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PRECONDITIONED NONLINEAR ITERATIONS FOR

OVERLAPPING CHEBYSHEV DISCRETIZATIONS WITH

INDEPENDENT GRIDS ∗

KEVIN W. AITON, TOBIN A. DRISCOLL

Abstract. The additive Schwarz method is usually presented as a preconditioner for a PDE
linearization based on overlapping subsets of nodes from a global discretization. It has previously
been shown how to apply Schwarz preconditioning to a nonlinear problem. By first replacing the
original global PDE with the Schwarz overlapping problem, the global discretization becomes a
simple union of subdomain discretizations, and unknowns do not need to be shared. In this way
restrictive-type updates can be avoided, and subdomains need to communicate only via interface
interpolations. The resulting preconditioner can be applied linearly or nonlinearly. In the latter case
nonlinear subdomain problems are solved independently in parallel, and the frequency and amount
of interprocess communication can be greatly reduced compared to linearized preconditioning.

Key words. partition of unity, polynomial interpolation, Chebfun, domain decomposition,
additive Schwarz
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1. Introduction. Overlapping domain decomposition has been recognized as a
valuable aid in solving partial differential equations since Schwarz first described his
alternating method in 1870. (For straightforward introductions to the topic, see [7, 12];
for a more historical perspective, see [9].) Overlapping decomposition provides a
way to solve a problem on a global domain by exploiting its reduction to smaller
subdomains. This creates geometric flexibility and allows special effort to be focused
on small parts of the domain when appropriate. Domain decomposition also has a
natural parallelism that is particularly attractive in the increasingly multicore context
of scientific computing.

For a linear PDE, one typically seeks to apply a preconditioner for a Krylov it-
eration such as GMRES, in the form of solving problems on overlapping subdomains
whose boundary data is in part determined by values of the solution in other subdo-
mains. In the parallel context this is achieved by an additive Schwarz (AS) scheme.
When one partitions the unknowns of a global discretization into overlapping subsets,
the best form of AS are restricted AS (RAS) methods [4], which do not allow multiple
domains to update shared unknowns independently and thus over-correct. Typically,
then, the subdomain problems are solved on overlapping sets, but the results are
distributed in a nonoverlapping fashion.

For nonlinear problems, the obvious extension of AS preconditioning is to apply it
as described above on the linearized equations that are determined by a quasi-Newton
iteration. We refer to this process as a Newton–Krylov–Schwarz (NKS) procedure,
reflecting the nesting order of the different elements of linearization, linear solver, and
preconditioning.

Cai and Keyes [3] proposed instead modifying the nonlinear problem using the
Schwarz ansatz. In addition to yielding a preconditioned linearization for the Krylov
solver, the preconditioned nonlinear problem exhibited more robust convergence for
the Newton iteration than did the original nonlinear problem. They called their
method ASPIN, short for additive Schwarz preconditioned inexact Newton. As a
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technical matter, they did not recommend applying the true Jacobian of the system,
preferring an approximation that required less effort. Subsequently, Dolean et al. [6]
pointed out that Cai and Keyes did not use the RAS form of AS preconditioning, and
they proposed an improved variant called RASPEN that does. We refer to this type
of nonlinear preconditioning as Schwarz–Newton–Krylov (SNK), because the Schwarz
ansatz is applied before the linearization begins.

Our interest is in applying the nonlinear preconditioning technique to spectral
collocation discretizations in overlapping rectangles or cuboids, leading to globally
smooth approximations constructed from a partition of unity [1]. In this context, there
is not naturally a single global discretization whose degrees of freedom are partitioned
into overlapping sets, because the Chebyshev (or Legendre, or other classical) nodes
will not generally coincide within the overlapping regions. In principle one could link
the degrees of freedom within overlap regions by interpolating between subdomains,
but this process adds complication, computational time, and (in the parallel context)
communication of data.

Here we present an alternative strategy that begins by replacing the original PDE
problem with the Schwarz problems on the union of the subdomains. That is, rather
than regarding the subdomains as solving the global PDE on a region that includes
portions shared with other subdomains, each subdomain has a “private copy” of its
entire region and is free to have its own solution values throughout. Of course, the new
global problem is not solved until the interface values of every subdomain agree with
values interpolated from other subdomains that contain the interface. As a Schwarz
starting point, our technique has both NKS and SNK variants.

One advantage of this new formulation is that interpolations need to be done
only on lower-dimensional interfaces, rather than throughout the overlap regions.
Another is that plain AS is preferred to RAS, because each subdomain has to update
its own values separately. We show that it is straightforward to implement exact
Jacobians for SNK with nothing more than the ability to do fully local PDE nonlinear
and linearized solves, plus the ability to transfer values between subdomains through
interface interpolations. We also derive a two-level method to prevent convergence
degradation as the number of subdomains increases. The performance of the NKS
and SNK methods is validated and compared through several numerical experiments.

2. PDE problem and multidomain formulation. The main goal of this
work is to solve the PDE

φ(x, u) = 0, x ∈ Ω,(2.1a)

β(x, u) = 0, x ∈ ∂Ω,(2.1b)

where u(x) is the unknown solution and φ and β are nonlinear differential operators
(with φ being of higher order). (We can easily extend to the case where u, φ, and
β are vector-valued, but we use scalars to calm the notation.) Many Schwarz-based
algorithms for (2.1) begin with a global discretization whose solution is accelerated
by an overlapping domain decomposition. In this situation, some of the numerical
degrees of freedom are shared by multiple subdomains—either directly or through
interpolation—and proper use of additive Schwarz (AS) calls for the restricted-AS
(RAS) implementation, which essentially insures that updates of shared values are
done only once from the global perspective, not independently by the subdomains.
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We take a different approach, replacing the original problem (2.1) with

φ(x, ui) = 0, x ∈ Ωi, i = 1, . . . , N,(2.2a)

β(x, ui) = 0, x ∈ Γi0 = ∂Ω ∩ ∂Ωi, i = 1, . . . , N,(2.2b)

ui = uj , x ∈ Γij = ∂Ωi ∩ Zj , i, j = 1, . . . , N,(2.2c)

where now u1, . . . , uN are unknown functions on overlapping subdomains Ωi that
cover Ω, and the Zi are nonoverlapping zones lying within the respective subdomains.
Clearly any strong solution of (2.1) is also a solution of (2.2), and while the converse
is not necessarily so in principle, we regard the possibility of finding a solution of (2.2)
that is not also a solution of (2.1) as remote in practice.

The key consequence of starting from (2.2) as the global problem is that each
overlapping region is covered separately by the involved subdomains; each is free to
update its representation independently in order to converge to a solution. From one
point of view, our discretizations of the overlap regions are redundant and somewhat
wasteful. However, the fraction of redundant discrete unknowns is very modest. In
return, we only need to interpolate on the interfaces, there is no need to use the RAS
formulation, and the coarsening needed for a two-level variant is trivial (see section
2.3).

2.1. Discretization. We now describe a collocation discretization of (2.2) for
concreteness. Each subfunction ui(x) is discretized by a vector ui of length ni. By
u = JuiK we mean a concatenation of all the discrete unknowns over subdomains
i = 1, . . . , N into a single vector. Subdomain Ωi is discretized by a node set Xi ⊂ Ωi

and a boundary node set Bi ⊂ ∂Ωi. The total cardinality of Xi and Bi together is
also ni. The boundary nodes are subdivided into nonintersecting sets Gij = Bi ∩ Zj

for j 6= i, and Gi0 = Bi ∩ ∂Ω.
For each i, the vector ui defines a function ũi(x) on Ωi. These can be used to

evaluate φ and β from (2.2) anywhere in Ωi. We define an ni-dimensional vector
function fi as the concatenation of three vectors:

(2.3) fi(ui) =











φ(x, ũi) for all x ∈ Xi,

β(x, ũi) for all x ∈ Gi0,

ũi(x) for all x ∈ Gij , j = 1, . . . , i− 1, i+ 1, . . . , N.

In addition, we have the linear transfer operator Ti defined by

(2.4) Tiu =











0 for all x ∈ Xi,

0 for all x ∈ Gi0,

ũj(x) for all x ∈ Gij , j = 1, . . . , i− 1, i+ 1, . . . , N.

Note that while fi is purely local to subdomain i, the transfer operator Ti operates on
the complete discretization u, as it interpolates from “foreign” subdomains onto the
parts of Bi lying inside Ω. Finally, we are able to express the complete discretization
of (2.2) through concatenations over the subdomains. Let u = JuiK, f(u) = Jfi(ui)K,
and Tu = JTiuK. Then the discrete form of (2.2) is the nonlinear equation

(2.5) f(u)− Tu = 0.

For a square discretization, the goal is to solve (2.5), while in the least-squares case,
the goal is to minimize f(u)− Tu in the (possibly weighted) 2-norm.
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2.2. Newton–Krylov–Schwarz. The standard approach to (2.5) for a large
discretization is to apply an inexact Newton iteration with a Krylov subspace solver
for finding correcting steps from the linearization. Within the Krylov solver we have
a natural setting for applying an AS preconditioner. Specifically, if we have a pro-
posed approximate solution u, we evaluate the nonlinear residual r = f(u)−Tu. We
then (inexactly, perhaps) solve the linearization

[

f ′(u)−Tu
]

s = −r for the Newton
correction s, using a Krylov solver such as GMRES. These iterations are precondi-
tioned by the block diagonal matrix f ′(u), which is simply the block diagonal of the
subdomain Jacobians f ′

i(ui). We refer to this method as Newton–Krylov–Schwarz, or
NKS.

Implementation of NKS requires three major elements: the evaluations of f(u)
and Tu for given u, the application of the Jacobian f ′(u) to a given vector v, and the
inversion of f ′(u) for given data. All of the processes involving f are embarrassingly
parallel and correspond to standard steps in solving the PDE on the local subdomains.
Each application of the transfer operator T , however, requires a communication from
each subdomain to its overlapping neighbors, as outlined in Algorithm 2.1. This step
occurs once in evaluating the nonlinear residual and in every GMRES iteration to
apply the Jacobian. In a parallel code, the communication steps could be expected
to be a major factor in the performance of the method.

Algorithm 2.1 Apply transfer operator, Tu.

Interpret input u as concatenated JuiK.
for j = 1, . . . , N (in parallel) do
for all neighboring subdomains i do
Evaluate ũj at x ∈ Gij .

end for

end for

2.3. Two-level scheme. As is well known [7], AS schemes should incorporate
a coarse solution step in order to maintain convergence rates as the number of subdo-
mains increases. The methods described above depend on the subdomain discretiza-
tion sizes ni of the collocation nodes and solution representation, respectively. Now
suppose we decrease the discretization sizes to n̂i, and denote the corresponding dis-
cretizations of (2.5) by f̂(û)− T̂ û = 0. We can define a restriction operator R that
maps fine-scale vectors to their coarse counterparts. This operator is block diagonal,
i.e., it can be applied independently within the subdomains. We can also construct a
block diagonal prolongation operator P for mapping the solution representation from
coarse to fine scales.

We are then able to apply the standard Full Approximation Scheme (FAS) using
the coarsened problem [2]. Specifically, we solve the coarse problem

(2.6) f̂(ê+Ru)− T̂ ê− f̂ (Ru) +R(f(u) − Tu) = 0

for the coarse correction ê, and define c(u) = P ê as the FAS corrector at the fine
level. The procedure for calculating c is outlined in Algorithm 2.2.

We also require the action of the Jacobian ∂c
∂u

= P ∂ê
∂u

on a given vector v. It is
straightforward to derive from (2.6) that

(2.7)
[

f̂ ′(ê+Ru)− T̂
] ∂ê

∂u
= −

(

f̂ ′(ê+Ru)− f̂ ′(Ru)
)

R−R
(

f ′(u)− T
)

.
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Algorithm 2.2 Evaluate FAS correction c(u).

Apply Algorithm 2.1 to compute Tu.
Compute (in parallel) û = Ru.

Compute (in parallel) r̂ = R(f(u) − Tu)− f̂ (û).
Solve equation (2.6) for ê.
Compute (in parallel) the prolongation P ê.

Algorithm 2.3 Apply Jacobian c′(u) for the FAS corrector to a vector v.

Apply Algorithm 2.2 to compute ê, û, and the final value of Â = f̂ ′(ê+ û).
Apply Algorithm 2.1 to compute Tv.
Set (in parallel) r̂ = R

(

f ′(u)v − Tv
)

and v̂ = Rv.

Set (in parallel) b̂ = Âv̂ − f̂ ′(û)v̂ + r̂.

Solve the linear system (Â− T̂ )ŷ = −b̂ for ŷ.
Compute (in parallel) P ŷ.

Note that the matrix f̂ ′(ê +Ru) should be available at no extra cost from the end
of the Newton solution of (2.6). Algorithm 2.3 describes the corresponding algorithm
for computing the application of c′(u) to any vector v. Even though c′ is of the size
of the fine discretization, the computation requires only coarse-dimension dense linear
algebra.

Finally, we describe how to combine coarsening with the preconditioned fine scale
into a two-level algorithm. If we were to alternate coarse and fine corrections in the
classical fixed-point form,

u† = u+ c(u),

unew = u† + f(u†)− Tu†,

then we are effectively seeking a root of

(2.8) h(u) := c(u) + (f − T )(u + c(u)).

Finally, the Jacobian of the combined map is straightforwardly

(2.9) h′(u) = c′(u) + (f ′ − T )(u + c(u)) · (I + c′(u)).

Thus the action of h′ on a vector can be calculated using the algorithms for c′, f ′,
and T .

3. Preconditioned nonlinear iterations. As shown in section 2.2, the inner
Krylov iterations of the NKS method are governed by the preconditioned Jacobian
I − [f ′(v)]−1T . Following the observation of Cai and Keyes [3], we next derive a
method that applies Krylov iterations to the same matrix, but arising as the natural
result of preconditioning the nonlinear problem. Specifically, we precondition (2.5)
by finding a root of the nonlinear operator

(3.1) g(u) := u− f−1(Tu).

Evaluation of g is feasible because of the block diagonal (that is, fully subdomain-
local) action of the nonlinear f . Since we are therefore applying the Schwarz ansatz
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even before linearizing the problem, we refer to the resulting method as Schwarz–

Newton–Krylov (SNK).
We have several motivations for a method based on (3.1). First, one hopes that

the nonlinear problem, being a (low-rank) perturbation of the identity operator, is
somehow easier to solve by Newton stepping than the original form is. Second, the
inversion of f means solving independent nonlinear problems on the subdomains with
no communication, which well exploits parallelism. Finally, the same structure means
that problems with relatively small highly active regions could be isolate the need
to solve a nonlinear problem to that region, rather than having it be part of a fully
coupled global nonlinear problem.

An algorithm for evaluating g is given in Algorithm 3.1. It requires one communi-
cation between subdomains to transfer interface data, followed by solving (in parallel
if desired) the nonlinear subdomain problems fi defined in (2.3). Note that the local
problem in Ωi is a discretization of the PDE with zero boundary data on the true
boundary Γi0 and values transferred from the foreign subdomains on the interfaces.

Algorithm 3.1 Evaluate SNK residual g(u).

Apply Algorithm 2.1 to compute Tu.
for i = 1, . . . , N (in parallel) do
Solve fi(ui − zi) = Tiu for zi.

end for

Return JziK.

Using the notation of Algorithm 3.1, we have that

f ′
i(ui − zi)

[

I −
∂zi
∂u

]

= Ti,

which implies that applying [∂zi/∂u] to a vector requires a single linear solve on a
subdomain, with a matrix that is presumably already available at the end of the local
Newton iteration used to compute g. The process for applying g′(u) to a vector is
outlined in Algorithm 3.2.

Algorithm 3.2 Apply Jacobian g′(u) to vector v for the SNK problem.

Apply Algorithm 2.1 to compute Tv.
for i = 1, . . . , N (in parallel) do
Solve [f ′

i(ui − zi)]yi = Tiv for yi.
end for

Return Jvi − yiK.

3.1. Two-level scheme. The SNK method can be expected to require coarse
correction steps to cope with a growing number of subdomains. An obvious approach
to incorporating a coarse-grid correction step is to apply FAS directly, i.e., using the
analog of (2.6) with fine g and coarse ĝ. However, doing so means inverting ĝ, which
introduces another layer of iteration in the overall process.

We have found that it is simpler and successful to apply the FAS correction in
the form of the original NKS method, as given in section 2.3. All we need to do is
replace f(u)− Tu and f ′ − T in (2.8) and (2.9) by g and g′, respectively.
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4. Numerical experiments. For all experiments we compared three methods:
NKS, SNK, and the two-level SNK2. The local nonlinear problems for SNK, and
the coarse global problems in SNK2, were solved using fsolve from the Optimization
Toolbox. Each solver used an inexact Newton method as the outer iteration, continued
until the residual was less than 10−10 relative to the initial residual. For the inner
iterations we used MATLAB’s gmres to solve for the Newton step sk such that

(4.1) ‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖

where η0 = 10−4 and

(4.2) ηk = 10−4

(

‖F (xk)‖

‖F (xk−1)‖

)2

.

Given certain conditions on F (x), if the intial solution is close enough to the true
solution then this set of tolerances will yield a sequence with near q-2 convergence [8].

4.1. Regularized driven cavity flow. The first example is a regularized form
of the lid-driven cavity flow problem [10], where we replace the boundary conditions
with infinitely smooth ones. Using the velocity-vorticity formulation, in terms of the
velocity u, v and vorticity ω on Ω = [0, 1]2 we have the nondimensionalized equations

(4.3)

−∆u−
∂ω

∂y
= 0,

−∆v +
∂ω

∂x
= 0,

−
1

Re
∆ω + u

∂ω

∂x
+ v

∂ω

∂y
= 0,

where Re is the Reynolds number. On the boundary ∂Ω we apply

(4.4)

u =







exp

(

( y−1

0.1 )
2

1−( y−1

0.1 )
2

)

, y > 0.9,

0, y ≤ 0.9,

v = 0,

ω = −
∂u

∂y
+

∂v

∂x
,

similar to the boundary conditions in [11].
We divided Ω into 16 overlapping patches of equal size (i.e. a 4 by 4 patch

structure). Each subdomain was discretized by a second-kind Chebyshev grid of
length 33 in each dimension. For the initial guess to the outer solver iterations we
extended the boundary conditions (4.4) to all values of x in the square Ω.

The convergence of the three solvers is shown for Re = 100, and SNK and NKS
for Re = 1000 in Figure 4.1. All three methods converge for Re = 100. The number of
GMRES iterations per nonlinear iteration are similar for the NKS and SNK methods;
this is to be expected since the linear system used to solve the Newton step is similar
in both methods. We do however see a dramatic reduction in the number of GMRES
iterations with the two-level SNK method.

It is worth noting well that the computational time for each outer iteration varies
greatly between solvers. The NKS residual requires only evaluating the discretized
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(a) Nonlinear residuals with Re = 100
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(b) Nonlinear residuals with Re = 1000

Fig. 4.1: Nonlinear residuals, normalized by the residual of the initial guess, of the
NKS, SNK, and SNK2 solvers on the regularized cavity flow problem (4.3)–(4.4). The
area of each marker is proportional to the number of inner GMRES iterations taken
to meet the inexact Newton criterion.

PDE and is thus is a good deal faster per iteration than the SNK solvers, which require
solving the local nonlinear problems. In addition SNK2 must solve a global coarse
problem in each outer iteration, but this added relatively little computing time.

For the higher Reynolds number Re = 1000 we find that while SNK still converges,
NKS does not, similar to what was reported in [3]. We also found that the coarse-level
solver in SNK2 had trouble converging.

4.2. Burgers equation. The second test problem is Burgers’ equation,

(4.5) ν∆u − u · ∇ = 0,

on Ω = [−1, 1]2, with Dirichlet boundary condition

(4.6) u = arctan

(

cos

(

3π

16

)

x+ sin

(

3π

16

)

y

)

.

This PDE was solved using a subdomain structure adapted to the function

exp

(

1

1− x−20
+

1

1− y−20

)

using the methods in [1], in order to help capture the boundary layers, as shown in
Figure 4.2. For the initial guess of the outer iterations, the boundary condition (4.6)
was extended throughout Ω.

Convergence histories for (4.5)–(4.6) for 1/ν = 400, 800, 1000, 1500 are given in
Figure 4.3. We observe again that the SNK and SNK2 solvers seem quite insensitive to
the diffusion strength, while the number of outer iterations in NKS increases mildly as
diffusion wanes. Furthermore, SNK2 converges in about half as many outer iterations
as SNK.

4.3. Parallel efficiency. A fully parallel-aware implementation of the methods
would presumably distribute all the data and solving steps across cores, which would
handle communication of interface values with neighbors when necessary. A simpler
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Fig. 4.2: Subdomains for the Burgers experiments, found by adapting to the function
exp(−x20/(1−x20))exp(−y20/(1−y20)) in order to increase resolution in the boundary
layer.

step was to modify our serial MATLAB implementation to use the parfor capability
of the Parallel Computing Toolbox for the most compute-intensive loop in the SNK
methods, that for the independent local nonlinear solves in the SNK residual evalu-
ation, followed by factoring the final Jacobian matrices of these solutions. While we
also tried parallelizing the loop for applying the inverses of the local Jacobians as part
of the full Jacobian application in an inner Krylov iteration, the effect on timings was
minimal or even detrimental due to the greater importance of communication relative
to that computation.

The parallel SNK2 solver was applied to the Burgers experiment as described
in section 4.2, but with the domain Ω split into an 8-by-8 array of uniformly sized
subdomains, resulting in 3 outer iterations and a total of 18 inner iterations. The code
was run on a compute node equipped with two 18C Intel E5-2695 v4 (for 36 total
cores), 32 GB of DDR4 memory, and a 100 Gbps Intel OmniPath cluster network. The
timing results for different numbers of parallel computing cores are given in Table 4.1.
There is a good amount of speedup in evaluations of the nonlinear SNK residuals,
consisting mainly of the solution of local nonlinear problems, which dominate the
computing time for a small number of cores. However, the parallel efficiency is limited
by the other parts of the implementation, most notably the Jacobian evaluations.
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(a) Nonlinear residuals with ν = 1/400
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(b) Nonlinear residuals with ν = 1/800
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(c) Nonlinear residuals with ν = 1/1000
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(d) Nonlinear residuals with ν = 1/1500

Fig. 4.3: Nonlinear residuals, normalized by the residual of the initial guess, of the
NKS, SNK, and SNK2 methods to solve (4.5)–(4.6). The area of each marker is
proportional to the number of inner GMRES iterations taken to meet the inexact
Newton criterion.

Number Total time Speedup Jacobian Residual Residual
of cores (sec.) time time speedup

1 62.3 — 11.6 42.0 —
2 43.5 1.43 12.7 24.1 1.74
4 33.4 1.86 11.3 15.5 2.71
6 30.0 2.08 11.5 12.1 3.47
8 28.3 2.21 11.3 10.5 4.00

12 27.6 2.26 11.9 9.3 4.51
16 28.6 2.18 13.2 8.8 4.78
20 28.2 2.21 13.1 8.3 5.04

Table 4.1: Parallel timing results for the Burgers equation experiment. “Jacobian
time” is the total time spent within applications of the Jacobian to a given vector,
and “Residual time” is the total amount of time spent evaluating the nonlinear SNK
residual.
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5. Discussion. We have described a framework for overlapping domain decom-
position in which overlap regions are discretized independently by the local subdo-
mains, even in the formulation of the global problem. Communication between sub-
domains occurs only via interpolation of values to interface points. This formulation
makes it straightforward to apply high-order or spectral discretization methods in the
subdomains and to adaptively refine them.

The technique may be applied to precondition a linearized PDE, but it may also be
used to precondition the nonlinear problem before linearization, to get what we call the
Schwarz–Newton–Krylov (SNK) technique. In doing so, one gets the same benefit of
faster Krylov inner convergence, but the resulting nonlinear problem is demonstrably
easier to solve in terms of outer iterations and robustness. Although we have not
given the derivation here, the Jacobian of the preconditioned nonlinear problem is
readily shown to be a low-rank perturbation of the identity. Thus Kantorovich or
other standard convergence theory for Newton’s method [5] may therefore suggest
improved local convergence rates and larger basin of attraction. We have not yet
pursued this analysis.

We have demonstrated that the SNK method can easily be part of a two-level Full
Approximation Scheme in order to keep iteration counts from growing as the number
of subdomains grows. The coarse level is simply a coarsening on each subdomain, so
that restriction and prolongation steps can be done simply and in parallel. Indeed,
the situation should make a fully multilevel implementation straightforward, as the
multilevel coarsenings and refinements can all be done within subdomains.

The most time-consuming part of the SNK algorithm is expected to be typically
in the solution of nonlinear PDE problems within each subdomain using given bound-
ary data. These compute-intensive tasks require no communication and are therefore
efficient to parallelize. By contrast, each inner Krylov iteration (i.e., Jacobian appli-
cation) of both SNK and linearly preconditioned NKS requires a communication of
interface data between overlapping subdomains, which appears to generate a more
communication-bound form of parallelism. An additional feature of the SNK ap-
proach, mentioned also in [3], is that subdomains of low solution activity can be
expected to be found relatively quickly. We observed this to be the case in the cavity
flow problem of section 4.1, where local solutions in regions of low activity were some-
times 3-4 times faster as those in regions with steep solution gradients. This presents
a natural way to limit the spatial scope of difficult nonlinear problems, though it also
raises questions for load balancing in a parallel environment.

Finally, we remark that an important extension in [1] is to use least-squares
approximation rather than interpolation to incorporate nonrectangular (sub)domains.
We have been able to write a least-squares (as opposed to collocation) generalization
of SNK and test it in one dimension. We hope to make it the subject of future work.
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