQs| \scrF 0

s ] + fs

\bigr) 
ds.

Standard SDE estimates, (2.33), and (2.34) yield

(2.36) lim
N \prime \rightarrow \infty 

\BbbE 

\left[ 
 sup
0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Qnk
t  - Qt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu \right] 
 = 0.

Now define H in terms of the limits f , R, and Q as

Ht =\BbbE 
\biggl[ \int T

t

e - 
\int s
t
\Lambda 1

uAu du
\bigl( 
 - \Lambda 2

sAs\BbbE [\gamma sQs| \scrF 0
s ] +Asfs + \Lambda 3

s\BbbE [\zeta sRs| \scrF 0
s ]

+ \Lambda 5
s\BbbE [\varrho sQs| \scrF 0

s ] + gs
\bigr) 
ds
\bigm| \bigm| \scrF t

\biggr] 
.

(2.37)D
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By (2.3), (2.31), and the H\"older inequality, we have for any h \in L\nu 
\BbbF 

\BbbE 

\Biggl[ \int T

t

e - 
\int s
t
\Lambda 1

uAu duAs| hs| ds
\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] 
\leq 1

T  - t
\BbbE 

\Biggl[ \int T

t

| hs| ds
\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] 

\leq 1

(T  - t)
1
\nu 

\BbbE 

\Biggl[ \int T

t

| hs| \nu ds
\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] 1
\nu 

.

(2.38)

Thus, by (2.3), (2.38), and the H\"older's inequality, we have

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Hnk
t  - Ht

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\leq C

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

\left( 
 \BbbE 

\left[ 
 
\Biggl( \int T

t

\bigm| \bigm| \bigm| e - 
\int s
t
\Lambda 1

uA
nk
u duAnk

s  - e - 
\int s
t
\Lambda 1

uAuduAs

\bigm| \bigm| \bigm| ds
\Biggr) 2
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\scrF t

\right] 
 
\right) 
 

1
2

\times 
\biggl( 
\BbbE 
\biggl[ 

sup
0\leq s\leq T

| \BbbE [Qnk
s | \scrF 0

s ]| 2+ sup
0\leq s\leq T

(f
nk

s )2
\bigm| \bigm| \bigm| \bigm| \scrF t

\biggr] \biggr) 1
2

+
C

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

\Biggl( 
\BbbE 

\Biggl[ \int T

t

\bigm| \bigm| \bigm| e - 
\int s
t
\Lambda 1

uA
nk
u du - e - 

\int s
t
\Lambda 1

uAudu
\bigm| \bigm| \bigm| 
2

ds

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] \Biggr) 1
2

\cdot 
\Biggl( 
\BbbE 

\Biggl[ \int T

t

| gnk
s | 2ds

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] \Biggr) 1
2

+
C

T - t
\BbbE 

\left[ 
 
\int T

t

\BbbE 

\left[ 
 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Qnk
s  - Qs

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\scrF 0

s

\right] 
 +

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

fnk
s  - fs

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\scrF t

\right] 
 

+
C

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

\Biggl( 
\BbbE 

\Biggl[ \int T

t

\bigm| \bigm| \bigm| e - 
\int s
t
\Lambda 1

uA
nk
u  - e - 

\int s
t
\Lambda 1

uAu

\bigm| \bigm| \bigm| 
2

ds

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] \Biggr) 1
2

\cdot 
\Biggl( 
\BbbE 

\Biggl[ \int T

t

\BbbE [(Rnk
s )2+(Qnk

s )2| \scrF 0
s ]ds

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] \Biggr) 1
2

+C\BbbE 

\left[ 
 
\int T

t

\BbbE 

\left[ 
 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Rnk
s  - Rs

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Qnk
s  - Qs

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\scrF 0

s

\right] 
 ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\scrF t

\right] 
 

+C\BbbE 

\left[ 
 
\int T

t

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

gnk
s  - gs

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\scrF t

\right] 
 

Applying the H\"older inequality again along with Doob's maximal inequality, the uni-
form boundedness of (Qn, Rn, f

n
, gn), the dominated convergence theorem, and the

convergence (2.29) we get

\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Hnk
t  - Ht

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
dt

\right] 
 D
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\leq C sup
n

\biggl( 
\BbbE 
\biggl[ 

sup
0\leq s\leq T

| Qn
s | 2 + sup

0\leq s\leq T
| fn

s | 2
\biggr] \biggr) 1

2

\times 1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

\left( 
 \BbbE 

\left[ 
 
\int T

0

\Biggl( \int T

t

\bigm| \bigm| \bigm| e - 
\int s
t
\Lambda 1

uA
nk
u duAnk

s  - e - 
\int s
t
\Lambda 1

uAu duAs

\bigm| \bigm| \bigm| ds
\Biggr) 2

dt

\right] 
 
\right) 
 

1
2

+ C sup
n

\Biggl( 
\BbbE 

\Biggl[ \int T

0

| gnt | 2 dt
\Biggr] \Biggr) 1

2

(2.39)

\cdot 1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

\Biggl( 
\BbbE 

\Biggl[ \int T

0

\int T

t

\bigm| \bigm| \bigm| e - 
\int s
t
\Lambda 1

uA
nk
u du  - e - 

\int s
t
\Lambda 1

uAu du
\bigm| \bigm| \bigm| 
2

ds dt

\Biggr] \Biggr) 1
2

+ C

\int T

0

1

(T  - t)
1
\nu 

dt

\cdot 

\left( 
 \BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Qnk
s  - Qs

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

+

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

fnk
s  - fs

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

ds

\right] 
 
\right) 
 

1
\nu 

+ C sup
n

\Biggl( 
\BbbE 

\Biggl[ \int T

0

(Rn
s )

2 + (Qn
s )

2 ds

\Biggr] \Biggr) 1
2

\cdot 1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

\Biggl( 
\BbbE 

\Biggl[ \int T

0

\int T

t

\bigm| \bigm| \bigm| e - 
\int s
t
\Lambda 1

uA
nk
u du  - e - 

\int s
t
\Lambda 1

uAu du
\bigm| \bigm| \bigm| 
2

ds dt

\Biggr] \Biggr) 1
2

+ C\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Rnk
s  - Rs

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Qnk
s  - Qs

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
ds

\right] 
 

+ C\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

gnk
s  - gs

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
ds

\right] 
 

\rightarrow 0 as N \prime \rightarrow \infty .

Let \widehat R = AQ+H. For any \widetilde T < T , by (2.36) and (2.39) we have

lim
N \prime \rightarrow \infty 

\BbbE 

\left[ 
 
\int \widetilde T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N \prime 

N \prime \sum 

j=1

1

Nj

Nj\sum 

k=1

Rnk
t  - \widehat Rt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
dt

\right] 
 = 0.

Thus, (2.33) implies that for any \widetilde T < T ,

\BbbE 

\Biggl[ \int \widetilde T

0

| \widehat Rt  - Rt| dt
\Biggr] 
= 0.

This proves that
\widehat R = R, a.e. a.s. on [0, T ]\times \Omega .

Moreover,
(Q,H, \widehat R) \in \scrH \alpha \times S2, - 

\BbbF \times L2
\BbbF .
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Indeed, since R \in L2
\BbbF and R = \widehat R a.e. a.s. on [0, T ] \times \Omega , we have that \widehat R \in L2

\BbbF .

Moreover, (2.35) implies that Q \in S2
\BbbF , from which (2.37) implies H \in S2, - 

\BbbF , and taking
\widehat R = AQ+H into (2.35) yields Q \in \scrH \alpha . By (2.37), there exists ZH \in L2, - 

\BbbF such that

(Q, \widehat R,H,ZH) satisfies the second equation in (2.1). Moreover, since \widehat R = AQ+H the

triple (Q, \widehat R,Z
\widehat R) satisfies the third equation in (2.1), where Z

\widehat R = QZA + ZH . This
implies for each \epsilon > 0

\BbbE 

\Biggl[ \int T - \epsilon 

0

| Z \widehat R
t | 2 dt

\Biggr] 
\leq C\BbbE 

\Biggl[ 
sup

0\leq t\leq T - \epsilon 

\bigm| \bigm| \bigm| \bigm| 
\int t

0

Z
\widehat R
s dWs

\bigm| \bigm| \bigm| \bigm| 
2
\Biggr] 

(BDG inequality)

\leq C\BbbE 
\biggl[ 

sup
0\leq t\leq T - \epsilon 

| AtQt +Ht| 2
\biggr] 
+ C\BbbE 

\Biggl[ \int T

0

| Qt| 2 + | \widehat Rt| 2 + | gt| 2 dt
\Biggr] 

(by the SDE for \widehat R)

\leq C\BbbE 
\biggl[ 

sup
0\leq t\leq T - \epsilon 

| Qt| 2 + sup
0\leq t\leq T - \epsilon 

| Ht| 2
\biggr] 
+ C\BbbE 

\Biggl[ \int T

0

| Qt| 2 + | \widehat Rt| 2 + | gt| 2 dt
\Biggr] 

(A is bounded on [0, T  - \epsilon ])

< \infty .

Hence, (Q,H, \widehat R,ZH , Z
\widehat R) satisfies the system (2.1). The uniqueness of solutions in

\scrH \alpha \times S2, - 
\BbbF \times L2

\BbbF \times L2, - 
\BbbF \times L2, - 

\BbbF yields the desired convergence result.

3. A MFC problem of optimal portfolio liquidation. In this section, we
solve the single player portfolio liquidation model with expectations feedback intro-
duced in section 1.2.1. Setting \chi = x, \Lambda 1 =  - \Lambda 2 = \zeta = 1

2\eta , \gamma = \Lambda 3 = \varrho = \kappa , \Lambda 4 = 2\lambda ,

\Lambda 5 =  - \kappa \BbbE 
\bigl[ 

1
2\eta 

\bigm| \bigm| \scrF 0
\bigr] 
, f = 0, and g = \widetilde g, then FBSDE (1.2) reduces to FBSDE (1.7).

We make the following assumption.

Assumption 3.1. The process \widetilde g belongs to L2
\BbbF . The progressively measurable sto-

chastic processes \eta , \kappa , and \lambda are nonnegative and essentially bounded. Moreover,
there exists some \theta \prime > 0 such that

(3.1) \eta  \star  - 
\| \kappa \| 
2\theta \prime 

> 0, \lambda  \star  - \| \kappa \| \theta \prime > 0.

Assumption 3.1 implies Assumption 2.1. In particular, a direct computation
shows that condition (3.1) implies Assumption 2.1(ii) with \theta 1 = \theta 2 = \theta \prime . The con-
dition (3.1) means that the mean-field interaction is sufficiently weak. A similar
condition has been made in the game-theoretic literature before; see, e.g., [28] and
references therein.

The trader's objective is to minimize the cost function J(\cdot ) introduced in (1.4)
over the set of admissible controls

\scrA \BbbF (x) =

\Biggl\{ 
\xi \in L2

\BbbF ([0, T ]\times \Omega ;\BbbR ) :
\int T

0

\xi s ds = x

\Biggr\} 
.

A standard stochastic maximum principle suggests the candidate optimal strategy is
given by

(3.2) \xi \ast t =
Yt  - \BbbE [\kappa tXt| \scrF 0

t ]

2\eta t
,

where (X,Y ) \in \scrH \alpha \times L2
\BbbF is the unique solution to the FBSDE system (1.7). Standard

arguments show that \xi \ast \in \scrA \BbbF (x). To prove that \xi \ast is indeed the unique optimal
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2100 GUANXING FU AND ULRICH HORST

control, we establish an auxiliary result that substitutes for the lack of convexity of
the Hamiltonian for our MFC problem.

Lemma 3.2. For every t \in [0, T ), we have

\BbbE 
\bigl[ 
\kappa tXt\BbbE [\xi t| \scrF 0

t ] + \eta t\xi 
2
t + \lambda tX

2
t

\bigr] 
 - \BbbE 

\bigl[ 
\kappa tX

\prime 
t\BbbE [\xi \prime t| \scrF 0

t ] + \eta t(\xi 
\prime 
t)

2 + \lambda t(X
\prime 
t)

2
\bigr] 

\geq \BbbE 
\bigl[ \bigl( 
\BbbE [\kappa tX

\prime 
t| \scrF 0

t ] + 2\eta t\xi 
\prime 
t

\bigr) 
(\xi t  - \xi \prime t) + 2\lambda tX

\prime 
t(Xt  - X \prime 

t) + \kappa t(Xt  - X \prime 
t)\BbbE [\xi \prime t| \scrF 0

t ]
\bigr] 
.

(3.3)

Moreover, the above inequality becomes an equality if and only if \xi t = \xi \prime t a.s..

Proof. To prove (3.2), it is equivalent to show for t \in [0, T ),

\BbbE 
\bigl[ 
\eta t(\xi t  - \xi \prime t)

2 + \lambda t(Xt  - X \prime 
t)

2 + \BbbE [(\xi t  - \xi \prime t)| \scrF 0
t ]\BbbE [\kappa t(Xt  - X \prime 

t)| \scrF 0
t ]
\bigr] 
\geq 0.

Note that using Young's inequality

| \BbbE 
\bigl[ 
\BbbE [(\xi t  - \xi \prime t)| \scrF 0

t ]\BbbE [\kappa t(Xt  - X \prime 
t)| \scrF 0

t ]
\bigr] 
| 

\leq \| \kappa \| \BbbE 
\bigl[ 
\BbbE [| \xi t  - \xi \prime t| | \scrF 0

t ]\BbbE [| Xt  - X \prime 
t| | \scrF 0

t ]
\bigr] 

\leq \| \kappa \| 
2\theta \prime 

\BbbE 
\Bigl[ \bigl( 
\BbbE [| \xi t  - \xi \prime t| | \scrF 0

t ]
\bigr) 2\Bigr] 

+
\| \kappa \| \theta \prime 
2

\BbbE 
\Bigl[ \bigl( 
\BbbE [| Xt  - X \prime 

t| | \scrF 0
t ]
\bigr) 2\Bigr] 

.

Thus,

\BbbE 
\bigl[ 
\eta t(\xi t  - \xi \prime t)

2 + \lambda t(Xt  - X \prime 
t)

2 + \BbbE [(\xi t  - \xi \prime t)| \scrF 0
t ]\BbbE [\kappa t(Xt  - X \prime 

t)| \scrF 0
t ]
\bigr] 

\geq \BbbE 
\biggl[ \biggl( 

\eta  \star  - 
\| \kappa \| 
2\theta \prime 

\biggr) 
(\xi t  - \xi \prime t)

2 +

\biggl( 
\lambda  \star  - 

\| \kappa \| \theta \prime 
2

\biggr) 
(Xt  - X \prime 

t)
2

 - \| \kappa \| \BbbE [| \xi t  - \xi \prime t| | \scrF 0
t ]\BbbE [| Xt  - X \prime 

t| | \scrF 0
t ]

\biggr] 

+
\| \kappa \| 
2\theta \prime 

\BbbE 
\bigl[ 
(\xi t  - \xi \prime t)

2
\bigr] 
+

\| \kappa \| \theta \prime 
2

\BbbE 
\bigl[ 
(Xt  - X \prime 

t)
2
\bigr] 

\geq \BbbE 
\biggl[ \biggl( 

\eta  \star  - 
\| \kappa \| 
2\theta \prime 

\biggr) 
(\xi t  - \xi \prime t)

2 +

\biggl( 
\lambda  \star  - 

\| \kappa \| \theta \prime 
2

\biggr) 
(Xt  - X \prime 

t)
2

 - \| \kappa \| \BbbE [| \xi t  - \xi \prime t| | \scrF 0
t ]\BbbE [| Xt  - X \prime 

t| | \scrF 0
t ]

\biggr] 

+
\| \kappa \| 
2\theta \prime 

\BbbE 
\bigl[ 
(\BbbE [| \xi t  - \xi \prime t| | \scrF 0

t ])
2
\bigr] 
+

\| \kappa \| \theta \prime 
2

\BbbE 
\bigl[ 
(\BbbE [| Xt  - X \prime 

t| | \scrF 0
t ])

2
\bigr] 

\geq \BbbE 
\biggl[ \biggl( 

\eta  \star  - 
\| \kappa \| 
2\theta \prime 

\biggr) 
(\xi t  - \xi \prime t)

2 +

\biggl( 
\lambda  \star  - 

\| \kappa \| \theta \prime 
2

\biggr) 
(Xt  - X \prime 

t)
2

\biggr] 

\geq 0.

The second claim is obvious from the above estimate.

We are now ready to state and prove the main result of this section.

Theorem 3.3. Under Assumption 3.1 the process \xi \ast defined in (3.2) is the unique
optimal control to the MFC problem (1.4)--(1.5).

Proof. To prove the optimality of the candidate strategy \xi \ast we fix an arbitrary
control \xi \in \scrA \BbbF (x) and denote by X\ast and X the corresponding state processes. For
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any \epsilon > 0, it follows from Lemma 3.2 that

\BbbE 

\Biggl[ \int T - \epsilon 

0

\kappa tXt\BbbE [\xi t| \scrF 0
t ] + \widetilde gtXt + \eta t\xi 

2
t + \lambda tX

2
t dt

\Biggr] 

 - \BbbE 

\Biggl[ \int T - \epsilon 

0

\kappa tX
\ast 
t \BbbE [\xi \ast t | \scrF 0

t ] + \widetilde gtX\ast 
t + \eta t(\xi 

\ast 
t )

2 + \lambda t(X
\ast 
t )

2 dt

\Biggr] 

\geq \BbbE 

\Biggl[ \int T - \epsilon 

0

\bigl( 
\BbbE [\kappa tX

\ast 
t | \scrF 0

t ] + 2\eta t\xi 
\ast 
t

\bigr) 
(\xi t  - \xi \ast t ) + (2\lambda tX

\ast 
t + \kappa t\BbbE [\xi \ast t | \scrF 0

t ] + \widetilde gt)(Xt  - X\ast 
t ) dt

\Biggr] 
.

(3.4)

Integration by part yields

\BbbE 
\bigl[ 
YT - \epsilon (XT - \epsilon  - X\ast 

T - \epsilon )
\bigr] 

= - \BbbE 

\Biggl[ \int T - \epsilon 

0

Yt(\xi t  - \xi \ast t ) dt

\Biggr] 
 - \BbbE 

\Biggl[ \int T - \epsilon 

0

(Xt  - X\ast 
t )

\biggl( 
\kappa t\BbbE 

\biggl[ 
Y \ast 
t

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 

 - \kappa t\BbbE 
\biggl[ 

1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\kappa tX

\ast 
t | \scrF 0

t ] + 2\lambda tX
\ast 
t + \widetilde gt

\biggr) 
dt

\biggr] 

=  - \BbbE 

\Biggl[ \int T - \epsilon 

0

Yt(\xi t  - \xi \ast t ) dt

\Biggr] 
 - \BbbE 

\Biggl[ \int T - \epsilon 

0

(Xt  - X\ast 
t )
\bigl( 
\kappa t\BbbE 

\bigl[ 
\xi \ast t | \scrF 0

t

\bigr] 
+ 2\lambda tX

\ast 
t + \widetilde gt

\bigr) 
dt

\Biggr] 
.

(3.5)

Putting (3.5) into (3.4), we have

\BbbE 

\Biggl[ \int T - \epsilon 

0

\kappa tXt\BbbE [\xi t| \scrF 0
t ] + \widetilde gtXt + \eta t\xi 

2
t + \lambda tX

2
t dt

\Biggr] 

 - \BbbE 

\Biggl[ \int T - \epsilon 

0

\kappa tX
\ast 
t \BbbE [\xi \ast t | \scrF 0

t ] + \widetilde gtX\ast 
t + \eta t(\xi 

\ast 
t )

2 + \lambda t(X
\ast 
t )

2 dt

\Biggr] 

+ \BbbE 
\bigl[ 
YT - \epsilon (XT - \epsilon  - X\ast 

T - \epsilon )
\bigr] 

\geq \BbbE 

\Biggl[ \int T - \epsilon 

0

\bigl( 
\BbbE [\kappa tX

\ast 
t | \scrF 0

t ] + 2\eta t\xi 
\ast 
t  - Yt

\bigr) 
(\xi t  - \xi \ast t ) dt

\Biggr] 
= 0.

(3.6)

Letting \epsilon \rightarrow 0, a similar argument as the proof of [25, Theorem 2.9] yields that

lim
\epsilon \rightarrow 0

\BbbE [YT - \epsilon (XT - \epsilon  - X\ast 
T - \epsilon )] = 0.

Thus, (3.6) implies

J(\xi ) \geq J(\xi \ast ).

In order to prove the uniqueness of optimal controls, let \xi \prime be another optimal
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2102 GUANXING FU AND ULRICH HORST

control. Then, (3.6) yields

0 = \BbbE 

\Biggl[ \int T

0

\kappa tXt\BbbE [\xi \prime t| \scrF 0
t ] + \widetilde gtX \prime 

t + \eta t(\xi 
\prime 
t)

2 + \lambda t(X
\prime 
t)

2 dt

\Biggr] 

 - \BbbE 

\Biggl[ \int T

0

\kappa tX
\ast 
t \BbbE [\xi \ast t | \scrF 0

t ] + \widetilde gtX\ast 
t + \eta t(\xi 

\ast 
t )

2 + \lambda t(X
\ast 
t )

2 dt

\Biggr] 

\geq \BbbE 

\Biggl[ \int T

0

\bigl( 
\BbbE [\kappa tX

\ast 
t | \scrF 0

t ] + 2\eta t\xi 
\ast 
t  - Yt

\bigr) 
(\xi \prime t  - \xi \ast t ) dt

\Biggr] 
= 0.

Thus, (3.4) holds with an equality. The second claim in Lemma 3.2 implies the
uniqueness.

4. A Stackelberg game of optimal portfolio liquidation. In this section,
we solve the Stackelberg game of optimal portfolio liquidation introduced in section
1.2.2 above. We make the following assumption which implies Assumption 2.1 and
condition (2.31).

Assumption 4.1. (i) The processes \widetilde \kappa 0, \kappa , \eta , 1/\eta , and \lambda belong to L\infty 
\BbbF ([0, T ]\times 

\Omega ; [0,\infty )).
(ii) The processes \kappa 0, \kappa 0, \eta 0, 1/\eta 0, and \lambda 0 belong to L\infty 

\BbbF 0([0, T ]\times \Omega ; [0,\infty )).

(ii) For some positive constants \theta \prime , \theta , and \theta ,

\eta  \star  - 
\| \kappa \| 
2\theta \prime 

> 0, \lambda  \star  - \| \kappa \| \theta \prime > 0.

and

\eta 0 \star  - 
\| \kappa 0\| 
2\theta 

> 0, \lambda 0
 \star  - 

\| \kappa 0\| \theta 
2

 - \| \kappa 0\| \theta 
2

> 0, \lambda  \star  - 
\| \kappa 0\| 
2\theta 

> 0.

(iv) For any 0 \leq s < t \leq T ,

e - 
\int t
s

Au
2\eta u

du \leq C

\biggl( 
T  - t

T  - s

\biggr) 

and

e - 
\int t
s

An
u

2\eta u
du \leq C

\biggl( 
T  - t+ 1

n

T  - s+ 1
n

\biggr) 
.

The problem of the Stackelberg leader is to minimize the cost functional (1.9)
over the set of admissible controls

\scrA \BbbF 0(x0) =

\Biggl\{ 
\xi 0 \in L2

\BbbF 0([0, T ]\times \Omega ;\BbbR ) :
\int T

0

\xi 0s ds = x0

\Biggr\} 
.

The follower's optimal response function is given by

(4.1) \xi t := \xi t(\xi 
0) :=

Yt(\xi 
0) - \BbbE [\kappa tXt(\xi 

0)| \scrF 0
t ]

2\eta t
,

where (X,Y ) is the solution to (1.7) with \widetilde g = \widetilde \kappa 0\xi 0. We will occasionally drop the
dependence on \xi 0 if there is no confusion. Under Assumption 4.1 the solution (X,Y )
enjoys better regularity properties than the process (Q,H) established in Theorem
2.4, due to Remark 2.5 and the estimate (2.3).
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Corollary 4.2. Under Assumption 4.1, the solution to (1.7) belongs to \scrH 1\times S2
\BbbF .

Moreover, Y = AX +B with B \in \scrH \varsigma .

In the next section we first prove that the leader's problem has a unique solution
if the terminal state constraints are replaced by finite penalty terms and establish a
necessary maximum principle for the penalized problem. Subsequently, we prove the
convergence of the state and adjoint equations of the penalized problems as the degree
of penalization tends to infinity.

4.1. The penalized problem: Existence and maximum principle. The
penalized optimization problem is obtained by replacing the terminal state constraint
on the leader's and follower's state process by a finite penalty term. The leader's
problem consists of minimizing the cost functional

J0,n(\xi 0) = \BbbE 
\biggl[ \int T

0

\kappa 0
s\BbbE [\xi 

n

s | \scrF 0
s ]X

0
s + \kappa 0

s\xi 
0
sX

0
s + \eta 0s(\xi 

0
s )

2(4.2)

+ \lambda 0
s(X

0
s )

2 + \lambda s(\BbbE [\xi 
n

s | \scrF 0
s ])

2 ds+ n(X0
T )

2

\biggr] 

over all controls \xi 0 \in L2
\BbbF 0 subject to the state dynamics

(4.3)\left\{ 
         
         

dX0
t =  - \xi 0t dt,

dXt =  - Yt  - \BbbE [\kappa tXt| \scrF 0
t ]

2\eta t
dt,

 - dYt =

\biggl( 
\kappa t\BbbE 

\biggl[ 
Yt

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
 - \kappa t\BbbE 

\biggl[ 
1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\kappa tXt| \scrF t] + 2\lambda tXt + \widetilde \kappa 0

t \xi 
0
t

\biggr) 
dt - Zt dWt,

X0 = x, X0
0 = x0, YT = 2nXT ,

where the optimal response for the penalized follower \xi 
n
is defined as follows in terms

of (X,Y ) in (4.3),

\xi 
n
=

Y  - \BbbE [\kappa X| \scrF 0]

2\eta 
.

We are now going to show that the penalized optimization problem has a unique solu-
tion. Similar arguments could be used to prove the existence of an optimal control for
the original problem. They would not, however, give us an open-loop characterization
of the optimal control.

Theorem 4.3. For each n \in \BbbN , the penalized optimization problem (4.2)--(4.3)
admits a unique optimal control in L2

\BbbF 0 .

Proof. In view of Corollary 2.7 the system (4.3) is well-posed for each fixed \xi 0 \in 
L2
\BbbF 0 . The representation of the cost functional

J0,n(\xi 0)

= \BbbE 

\Biggl[ \int T

0

\kappa 0
t

2

\Biggl( \sqrt{} 
\theta X0

t +
\BbbE 
\Bigl[ 
\xi 
n

t

\bigm| \bigm| \bigm| \scrF 0
t

\Bigr] 

\surd 
\theta 

\Biggr) 2

+
\kappa 0
t

2

\biggl( \surd 
\theta X0

t +
\xi 0t\surd 
\theta 

\biggr) 2

+

\biggl( 
\lambda 0
t  - 

\kappa 0
t \theta 

2
 - \kappa 0

t \theta 

2

\biggr) 
(X0

t )
2

+

\biggl( 
\eta 0t  - 

\kappa 0
t

2\theta 

\biggr) 
(\xi 0t )

2 +

\biggl( 
\lambda t  - 

\kappa 0
t

2\theta 

\biggr) \biggl( 
\BbbE 
\biggl[ 
\xi 
n

t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] \biggr) 2

dt+ n(X0
T )

2

\Biggr] 

(4.4)
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2104 GUANXING FU AND ULRICH HORST

along with Corollary 2.6 and Assumption 4.1 shows that J0,n is strictly convex.
Uniqueness of the optimal strategy follows.

Let J\ast = inf\xi 0\in L2
\BbbF 0
J0,n(\xi 0). Then J\ast < \infty because J0,n(x0/T ) is bounded. Let

\{ \xi 0,n,m\} \subseteq L2
\BbbF 0 be a sequence such that

lim
m\rightarrow \infty 

J0,n(\xi 0,n,m) = J\ast .

By Assumption 4.1 this implies

(4.5) sup
m

\BbbE 

\Biggl[ \int T

0

(\xi 0,n,ms )2 ds

\Biggr] 
< C.

Thus, Lemma 2.10 implies the existence of some \xi 0,n,\ast \in L2
\BbbF 0 such that

(4.6) lim
N\rightarrow \infty 

\BbbE 

\Biggl[ \int T

0

\bigm| \bigm| \bigm| \xi 0,n,Nt  - \xi 0,n,\ast t

\bigm| \bigm| \bigm| 
\nu 

dt

\Biggr] 
= 0, 1 < \nu < 2,

where

\xi 
0,n,N

=
1

N

N\sum 

k=1

\xi 0,n,mk .

Let (X0,n,\ast , Xn,\ast , Y n,\ast ) be the solution to (4.3) associated with \xi 0,n,\ast . Then the same
argument as in the proof of Theorem 2.11 implies

lim
N\rightarrow \infty 

\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N

N\sum 

j=1

1

Nj

Nj\sum 

k=1

(Xn,mk
t , Y n,mk

t ) - (Xn,\ast 
t , Y n,\ast 

t )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\right] 
 = 0, 1 < \nu < 2.

Moreover, (4.6) yields

lim
N\rightarrow \infty 

\BbbE 

\left[ 
 sup
0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N

N\sum 

j=1

1

Nj

Nj\sum 

k=1

X0,n,mk
t  - X0,n,\ast 

t

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\right] 
 = 0, 1 < \nu < 2.

The integrand of J0,n (4.4) is nonnegative by Assumption 4.1(i)--(iii). Thus, Fatou's
lemma and the convexity of J0,n imply that

J0,n(\xi 0,n,\ast ) \leq lim inf
N\rightarrow \infty 

J0,n

\Biggl( 
1

N

N\sum 

j=1

\xi 
0,n,Nj

\Biggr) 

\leq lim inf
N\rightarrow \infty 

1

N

N\sum 

j=1

1

Nj

Nj\sum 

k=1

J0,n
\bigl( 
\xi 0,n,mk

\bigr) 
= J\ast .

From now on, we denote the unique optimal control for the penalized optimization
(4.2)--(4.3) by \xi 0,n,\ast , whose existence has been established in Theorem 4.3. The
following theorem provides a characterization of \xi 0,n,\ast .

Theorem 4.4 (necessary maximum principle). The optimal control \xi 0,n,\ast admits
the following representation:

(4.7) \xi 0,n,\ast t =
pnt + \BbbE [\widetilde \kappa 0

t q
n
t | \scrF 0

t ] - \kappa 0
tX

0,n,\ast 
t

2\eta 0t
, a.e. a.s. on [0, T ]\times \Omega ,
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MFG WITH STATE CONSTRAINT 2105

where X0,n,\ast , pn, and qn satisfy the following FBSDE system:
(4.8)\left\{ 
                     
                     

dX0,n,\ast 
t =  - \xi 0,n,\ast t dt,

dXn,\ast 
t =  - \xi n,\ast t dt,

 - dY n,\ast 
t =

\Bigl( 
\kappa t\BbbE 

\bigl[ 
\xi n,\ast t | \scrF 0

t

\bigr] 
+ 2\lambda tX

n,\ast 
t + \widetilde \kappa 0

t \xi 
0,n,\ast 
t

\Bigr) 
dt - Zt dWt,

 - dpnt =
\Bigl( 
\kappa 0
t\BbbE 
\bigl[ 
\xi n,\ast t | \scrF 0

t

\bigr] 
+ \kappa 0

t \xi 
0,n,\ast 
t + 2\lambda 0

tX
0,n,\ast 
t

\Bigr) 
dt - Zt dW

0
t ,

 - dqnt =

\biggl( 
 - rnt
2\eta t

 - \BbbE 
\bigl[ 
\kappa tq

n
t | \scrF 0

t

\bigr] 1

2\eta t
+ f

n

t

\biggr) 
dt,

 - drnt =

\biggl( 
 - 2\lambda tq

n
t + \kappa t\BbbE 

\biggl[ 
rt
2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
+ \kappa t\BbbE 

\biggl[ 
1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\kappa tq

n
t | \scrF 0

t ] + gnt

\biggr) 

\cdot dt - Zt dWt,

X0
0 = x0, X0 = x, Y n,\ast 

T = 2nXn,\ast 
T , pnT = 2nX0,n,\ast 

T , rnT =  - 2nqnT , qn0 = 0,

where

(4.9) \xi n,\ast t =
Y n,\ast 
t  - \BbbE [\kappa tX

n,\ast 
t | \scrF 0

t ]

2\eta t
,

(4.10) f
n

t =
\kappa 0
tX

0,n,\ast 
t

2\eta t
+

\lambda t

\eta t
\BbbE 
\bigl[ 
\xi n,\ast t | \scrF 0

t

\bigr] 
,

and

(4.11) gnt =  - \kappa t\BbbE 
\biggl[ 

1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\kappa 0
tX

0,n,\ast 
t  - 2\lambda t\kappa t\BbbE 

\biggl[ 
1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE 
\bigl[ 
\xi n,\ast t | \scrF 0

t

\bigr] 
.

Proof. A unique optimal control \xi 0,n,\ast exists due to Theorem 4.3. It is to be
viewed as an exogenous input to the FBSDE system (4.8). Thus, the system (Xn,\ast ,
Y n,\ast ) is a special case of (2.30) by taking (4.9) into account. Corollary 2.7 implies
that the system is well-posed. Considering f

n
and gn as inputs, the system (qn, rn)

is well-posed, again due to Corollary 2.7. The characterization (4.7) is then a direct
result of stochastic maximum principle for control of FBSDE with partial information;
cf [40].

The ansatz pn = A
n
X0,n,\ast + pn shows that the equation for pn could be dropped

from the above system. It yields the following BSDEs for the processes A
n
and pn

that will be used in the next subsection:

(4.12)

\left\{ 
   
   

 - dA
n

t =

\Biggl( 
 - (A

n

t )
2

2\eta 0t
+

\kappa 0
tA

n

t

2\eta 0t
+ 2\lambda 0

t

\Biggr) 
dt - ZA

n

t dW 0
t ,

A
n

T = 2n

and
(4.13)\left\{ 
  
  
 - dpnt =

\Biggl( 
 - A

n

t p
n
t

2\eta 0t
 - A

n

t \BbbE [\widetilde \kappa 0
t q

n
t | \scrF 0

t ]

2\eta 0t
+ \kappa 0

t \xi 
0,n,\ast 
t + \kappa 0

tE
\bigl[ 
\xi n,\ast t | \scrF 0

t

\bigr] 
\Biggr) 

dt - Zpn

t dW 0
t ,

pnT = 0.
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2106 GUANXING FU AND ULRICH HORST

4.2. The optimal solution to the Stackelberg game. Let us recall that
\xi 0,n,\ast denotes the leader's optimal control for penalized optimization with index n \in \BbbN .
The uniform boundedness of J0,n(x0/T ) in n \in \BbbN implies

(4.14) sup
n

\BbbE 

\Biggl[ \int T

0

\bigm| \bigm| \bigm| \xi 0,n,\ast t

\bigm| \bigm| \bigm| 
2

dt+ n(X0,n,\ast 
T )2

\Biggr] 
< \infty .

Thus, the same arguments as in the proof of Lemma 2.10 yield the existence of a
progressively measurable process

(4.15) \xi 0,\ast \in L2
\BbbF 0(\Omega \times [0, T ];\BbbR )

such that

(4.16) lim
N\rightarrow \infty 

\BbbE 

\Biggl[ \int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| 
1

N

N\sum 

k=1

\xi 0,nk,\ast 
t  - \xi 0,\ast t

\bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\Biggr] 
= 0, 1 < \nu < 2.

Our goal is to prove that \xi 0,\ast is the leader's unique optimal strategy in the original
state-constrained Stackelberg game. To this end, we first establish a representation of
\xi 0,\ast in terms of the solution to the systems (1.10), (1.12), and (1.13) by proving that
the solutions to the system of state and adjoint equations (4.8) for the unconstrained
penalized MFC problem Cesaro converge to the solutions to the systems (1.7), (1.10),
(1.12), and (1.13). From this, we then deduce a sufficient maximum principle for
the leader's MFC problem from which we conclude the optimality of the candidate
strategy \xi 0,\ast .

4.2.1. Approximation. With the limit \xi 0,\ast at hand, we can consider the FB-
SDE system (1.7), (1.10), (1.12), and (1.13) with \xi 0 replaced by \xi 0,\ast . The system (1.7)
for (X\ast , Y \ast ) is well-posed, due to Corollary 4.2. The system for (q, r) is well-posed,
due to the following corollary.

Corollary 4.5. If we take \chi = 0, \Lambda 1 =  - \Lambda 2 = \zeta = 1/2\eta , \gamma = \Lambda 3 = \varrho = \kappa ,

\Lambda 4 = 2\lambda , \Lambda 5 =  - \kappa \BbbE 
\Bigl[ 

1
2\eta 

\bigm| \bigm| \bigm| \scrF 0
\Bigr] 
, Q =  - q,

(4.17) f =
\kappa 0X0,\ast 

2\eta 
+

\lambda 

\eta 
\BbbE 
\bigl[ 
\xi \ast | \scrF 0

\bigr] 

and

(4.18) g =  - \kappa \BbbE 
\biggl[ 

1

2\eta 

\bigm| \bigm| \bigm| \bigm| \scrF 0

\biggr] 
\kappa 0X0,\ast  - 2\lambda \kappa \BbbE 

\biggl[ 
1

2\eta 

\bigm| \bigm| \bigm| \bigm| \scrF 0

\biggr] 
\BbbE 
\bigl[ 
\xi \ast | \scrF 0

\bigr] 
,

where

(4.19) \xi \ast =
Y \ast 

2\eta 
 - 1

2\eta 
\BbbE [\kappa tX

\ast | \scrF 0].

Then the system (1.2) reduces (1.13). Hence, existence and uniqueness of a solution
holds for (1.13). Moreover, r =  - Aq +D with D \in S2, - 

\BbbF .

We now introduce two BSDEs that we expect to be the limits to (4.12) and (4.13):

(4.20)

\left\{ 
   
   

 - dAt =

\Biggl( 
 - A

2

t

2\eta 0t
+

\kappa 0
tAt

2\eta 0t
+ 2\lambda 0

t

\Biggr) 
dt - Zt dW

0
t ,

lim
t\nearrow T

At = \infty 
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and

(4.21)

\left\{ 
  
  
 - dpt =

\biggl( 
 - Atpt

2\eta 0t
 - At\BbbE [\widetilde \kappa 0

t qt| \scrF 0
t ]

2\eta 0t
+ \kappa 0

t \xi 
0,\ast 
t + \kappa 0

tE
\bigl[ 
\xi \ast t | \scrF 0

t

\bigr] \biggr) 
dt - Zp

t dW
0
t ,

pT = 0.

where \xi \ast and \xi 0,\ast are defined in (4.19) and (4.15), respectively. The following lemma
confirms our guess. It shows that the solutions to the FBSDE system (4.8) converge
to the solutions to the FBSDE systems (1.7), (1.10), (1.13), and (4.21) in the same
sense as the optimal solutions to the unconstrained penalized problems converge to
the candidate solution of the constrained problem.

Lemma 4.6. For 1 < \nu < 2, it holds that

(4.22) lim
N\rightarrow \infty 

\BbbE 

\Biggl[ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \bigm| 
1

N

N\sum 

k=1

X0,nk,\ast 
t  - X0,\ast 

t

\bigm| \bigm| \bigm| \bigm| \bigm| 

\nu \Biggr] 
= 0,

(4.23) lim
N\rightarrow \infty 

\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N

N\sum 

j=1

1

Nj

Nj\sum 

k=1

Xnk,\ast 
t  - X\ast 

t

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\right] 
 = 0,

(4.24) lim
N\rightarrow \infty 

\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N

N\sum 

j=1

1

Nj

Nj\sum 

k=1

Y nk,\ast 
t  - Y \ast 

t

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\right] 
 = 0,

(4.25) lim
\widetilde N\rightarrow \infty 

\BbbE 

\left[ 
 sup
0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

qnk
t  - qt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu \right] 
 = 0,

(4.26) lim
\widetilde N\rightarrow \infty 

\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

rnk
t  - rt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\right] 
 = 0,

(4.27) lim
\widetilde N\rightarrow \infty 

\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

pnk
t  - pt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\right] 
 = 0.

Proof. The convergence (4.22) follows from (4.16) and the definition of X0,\ast .
Taking \chi = x, \zeta = \Lambda 1 =  - \Lambda 2 = 1/2\eta , \gamma = \Lambda 3 = \varrho = \kappa , \Lambda 4 = 2\lambda , \Lambda 5 =  - \kappa \BbbE 

\bigl[ 
1
2\eta 

\bigm| \bigm| \scrF 0
\bigr] 
,

f
n
= 0 and gn = \widetilde \kappa 0\xi 0,n,\ast in (2.30) the convergence (4.23), (4.24) follows from Theorem

2.11, due to the uniform L2 boundedness of gn.
In (2.30), let \chi = 0, \Lambda 1 =  - \Lambda 2 = \zeta = 1/2\eta , \gamma = \Lambda 3 = \varrho = \kappa , \Lambda 4 = 2\lambda ,

\Lambda 5 =  - \kappa \BbbE 
\Bigl[ 

1
2\eta 

\bigm| \bigm| \bigm| \scrF 0
\Bigr] 
, Qn =  - qn, and (f

n
, gn) as in (4.10) and (4.11). It follows from

(4.22)--(4.24) that

(4.28) lim
N\rightarrow \infty 

\BbbE 

\left[ 
 
\int T

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

N

N\sum 

j=1

1

Nj

Nj\sum 

k=1

(f
nk

t , gnk) - (f t, gt)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu 

dt

\right] 
 = 0,
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2108 GUANXING FU AND ULRICH HORST

where f and g are defined as in (4.17) and (4.18), respectively. By Corollary 4.2 and
the estimate (2.3), we have f \in S2

\BbbF and g \in L2
\BbbF . So (4.25) and (4.26) follow again from

Theorem 2.11. By (4.16), (4.23), (4.24), and (4.25) we also have (4.27).

The preceding lemma yields a representation on the candidate optimal strategy
in terms of the candidate optimal state and adjoint processes akin to the maximum
principle for the penalized problem.

Theorem 4.7. The limit \xi 0,\ast in (4.16) admits the following representation:

(4.29) \xi 0,\ast t =
pt + \BbbE [\widetilde \kappa 0

t qt| \scrF 0
t ] - \kappa 0

tX
0,\ast 
t

2\eta 0t
, a.e. a.s. on [0, T ]\times \Omega ,

where p = AX0,\ast + p. Moreover, \xi 0,\ast \in \scrA \BbbF (x
0) and p satisfies the dynamic (1.12).

Proof. The characterization (4.29) follows from Theorem 4.4 and Lemma 4.6. It
remains to verify the admissibility of \xi 0,\ast . The fact that \xi 0,\ast belongs to L2

\BbbF 0 is due to
(4.15). By (4.14),

lim
n\rightarrow \infty 

\BbbE [(X0,n,\ast 
T )2] = 0.

By (4.22),

lim
\widetilde N\rightarrow \infty 

\BbbE 

\left[ 
 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

X0,nk,\ast 
T  - X0,\ast 

T

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu \right] 
 = 0.

Thus,

\BbbE [| X0,\ast 
T | \nu ]

\leq 2\BbbE 

\left[ 
 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

X0,nk,\ast 
T  - X0,\ast 

T

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\nu \right] 
 

+2
1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

\BbbE 
\Bigl[ 
| X0,nk,\ast 

T | \nu 
\Bigr] 
\rightarrow 0,

which implies X0,\ast 
T = 0 a.s.. Finally, starting from p = AX0,\ast + p by integration

by parts and taking into account the characterization (4.29), we know p satisfies
(1.12).

4.2.2. Sufficient maximum principle. In this section, a sufficient maximum
principle is established, from which we obtain the optimality of \xi 0,\ast for the leader's
MFC problem.

Theorem 4.8 (sufficient maximum principle). Under Assumption 4.1, \xi 0,\ast given
by Theorem 4.7 is the unique optimal strategy to the leader's optimization problem.

Proof. We denote by (X0,\ast , X\ast , Y \ast ) the states corresponding to \xi 0,\ast and by
(X0, X, Y ) the states corresponding to a generic strategy \xi 0 \in L2

\BbbF 0 . The verifica-
tion is split into three steps.

Step 1. By Corollary 2.6, X and Y are convex in \xi 0 in the sense that

(X(\rho \xi 0+(1 - \rho )\xi 0
\prime 
), Y (\rho \xi 0+(1 - \rho )\xi 0

\prime 
)) = \rho (X(\xi 0), Y (\xi 0))+ (1 - \rho )(X(\xi 0

\prime 
), Y (\xi 0

\prime 
)).

Thus, J0 is strictly convex in \xi 0. As a result, there is at most one optimal strategy.
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Step 2. Integration by part for (X0 - X0,\ast )p, (X - X\ast )r, and (Y  - Y \ast )q on [0, \widetilde T ]
for 0 \leq \widetilde T < T yields

\BbbE 
\Bigl[ 
(X0

\widetilde T  - X0,\ast 
\widetilde T )p\widetilde T

\Bigr] 
+ \BbbE 

\Bigl[ 
(X\widetilde T  - X\ast 

\widetilde T )r\widetilde T

\Bigr] 
+ \BbbE 

\Bigl[ 
(Y\widetilde T  - Y \ast 

\widetilde T )q\widetilde T

\Bigr] 

=  - \BbbE 

\Biggl[ \int \widetilde T

0

(X0
t  - X0,\ast 

t )
\Bigl( 
\kappa 0
t\BbbE 
\bigl[ 
\xi \ast t | \scrF 0

t

\bigr] 
+ \kappa 0

t \xi 
0,\ast 
t + 2\lambda 0

tX
0,\ast 
t

\Bigr) 
dt

\Biggr] 

 - \BbbE 
\biggl[ \int T - \epsilon 

0

\BbbE [\kappa t(Xt  - X\ast 
t )| \scrF 0

t ]

\biggl( 
 - \kappa 0

t\BbbE 
\biggl[ 

1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
X0,\ast 

t

 - 2\lambda t\BbbE 
\biggl[ 

1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\xi \ast t | \scrF 0

t ]

\biggr) 
dt

\biggr] 

 - \BbbE 

\Biggl[ \int \widetilde T

0

\BbbE 
\biggl[ 
Yt  - Y \ast 

t

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] \Bigl( 
\kappa 0
tX

0,\ast 
t + 2\lambda t\BbbE 

\bigl[ 
\xi \ast t | \scrF 0

t

\bigr] \Bigr) 
dt

\Biggr] 

 - \BbbE 

\Biggl[ \int \widetilde T

0

(pt + \BbbE [\widetilde \kappa 0
t qt| \scrF 0

t ])(\xi 
0
t  - \xi 0,\ast t ) dt

\Biggr] 
,

where we recall \xi \ast is defined in (4.19).

Step 3. To prove the optimality of the strategy (4.29) we define, for any \widetilde T < T
the cost functional

\widetilde J0(\xi 0) = \BbbE 

\Biggl[ \int \widetilde T

0

\kappa 0
t

\biggl( 
\BbbE 
\biggl[ 
Yt

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
 - \BbbE 

\biggl[ 
1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\kappa tXt| \scrF 0

t ]

\biggr) 
X0

t + \kappa 0
t \xi 

0
tX

0
t + \eta 0t (\xi 

0
t )

2

+\lambda 0
t (X

0
t )

2 + \lambda t

\bigm| \bigm| \bigm| \bigm| \BbbE 
\biggl[ 
Yt

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
 - \BbbE 

\biggl[ 
1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\kappa tXt| \scrF 0

t ]

\bigm| \bigm| \bigm| \bigm| 
2

dt

\Biggr] 
.

By direct calculation we have

\widetilde J0(\xi 0) - \widetilde J0(\xi 0,\ast )

\geq \BbbE 

\Biggl[ \int T - \epsilon 

0

(X0
t  - X0,\ast 

t )
\Bigl( 
\kappa 0
t\BbbE [\xi \ast t | \scrF 0

t ] + \kappa 0
t \xi 

0
t + 2\lambda 0

t \xi 
0,\ast 
t

\Bigr) 
dt

\Biggr] 

+ \BbbE 

\Biggl[ \int T - \epsilon 

0

\BbbE 
\biggl[ 
Yt  - Y \ast 

t

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] \Bigl( 
\kappa 0
tX

0,\ast 
t + 2\lambda t\BbbE [\xi \ast t | \scrF 0

t ]
\Bigr) 
dt

\Biggr] 

+ \BbbE 
\biggl[ \int T - \epsilon 

0

\BbbE [\kappa t(Xt  - X\ast 
t )| \scrF 0

t ]

\biggl( 
 - \kappa 0

t\BbbE 
\biggl[ 

1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
X0,\ast 

t

 - 2\lambda t\BbbE 
\biggl[ 

1

2\eta t

\bigm| \bigm| \bigm| \bigm| \scrF 0
t

\biggr] 
\BbbE [\xi \ast t | \scrF 0

t ]

\biggr) 
dt

\biggr] 

+ \BbbE 

\Biggl[ \int T - \epsilon 

0

(\xi 0t  - \xi 0,\ast t )
\Bigl( 
\kappa 0
tX

0,\ast 
t + 2\eta 0t \xi 

0,\ast 
t

\Bigr) 
dt

\Biggr] 
.

(4.30)

Plugging the result into Step 2 into (4.30) and taking into account the characterization
(4.29), we have

\widetilde J0(\xi 0) - \widetilde J0(\xi 0,\ast ) + \BbbE 
\Bigl[ 
(X0

\widetilde T  - X0,\ast 
\widetilde T )p\widetilde T

\Bigr] 
+ \BbbE 

\Bigl[ 
(X\widetilde T  - X\ast 

\widetilde T )r\widetilde T

\Bigr] 
+ \BbbE 

\Bigl[ 
(Y\widetilde T  - Y \ast 

\widetilde T )q\widetilde T

\Bigr] 
\geq 0.
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The same estimate as in the proof of [25, Theorem 2.9] yields that

lim
\widetilde T\nearrow T

\BbbE 
\bigm| \bigm| \bigm| (X0

\widetilde T  - X0,\ast 
\widetilde T )p\widetilde T

\bigm| \bigm| \bigm| = 0.

Moreover, Corollaries 4.2 and 4.5 imply that

\BbbE 
\Bigl[ 
(X\widetilde T  - X\ast 

\widetilde T )r\widetilde T

\Bigr] 
+ \BbbE 

\Bigl[ 
(Y\widetilde T  - Y \ast 

\widetilde T )q\widetilde T

\Bigr] 

= \BbbE 
\Bigl[ 
(X\widetilde T  - X\ast 

\widetilde T )( - A\widetilde T q\widetilde T +D\widetilde T ) +
\Bigl( 
A\widetilde TX\widetilde T +B\widetilde T  - A\widetilde TX

\ast 
\widetilde T  - B\ast 

\widetilde T

\Bigr) 
q\widetilde T

\Bigr] 

= \BbbE 
\Bigl[ 
(X\widetilde T  - X\ast 

\widetilde T )D\widetilde T + (B\widetilde T  - B\ast 
\widetilde T )q\widetilde T

\Bigr] 

\rightarrow 0 as \widetilde T \nearrow T.

This completes the proof.

Corollary 4.9. There exists a convex combination of the value functions con-
verging to J0(\xi 0,\ast ), i.e.,

lim
\widetilde N\rightarrow \infty 

1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

J0,nk(\xi 0,nk,\ast ) = J0(\xi 0,\ast ).

Proof. Recall that X0,nk,\ast and \xi nk,\ast are the optimal states of the leader and the
optimal strategy of the follower corresponding to \xi 0,nk,\ast , respectively. Due to the
additional penalty term in the definition of J0,nk and because \xi 0,\ast is an admissible
strategy for the penalized problem,3

J0(\xi 0,nk,\ast ) \leq J0,nk(\xi 0,nk,\ast ) = inf
\xi \in L2

\BbbF 0
([0,T ]\times \Omega ;\BbbR )

J0,nk(\xi ) \leq J0(\xi 0,\ast )

Denote by K( \widetilde N) the cost functional with (\xi 0, X0, \xi ) in J0 replaced by

\Biggl( 
1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

\xi 0,nk,\ast ,
1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

X0,nk,\ast 

,
1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

\xi nk,\ast 
\Biggr) 
.

By the convexity, we have

K( \widetilde N) \leq 1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

J0(\xi 0,nk,\ast ) \leq J0(\xi 0,\ast ).

The function J0 admits a representation similar to (4.4). By Assumption 4.1(i--iii)
the integrand of J0 is nonnegative. By Lemma 4.6, (4.16), and Fatou's lemma

J0(\xi 0,\ast ) \leq lim inf
\widetilde N\rightarrow \infty 

K( \widetilde N) \leq lim inf
\widetilde N\rightarrow \infty 

1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

J0(\xi 0,nk,\ast ) \leq J0(\xi 0,\ast ).

3Notice that J0(\xi 0,nk,\ast ) is well-defined even though \xi 0,nk,\ast may not be admissible for the con-
strained optimization problem.
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4.3. Numerical simulations. We close this paper with a preliminary numerical
analysis of the Stackelberg game previously analyzed. To the best of our knowledge,
no numerical methods for simulating the mean-field FBSDEs arising in our game are
yet available. We therefore simulate a deterministic benchmark model with constant
coefficients. In this case, the conditional mean-field FBSDEs reduce to deterministic
forward-backward ODEs that can be solved numerically using the MATLAB package
bvpsuite [34]. Figure 1 (left) shows the optimal positions for the leader (solid) and
follower (dashed) for the parameter values \eta = 0.5, \kappa = 0.5, \lambda = 2, \kappa 0 = 0.5, \kappa 0 =
0.5, \eta 0 = 0.5, \widetilde \kappa 0 = 1, \lambda 0 = 2, \lambda = 1, and T = 1, x0 = 8, x = 0. In particular, we see
that a beneficial round trip exists for the follower. The right plot shows the leader's
cost as a function of the initial portfolio for the same parameter in a model with
follower (solid) and a benchmark model without follower (dashed). For these choices
of model parameters, the leader benefits from the presence of the follower. Figure 2
shows the same quantities as Figure 1, except that the impact of the leader on the
follower is now much stronger: \widetilde \kappa 0 = 10. In this case, the leader suffers from the
presence of the follower.
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Denote by K( \widetilde N) the cost functional with (\xi 0, X0, \xi ) in J0 replaced by

\left( 
 1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

\xi 0,nk,\ast ,
1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

X0,nk,\ast ,
1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

\xi nk,\ast 

\right) 
 .

By the convexity, we have

K( \widetilde N) \leq 1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

J0(\xi 0,nk,\ast ) \leq J0(\xi 0,\ast ).

The function J0 admits a representation similar to (4.4). By Assumption 4.1(i-iii)
the integrand of J0 is non-negative. By Lemma 4.6, (4.16) and Fatou's lemma

J0(\xi 0,\ast ) \leq lim inf
\widetilde N\rightarrow \infty 

K( \widetilde N) \leq lim inf
\widetilde N\rightarrow \infty 

1

\widetilde N

\widetilde N\sum 

i=1

1

N i

Ni\sum 

j=1

1

Nj

Nj\sum 

k=1

J0(\xi 0,nk,\ast ) \leq J0(\xi 0,\ast ).

4.3. Numerical simulations. We close this paper with a preliminary numerical
analysis of the Stackelberg game previously analyzed. To the best of our knowledge
no numerical methods for simulating the mean-field FBSDEs arising in our game are
yet available. We therefore simulate a deterministic benchmark model with constant
coefficients. In this case, the conditional mean-field FBSDEs reduce to deterministic
forward-backward ODEs that can be solved numerically using the MATLAB package
bvpsuite [34]. Figure 1 (left) shows the optimal positions for the leader (solid) and
follower (dashed) for the parameter values \eta = 0.5, \kappa = 0.5, \lambda = 2, \kappa 0 = 0.5, \kappa 0 =
0.5, \eta 0 = 0.5, \widetilde \kappa 0 = 1, \lambda 0 = 2, \lambda = 1, and T = 1, x0 = 8, x = 0. In particular, we see
that a beneficial round trip exists for the follower. The right plot shows the leader's
cost as a function of the initial portfolio for the same parameter in a model with
follower (solid) and a benchmark model without follower (dashed). For these choices
of model parameters, the leader benefits from the presence of the follower. Figure 2
shows the same quantities as Figure 1, except that the impact of the leader on the
follower is now much stronger: \widetilde \kappa 0 = 10. In this case, the leader suffers from the
presence of the follower.

Fig. 1. Left: optimal position for the leader (solid) and follower (dashed); right: leader's cost
function in a model with (solid) and without follower (dashed). Weak impact of leader on follower.

Fig. 1. Left: optimal position for the leader (solid) and follower (dashed). Right: leader's cost
function in a model with (solid) and without follower (dashed). Weak impact of leader on follower.
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Fig. 2. Left: optimal position for the leader (solid) and follower (dashed); right: leader's cost
function in a model with (solid) and without follower (dashed). Strong impact of leader on follower.

5. Conclusion. We established existence and uniqueness of solutions results
for linear McKean Vlasov FBSDEs with a terminal state constraint on the forward
process. The general results were used to solve novel MFC problems and mean-field
leader-follower games of optimal portfolio liquidation. For the leader-follower game
it could be viewed as a MFC problem where the state dynamics follows a controlled
FBSDE. For such problems we proved a novel stochastic maximum principle. The
proof was based on a approximation method. We proved that both the sequence of
optimal solutions and the sequence of state and adjoint equations associated with a
family of penalized problems Cesaro converge to a unique limit that yields the optimal
solution, respectively, the state and adjoint equations to the original state-constrained
problem.
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5. Conclusion. We established existence and uniqueness of solutions results
for linear McKean--Vlasov FBSDEs with a terminal state constraint on the forward
process. The general results were used to solve novel MFC problems and mean-field
leader-follower games of optimal portfolio liquidation. For the leader-follower game
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it could be viewed as an MFC problem where the state dynamics follow a controlled
FBSDE. For such problems we proved a novel stochastic maximum principle. The
proof was based on an approximation method. We proved that both the sequence of
optimal solutions and the sequence of state and adjoint equations associated with a
family of penalized problems Cesaro converge to a unique limit that yields the optimal
solution, respectively, the state and adjoint equations to the original state-constrained
problem.
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