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Abstract

We consider dynamical transport metrics for probability measures on discretisa-
tions of a bounded convex domain in Rd. These metrics are natural discrete counter-
parts to the Kantorovich metric W2, defined using a Benamou–Brenier type formula.
Under mild assumptions we prove an asymptotic upper bound for the discrete trans-
port metric WT in terms of W2, as the size of the mesh T tends to 0. However,
we show that the corresponding lower bound may fail in general, even on certain
one-dimensional and symmetric two-dimensional meshes. In addition, we show that
the asymptotic lower bound holds under an isotropy assumption on the mesh, which
turns out to be essentially necessary. This assumption is satisfied, e.g., for tilings
by convex regular polygons, and it implies Gromov–Hausdorff convergence of the
transport metric.
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1 Introduction

Over the last decades, optimal transport has become a vibrant research area at the
interface of analysis, probability, and geometry. A central object is the 2-Kantorovich
distance W2 (often called 2-Wasserstein metric), which plays a major role in non-smooth
geometry and analysis, and in the theory of dissipative PDE. We refer to the monographs
[1, 30,32] for an overview of the theory and its applications.

More recently, discrete dynamical transport metrics have been introduced in the
context of Markov chains [24], reaction-diffusion systems [26] and discrete Fokker–Planck
equations [7]. These metrics are natural discrete counterparts to W2 in several ways:
they have been used to obtain a gradient flow formulation for discrete evolution equations
[12,25], and to develop a discrete theory of Ricci curvature that leads to various functional
inequalities for discrete systems [11, 16, 27]. The geometry of geodesics for these metrics
is currently actively studied, both from an analytic point of view [13, 18], and through
numerical methods [14, 31]; see also [8, 23] for further recent developments involving
discrete optimal transport.

It is natural to ask whether the discrete transport metrics converge to W2 under
suitable assumptions. The first result of this type has been obtained in [20]. The authors
approximated the continuous torus Td by the discrete torus TdN = (Z/NZ)d, and endowed
the space of probability measures P(TdN ) with the discrete transport metric WN . The
main result in [20] asserts that, under a natural rescaling, the metric spaces (P(TdN ),WN )
converge to the L2-Kantorovich space (P(Td),W2) in the sense of Gromov–Hausdorff as
N →∞.

A different convergence result was subsequently obtained by Garcia Trillos [19]. Given
a set XN consisting of N distinct points in Td, Garcia Trillos considers the graph obtained
by connecting all pairs of points that lie at distance less than ε, for a suitable ε depending
on N . Under appropriate conditions on the uniformity of the point set, it is shown
in [19] that the discrete transport metric converges to W2, provided that ε = ε(N)
decays sufficiently slow. While the result of [19] covers a wide range of settings, the
latter assumption typically implies that the number of neighbours of a point in XN tends
to ∞ as N →∞; in particular, the result of [20] is not contained in [19].

The aim of this paper is to investigate Gromov–Hausdorff convergence for transport
metrics on general finite volume discretisations of a bounded convex domain Ω ⊆ Rd.
While our setting is different from [19], it corresponds in terms of scaling to the limiting
regime in which the results of [19] fail to apply.

Setting of the paper

We informally present the main results of this paper. For precise definitions we refer to
Section 2.

Let Ω ⊆ Rd be a bounded convex open set. We endow the set of Borel probability
measures P(Ω) with the 2-Kantorovich metric, which can be expressed in terms of the
Benamou–Brenier formula

W2(µ0, µ1) = inf


√ˆ 1

0
A∗(µt, µ̇t) dt

 ,
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for µ0, µ1 ∈ P(Ω). Here, the infimum is taken among all absolutely continuous curves
(µt)t∈[0,1] in P(Ω) connecting µ0 and µ1, and

A∗(µ,w) = sup
φ∈C1(Ω)

{
2〈φ,w〉 − A(µ, φ)

}
, A(µ, φ) =

ˆ
Ω
|∇φ|2 dµ . (1.1)

We discretise the domain Ω using a finite volume discretisation, closely following the
setup from [17]. An admissible mesh consists of a partition T of Ω into sets K with
non-empty and convex interior, together with a family of distinct points {xK}K∈T such
that xK ∈ K for all K ∈ T . We write (K|L) = K ∩ L to denote the flat convex surface
with (d−1)-dimensional Hausdorff measure |(K|L)|. We make the geometric assumption
that the vector xK − xL is orthogonal to (K|L) if K and L are neighbouring cells and
we write dKL := |xK − xL|. In addition, we impose some mild regularity conditions on
the mesh; see Definition 2.11 for the notion of ζ-regularity that is imposed in the sequel.
We write [T ] := maxK∈T diam(K) to denote the mesh size of T .

The discrete transport metric on P(T ) is defined in terms of a discrete Benamou–
Brenier formula: for m0,m1 ∈ P(T ), we set

WT (m0,m1) = inf


√ˆ 1

0
A∗T (mt, ṁt) dt

 ,

where the action functionals are defined using natural discrete counterparts to (1.1):

A∗T (m,σ) = sup
ψ:T →R

{
2〈ψ, σ〉 − AT (m,ψ)

}
,

AT (m,ψ) =
1

2

∑
K,L∈T

SKLθKL

(
m(K)

|K| ,
m(L)

|L|

)(
ψ(K)− ψ(L)

)2
.

Here, the transmission coefficients SKL are defined by SKL = |(K|L)|
|xK−xL| . This choice

ensures the formal consistency of the discrete and the continuous definitions; cf. Remark
2.14 below for a verification at the level of the associated Dirichlet forms. We refer to [17,
Theorem 4.2] for a convergence result for the discrete heat equation to the continuous
heat equation.

The functions θKL : R+ × R+ → R+ are admissible means, i.e., θKL is a continuous
function that is C∞ on (0,∞) × (0,∞), positively 1-homogeneous, jointly concave, and
normalised (i.e., θ(1, 1) = 1); see Definition 2.8 below for further details. Furthermore, we
impose the symmetry condition θKL(s, t) = θLK(t, s). A common choice is the logarith-
mic mean θKL(s, t) :=

´ 1
0 s

1−ptp dp for all K ∼ L, which naturally arises in the gradient
flow structure of the discrete heat equation [7, 24, 26]. We write θ = (θKL) to denote
the collection of mean functions in the definition of WT , and suppress the dependence
of WT on θ in the notation. The freedom to choose these mean functions is due to the
discreteness of the problem. We will see that a careful choice is crucial in the sequel.

Statement of the main results

The goal of this paper is to analyse the limiting behaviour of the discrete transport metrics
WT as [T ] → 0. To formulate the main results we introduce the canonical projection
operator PT : P(Ω)→ P(T ) given by(

PT µ
)
(K) = µ(K) for µ ∈ P(Ω) and K ∈ T . (1.2)
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Our first main result establishes a one-sided asymptotic estimate for the discrete
transport metric in great generality.

Theorem 1.1 (Asymptotic upper bound for WT ). Fix ζ ∈ (0, 1], and let µ0, µ1 ∈ P(Ω).
For any family of ζ-regular meshes {T }, and for any choice of mean functions θT , we
have

lim sup
[T ]→0

WT (PT µ0, PT µ1) ≤W2(µ0, µ1) .

In view of the Gromov–Hausdorff convergence results from [20] and [19], one might
expect that a corresponding asymptotic lower bound for WT in terms of W2 holds as
well. However, convergence can fail, even in one dimension, as the following example
shows.

Example (A; a one-dimensional period mesh). For N ∈ N and r ∈ (0, 1
2), we consider a

one-dimensional discretisation Tr,N of the unit interval [0, 1], obtained by alternatingly
concatenating intervals of length r

N and 1−r
N .

0 r
N

1
N

1+r
N

2
N

2+r
N

. . . 1

Figure 1: The mesh Tr,N on the interval [0, 1].

The next result shows that WT can not be bounded from below by W2 as [T ]→ 0.

Proposition 1.2 (Counterexample to the lower bound for WT ). Let Ω = (0, 1) and let
Tr,N be as in Example (A) above. Fix an admissible symmetric mean θ, and consider
the transport metric WT defined by setting θKL = θ for all K,L ∈ T . Then there exist
probability measures µ0, µ1 ∈ P(Ω) such that, for each fixed r ∈ (0, 1

2),

lim sup
N→∞

WTr,N (PTr,Nµ0, PTr,Nµ1) <W2(µ0, µ1) .

We stress that the discrete heat flow converges to the continuous heat flow in the
setting of this counterexample.

The idea behind the one-dimensional counterexample is that an “unreasonably cheap”
discrete transport can be constructed by introducing microscopic oscillations in the dis-
crete density in such a way that most of the mass is assigned to small cells. We refer to
Section 5 for more details.

In view of Proposition 1.2 it is natural to look for additional geometric assumptions on
the mesh under which an asymptotic lower bound forWT in terms of W2 can be obtained.
A weight function on T is a mapping λ : T ×T → [0, 1] satisfying λKL +λLK = 1 for all
K,L ∈ T . The following definition plays a central role in our investigations.

Definition 1.3 (Asymptotic isotropy). A family of admissible meshes {T } is said to be
asymptotically isotropic with weight functions {λT } if, for all K ∈ T ,∑

L

λTKL
|(K|L)|
dKL

(xK − xL)⊗ (xK − xL) ≤ |K|
(
1 + ηT (K)

)
Id , (1.3)

where supK∈T |ηT (K)| → 0 as [T ]→ 0.
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The asymptotic isotropy condition puts a strong geometric constraint on a family of
meshes, although it will be shown in Section 5 that isotropy always holds on average on
a macroscopic scale.

Remark (Centre-of-mass condition). In examples it is often convenient to verify the
asymptotic isotropy condition by checking the following stronger condition: we say that
T satifies the centre-of-mass condition with weight function λ if

−
ˆ

(K|L)
x dS = λLKxK + λKLxL

for any pair of neighbouring cells K,L ∈ T . As λKL+λLK = 1, this condition asserts that
the centre of mass of the interface (K|L) lies on the line segment connecting xK and xL.
In the literature on finite volume methods this property is known as superadmissibility
of the mesh; see [15, Lemma 2.1].

For all interior cells K ∈ T , we claim that the centre-of-mass condition yields the
asymptotic isotropy condition (1.3) with equality and ηT (K) = 0. To see this, let n =
n(x) be the outward unit normal on ∂K, and note that

ˆ
∂K

(x− xK)⊗ n dS = |K|Id , (1.4)

as can be shown by applying Gauss’s Theorem to the vector fields Φij : Rd → Rd given
by Φij(x) := 〈x− xK , ej〉ei for 1 ≤ i, j ≤ d. For all L ∼ K, the centre-of-mass condition
yields

ˆ
(K|L)

(x− xK)⊗ n dS =

ˆ
(K|L)

λKL(xL − xK)⊗ n dS

= λKL
|(K|L)|
dKL

(xK − xL)⊗ (xK − xL) . (1.5)

The claim follows by summation over L.
Note that for boundary cells, the centre-of-mass condition does not imply asymptotic

isotropy in general. If Ω is polygonal and T can be extended to a global mesh satisfying
the centre-of-mass condition, then our claim holds also for boundary cells by positive
semi-definiteness of (1.5). This is the case in several examples below.

Figure 2: Five admissible meshes (B1)–(B5) and a non-admissible mesh (B6).

Example (A; revisited). Clearly, the centre-of-mass condition holds in every one-dimen-
sional mesh for an appropriate weight function λ. For the one-dimensional periodic
lattice Tr,N in Example (A), it is immediately checked that λKL = r if K is small, and
λKL = 1− r if K is large.
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Example (B; Two dimensional meshes). The centre-of-mass condition holds for the reg-
ular hexagonal lattice (B1) and the equilateral triangular lattice (B2) in dimension 2, if
the points xK are placed at the centre of mass of the cells. In these examples we have
λKL = 1

2 for all K and L. The hexagonal lattice (B1) is truncated in such a way that
all interior interface have equal size. More generally, it is immediate to see that the
centre-of-mass condition holds for any tiling of the plane by convex regular polygons;
cf. [22, Chapter 2] for many examples.

The centre-of-mass condition is clearly satisfied for rectangular grids in any dimension,
if the points xK are placed at the centre of the cells. The weights λKL will depend on
the size of the rectangles. It is possible to put the points xK at different positions, as
is done in (B3). In that case, the centre-of-mass condition is violated, but the isotropy
condition holds.

Another example for which the centre-of-mass condition holds is shown in (B4). The
value of the weights λKL is determined by the length ratio of the edges.

The centre-of-mass condition fails for the lattice in (B5). Indeed, to satisfy this
condition, the points xK would have to be placed at the boundary of the cells, in a way
that violates our assumption that the points xK are all distinct. This would lead to
infinite transmission coefficients SKL. The isotropy condition fails to hold as well, as will
be discussed in Section 5.

In each of the examples (B1)–(B4) it is readily checked that the isotropy condition
also holds for boundary cells, by introducing suitable fake points outside of the domain.

The mesh in (B6) is not admissible, as the line segments connecting the points xK
are not orthogonal to the cell interfaces.

Our next main result provides an asymptotic lower bound for WT in terms of W2

under the assumption that the meshes {T } satisfy the asymptotic isotropy condition,
and the means θTKL are carefully chosen to reflect this condition.

A mean function (θKL) is said to be compatible with a weight function (λKL) if, for
any K,L ∈ T and all a, b ≥ 0, we have

θKL(a, b) ≤ λKLa+ λLKb ,

or equivalently, ∂1θKL(1, 1) = λKL for any K,L; cf. Section 2.2 for a more extensive
discussion.

Remark. In the special case that λKL = 1
2 , the compatibility condition holds for any

admissible mean that is symmetric (i.e., θKL(s, t) = θKL(t, s) for all K,L and s, t ≥ 0).

Theorem 1.4 (Asymptotic lower bound for WT ). Fix ζ ∈ (0, 1], and let µ0, µ1 ∈ P(Ω).
Let {T } be a family of ζ-regular meshes satisfying the asymptotic isotropy condition with
weights (λTKL)K,L∈T , and let (θTKL)K,L∈T be admissible means that are compatible with
(λTKL)K,L∈T . Then:

W2(µ0, µ1) ≤ lim inf
[T ]→0

WT (PT µ0, PT µ1) .

Remark. As discussed above, the assumptions of the theorem are satisfied in the Examples
(A) and (B1)–(B4).

In Section 6 we will prove slightly stronger versions of Theorems 1.1 and 1.4, that
provide uniform error bounds in terms of µ0 and µ1. As a consequence, we obtain the
following result.
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Corollary 1.5 (Gromov–Hausdorff convergence of WT ). Under the conditions of Theo-
rem 1.4, we have convergence of metric space in the sense of Gromov–Hausdorff:

(P(T ),WT )→ (P(Ω),W2) as [T ]→ 0 .

Another consequence is the following result on the behaviour of WT -geodesics. Let
QT : P(T )→ P(Ω) be the natural embedding defined in (3.1) below.

Corollary 1.6 (Convergence of geodesics). Under the conditions of Theorem 1.4, let
µi ∈ P(Ω) and mTi ∈ P(T ) be such that QTm

T
i ⇀ µi as [T ]→ 0 for i = 0, 1. Then:

lim
[T ]→0

WT (mT0 ,m
T
1 ) = W2(µ0, µ1) .

Moreover, if (mTt )t∈[0,1] is a constant speed geodesic in (P(T ),WT ) and QTm
T
t ⇀ µt ∈

P(Ω) as [T ] → 0 for every t ∈ [0, 1], then (µt)t∈[0,1] is a constant speed geodesic in

(P(Ω),W2).

Finally, we will show that the asymptotic isotropy condition is essentially necessary
in Theorem 1.4 and Corollary 1.5. More precisely, the following result shows that the
asymptotic lower bound for WT fails to hold if the asymptotic isotropy condition is
locally violated at all scales. In this sense the asymptotic isotropy condition for {T } is
essentially equivalent to Gromov–Hausdorff convergence of WT to W2. The result relies
crucially on the smoothness of the mean functions θKL. In particular, the result does
not apply to θKL(a, b) = min{a, b}.

Theorem 1.7 (Necessity of asymptotic isotropy). Fix ζ ∈ (0, 1], and let {T } be a family
of ζ-regular meshes on Ω. For each T , let θT be a mean function on T satisfying the
regularity condition

sup
T

sup
K,L∈T

‖D2θTKL‖L∞(B((1,1),s)) <∞

for some s > 0. Consider the weight functions λT defined by λKL = ∂1θ
T
KL(1, 1), and

assume that there exists a non-empty open subset U ⊆ Ω, a unit vector v ∈ Sd−1 and
c > 0, such that

lim inf
[T ]→0

∑
K∈T ,K⊆V

((∑
L

λKL|nKL · v|2|(K|L)|dKL
)
− |K|

)
+

≥ c|V | , (1.6)

for any non-empty open subset V ⊆ U . Then there exist µ0, µ1 ∈ P(Ω) such that

lim sup
[T ]→0

WT (PT µ0, PT µ1) <W2(µ0, µ1) .

The condition (1.6) can easily be verified in the setting of Examples (A) and (B5);
cf. Section 5 for details.

Remark. On a technical level, our method of proof offers the advantage that the maps
for which Gromov–Hausdorff convergence is proved are the canonical projections PT ,
rather than regularised versions of these maps, as in [20]. Another advantage is that we
do not require any regularisation argument at the discrete level, as was done both in [20]
and [19]. All regularisation arguments are done at the continuous level. In particular,
we do not require any lower Ricci curvature bounds for the Markov chain at the discrete
level, which would be quite restrictive.
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Let us finally discuss how the results in this paper relate to the discretisation of
gradient flows. Indeed, it follows from results in [7,24,26] that the discrete heat equation
on a mesh T is the entropy gradient flow with respect to WT if and only if the mean
function θKL is the logarithmic mean for every pair of adjacent cells K,L. Moreover, for
any vanishing sequence of regular meshes, solutions of the discrete heat equation converge
to solutions of the continuous heat equation [17].

By contrast, our main results imply that if θKL is the logarithmic mean, the associated
transport metrics do not converge to W2, unless the meshes satisfy (rather restrictive)
isotropy conditions. Thus, in the non-isotropic setting, preservation of the gradient flow
structure is incompatible with convergence of the associated transport distances.

For 1-dimensional isotropic meshes, evolutionary Γ-convergence of the entropic gra-
dient flow structure for the discrete heat flow with respect to the transport distance WT
has been proved in [10]. Loose speaking, this means that

ˆ 1

0
A∗T (mt, ṁt) + |gradWT EntT (mt)|2 dt→

ˆ 1

0
A∗(µt, µ̇t) + |gradW2

Ent(µt)|2 dt

in the sense of Γ-convergence. For gradient flow approximations to nonlinear parabolic
problems, convergence results have been obtained as well; see, e.g., [5].

Structure of the paper

In Section 2 we recall some known facts about the Kantorovich distance W2 and the heat
flow on convex bounded domains. Furthermore we introduce ζ-regular meshes and the as-
sociated discrete transport distanceWT . Section 3 contains several useful coarse a priori
bounds for discrete optimal transport, and in Section 4 we obtain finite volume estimates
for the action functionals AT and A∗T . The failure of Gromov–Hausdorff convergence
to W2 (Proposition 1.2 and Theorem 1.7) is established in Section 5. Finally, Section 6
contains the proofs of the lower bound (Theorem 1.1), the upper bound (Theorem 1.4),
and the convergence results (Corollaries 1.5 and 1.6).
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2 Preliminaries

2.1 The Kantorovich metric

Let (X , d) be a Polish space, and let P(X ) be the set of Borel probability measures on X .
The class of Borel measures on X is denoted by M+(X ), and the class of signed Borel
measures with mass 0 by M0(X ).
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For 1 ≤ p < ∞, the p-Kantorovich metric (often called p-Wasserstein metric) is
defined by

Wp(µ0, µ1) = inf
γ∈Γ(µ0,µ1)

(ˆ
X×X

d(x, y)p dγ(x, y)

)1/p

(2.1)

for µ0, µ1 ∈ P(X ). Here, Γ(µ0, µ1) denotes the set of all couplings (also called transport
plans) between µ0 and µ1:

Γ(µ0, µ1) = {γ ∈ P(X × X ) : π0
#γ = µ0 and π1

#γ = µ1} ,

where π0(x, y) = x, π1(x, y) = y, and πi#γ denotes the push-forward of γ under πi. If
W(µ0, µ1) <∞, then the infimum in (2.1) is attained; see, e.g., [32] for basic properties
of Wp.

Let Ω ⊆ Rd be a convex bounded open set. Let D = C∞c (Rd) be the space of test
functions and let D′ be the space of distributions. In this paper we will make use of the
dynamical formulation of the metric W2, which is given in terms of the action functional
A :M+(Ω)× C1(Ω)→ R and its Legendre dual A∗ :M+(Ω)×D′ → R ∪ {+∞}, where

A(µ, φ) :=

ˆ
Ω
|∇φ|2 dµ , A∗(µ,w) = sup

φ∈D

(
2〈φ,w〉 − A(µ, φ)

)
. (2.2)

The Benamou–Brenier formula [4] asserts that

W2(µ0, µ1) = inf

{√ˆ 1

0
A∗(µt, µ̇t) dt : (µt)t∈[0,1] ∈ AC(µ0, µ1)

}
. (2.3)

Here, AC(µ0, µ1) denotes the class of all W2-absolutely continuous curves (µt)t∈[0,1] in

P(Ω) connecting µ0 and µ1.
For fixed δ > 0, it will be useful to introduce the set Pδ(Ω) ⊆ P(Ω) consisting

of all µ = udx such that u : Ω → R is Lipschitz continuous with Lip(u) ≤ 1
δ and

minx∈Ω u(x) ≥ δ. For µ ∈ Pδ(Ω) and w ∈ L2(Ω) with
´

Ωw(x) dx = 0, the maximiser in
the definition of A∗(µ,w) is given by the unique distributional solution φ ∈ H1(Ω) to the
elliptic problem {

−div(u∇φ) = w in Ω

∂nφ = 0 on ∂Ω

satisfying
´

Ω φ dx = 0. Moreover, A(µ, φ) = A∗(µ,w).

Let (Ha)a≥0 be the heat semigroup associated to the Neumann Laplacian ∆ on Ω.
Since Ω is convex, Ω is a CD(0, d) space in the sense of Bakry–Émery and Lott–Villani–
Sturm. In particular, the heat semigroup satisfies the Bakry–Émery gradient estimate

|∇Haφ|2 ≤ Ha|∇φ|2 (2.4)

for all sufficiently smooth functions φ : Ω → R, and the local logarithmic Sobolev in-
equality

|∇ logHaφ|2 ≤
1

a

Ha(φ log φ)−Haφ logHaφ

Haφ
, (2.5)

9



for all smooth and positive functions φ : Ω → R; cf. [3, Theorem 5.5.2]. Moreover, it is
well known that the Neumann heat kernel ha satisfies the Gaussian bounds

(4πa)−d/2e−
|x−y|2

4a ≤ ha(x, y) ≤ C
(
a−d/2 ∨ 1

)
e−c

|x−y|2
a (2.6)

for all a > 0 and x, y ∈ Ω, with constants c, C > 0 depending on Ω; see [9, Theorems
3.2.9 and 5.6.1]. The following result asserts that the heat semigroups maps P(Ω) into
Pδ(Ω).

Lemma 2.1. For all a > 0 there exists a constant δ > 0, depending on Ω and a, such
that for any µ ∈ P(Ω) the density ua of Haµ satisfies

ua(x) ≥ δ for all x ∈ Ω and Lip(ua) ≤
1

δ
.

Proof. The lower bound follows immediately from the Gaussian lower bound in (2.6).
To prove the Lipschitz bound, we use the pointwise gradient inequality

2a|∇Haφ|2 ≤ Ha(φ
2) ,

which follows from the CD(0, d) property of Ω; cf. [3, Theorem 4.7.2]. Together with
(2.6) we obtain

|∇ua(x)|2 = |∇Ha/2ua/2(x)|2 ≤ a−1‖Ha/2(u2
a/2)‖∞ ≤ a−1‖ua/2‖2∞ ≤ C ,

for some C <∞ depending on a. This implies the result.

We collect some known properties of the Kantorovich metric that will be useful in
the sequel. Let us remark that the convexity of the domain Ω is crucial for Part (ii) in
the following lemma, as its proof relies on gradient estimates in the sense of Bakry and
Émery (see, e.g., [2, Theorem 3.17] and [3]).

Lemma 2.2 (Bounds on the Kantorovich metric). The following assertions hold:

(i) (Monotonicity) For i = 0, 1, let µi ∈M+(Ω) with µ0 ≥ µ1, and let w ∈ D′. Then:

A∗(µ0, w) ≤ A∗(µ1, w) . (2.7)

(ii) (Contraction bounds) For any µ ∈ P(Ω), φ ∈ D, w ∈ D′, and a ≥ 0, we have

A(µ,Haφ) ≤ A(Haµ, φ) and A∗(Haµ,Haw) ≤ A∗(µ,w) . (2.8)

Consequently, the following contraction property holds for any µ0, µ1 ∈ P(Ω):

W2(Haµ0, Haµ1) ≤W2(µ0, µ1) . (2.9)

(iii) (Hölder continuity of the heat flow) There exists a constant C <∞ such that

W2(µ,Haµ) ≤ C√a

for any µ ∈ P(Ω) and a ≥ 0.
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Proof. Assertion (i) follows immediately from the definitions.
The first part of Assertion (ii) is a consequence of the Bakry–Émery gradient esti-

mate (2.4) and the selfadjointness of Ha. The second part follows immediately, and the
inequality (2.9) holds by the Benamou–Brenier formula (2.3).

To show Assertion (iii), note first that dγ(x, y) = ha(x, y) dµ(x) dy is a coupling
between µ and Haµ. Thus using (2.6) we obtain

W2(µ,Haµ)2 ≤
ˆ

Ω

ˆ
Ω
|x− y|2ha(x, y) dµ(x) dy

≤ C
(
a−d/2 ∨ 1

) ˆ
Ω

ˆ
Ω
|x− y|2e−c

|x−y|2
a dµ(x) dy

≤ C
(
a−d/2 ∨ 1

) ˆ
Ω

ˆ
Rd
|x− y|2e−c

|x−y|2
a dy dµ(x)

= C
(
1 ∨ ad/2

)
a .

(2.10)

If a ≤ diam(Ω)2, we have 1 ∨ ad/2 ≤ C for some constant C depending on Ω, so we
may absorb the factor 1 ∨ ad/2 into the constant. If a ≥ diam(Ω)2, we trivially have
W2(µ,Haµ) ≤ diam(Ω) ≤ √a.

2.2 Discrete transport metrics

We briefly recall the definition of the discrete transport metrics introduced in [7, 24,26].
Let X be a finite set, and let R : X × X → R+ be a non-negative function satisfying

R(x, x) = 0 for all x ∈ X . We interpret R(x, y) as the transition rate from x to y for
a continuous-time Markov chain on X , which we assume to be irreducible. Under this
assumption, there exists a unique invariant probability measure π ∈ P(X ). We assume
that π satisfies the detailed balance condition:

π(x)R(x, y) = π(y)R(y, x) for all x, y ∈ X .

To define the discrete transport metric we need to choose a family of admissible
means in the sense of the following definition. Note that these assumptions slightly differ
from [11, Assumption 2.1].

Definition 2.3 (Admissible mean). An admissible mean is a continuous function θ :
R+×R+ → R+ that is C∞ on (0,∞)× (0,∞), positively 1-homogeneous, jointly concave,
and normalised (i.e., θ(1, 1) = 1).

We collect some known properties of admissible means in the following result.

Lemma 2.4. Let θ be an admissible mean.

(i) For a, b ≥ 0 we have θ(a, b) ≥ min{a, b}.
(ii) For any a, b ≥ 0 and c, d > 0 we have

θ(a, b) ≤ a∂1θ(c, d) + b∂2θ(c, d) , (2.11)

with equality if a = c and b = d.

Proof. To show (i), assume first that a > b, and write (a, b) = b
b+ε(b+ε, b+ε)+ ε

b+ε(M, 0),

where M = b+ε
ε (a − b). Using the concavity, 1-homogeneity and normalisation of θ, we

obtain θ(a, b) ≥ b
b+εθ(b + ε, b + ε) = bθ(1, 1) = b. The case a < b can be treated

analogously, and the case a = b follows immediately by 1-homogeneity and normalisation.
We refer to [11, Lemma 2.2] for a proof of (ii).
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It will be useful to associate a number λ(θ) to an admissible mean θ that quantifies
its asymmetry.

Definition 2.5 (Weight). For an admissible mean θ, its weight λ(θ) ∈ [0, 1] is given by

λ(θ) = ∂1θ(1, 1) .

If there is no danger of confusion, we will simply write λ = λ(θ).

Remark 2.6. Note that λ(θ) is indeed nonnegative, since θ is non-decreasing in each of
its arguments. Applying (2.11) with a = b = c = d = 1, it follows that

∂1θ(1, 1) + ∂2θ(1, 1) = 1 , (2.12)

which implies that λ(θ) ≤ 1.

Remark 2.7. It follows from (2.11) with c = d = 1, that

θ(a, b) ≤ λ(θ)a+ (1− λ(θ))b

for any a, b ≥ 0. Moreover, this inequality characterises λ(θ) ∈ [0, 1] uniquely. If θ is
symmetric, it follows from (2.12) that λ(θ) = 1

2 .

Examples of symmetric admissible means are the arithmetic mean θarith(a, b) = a+b
2 ,

the geometric mean θgeom(a, b) =
√
ab, the logarithmic mean θlog(a, b) =

´ 1
0 a

1−pbp dp,

and the harmonic mean θharm(a, b) = 2ab
a+b . For each of these means there exist natural

generalisations with weights λ ∈ [0, 1], such as

θ
(λ)
arith(a, b) = λa+ (1− λ)b , θ(λ)

geom(a, b) = aλb1−λ ,

θ
(λ)
log (a, b) =

ˆ 1

0
apb1−p τ(dp) , θ

(λ)
harm(a, b) =

1

λ/a+ (1− λ)/b
.

(2.13)

Here, τ is an arbitrary Borel probability measure on [0, 1] with
´ 1

0 pτ(dp) = λ.

Definition 2.8 (Mean and weight functions). Let X be a finite set.

(i) A mean function is a family of admissible means θ = (θxy)x,y∈X satisfying the
symmetry condition θxy(a, b) = θyx(b, a) for all x, y ∈ X and a, b ≥ 0.

(ii) A weight function is a collection λ = (λxy)x,y∈X ⊆ [0, 1] satisfying λxy + λyx = 1
for all x, y ∈ X ,

(iii) For a mean function θ, its induced weight function λ(θ) is defined by λ
(θ)
xy =

∂1θxy(1, 1) for all x, y. We say that a mean function θ is compatible with a weight
function λ, if λ is induced by θ.

It follows from (2.12) that the induced weight function is indeed a weight function.

We are now in a position to define the discrete transport metrics. Given a Markov
chain (X , R, π) and a mean function θ, the discrete transport metric is defined using
discrete analogues of (2.2). The action functional A : P(X ) × RX → R and its dual
A∗ : P(X )× RX → R ∪ {+∞} are given by

A(m,ψ) =
1

2

∑
x,y∈X

θxy
(
m(x)R(x, y),m(y)R(y, x)

)(
ψ(x)− ψ(y)

)2
,

1

2
A∗(m,σ) = sup

ψ∈RX

{∑
x∈X

ψ(x)σ(x)− 1

2
A(m,ψ)

}
.

(2.14)
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For m0,m1 ∈ P(X ), the associated transport metric is given by

W(m0,m1) = inf

{√ˆ 1

0
A∗(mt, ṁt) dt : (mt)t∈[0,1] ∈ AC(m0,m1)

}
.

Here, AC(m0,m1) denotes the class of all curves (mt)t∈[0,1] ⊆ P(X ) connecting m0 and
m1, with the property that t 7→ mt(x) is absolutely continuous for all x ∈ X .

Remark 2.9. In most of the previous papers dealing with discrete dynamical transport
metrics, θxy has been chosen to be independent of x and y. In particular, to obtain a
gradient flow structure for Markov chains [7,24,26], one chooses θxy to be the logarithmic
mean for all x, y. We will see in this paper that the additional freedom can be important
to obtain Gromov–Hausdorff convergence. In a noncommutative setting, a similar gener-
alisation has been useful in the setting of Lindblad equations with a nontracial invariant
state [6, 28].

We will occasionally use an equivalent formulation for W given by

W(m0,m1) = inf

{√ˆ 1

0
K(mt, Vt) dt : (m,V ) ∈ CE(m0,m1)

}
.

Here, CE(m0,m1) denotes the class of pairs (m,V ) satisfying

• m : [0, T ]→ P(X ) is continuous with m|t=0 = m0, and m|t=1 = m1;

• V : [0, T ]×X × X → R is locally integrable;

• the continuity equation holds in the sense of distributions:

ṁt(x) +
1

2

∑
y∈X

π(x)R(x, y)
(
Vt(x, y)− Vt(y, x)

)
= 0 for all x ∈ X . (2.15)

Moreover,

K(m,V ) :=
1

2

∑
x,y∈X

π(x)R(x, y)Kxy

(
m(x)

π(x)
,
m(y)

π(y)
, V (x, y)

)
, (2.16)

where the convex and lower semicontinuous function K : R3 → [0,∞] is given by

Kxy(a, b, w) :=


w2

θxy(a,b) , w ∈ R, a, b > 0 ,

0 , w = 0, a, b ≥ 0 ,

+∞ , otherwise .

(2.17)

By Fenchel duality, A∗ can be obtained from K by minimising over all solutions to the
continuity equation

A∗(m,σ) = inf
V

{
K(m,V ) :

σ(x) +
1

2

∑
y∈X

π(x)R(x, y)
(
V (x, y)− V (y, x)

)
= 0 ∀x ∈ X

}
.

(2.18)

Here the infimum runs over all vector fields V : X × X → R. Without loss of generality
we may impose the anti-symmetry condition V (x, y) = −V (y, x) for all x, y ∈ X ; see [11,
Section 2] for more details.
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2.3 Admissible and ζ-regular meshes

Following [17, Section 3.1.2], we introduce the notion of an admissible mesh.

Definition 2.10 (Mesh). A mesh of Ω is a pair (T , {xK}K∈T ) where

• T = {K}K∈T is a finite partition (i.e., a pairwise disjoint covering) of Ω into sets
(called cells) with nonempty and convex interior.

• {xK}K∈T ⊆ Ω is a family of distinct points with xK ∈ K for every K ∈ T .

Note that all interior cells K are polytopes. Throughout the paper we will use the
following notation:

- |K| denotes the Lebesgue measure of a cell K ∈ T .

- (K|L) = K∩L is the flat convex surface with (d−1)-dimensional Hausdorff measure
|(K|L)|. Two cells K,L ∈ T with K 6= L are called nearest neighbours if |(K|L)| >
0. In this case we write K ∼ L. We write K ' L if K = L or K ∼ L.

- dKL = |xK − xL|.
- [T ] = maxK∈T diam(K) denotes the mesh size of T .

Definition 2.11 (Admissible and ζ-regular mesh). A mesh (T , {xK}K∈T ) is called ad-
missible if xK − xL ⊥ (K|L) whenever K,L ∈ T are nearest neigbours. An admissible
mesh T is called ζ-regular for ζ ∈ (0, 1] if the following conditions hold:

• (inner ball condition) B(xK , ζ[T ]) ⊆ K for every K ∈ T ;

• (area bound) |(K|L)| ≥ ζ[T ]d−1 for every K,L ∈ T with K ∼ L.

In view of Definition 2.11, we stress that the ζ-regularity of a mesh implies its admis-
sibility.

Every Voronoi tesselation yields an admissible mesh. Another example is obtained by
slicing Ω multiple times in the cardinal directions. In this case there are several degrees
of freedom for placing the points {xK}K∈T , so these points are not necessarily uniquely
determined by T . We refer to [17] for more information.

In the following result we collect some basic geometric properties of ζ-regular meshes
that will be useful in the sequel.

Lemma 2.12. Let T be a ζ-regular mesh of Ω for some ζ ∈ (0, 1]. Then there exists a
constant C <∞ depending only on Ω and ζ such that the following assertions hold:

(i) The number of nearest neighbours of any cell is bounded by C.

(ii) Any pair of cells K,L ∈ T can be connected (for some N ≥ 0) by a path (Ki)
N
i=1 ⊆ T

with K0 = K, KN = L, Ki−1 ∼ Ki for 1 ≤ i ≤ N , and

N∑
i=1

dKi−1,Ki ≤ CdKL . (2.19)

(iii) For all K ∼ L we have the following estimates:

diam(K) ≤ CdKL , (2.20)

C−1|K| ≤ dKL|(K|L)| ≤ C|K| , (2.21)

|K| ≤ C|L| . (2.22)
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Proof. (i): Write h = [T ] for brevity. By the inner ball condition we have⋃
L:L∼K

B(xL, ζh) ⊆
⋃

L:L∼K
L ⊆ B(xK , 2h) .

Hence, Assertion (i) follows by comparing volumes.
(ii): Let ` be the line segment from xK to xL. By path-connectedness, there exists a

continuous curve γ in the [T ]-neighbourhood of ` that connects xK to xL and avoids the
boundaries of the cell interfaces. Let {Ki}Ni=0 be the N cells that successively intersect
γ. By ζ-regularity, each of the balls B(xKi , ζ[T ]) is contained in Ki. In turn, each of
the cells Ki is contained in the cylinder of radius 2[T ], whose central axis is obtained by
extending ` by a distance [T ] in both directions.

The number of disjoint balls of radius r that can be packed into a cylinder of length
s and radius R is bounded by Cds

Rd−1

rd
, where Cd is a dimensional constant. Therefore,

if follows that

N ≤ C |xK − xL|+ 2[T ]

[T ]
,

where C depends on ζ and d. As ζ[T ] ≤ minK′ 6=L′ |xK′ − xL′ |, if follows that N ≤
C|xK − xL|/[T ]. As dKi−1,Ki ≤ 2[T ], this yields the desired bound.

(iii): To prove (2.20), we use the inner ball condition to obtain dKL ≥ ζh ≥
ζ diam(K).

Since xK − xL ⊥ (K|L), the volume of the bipyramid spanned by (K|L), xK and xL
is given by 1

d |(K|L)|dKL. Using the inner ball condition we obtain

1

d
dKL|(K|L)| ≤ |K ∪ L| ≤ |B(xK , 2h)| ≤ C|B(xK , ζh)| ≤ C|K| ,

which proves the upper bound in (2.21). To prove the corresponding lower bound, note
that ζh ≤ dKL, hence by ζ-regularity,

|K| ≤ |B(xK , h)| ≤ Chd ≤ Ch|(K|L)| ≤ CdKL|(K|L)| .

The inequality (2.22) follows from (2.21).

The ζ-regularity condition allows us to control the constants in several useful inequal-
ities. Most notably, we will use the Poincaré inequality [29]

ˆ
K
φ2 dx ≤ diam(K)2

π2

ˆ
K
|∇φ|2 dx (2.23)

and the trace inequality ˆ
∂K

φ2 dS ≤ C diam(K)

ˆ
K
|∇φ|2 dx , (2.24)

both of which are valid for all K ∈ T and all φ ∈ H1(K) with
´
K φ dx = 0; cf. [21,

Theorem 1.5.1.10]. The constant C < ∞ depends only on ζ and the dimension d. For
the convenience of the reader we record a simple consequence that we will use below.

Lemma 2.13. Let ζ ∈ (0, 1]. There exists a constant C < ∞ depending on ζ and Ω,
such that, for any K ∈ T and any φ ∈ H1(K),

−
ˆ
∂K
|φ|dS ≤ −

ˆ
K
|φ|dx+ C[T ]

√
−
ˆ
K
|∇φ|2 dx . (2.25)
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Moreover, for any convex subset B ⊆ K with |B| ≥ ζ|K|, we have∣∣∣∣−ˆ
K
φ dx−−

ˆ
B
φ dx

∣∣∣∣ ≤ C[T ]

√
−
ˆ
K
|∇φ|2 dx . (2.26)

Proof. Write φ̄ = −́
K φ dx. Using (2.24) and (2.21) we obtain

‖φ‖L1(∂K) ≤ |∂K| |φ̄|+ ‖φ− φ̄‖L1(∂K)

≤ |∂K| |φ̄|+ C
√
|∂K|diam(K)‖∇φ‖L2(K) .

As Lemma 2.12 implies |K| ≤ C|∂K| [T ], we have diam(K) ≤ C |∂K||K| [T ]2, which yields

(2.25).
To prove (2.26), we write φK = −́

K φ dx and φB = −́
B φ dx for brevity. Using the

Poincaré inequality (2.23) we obtain

|K| |φB − φK |2 ≤ C|B| |φB − φK |2

≤ C
ˆ
B
|φB − φ|2 dx+ C

ˆ
K
|φ− φK |2 dx

≤ C[T ]2
ˆ
K
|∇φ|2 dx ,

which implies (2.26).

2.4 Discrete optimal transport on admissible meshes

Given an admissible mesh T of Ω we consider an irreducible Markov chain on T with
transition rates

R(K,L) =
|(K|L)|
|K|dKL

if K ∼ L (2.27)

and R(K,L) = 0 otherwise.

Remark 2.14 (Formal consistency). This choice of the transition rates R(K,L) is moti-
vated by the following formal consistency computation for the Dirichlet energy associated
to our problem. Let U be the uniform probability measure on Ω. For a smooth function
φ : Ω→ R, the continuous action functional satisfies

A(U , φ) =
1

|Ω|

ˆ
Ω
|∇φ|2 dx = − 1

|Ω|
∑
K

ˆ
K
φ∆φ dx ≈ − 1

|Ω|
∑
K

φ(xK)

ˆ
∂K

∂nφ dS

≈ − 1

|Ω|
∑
K,L

φ(xK)|(K|L)|φ(xL)− φ(xK)

|xK − xL|
=

1

2|Ω|
∑
K,L

|(K|L)|
|xK − xL|

(
φ(xK)− φ(xL)

)2
.

Let UT ∈ P(T ) be the canonical discretisation of U given by UT = PT U , and let ψT :
T → R be given by ψT (K) = φ(xK). Then the latter expression is indeed of the form
A(UT , ψT ) defined in (2.14), provided that the coefficients R(K,L) are defined by (2.27).

It is immediate to check that the unique invariant probability measure π on T is given
π(K) = |K|

|Ω| . Moreover, the detailed balance condition π(K)R(K,L) = π(L)R(L,K)
holds.
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For this Markov chain, the discrete action functional AT : P(T ) × RT → R and its
dual A∗T : P(T )× RT → R ∪ {+∞} defined in (2.14) are given by

AT (m,ψ) =
1

2

∑
K,L∈T

|(K|L)|
dKL

θKL

(
m(K)

|K| ,
m(L)

|L|

)(
ψ(K)− ψ(L)

)2
,

1

2
A∗T (m,σ) = sup

ψ∈RT

( ∑
K∈T

ψ(K)σ(K)− 1

2
AT (m,ψ)

)
.

The main object of study in this paper is the associated transport metric, defined for
m0,m1 ∈ P(T ) by

WT (m0,m1) = inf

{√ˆ 1

0
A∗T (mt, ṁt) dt : (mt)t∈[0,1] ∈ AC(m0,m1)

}
.

3 A priori estimates

In this section we prove the necessary a priori estimates. Throughout this section, we fix
a convex bounded open set Ω ⊆ Rd and a ζ-regular mesh T for some ζ ∈ (0, 1]. Moreover,
we use the convention that the constants C appearing in this section (which are allowed
to change from line to line) may depend on Ω and ζ, but not on other properties of T .

Lemma 3.1. There exists a constant C <∞ such that for any K,L ∈ T with K ∼ L,

WT (δK , δL) ≤ CdKL .
Proof. It follows from [11, Lemma 2.13] that

WT (δK , δL)2 ≤ c dKL
|(K|L)| max{|K|, |L|}

for some universal constant c < ∞. The claim follows by ζ-regularity in view of (2.21).

To compare discrete and continuous measures, we use the canonical projection op-
erator PT defined in (1.2). The associated embedding operator QT : P(T ) → P(Ω) is
given by

QTm =
∑
K∈T

m(K)UK for m ∈ P(T ) , (3.1)

where UK denotes the uniform probability measure on K. Note that PT ◦ QT is the
identity on P(T ). The following lemma quantifies how close QT ◦ PT is to the identity
on P(Ω).

Lemma 3.2 (Consistency). For all µ ∈ P(Ω) we have

W2(µ,QT PT µ) ≤ [T ] .

Proof. For U ∈ T , let γK ∈ P(Ω × Ω) be any coupling between µ̃K , the normalised
restriction of µ to K, and UK , the uniform probability measure on K. It then follows
that γ :=

∑
K∈T µ(K)γK belongs to Γ(µ,QT PT µ). Consequently,

W2(µ,QT PT µ)2 ≤
ˆ

Ω×Ω
|x− y|2 dγ(x, y)

=
∑
K

µ(K)

ˆ
K×K

|x− y|2 dγK(x, y) ≤
∑
K

µ(K) diam(K)2 ≤ [T ]2 .
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The following result provides a coarse bound for the discrete distance WT in terms
of the Kantorovich distance W2.

Lemma 3.3 (Upper bound for WT ). For all m0,m1 ∈ P(T ) we have

WT (m0,m1) ≤ C
(
W2(QTm0, QTm1) + [T ]

)
. (3.2)

Proof. Let γ ∈ Γo(Qm0, Qm1) be an optimal plan for W2, and set γKL := γ(K × L)
for brevity. Observe that m0 =

∑
K,L γKLδK and m1 =

∑
K,L γKLδL. Therefore, by

convexity of the squared distance (cf. [11, Proposition 2.11]) we have

WT (m0,m1)2 ≤
∑
K,L

γKLWT (δK , δL)2 .

For K,L ∈ T , take a connecting path {Ki}Ni=0 ⊆ T with K0 = K and KN = L satisfying
the ζ-regularity estimate (2.19). Using Lemma 3.1 we obtain

WT (δK , δL) ≤
N∑
i=1

WT (δKi−1 , δKi) ≤ C
N∑
i=1

dKi−1,Ki ≤ CdKL .

For all x ∈ K and y ∈ L we have d2
KL = |xK − xL|2 ≤ |x− y|2 +C[T ]. Combining these

estimates, the result follows.

The following lemma provides a coarse lower bound for the discrete dual action func-
tional in terms of its continuous counterpart.

Lemma 3.4 (Bound for the dual action functional). There exists a constant C < ∞
such that for any m ∈ P(T ), and any σ ∈M0(T ), we have

A∗(H[T ]QTm,H[T ]QT σ) ≤ CA∗T (m,σ) .

Proof. Let m ∈ P(T ) and σ ∈ M0(T ) be such that A∗T (m,σ) < ∞. In view of (2.18)
there exists an anti-symmetric momentum vector field V : T ×T → R solving the discrete
continuity equation

σ(K) +
∑
L

|(K|L)|
dKL

V (K,L) = 0 . (3.3)

For K ∈ T , define g : ∂K → R by g(x) = V (K,L)
dKL

for x ∈ (K|L) with K ∼ L, and

g(x) = 0 for x ∈ ∂Ω. It then follows that σ(K) = −
´
∂K g dS. Therefore, denoting the

outward unit normal on ∂K by n, the Neumann problem{
−∆φK = σ(K)/|K| in K

∂nφK = g on ∂K
(3.4)

has a unique solution φK ∈ H1(K) with
´
K φK dx = 0. Since σ(K) ≤ ‖g‖L1(∂K) by (3.3),

we obtain ˆ
K
|∇φK |2 dx =

1

|K|

ˆ
K
σ(K)φK dx+

ˆ
∂K

gφK dS

≤ |σ(K)|
|K| ‖φK‖L1(K) + ‖g‖L2(∂K)‖φK‖L2(∂K)

≤ ‖g‖L2(∂K)

(√
|∂K|
|K| ‖φK‖L2(K) + ‖φK‖L2(∂K)

)
.

(3.5)
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Since
´
K φK dx = 0, the right-hand side can be bounded in terms of ‖∇φK‖L2(K) using

the Poincaré inequality (2.23) and the trace inequality (2.24). Moreover, using the ζ-
regularity inequalities (2.20) (2.21), and the bound on the number of neighbours from
Lemma 2.12, we obtain |∂K|diam(K) ≤ C|K|. Consequently,ˆ

K
|∇φK |2 dx ≤ C diam(K)

ˆ
∂K

g2 dS .

Using the ζ-regularity inequality (2.20) we obtain,ˆ
∂K

g2 dS =
∑
L∈T

|(K|L)|
d2
KL

V (K,L)2 ≤ C

diam(K)

∑
L∈T

|(K|L)|
dKL

V (K,L)2 ,

and therefore, ˆ
K
|∇φK |2 dx ≤ C

∑
L∈T

|(K|L)|
dKL

V (K,L)2 .

Let us now define the vector field Φ ∈ L2(Ω;Rd) by Φ(x) = ∇φK(x) for x ∈ K. By
(3.4) and the anti-symmetry of the Neumann boundary values, one has

QT σ + div Φ = 0 (3.6)

in the sense of distributions, and Φ · n = 0 on ∂Ω.
Take now m ∈ P(T ). Writing ρ(K) = m(K)

|K| , we obtain

A∗(QTm,QT σ) ≤
∑
K∈T

ˆ
K

|∇φK |2
ρ(K)

dx

≤ C
∑

K,L∈T

|(K|L)|
dKL

V (K,L)2

θharm(ρ(K), ρ(L))
,

(3.7)

where θharm(a, b) = 2ab
a+b is the harmonic mean.

We would like to obtain a similar estimate involving the means θKL, but as ρ is in
general not bounded away from 0, we cannot bound the harmonic mean by a multiple of
θKL. To remedy this issue, we perform an additional regularisation step. Consider the
function ρ̃ : T → R+ given by ρ̃(K) = ρ(K) +

∑
L∼K ρ(L), and set m̃(K) = ρ̃(K)|K|. In

view of (2.7), Lemma 3.5 below, and (2.8), we obtain, for a = [T ],

A∗(HaQTm,HaQT σ) ≤ CA∗(HaQT m̃,HaQT σ)

≤ CA∗(QT m̃,QT σ)

We stress that to obtain the first inequality, the choice a = [T ] is crucial; cf. Remark
3.6. Moreover, applying (3.7) to m̃, we obtain

A∗(QT m̃,QT σ) ≤ C
∑

K,L∈T

|(K|L)|
dKL

V (K,L)2

θharm(ρ̃(K), ρ̃(L))
.

Since ρ̃(K), ρ̃(L) ≥ ρ(K) + ρ(L) whenever K ∼ L, we have θharm(ρ̃(K), ρ̃(L)) ≥ ρ(K) +
ρ(L) ≥ θKL(ρ(K), ρ(L)). Therefore, combining the estimates above, we obtain

A∗(HaQTm,HaQT σ) ≤ C
∑

K,L∈T

|(K|L)|
dKL

V (K,L)2

θKL(ρ(K), ρ(L))
.

Taking the infimum over all V satisfying (3.3), the result follows using (2.18).
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The following result was used in the proof of Lemma 3.4. Recall that we write K ' L
if K ∼ L or K = L.

Lemma 3.5. For m ∈ P(T ) we define m̃ : K → R+ by m̃(K) = |K|ρ̃(K), where

ρ̃(K) =
∑

L'K ρ(L) and ρ(K) = m(K)
|K| . Then, for every a > 0 and x ∈ Ω, the inequality

HaQTm(x) ≤ HaQT m̃(x) ≤ CeC
√
η(a)[T ]HaQTm(x) , (3.8)

holds, with η(a) = a−2 + (a−1 log a) ∨ 0.

Remark 3.6. It is crucial in our application that by choosing a = [T ] (as is done in
Lemma 3.4), the exponent

√
η(a)[T ] remains bounded as [T ]→ 0.

Proof. Since m̃ ≥ m, the first inequality follows from the positivity of Ha, so it remains
to prove the second inequality.

To prove the second inequality, note that

HaQTm(x) =
∑
K

ρ(K)

ˆ
K
ha(x, y) dy and

HaQT m̃(x) =
∑
K

ρ(K)
∑

L:L'K

ˆ
L
ha(x, y) dy .

We claim that there exists a constant C <∞ such that

ha(x, y) ≤ eC
√
η(a)|y−z|ha(x, z) (3.9)

for x, y, z ∈ Ω.
Let TKL be a (not necessarily optimal) transport map between the uniform probability

measures on neighbouring cells K and L. As |TKL(z) − z| ≤ 2[T ] for z ∈ K, the claim
yields

1

|L|

ˆ
L
ha(x, y) dy =

1

|K|

ˆ
K
ha(x, TKL(z)) dz ≤ eC

√
η(a)[T ] 1

|K|

ˆ
K
ha(x, z) dz .

Since |L| ≤ C|K| by the ζ-regularity estimate (2.22), and since #{L : L ' K} ≤ C by
Lemma 2.12, we obtain∑

L:L'K

ˆ
L
ha(x, y) dy ≤ CeC

√
η(a)[T ]

ˆ
K
ha(x, z) dz ,

which yields the result.
It remains to prove the claim (3.9). For this purpose, note that by the heat kernel

bounds (2.6) there exist Ω-dependent constants c, C > 0 such that, for all a > 0,

sup
x,y∈Ω

ha/2(x, y) ≤ C(1 ∨ a−d/2) and inf
x,y∈Ω

ha(x, y) ≥ Ca−d/2e−c/a .

For any smooth function φ : Ω→ (0,M ] with M ∈ (0,∞), the local logarithmic Sobolev
inequality (2.5) implies that

|∇ logHa/2φ|2 ≤
2

a
log

(
M

Ha/2φ

)
.

Applying this inequality with φ = ha/2(x, ·), we obtain using the semigroup property,

sup
x,y∈Ω

|∇y log ha(x, y)|2 ≤ 2

a
log

(
supx,y∈Ω ha/2(x, y)

infx,y∈Ω ha(x, y)

)
≤ Cη(a) , (3.10)

which implies (3.9).
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4 Finite volume estimates for discrete optimal transport

The goal of this section is to show that the dual action functional A∗T for the discrete
transport problems is a good approximation to its continuous counterpart A∗. This will
be shown in Proposition 4.6.

To obtain this result, we first show an error estimate for a discrete elliptic problem,
in the spirit of [17, Theorem 3.5]. In our application, we think of w as being µ̇t at some
fixed time t, so that the elliptic equation below is the continuity equation at time t.

As in Section 3, we fix a convex bounded open set Ω ⊆ Rd and a ζ-regular mesh T
for some ζ ∈ (0, 1].

Proposition 4.1 (Weighted H1-error bound). Let w ∈ L2(Ω) with
´

Ωw(x) dx = 0 and
µ = udx ∈ Pδ(Ω) be given, and let φ ∈ H2(Ω) be the unique variational solution to{

−div(u∇φ) = w in Ω

∂nφ = 0 on ∂Ω
(4.1)

satisfying
´

Ω φ dx = 0.
Define m ∈ P(T ) by m = PT µ, and σ ∈ M0(T ) by σ := PT w. We write ρ(K) :=

m(K)/|K| and ρ̂(K,L) := θKL(ρ(K), ρ(L)). Let ψ : T → R be the unique solution to the
corresponding discrete elliptic problem

−
∑
L∈T

|(K|L)|
dKL

ρ̂(K,L)
(
ψ(L)− ψ(K)

)
= σ(K) (4.2)

satisfying
∑

K∈T |K|ψ(K) = 0.
Set φ(K) = −́

BK
φ dx, where BK = B(xK , ζ[T ]) denotes the closed ball of radius ζ[T ]

around xK , and set

e(K) := φ(K)− ψ(K) .

Then there exists a constant C <∞ depending only on δ, Ω, and ζ, such that

AT (m, e) ≤ C[T ]2 ‖w‖2L2(Ω) . (4.3)

Remark 4.2. The existence of a unique variational solution φ to the Neumann problem
(4.1) in H1(Ω) follows from the Lax–Milgram theorem. The existence of a unique solution
to (4.2) follows from elementary linear algebra, cf. [24]. In both cases, uniqueness holds
up to an additive constant.

Remark 4.3. Crucial for the proof is the a priori estimate ‖φ‖H2(Ω) ≤ C‖w‖L2(Ω) with
C <∞ depending only on Ω and δ; see [21, Theorem 3.1.2.3].

Remark 4.4. The error estimate (4.3) is similar to the H2-error estimate in [17], except
that we use an averaged sample −́BK φ instead of the pointwise sample φ(xK) to define
the error term. This change is required to be able to deal with dimensions d ≥ 4, where
H2(Ω) does not embed into the space of continuous functions.

Proof of Proposition 4.1. Integration of (4.1) over K ∈ T yields

−
∑

L:L∼K

ˆ
(K|L)

u∂nφ dS =

ˆ
K
w dx = σ(K) , (4.4)
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where n denotes the outward unit normal on ∂K. We define

R(K,L) :=
1

ρ̂(K,L)
−
ˆ

(K|L)
u∂nφ dS − φ(L)− φ(K)

dKL
,

and note that, by (4.2) and (4.4),∑
L:L∼K

|(K|L)|
dKL

ρ̂(K,L)
(
e(K)− e(L)

)
=

∑
L:L∼K

[
|(K|L)|ρ̂(K,L)

(
R(K,L)− 1

ρ̂(K,L)
−
ˆ

(K|L)
u∂nφ dS

)]
− σ(K)

=
∑

L:L∼K
|(K|L)|ρ̂(K,L)R(K,L) .

Multiplying this expression by e(K), and using the symmetry of ρ̂(K,L) and the anti-
symmetry of R(K,L), we obtain

AT (m, e) =
1

2

∑
K,L

|(K|L)|
dKL

ρ̂(K,L)
(
e(K)− e(L)

)2
=
∑
K

e(K)
∑

L:L∼K

|(K|L)|
dKL

ρ̂(K,L)
(
e(K)− e(L)

)
=
∑
K

e(K)
∑

L:L∼K
|(K|L)|ρ̂(K,L)R(K,L)

=
1

2

∑
K,L

|(K|L)|ρ̂(K,L)R(K,L)
(
e(K)− e(L)

)
≤
√

1

2
AT (m, e)

∑
K,L

dKL|(K|L)|ρ̂(K,L)R(K,L)2 .

Consequently,

AT (m, e) ≤ 1

2

∑
K,L

dKL|(K|L)|ρ̂(K,L)R(K,L)2 . (4.5)

Observe that

|R(K,L)| ≤ −
ˆ

(K|L)

∣∣∣∣ u

ρ̂(K,L)
− 1

∣∣∣∣ |∂nφ| dS +

∣∣∣∣∣−
ˆ

(K|L)
∂nφ dS − φ(L)− φ(K)

dKL

∣∣∣∣∣ . (4.6)

To estimate the first term on the right-hand side of (4.6), we note that the function
u is Lipschitz since µ ∈ Pδ(Ω), and the mean θKL is Lipschitz on [δ,∞)2. Using this
observation followed by Lemma 2.13, we obtain

−
ˆ

(K|L)

∣∣∣∣ u

ρ̂(K,L)
− 1

∣∣∣∣ |∂nφ|dS ≤ C[T ]−
ˆ

(K|L)
|∂nφ| dS

≤ C[T ]

(
−
ˆ
K
|∇φ|dx+ [T ]

√
−
ˆ
K
|D2φ|2 dx

)
,

(4.7)

for some constant C <∞ depending on Ω, δ and ζ.
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To estimate the second integral in (4.6) for neigbouring cells K ∼ L, write xKL =
xL − xK , so that n = xKL

dKL
. We set

MK := −
ˆ
K
∇φ · n , MKL := −

ˆ
K∪L
∇φ · n .

Using the trace inequality (2.24) we have∣∣∣∣−ˆ
(K|L)

∂nφ dS −MK

∣∣∣∣2 ≤ −ˆ
(K|L)

(∂nφ−MK)2 dS ≤ C[T ]
|K|
|∂K|−

ˆ
K
|D2φ|2 dx . (4.8)

Arguing as in (2.26), we obtain

|MK −MKL| ≤ C[T ]

√
−
ˆ
K∪L
|D2φ|2 dx . (4.9)

Furthermore, writing BK = B(xK , ζ[T ]) as before, the fundamental theorem of calculus
yields

φ(L)− φ(K)

dKL
= −
ˆ
BK

φ(y + xKL)− φ(y)

dKL
dy

= −
ˆ
BK

ˆ 1

0
∂nφ(y + txKL) dtdy = −

ˆ
K∪L

∂nφ(x)f(x) dx ,

where f is a nonnegative function satisfying −́BK f(x) dx = 1 and ‖f‖L∞ ≤ C < ∞.
Therefore, using the Poincaré inequality (2.23),∣∣∣∣φ(L)− φ(K)

dKL
−MKL

∣∣∣∣ ≤ −ˆ
K∪L
|∂nφ(x)−MKL|f(x) dx

≤ ‖f‖L∞
√
−
ˆ
K∪L
|∂nφ(x)−MKL|2 dx

≤ C[T ]

√
−
ˆ
K∪L
|D2φ|2 dx .

(4.10)

Combining the inequalities (4.8), (4.9) and (4.10), we obtain, using the ζ-regularity once
more, ∣∣∣∣−ˆ

(K|L)
∂nφ dS − φ(L)− φ(K)

dKL

∣∣∣∣ ≤ C[T ]

√
−
ˆ
K∪L
|D2φ|2 dx .

Together with (4.7), the latter estimate yields

|R(K,L)| ≤ C[T ]

√
−
ˆ
K∪L
|∇φ|2 + |D2φ|2 dx .

Thus, using (4.5) we find

AT (m, e) ≤ 1

2

∑
K,L

dKL|(K|L)|ρ̂(K,L)R(K,L)2

≤ C[T ]2
∑
K,L

dKL|(K|L)|
|K ∪ L|

ˆ
K∪L
|∇φ|2 + |D2φ|2 dx

≤ C[T ]2‖φ‖2H2(Ω) ,

(4.11)
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since dKL(K|L)/|K ∪ L| ≤ C, and the maximum number of neigbours of any cell is
bounded in view of Lemma 2.12. The result thus follows using the a priori bound from
Remark 4.3.

In the following result it suffices to assume that T is admissible. We do not need to
require ζ-regularity.

Proposition 4.5 (Discrete weighted Poincaré inequality). There exists a constant C <
∞ depending only on Ω such that for all ψ : T → R satisfying

∑
K |K|ψ(K) = 0, and all

m ∈ P(T ) with ρ(K) := m(K)
|K| ≥ δ > 0 for all K ∈ T , we have

∑
K∈T

|K|ψ(K)2 ≤ C

δ
AT (m,ψ) .

Proof. This is a straightforward modification of the proof in [17, Lemma 3.7]. Define
φ : Ω → R by φ =

∑
K χKψ(K) and set ρ̂(K,L) = θKL(ρ(K), ρ(L)). We need to show

that

1

2|Ω|

ˆ
Ω

ˆ
Ω
|φ(x)− φ(y)|2 dx dy ≤ C

2δ

∑
K,L

|(K|L)|
dKL

ρ̂(K,L)(ψ(K)− ψ(L))2 .

For K ∼ L and x, y ∈ Rd, put χ(K|L)(x, y) = 1 if x, y belong to Ω, (K|L) intersects the
straight line segment connecting x and y, and (y− x) · (xL− xK) > 0. Otherwise, we set
χ(K|L)(x, y) = 0. For K ∼ L and z ∈ Rd, we set cK,L;z := z

|z| ·
xL−xK
dKL

. As Ω is convex, we
obtain for a.e. x, y ∈ Ω,

|φ(x)− φ(y)| ≤
∑
K,L

|ψ(L)− ψ(K)|χ(K|L)(x, y) .

Note that cK,L;y−x > 0 whenever χ(K|L)(x, y) > 0. Using this fact, the Cauchy–Schwarz
inequality yields

|φ(x)− φ(y)|2 ≤
(∑
K,L

|ψ(L)− ψ(K)|2
cK,L;y−x

ρ̂(K,L)

dKL
χ(K|L)(x, y)

)

×
(∑
K,L

cK,L;y−x
dKL

ρ̂(K,L)
χ(K|L)(x, y)

)
.

For fixed x and y, let K0, . . . ,KN be the subsequent cells intersecting the line segment
{(1− t)x+ ty}t∈[0,1] as t ranges from 0 to 1. By definition, χ(K|L)(x, y) vanishes, unless
(K|L) = (Ki−1|Ki) for some i = 1, . . . , N . We thus have

∑
K,L

cK,L;y−x
dKL

ρ̂(K,L)
χ(K|L)(x, y) =

N∑
i=1

cKi−1,Ki;y−x|xKi − xKi−1 |
ρ̂(Ki−1,Ki)

≤ δ−1
N∑
i=1

cKi−1,Ki;y−x|xKi − xKi−1 | = δ−1
N∑
i=1

y − x
|y − x| · (xKi − xKi−1)

= δ−1 y − x
|y − x| · (xKN − xK0) ≤ δ−1R .
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where R = diam(Ω). Let BR denote the ball of radius R around the origin. Using a
change of variables, we observe that

ˆ
Ω

ˆ
Ω

χ(K|L)(x, y)

cK,L;y−x
dx dy ≤

ˆ
BR

1

cK,L;z

ˆ
Ω
χ(K|L)(x, x+ z) dx dz

≤
ˆ
BR

|(K|L)| |z|dz = C|(K|L)|

for a dimensional constant C <∞. Therefore,
ˆ

Ω

ˆ
Ω
|φ(x)− φ(y)|2 dx dy

≤ δ−1R

ˆ
Ω

ˆ
Ω

∑
K,L

|ψ(L)− ψ(K)|2
cK,L;y−x

ρ̂(K,L)

dKL
χ(K|L)(x, y) dx dy

≤ Cδ−1
∑
K,L

|ψ(L)− ψ(K)|2ρ̂(K,L)
|(K|L)|
dKL

= Cδ−1AT (m,ψ) ,

for some Ω-dependent constant C <∞, which completes the proof.

Now we are ready to prove the main result of this section.

Proposition 4.6 (Comparison of the dual action functionals). Let δ > 0. For all µ ∈
Pδ(Ω) and w ∈ L2(Ω) with

´
Ωw(x) dx = 0 we have∣∣A∗T (PT µ, PT w)− A∗(µ,w)

∣∣ ≤ C[T ] ‖w‖2L2(Ω) ,

where C <∞ depends only on Ω, ζ, and δ.

Proof. We use the notation from Proposition 4.1. By Remark 4.3 there exists a function
φ ∈ H2(Ω) with ‖φ‖H2(Ω) ≤ C‖w‖L2(Ω) such that

−div(u∇φ) = w and ∂nφ = 0 . (4.12)

Let m = PT µ and σ = PT w. As noted in Remark 4.2 there exists ψ : T → R solving

−
∑
L∈T

|(K|L)|
dKL

ρ̂(K,L)
(
ψ(L)− ψ(K)

)
= σ(K) . (4.13)

Recall that A∗(µ,w) = A(µ, φ) and A∗T (m,σ) = AT (m,ψ). Using (4.13) and exploiting
symmetry, we obtain

AT (m,ψ) =
1

2

∑
K,L

|(K|L)|
dKL

ρ̂(K,L)
(
ψ(K)− ψ(L)

)2
=
∑
K

ψ(K)σ(K)

=

ˆ
Ω
φw dx+

(∑
K

φ(K)σ(K)−
ˆ

Ω
φw dx

)
+
∑
K

(
ψ(K)− φ(K)

)
σ(K)

= A(µ, φ) +
∑
K

ˆ
K

(φ(K)− φ)w dx−
∑
K

e(K)σ(K) .
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It remains to estimate the latter two terms.
To bound the first term, let φ̃(K) = −́

K φ dx, and observe that, using Lemma 2.13
and the Poincaré inequality,

‖φ(K)− φ‖L2(K) ≤
√
|K|

∣∣φ(K)− φ̃(K)
∣∣+ ‖φ̃(K)− φ‖L2(K)

≤ C[T ]‖∇φ‖L2(K) .

Therefore, the first term can be bounded by∣∣∣∣∑
K

ˆ
K

(
φ(K)− φ

)
w dx

∣∣∣∣ ≤∑
K

‖φ(K)− φ‖L2(K)‖w‖L2(K)

≤ C[T ] ‖φ‖H1(Ω)‖w‖L2(Ω) .

To estimate the second term, we use Proposition 4.5 and Proposition 4.1 to obtain

∑
K

e(K)σ(K) ≤
√∑

K

σ(K)2

|K|

√∑
K

|K|e(K)2

≤ C‖w‖L2(Ω)

√
AT (ρ, e)

≤ C[T ] ‖w‖2L2(Ω) .

Combining these estimates yields the result.

5 Counterexamples to Gromov–Hausdorff convergence

In this section we show that if the asymptotic isotropy condition fails sufficiently often,
then the discrete transport metric WT does not converge to the 2-Kantorovich metric
W2, in spite of the fact that the discrete heat flow converges to the continuous heat
flow; see, e.g., [17, Theorem 4.2]. In fact, in the one-dimensional example below, even
evolutionary Γ-convergence has been proved for the entropic gradient flow structure of
the discrete heat flow with respect to the transport distance WT ; cf. [10].

5.1 A one-dimensional counterexample

We present a one-dimensional example to illustrate the non-convergence to W2 in the
simplest possible setting.

We start with a well-known result on the existence of smooth W2-geodesics in the
one-dimensional case. For the convenience of the reader we include a direct proof. We
write I = [0, 1] for brevity.

Lemma 5.1. Let δ > 0, and let µ0, µ1 ∈ Pδ(I) with densities u0, u1 ∈ C0(I) respectively.
Then there exist constants δ̃ > 0 and C < ∞ depending only on δ > 0, such that the
unique W2-geodesic (µt)t∈[0,1] connecting µ0 and µ1 satisfies µt ∈ Pδ̃(I) and dµt(x) =
ut(x) dx for all t ∈ [0, 1], with supt∈[0,1] ‖u̇t‖C0(I) ≤ C.

Proof. Let Fi denote the distribution function of µi given by Fi(x) =
´ x
a ui(y) dy, which

is readily seen to be invertible. The unique optimal transport map T between µ0 and
µ1 is then given by T = F−1

1 ◦ F0. By the inverse function theorem, T ∈ C1(I) and
T ′(x) ∈ [M−1,M ] for all x ∈ I, where M > 1 depends on δ. The unique W2-geodesic
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between µ0 and µ1 is given by µt = (Tt)#µ0, where Tt(x) = (1− t)x+ tT (x), hence the
density ut of µt satisfies

ut(x) =
u0(T−1

t (x))

T ′t(T
−1
t (x))

.

The result follows directly from this explicit expression.

For N ∈ N and r ∈ (0, 1
2), we consider the 1

N -periodic mesh Tr,N of I = [0, 1] from
Figure 1, given by

Tr,N =

{[
k

N
,
k + r

N

)
,

[
k + r

N
,
k + 1

N

)
: 0 ≤ k < N − 1

}
.

The cells in Tr,N will be denoted Kk for k = 0, . . . , 2N − 1 according to their natural
ordering. To make sure that Tr,N is a partition of [0, 1], one should add the point 1 to the
set K2N−1, but this will be irrelevant in what follows. Let xk = r+k

2N be the midpoints
of Kk, so that dk,k+1 = 1

2N and [Tr,N ] = 1−r
N . (For notational simplicity we write dk,k+1

instead of dKk,Kk+1
. Similarly, we write Pr,N instead of PTr,N etc.) According to (2.27),

the transition rates Rk,k±1 from cell k to cell k ± 1 are given by

Rk,k±1 =

{
2N2

1−r , k is odd ,
2N2

r , k is even .

with the understanding that R0,−1 = RN,N+1 = 0.
We fix an admissible mean θ (in the sense of Definition 2.3) that is assumed to be

symmetric, i.e., θ(a, b) = θ(b, a), and consider the transport metric Wr,N defined by
setting θKL = θ for all K ∼ L. For each fixed r ∈ (0, 1

2), the next result implies that
the distances Wr,N do not Gromov–Hausdorff converge to W2. The idea of the proof is
to add a suitable energy-reducing oscillation to the density of a smooth competitor; see
Figure 3 below.

In Section 6 we will show that Gromov–Hausdorff convergence holds if one takes a
different (non-symmetric) mean adapted to the inhomogeneity of the mesh.

Proposition 5.2. Fix r ∈ (0, 1
2) and δ > 0. Then there exists a constant ε ∈ (0, 1)

depending only on r and δ, such that for any µ0, µ1 ∈ Pδ(I),

lim sup
N→∞

Wr,N (Pr,Nµ0, Pr,Nµ1) ≤ (1− ε)W2(µ0, µ1) . (5.1)

Proof. We divide the proof into several steps.

Step 1. Fix r ∈ (0, 1
2), δ ∈ (0, 1), and N ≥ 1. For µ ∈ Pδ(I), set m = Pr,Nµ, and let

ρ be its density given by ρ(K) = m(K)
|K| . For η ∈ (0, δ) we define mη ∈ P(Tr,N ) by

mη(Kk) :=

{
m(Kk) + r(1−r)

N η k is even ,

m(Kk)− r(1−r)
N η k is odd ,

so that its density is given by

ρη(Kk) :=

{
ρ(Kk) + (1− r)η k is even ,
ρ(Kk)− rη k is odd .
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If r is small, the density ρη increases substantially with η in the small (even) cells, whereas
it decreases only moderately in the large (odd) cells.

We claim that, for any δ > 0 and r ∈ (0, 1
2), there exists η′ > 0 and N ′ < ∞, such

that for any pair of neighbouring cells K and L, and any µ ∈ Pδ(I),

ρ̂η(K,L) ≥ ρ̂(K,L) + 1
2η(1

2 − r) , (5.2)

whenever η ≤ η′ and N ≥ N ′. Here, we write ρ̂η(K,L) = θ(ρη(K), ρη(L)) as usual.

To show this, we assume without loss of generality that K is small and L is large;
thus |K| = r

N and |L| = 1−r
N . Define f(η) := ρ̂η(K,L). The concavity of θ implies that

f(η) ≥ f(0) + ηf ′(η) ,

thus it suffices to show that f ′(η) ≥ 1
2(1

2 − r). Since θ is 1-homogeneous, we have
∂1θ(a, a) = 1

2 = ∂2θ(a, a) and ∂1θ(a, b) = ∂1θ(a/b, 1) for all a, b > 0. Therefore,

f ′(η) = (1− r)∂1θ(ρ
η(K), ρη(L))− r∂2θ(ρ

η(K), ρη(L))

= (1− r)∂1θ

(
ρη(K)

ρη(L)
, 1

)
− r∂2θ

(
1,
ρη(L)

ρη(K)

)
.

Set ε := 1
2(1

2 − r) and choose h > 0 so small that |∂1θ(a, 1)− 1
2 | ≤ ε whenever |a−1| ≤ h.

If η and N−1 are chosen sufficiently small (depending on δ and r), we obtain, since
µ ∈ Pδ(I), ∣∣∣∣ρη(K)

ρη(L)
− 1

∣∣∣∣ ≤ |ρ(K)− ρ(L)|+ η

ρη(L)
≤ N−1δ−1 + η

δ
≤ h ,

and similarly,
∣∣ ρη(L)
ρη(K) − 1

∣∣ ≤ h. Therefore,

f ′(η) ≥ (1− r)
(

1
2 − ε

)
− r
(

1
2 + ε

)
= 1

2 − r − ε = 1
2(1

2 − r) ,

which proves the claim.
Since there is a constant C = C(δ) <∞ such that ρ̂η(K,L) ≤ C, it follows from the

claim that there exists a constant c = c(δ) ∈ (0, 1) such that

1

ρ̂η(K,L)
≤ 1− cη(1

2 − r)
ρ̂(K,L)

.

Thus, for any V : Tr,N × Tr,N → R we have

2N
2N−1∑
k=0

V 2(Kk,Kk+1)

ρ̂η(Kk,Kk+1)
≤ 2N

(
1− cη

(
1
2 − r

)) 2N−1∑
k=0

V 2(Kk,Kk+1)

ρ̂(Kk,Kk+1)
.

Using the notation from (2.16), this means that

Kr,N (mη, V ) ≤
(
1− cη

(
1
2 − r

))
Kr,N (m,V ) . (5.3)

Step 2. Take µ0, µ1 ∈ Pδ(I) for some δ > 0, and let (µt)t∈[0,1] be the constant

speed geodesic connecting µ0 and µ1. By Lemma 5.1, there exists δ̃ > 0 such that
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µt ∈ Pδ̃(I), and the density ut of µt satisfies supt∈[0,1] ‖u̇t‖L∞(I) < ∞. It then follows
from Proposition 4.6 that mt := Pr,Nµt satisfies

A∗r,N (mt, ṁt) ≤ A∗(µt, µ̇t) +
C

N
, (5.4)

with C <∞ depending on r and δ.
Let V : T × T × (0, 1) → R be an anti-symmetric function satisfying the continuity

equation (2.15), given by

ṁt(Kk) + 2N
(
Vt(Kk,Kk+1)− Vt(Kk−1,Kk)

)
= 0

for all k = 0, . . . , 2N − 1, with V0,−1 = V2N−1,2N = 0. Since ṁη
t = ṁt for all η, it follows

that (mη, V ) solves the continuity equation as well. Therefore, (5.3) yields

A∗r,N (mη
t , ṁ

η
t ) ≤

(
1− cη

(
1
2 − r

))
A∗r,N (mt, ṁt)

Combining this bound with (5.4), we infer that there exists a constant c ∈ (0, 1) depending
only on δ̃, such that

lim sup
N→∞

Wr,N (mη
0,m

η
1) ≤

(
1− cη

(
1
2 − r

))
W2(µ0, µ1) ,

provided η is chosen sufficiently small depending on δ̃ and r.
To finish the argument, we note that Lemma 3.3 yields, for i = 0, 1,

Wr,N (mi,m
η
i ) ≤ C

(
W2(Qr,Nmi, Qr,Nm

η
i ) +

1

N

)
≤ C

( 1

N

√
rη +

1

N

)
≤ C

N
,

where C <∞ depends on δ and r. Consequently, by the triangle inequality,

lim sup
N→∞

Wr,N (m0,m1) ≤
(
1− cη

(
1
2 − r

))
W2(µ0, µ1) ,

where c ∈ (0, 1) depends only on δ̃. This implies (5.1).

The construction in the proof of Proposition 5.2 breaks down if we choose mean
functions θk,k+1 adapted to the inhomogeneity of the grid, instead of a fixed symmetric
mean θ. Indeed, suppose that θ2k,2k±1 is a smooth mean function with weight r in the
sense of Definition 2.5, so that ∂1θ2k,2k±1(1, 1) = r and ∂2θ2k,2k±1(1, 1) = 1− r. Typical
examples are given in (2.13) with r = λ. By homogeneity of θ2k,2k±1 we have, for any
a > 0:

∂η
∣∣
η=0

θ2k,2k±1(a+ (1− r)η, a− rη) = (1− r)∂1θ2k,2k±1(a, a)− r∂2θ2k,2k±1(a, a) = 0 ,

hence the concave function η 7→ θ2k,2k±1(a+(1−r)η, a−rη) attains its maximum at η = 0.
This argument shows that one cannot increase the mean density (and thus decrease the
energy) by introducing microscopic density oscillations. This is in sharp contrast to (5.2).
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t = 0 t = δ t = 1/2 t = 1− δ t = 1

Figure 3: The picture illustrates the principle behind the proof of Theorem 5.2. It shows
how an “unreasonably cheap” transport can be constructed between the measures at time
0 and 1. First, in the interval [0, δ], a bit of mass is moved into the short interval, so that
the mean of the densities in the left and the middle cells increases. Then the bulk of the
mass is moved during the interval [δ, 1 − δ], after which the short intervals are emptied
in the interval [1− δ, 1]. The first and the final phase are cheap because very little mass
is moved, and the middle phase is cheap since the mean of the densities is kept high by
the mass in the middle cell.

5.2 Necessity of the asymptotic isotropy condition

Our next aim is to show that for any family of meshes {T } for which the asymptotic
isotropy condition fails at every scale, the distance WT is asymptotically strictly smaller
than W2.

We start with a lemma that guarantees the existence of certain smooth W2-geodesics
that transport mass in a parallel fashion.

Lemma 5.3. Let Ω ⊆ Rd be a bounded open set with Lipschitz boundary, let x0 ∈ Ω, and
v ∈ Sd−1. Then there exist r > 0, δ > 0, κ > 0, and a W2-geodesic (µt)t∈[0,1] ⊆ Pδ(Ω)
with the following properties:

(i) the continuity equation {
∂tµt + div(µt∇φt) = 0 in Ω ,

∇φt · n = 0 on ∂Ω ,
(5.5)

holds for some vector field φ ∈ C1([0, 1]×Ω) satisfying ∇φt(x) = κv for all t ∈ [0, 1]
and x ∈ B(x0, r);

(ii) ∂tµt ∈ C0(Ω) for all t ∈ [0, 1], and supt∈[0,1] ‖∂tµt‖C0(Ω) <∞.

Proof. Fix an open ball B = B(x0, r) ⊆ Ω and let η ∈ C∞c (Rd) be a nonnegative function,
supported in the unit ball B(0, 1), satisfying η(x) = 1 for x ∈ B(0, 1

2). We define

φ0(x) = v · (x− x0) η

(
x− x0

r

)
,

so that φ0 ∈ C∞(Ω) with support contained in B(x0, r), and ∇φ0(x) = v for all x ∈
B(x0,

r
2).

Since φ0 is smooth, there exists T > 0 such that the Hamilton–Jacobi equation
∂tφt + 1

2 |∇φt|2 = 0 has a unique solution in C1([0, T ] × Rd) with initial value φ0. It
follows from the Hopf–Lax formula φt(x) = infy{φ0(y) + 1

2t |x − y|2} that the following
properties hold for all t ∈ [0, T ], provided T > 0 is sufficiently small:
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• suppφt ⊆ B(x0, r);

• ∇φt(x) = v for all x ∈ B(x0,
r
4).

Let µ0 ∈ P(Ω) be the normalised Lebesgue measure, and set µt = (Id + t∇φ0)#µ0

for t ∈ [0, T ]. Then (µt, φt)t solves the continuity equation (5.5). Moreover, the density
ρt of µt solves the Monge-Ampère equation

ρ0(x) = ρt(x+ t∇φ0(x)) det(I + tD2φ0(x)) .

It follows from this expression that there exist T > 0 and δ > 0 such that µt ∈ Pδ(Ω)
and ∂tµt ∈ C0(Ω) for all t ∈ [0, T ], with supt∈[0,T ] ‖∂tµt‖C0 <∞.

To obtain the result, it remains to rescale the geodesic in time. In doing so, we replace
φt by Tφt, so that ∇φt(x) = κv for x ∈ B(x0,

r
4) and t ∈ [0, 1], with κ = T . Replacing r

4
by r, the result follows.

The following lemma asserts that, at the macroscopic scale, the isotropy condition
holds without any assumption on the mesh. For A ⊆ Rd and r > 0, we let B(A, r) :=⋃
x∈AB(x, r) denote the r-neigbourhood of A.

Lemma 5.4. Let Ω ⊆ Rd be a bounded convex domain. Let T be an admissible mesh on
Ω, and let λ a weight function on T . For any open subset U ⊆ Ω and any unit vector
v ∈ Sd−1, we have∣∣∣∣( ∑

K,L∈T ;K,L⊆U
λKL(v · nKL)2|(K|L)|dKL

)
− |U |

∣∣∣∣ ≤ ∣∣B(∂U, 4[T ])
∣∣ . (5.6)

Note that by the symmetry of the summand, the left-hand side does not depend on
the choice of the weight function λ.

Proof. We consider the cells CKL = CLK ⊆ Rd defined by

CKL = {x ∈ (K|L) + Rv ⊆ Rd : x · v ∈ conv(xK · v, xL · v)} .

Observe that these sets have pairwise disjoint interiors (up to the symmetry condition
CKL = CLK). Set U− = U \B(∂U, 4[T ]) and U+ = B(U, 4[T ]). It then follows that

U− ⊆
⋃

K,L⊆U
CKL ⊆ U+ ,

hence |U−| ≤ ∑K,L⊆U λKL|CKL| ≤ |U+| since λKL + λLK = 1. The result follows, as

the area formula yields |CKL| = (v · nKL)2|(K|L)|dKL.

As the right-hand side in the previous result is small, the contribution of the term∑
L∈T ;L⊆U λKL(v · nKL)2|(K|L)|dKL is equal to |K| on average, up to a microscopically

small error. However, it may happen that the isotropy condition fails at the microscopic
scale, in the sense that the microscopically small error in (5.6) results from a cancellation
of positive and negative contributions of macroscopic size. The following definition makes
this intuition precise.

Definition 5.5 (Local anisotropy). Let Ω ⊆ Rd be a bounded convex domain, and let
U ⊆ Ω be a non-empty open subset. Let {T } be a family of ζ-regular meshes on Ω for
some ζ > 0, and for each T , let λT be a weight function on T . We say that {T } is
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locally asymptotically {λT }-anisotropic on U , if there exists a unit vector v ∈ Sd−1 and
a constant c > 0, such that

lim inf
[T ]→0

∑
K∈T ;K⊆V

(( ∑
L∈T ;L⊆V

λKL(v · nKL)2|(K|L)|dKL
)
− |K|

)
+

≥ c|V | , (5.7)

for any open cube V ⊆ U .

Example 5.6 (Anisotropy in one dimension). For r ∈ (0, 1
2) and N ≥ 1, consider the one-

dimensional periodic mesh Tr,N from Section 5.1. We fix s ∈ [0, 1] and define a weight
function λ on Tr,N by setting λKL = s is K is small, and λKL = 1− s if K is large. As
large and small cells alternate, this indeed defines a weight function.

Fix an interval V = (a, b) for some 0 < a < b < 1, and set v = 1. For any K ∈ Tr,N
and [T ] sufficiently small, it follows that

SK :=
∑

L∈Tr,N ;L⊆V
λKL(v · nKL)2|(K|L)|dKL =

{
s
N if K is small ,
1−s
N if K is large .

Note that for any neighbouring pair K,L, we have SK + SL = 1
N = |K| + |L|. This

means that the isotropy condition holds on average, in accordance with Proposition 5.4.
However, it follows that

lim inf
N→∞

∑
K∈Tr,N ;K⊆V

(
SK − |K|

)
+

= |s− r|(b− a) .

Therefore, the local anisotropy condition (5.7) holds whenever r 6= s. If r = s, we have
already seen in the introduction that the asymptotic isotropy condition (and in fact the
centre-of-mass condition) holds.

Example 5.7 (Anisotropy in a 2-dimensional example). Consider the crossed square grid
from Figure 4 with [T ] = 1

N . It follows that |(K|L)| = 1
N in the coordinate directions,

and |(K|L)| = 1
N
√

2
in diagonal directions. We fix r ∈ (0, 1

2) and choose the points xK

in such a way that dKL = 2r
N if nKL points in one of the coordinate directions. If nKL

is in one of the diagonal directions, we then have dKL = (1
2 − r)

√
2
N . By symmetry, it is

natural to choose λKL = 1
2 for all K ∼ L.

For each interior cell K we compute MK :=
∑

L∈T ;L∼K λKL|(K|L)|dKLnKL ⊗ nKL.
Denoting the cells by N,E, S and W , we have

MN = MS =
1

2

2r

N2

[
0 0
0 1

]
+

1

2

1
2 − r
N2

[
1 0
0 1

]
=

1

4N2

[
1− 2r 0

0 1 + 2r

]
.

An analogous computation shows that

ME = MW =
1

4N2

[
1 + 2r 0

0 1− 2r

]
.

We thus find that

MN +ME +MS +MW =
1

N2
I =

(
|N |+ |E|+ |S|+ |W |

)
I ,
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in accordance to the fact that isotropy holds on average, for any r ∈ (0, 1
2).

To show that the family {Tr,N}N is locally anisotropic, we fix v = (1, 0). Then:

(v ·MKv − |K|)+ =

{
0 if K = N or K = S ,
r

2N2 if K = E or K = W .

It follows that, for any cube V ,

lim inf
N→∞

∑
K∈Tr,N ;K⊆V

(( ∑
L∈Tr,N ;L⊆V

λKL(v · nKL)2|(K|L)|dKL
)
− |K|

)
+

= r|V | ,

which shows that the mesh is everywhere locally anisotropic, for any r ∈ (0, 1
2).

The following proposition shows that if the mesh is locally {λT }-anisotropic, and if
the mean functions θT are chosen accordingly, then the discrete transport distances are
asymptotically strictly smaller than W2.

Theorem 5.8 (Necessity of asymptotic isotropy). Let Ω ⊆ Rd be a bounded convex
domain. Let {T } be a family of ζ-regular meshes on Ω for some ζ > 0, and assume that
{T } is locally anisotropic on U for some weight functions {λT }. Let {θT } be a family of
mean functions satisfying ∂1θ

T
KL(1, 1) = λKL for any T and any K,L ∈ T , and suppose

that the regularity condition

sup
T

sup
K,L∈T

‖D2θTKL‖L∞(B((1,1),s)) <∞ (5.8)

holds for some s > 0. Then there exist µ0, µ1 ∈ P(Ω) such that

lim sup
[T ]→0

WT (PT µ0, PT µ1) <W2(µ0, µ1) . (5.9)

Remark 5.9. Note that all examples from Section 2.2 satisfy (5.8). However, this condi-
tion excludes certain smooth mean functions approximating θ(a, b) = min(a, b).

Proof. We fix x0 ∈ Ω and v ∈ Sd−1. Using Lemma 5.3 we obtain δ > 0, r > 0, and a
geodesic (µt)t∈[0,1] ⊆ Pδ(Ω), solving the continuity equation µ̇+ div(µ∇φ) = 0 where the
velocity vector field ∇φt ∈ L2(Ω) satisfies ∇φt(x) = κv for some κ > 0, for all t ∈ [0, 1]
and all x in the ball B = B(x0, r). For brevity we write B̃ = B(x0,

r
2).

Fix ` > 0, and consider the collection of open cubes given by

Q` := {`(p+ (0, 1)d) ⊆ B̃ : p ∈ Zd} .

For Q ∈ Q` we define TQ := {K ∈ T : K ⊆ Q}, and for K ∈ TQ we set

SK :=
∑
L∈TQ

λKL(v · nKL)2|(K|L)|dKL .

We define the subsets T +
Q , T −Q ⊆ T by

T ±Q := {K ∈ TQ : (SK − |K|)± > 0} .

It follows directly from (5.7) that, for all Q ∈ Q`,

lim inf
[T ]→0

∑
K∈T +

Q

(
SK − |K|

)
≥ c|Q| . (5.10)
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Combining this bound with Lemma 5.4, we also find

lim inf
[T ]→0

∑
K∈T −Q

(
|K| − SK

)
≥ c|Q| . (5.11)

In particular, if [T ] is sufficiently small, both T +
Q and T −Q are non-empty.

We define a variation νT` : T → R by

νT` (K) =
∑
Q∈Q`

(
αTQ1{K∈T +

Q }
− βTQ1{K∈T −Q }

)
,

where αTQ, β
T
Q ∈ (0, 1] are the unique numbers such that

∑
K∈TQ ν

T
` (K)|K| = 0 and

max{αTQ, βTQ} = 1 for all Q ∈ Q`.

Set mTt = PT µt ∈ P(T ), and let ρTt (K) = mTt (K)/|K| be its density as usual. We
consider the perturbed measure mTε,t with density ρTε,t given by

ρTε,t(K) = ρTt (K) + ενT` (K) ,

where we suppress the dependence of ρTε,t on ` in the notation. Note that mTε,t belongs

to P(T ) if 0 < ε < δ, since µt ∈ Pδ(Ω). Write ρ̂Tε,t(K,L) = θKL
(
ρTε,t(K), ρTε,t(L)

)
. In

view of the regularity assumption (5.8) on θKL and the fact that µt ∈ Pδ(Ω), a Taylor
expansion yields

1

ρ̂Tε,t(K,L)
≤ 1

ρ̂Tt (K,L)
− γKLε

ρ̂Tt
2
(K,L)

+ Cε
(
ε+ [T ]

)
(5.12)

for all ε < ε0(δ, s), where γKL = λKLν
T
` (K) + λLKν

T
` (L), and C depends on δ and s.

Let ψTt : T → R be the solution to the discrete elliptic problem (4.2), and consider
the associated momentum vector field

V Tt (K,L) = ρ̂Tt (K,L)
(
ψTt (L)− ψTt (K)

)
,

so that AT (mTt , ψ
T
t ) = KT (mTt , V

T
t ). Using (5.12) we obtain

KT (mTε,t, V
T
t ) ≤ KT (mTt , V

T
t )− ε

2

∑
K,L

γKL
|(K|L)|
dKL

(
ψTt (L)− ψTt (K)

)2
+ Cε

(
ε+ [T ]

)∑
K,L

|(K|L)|
dKL

V Tt (K,L)2 .

(5.13)

We will estimate the three terms on the right-hand side separately.
To bound the first term, we apply Proposition 4.6 to obtain

KT (mTt , V
T
t ) = A∗T (mTt , ṁ

T
t ) ≤ A∗(µt, µ̇t) + C[T ]‖µ̇t‖2L2(Ω) .

Together with the uniform L2-bound on µ̇t from Lemma 5.3, this implies

lim sup
[T ]→0

ˆ 1

0
KT (mTt , V

T
t ) dt ≤ lim sup

[T ]→0

ˆ 1

0
A∗(µt, µ̇t) dt = W2(µ0, µ1)2 . (5.14)
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Moreover, as µt ∈ Pδ(Ω), we have

1

2

∑
K,L

|(K|L)|
dKL

V Tt (K,L)2 ≤ CKT (mTt , V
T
t ) ,

for some C <∞ depending on δ. Using this estimate and (5.14) we obtain

lim sup
[T ]→0

ˆ 1

0

∑
K,L

|(K|L)|
dKL

V Tt (K,L)2 dt ≤W2(µ0, µ1)2 , (5.15)

which bounds the third term in (5.13).
To treat the second term, we write φK = −́

BK
φ dx, where BK = B(xK , ζ[T ]). Since

supK,L γKL ≤ 1 and µt ∈ Pδ(Ω), Proposition 4.1 yields

∑
K,L

γKL
|(K|L)|
dKL

(
(ψTt (L)− ψTt (K))− (φL − φK)

)2
≤ C

∑
K,L

|(K|L)|
dKL

ρ̂Tt (K,L)
(
(ψTt (L)− ψTt (K))− (φL − φK)

)2
≤ C[T ]2‖µ̇t‖2L2(Ω) ,

(5.16)

where C depends on Ω, ζ, and δ. Furthermore, for K ∈ T ±Q and L ∼ K, we have ∇φ = κv

on K ∪ L, which implies that φL − φK = κv · (xL − xK). Therefore, using the fact that∑
K∈T ν

T
` (K)|K| = 0,

∑
K,L

γKL
|(K|L)|
dKL

(
φL − φK

)2
=
κ2

2

∑
K

νT` (K)
∑
L

λKL
|(K|L)|
dKL

(
v · (xL − xK)

)2
=
κ2

2

∑
K

νT` (K)
(
SK − |K|

)
=
κ2

2

∑
Q∈Q`

(
αTQ

∑
K∈T +

Q

(
SK − |K|

)
+ βTQ

∑
K∈T −Q

(
|K| − SK

))
.

Using (5.10) and (5.11), this identity yields

lim inf
[T ]→0

∑
K,L

γKL
|(K|L)|
dKL

(
φL − φK

)2 ≥ cκ2

2

∑
Q∈Q`

|Q| ≥ cκ2

4
|B̃| ,

provided ` is sufficiently small. Together with (5.16), it follows that

lim inf
[T ]→0

ˆ 1

0

∑
K,L

γKL
|(K|L)|
dKL

(
ψTt (L)− ψTt (K)

)2
dt ≥ cκ2

4
|B̃| . (5.17)

Inserting the three estimates (5.14), (5.15) and (5.17) into (5.13), we obtain

lim sup
[T ]→0

W(mTε,0,m
T
ε,1)2 ≤ lim sup

[T ]→0

ˆ 1

0
KT (mTε,t, V

T
t ) dt ≤W2(µ0, µ1)2 − c|B̃|ε+ Cε2 ,

for suitable constants c > 0 and C <∞.
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S

N

W E

S + e2

Figure 4: We can decrease the action by adding ε to ρ in all N and S triangles and
subtracting ε in all E and W triangles. If ρ is the same in E and W , we can choose a
momentum vector field V that transports no mass over vertical lines with VSE = VSW
and VEN = VWN .

On the other hand, since
∑

K∈TQ ν
T
` (K)|K| = 0 for all Q ∈ Q`, it follows from Lemma

3.3 that

WT (mT0 ,m
T
ε,0) ≤ C

(
W2(µ0, QTm

T
ε,0) + [T ]

)
≤ C(`+ [T ]) ,

and the same holds at t = 1. In summary, we obtain

lim sup
[T ]→0

W(mT0 ,m
T
1 )2 ≤W2(µ0, µ1)2 − c|B̃|ε+ Cε2 + C`2 , (5.18)

for all ε < ε0. As ` > 0 is arbitrary, this yields the result.

Remark 5.10. For the mesh in Figure 4, the construction in the proof of Theorem 5.8
can be somewhat simplified: as discussed in Example 5.7, isotropy fails to hold in the
coordinate directions v = ±e1,±e2. Picking a W2-geodesic transporting mass in direction
e2 in some open ball B, we notice that the discretisation of that geodesic transports no
mass over vertical edges in B. The variation πT can then be set to πT = 1 for all N and
S cells and πT = −1 for all E and W cells. Along diagonal edges, the change in θKL is
o(ε), whereas for horizontal edges, the change in θN,S+e2 is −ε+ o(ε). For vertical edges,
the change in θE,W+e1 is ε+ o(ε), which would be costly, but here the momentum vector
field V (E,W + e1) vanishes.

6 Gromov–Hausdorff convergence

In this section we prove Theorems 1.1 and 1.4, as well as Corollaries 1.5 and 1.6. Let us
start by stating the definition of Gromov–Hausdorff convergence.

Definition 6.1 (Gromov–Hausdorff convergence). We say that a sequence of compact
metric spaces (Xn, dn)n≥1 converges in the sense of Gromov–Hausdorff to a compact
metric space (X , d), if there exist maps fn : X → Xn which are

• εn-isometric, i.e., for all x, y ∈ X ,

|dn(fn(x), fn(y))− d(x, y)| ≤ εn (6.1)

and
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• εn-surjective, i.e., for all xn ∈ Xn there exists x ∈ X with

dn(fn(x), xn) ≤ εn (6.2)

for some sequence (εn)n with εn → 0 as n→∞.

Our main task is to show that the mappings PT are ε-isometric. We divide the
argument into two parts: an upper bound for the discrete transport metric (Theorem
6.4) will be proved in Section 6.1. This result is valid for any sequence of ζ-regular
meshes. Under strong additional symmetry assumptions, we will prove a corresponding
lower bound (Theorem 6.8) in Section 6.2. The argument will be completed in Section
6.3.

We start with a useful time-regularisation result along the lines of [11, Lemma 2.9].

Lemma 6.2 (Time-regularisation). Let (mt)t∈[0,1] be a curve in P(T ) with

ˆ 1

0
A∗T (mt, ṁt) dt <∞ .

For δ ∈ (0, 1
2) we consider the “compressed” curve (mδ

t )t∈[−δ,1+δ] in P(T ) given by

m̃δ
t :=


m0 for t ∈ [−δ, δ] ,
m(t−δ)/(1−2δ) for t ∈ (δ, 1− δ) ,
m1 for t ∈ [1− δ, 1 + δ] .

(6.3)

Let η : R → R+ be infinitely differentiable, symmetric, and supported in [−1, 1] with´
R η(t) dt = 1, and define mδ

t :=
´
R η(s/δ)m̃δ

t−s ds. Then the following assertions hold:

(i) The curve (mδ
t )t∈[0,1] is infinitely differentiable, it satisfies mδ

0 = m0 and mδ
1 = m1,

and

ˆ 1

0
A∗T (mδ

t , ṁ
δ
t ) dt ≤ 1

1− 2δ

ˆ 1

0
A∗T (mt, ṁt) dt .

(ii) Let {T } be a sequence of a meshes. For each T , let (mTt )t∈T be a curve in P(T ),
and suppose that, for all t ∈ [0, 1], there exists a probability measure µt ∈ P(Ω)
such that QTm

T
t ⇀ µt as [T ]→ 0. Then, for all t ∈ [0, 1],

QTm
T ,δ
t ⇀ µδt and QT ṁ

T ,δ
t ⇀ µ̇δt as [T ]→ 0 .

Proof. Using the joint convexity of the mapping (m,σ) 7→ A∗T (m,σ) we obtain

ˆ 1

0
A∗T (mδ

t , ṁ
δ
t ) dt ≤

ˆ 1

0

ˆ δ

−δ
η(s/δ)A∗T (m̃δ

t−s, ˙̃mδ
t−s) dsdt

≤
ˆ 1

0
A∗T (m̃δ

t , ˙̃mδ
t ) dt =

1

1− 2δ

ˆ 1

0
A∗T (mt, ṁt) dt .

Since m̃T ,δt ⇀ µ̃δt for all t ∈ [−δ, 1+δ] (where t 7→ µ̃δt denotes the time-compressed version
of t 7→ µ̃t), the second part of the result follows using dominated convergence.

Clearly, a completely analogous result holds in the continuous setting.
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6.1 Upper bound for the discrete transport metric

In this subsection we prove an upper bound for WT , that relies on the finite volume
bounds obtained in Section 4. Since these bounds require an ellipticity condition on the
densities, we use a regularisation argument involving the heat flow. Lemma 6.3 contains
the desired bound for the regularised measures. The regularisation is removed in Theorem
6.4.

We emphasise that these results hold under the mere assumption of ζ-regularity, and
do not require the additional symmetry assumptions that we will impose in Section 6.2.

Lemma 6.3. Fix ζ ∈ (0, 1] and a > 0. There exists a constant C < ∞, depending on
Ω, ζ, and a, such that for any ζ-regular mesh T of Ω, and µ0, µ1 ∈ P(Ω) the following
estimate holds:

WT (PTHaµ0, PTHaµ1)2 ≤W2(µ0, µ1)2 + C[T ] .

Proof. Let (µt)t∈[0,1] be a geodesic connecting µ0 and µ1. Take η : R → R as in Lemma

6.2 and define, for δ ∈ (0, 1
2),

µa,δt :=

ˆ
R
η
(s
δ

)
Haµ̃

δ
t−s ds ,

where (µ̃δt )t∈[−δ,1+δ] is the compression of (µt)t∈[0,1] as in (6.3). By Lemma 2.2, the density

ua,δt of µa,δt satisfies Lip(ua,δt ) ≤ C and ua,δt (x) ≥ C−1 > 0 for all x ∈ Ω, where C < ∞
depends only on a (and not on t or δ). Proposition 4.6 yields

A∗T (PT µ
a,δ
t , PT µ̇

a,δ
t ) ≤ A∗(µa,δt , µ̇a,δt ) + C[T ]‖u̇a,δt ‖2L2(Ω) . (6.4)

where C <∞ depends on Ω, a, and ζ.
Denoting the density of µ̃δt by ũδt , we observe that

u̇a,δt =
1

δ

ˆ
R
η′
(s
δ

)
Haũ

δ
t−s ds .

The heat kernel upper bound (2.6) yields

‖Haũ
δ
t‖L2(Ω) ≤ C sup

x,y
ha(x, y) ≤ C(a−d/2 ∨ 1) ,

where C <∞ depends only on Ω. Consequently,

‖u̇a,δt ‖L2(Ω) ≤ C‖η′‖L1(R)(a
−d/2 ∨ 1) .

Integrating (6.4) over [0, 1] we obtain

WT (PTHaµ0, PTHaµ1)2 ≤
ˆ 1

0
A∗T (PT µ

a,δ
t , PT µ̇

a,δ
t ) dt

≤
ˆ 1

0
A∗(µa,δt , µ̇a,δt ) dt+ C[T ](a−d ∨ 1)

where the η-dependence is absorbed in the constant C. Furthermore, using the convexity
of (µ,w) 7→ A∗(µ,w) as in Lemma 6.2, and the contraction bound from Lemma 2.2(ii),
we obtainˆ 1

0
A∗(µa,δt , µ̇a,δt ) dt ≤ 1

1− 2δ

ˆ 1

0
A∗(Haµt, Haµ̇t) dt

≤ 1

1− 2δ

ˆ 1

0
A∗(µt, µ̇t) dt =

1

1− 2δ
W2(µ0, µ1)2 .
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Since the constant C does not depend on δ, we obtain the desired result by passing to
the limit δ → 0 (and absorbing the factor a−d ∨ 1 into the constant C).

Theorem 6.4 (Upper bound for WT ). Fix ζ ∈ (0, 1]. For any ε > 0 there exists h > 0
such that for any ζ-regular mesh T with [T ] ≤ h, we have

WT (PT µ0, PT µ1) ≤W2(µ0, µ1) + ε (6.5)

for all µ0, µ1 ∈ P(Ω).

Proof. Using the triangle inequality we estimate

WT (PT µ0, PT µ1) ≤ WT (PT µ0, PTHaµ0)

+WT (PTHaµ0, PTHaµ1) +WT (PTHaµ1, PT µ1)

for any µ0, µ1 ∈ P(Ω) and a > 0. Lemma 6.3 yields

WT (PTHaµ0, PTHaµ1)2 ≤W2(µ0, µ1)2 + C1(a)[T ] ,

where C1(a) < ∞ depends on Ω, ζ and a. Using the a priori estimate from Lemma 3.3
followed by Lemma 3.2 and Lemma 2.2, we obtain

WT (PT µi, PTHaµi)

≤ C2

(
W2(QT PT µi, QT PTHaµi) + [T ]

)
≤ C2

(
W2(QT PT µi, µi) + W2(µi, Haµi) + W2(Haµi, QT PTHaµi) + [T ]

)
≤ C2

(
[T ] +

√
a
)

for i = 0, 1, where the constant C2 < ∞ depends on Ω and ζ, but not on a. Combining
these estimates we find

WT (PT µ0, PT µ1) ≤
√

W2(µ0, µ1)2 + C1(a)[T ] + C2

(
[T ] +

√
a
)
.

Let now ε > 0, and choose a sufficiently small, so that C2
√
a ≤ ε/2. Then there

exists h > 0 such that, whenever [T ] ≤ h, we have

WT (PT µ0, PT µ1) ≤W2(µ0, µ1) + ε (6.6)

for all µ0, µ1 ∈ P(Ω), which implies the result.

6.2 Lower bound for the discrete transport metric under isotropy conditions

Since the counterexamples in Section 5 show that WT does not Gromov–Hausdorff con-
verge to W2 in general, we will impose an additional condition on the mesh. Let Id
denote the d× d identity matrix.

Definition 6.5. Let {T } be a family of admissible meshes such that [T ] → 0. We say
that {T } satisfies the asymptotic isotropy condition with weight functions {λT } if, for
all K ∈ T , ∑

L

λTKL
|(K|L)|
dKL

(xK − xL)⊗ (xK − xL) ≤ |K|
(
1 + ηT (K)

)
Id , (6.7)

where supK∈T |ηT (K)| → 0 as [T ]→ 0.
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The following proposition contains the crucial bounds on the action functionals AT
and their duals A∗T . To obtain the result, one needs to carefully choose the means θKL
according to the geometry of the mesh.

We say that a sequence of signed measures {wT }T ⊆ M0(Ω) converges weakly to a
signed measure w if 〈φ,wT 〉 → 〈φ,w〉 for all φ ∈ C0(Ω). In this case, we write wT ⇀ w.

Proposition 6.6 (Action bounds). Let {T } be a family of ζ-regular meshes satisfying
the asymptotic isotropy condition with weight functions {λT }, and let {θT } be a family
of weight functions that are compatible with {λT }.

Suppose that mT ∈ P(T ) satisfies QTmT ⇀ µ as [T ]→ 0 for some µ ∈ P(Ω).

(i) Let φ ∈ C1(Ω) and define ψT : T → R by ψT (K) := φ(xK). Then:

lim sup
[T ]→0

AT (mT , ψT ) ≤ A(µ, φ) . (6.8)

(ii) Let σT ∈ M0(T ) and assume that there exists w ∈ M0(Ω) such that QT σT ⇀ w
as [T ]→ 0. Then:

A∗(µ,w) ≤ lim inf
[T ]→0

A∗T (mT , σT ) . (6.9)

Remark 6.7. We emphasise that it is important to assume in (6.9) that w in (6.9) is a
signed measure, and not an arbitrary distribution.

Proof. We will first prove (6.8). For K ∈ T set vK := ∇φ(xK) and write ρT (K) =
mT (K)/|K|. Let ω : [0,∞)→ [0,∞) be the modulus of continuity of ∇φ. Then(

φ(xK)− φ(xL)
)2 ≤ (vK · (xL − xK)

)2
+ 4‖∇φ‖L∞ω(2[T ])d2

KL

whenever L ∼ K. By Remark 2.7, we have

θTKL(ρT (K), ρT (L)) ≤ λTKLρT (K) + λTLKρT (L) .

Using these estimates we obtain

AT (mT , ψT ) ≤ 1

2

∑
K,L

|(K|L)|
dKL

(
λTKLρT (K) + λTLKρT (L)

)(
φ(xK)− φ(xL)

)2
=
∑
K

ρT (K)
∑
L

λTKL
|(K|L)|
dKL

(
φ(xK)− φ(xL)

)2
≤
∑
K

ρT (K)
∑
L

λTKL
|(K|L)|
dKL

(
vK · (xL − xK)

)2
+ 4‖∇φ‖L∞ω(2[T ])

∑
K

ρT (K)
∑
L

dKL|(K|L)| .

(6.10)

In view of Lemma 2.12(i) and (2.21), we observe that∑
L

dKL|(K|L)| ≤ C|K| ,
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where C < ∞ depends on Ω and ζ. In the former term we use the asymptotic isotropy
condition (6.7) to write∑

L

λTKL
|(K|L)|
dKL

(
vK · (xL − xK)

)2 ≤ (1 + ηT (K)
)
|K| |vK |2,

where ηT (K) is the error term in (6.7), which converges to 0, uniformly in K, as [T ]→ 0.
Summing up all contributions, we obtain

AT (mT , ψT ) ≤
∑
K

ρT (K)|K|
((

1 + ηT (K)
)
|vK |2 + 4C‖∇φ‖L∞ω(2[T ])

)
.

Writing µT := QTmT and ξT =
∑

K χK
(
1 + ηT (K)

)
|vK |2 we have∑

K

ρT (K)|K|
(
1 + ηT (K)

)
|vK |2

= 〈ξT , µT 〉 =

ˆ
|∇φ|2 dµ+

ˆ
|∇φ|2 d(µT − µ) +

ˆ
ξT − |∇φ|2 dµT .

Since µT converges weakly to µ and ‖ξT − |∇φ|2‖L∞ → 0 as [T ]→ 0, we obtain (6.8).

Let us now prove (6.9). Take φ ∈ C1(Ω) and define ψT : T → R by ψT (K) = φ(xK).
We claim that 〈φ,w〉 = lim[T ]→0〈ψT , σT 〉. To show this, set wT := QT σT and φT :=∑

K ψT (K)χK , and note that 〈ψT , σT 〉 = 〈φT , wT 〉. Therefore,

〈ψT , σT 〉 − 〈φ,w〉 = 〈φT − φ,wT 〉+ 〈φ,wT − w〉 .

Since wT ⇀ w, the Banach–Steinhaus Theorem implies that supT ‖wT ‖TV < ∞. To-
gether with the bound ‖φT − φ‖L∞ ≤ C[T ], this yields the claim.

Suppose first that A∗(µ,w) is finite. Fix ε > 0 and choose φ ∈ C1(Ω) such that

1

2
A∗(µ,w) ≤ 〈φ,w〉 − 1

2
A(µ, φ) + ε .

Using the claim and (6.8), it follows that

1

2
A∗(µ,w) ≤ lim inf

[T ]→0

(
〈ψT , σT 〉 −

1

2
AT (mT , ψT )

)
+ ε

≤ lim inf
[T ]→0

1

2
A∗T (mT , σT ) + ε .

Since ε > 0 is arbitrary, the result follows.
Suppose next that A∗(µ,w) = ∞. Then, for each N > 0, there exists a function

φN ∈ C1(Ω) such that

〈φN , w〉 −
1

2
A(µ, φN ) ≥ N .

Define ψNT : T → R by ψNT (K) := φN (xK). Using the claim and (6.8) once more, we
obtain

N ≤ lim inf
[T ]→0

(
〈ψNT , σT 〉 −

1

2
AT (mT , ψ

N
T )
)

≤ lim inf
[T ]→0

1

2
A∗T (mT , σT ) ,

which implies that lim inf [T ]→0A∗T (mT , σT ) =∞.
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Theorem 6.8 (Lower bound for WT ). Fix ζ ∈ (0, 1]. For any ε > 0, there exists
h > 0 such that the following holds: for any family of ζ-regular meshes {T } satisfying
the asymptotic isotropy condition with weight functions {λT }, and any family of mean
functions {θT } that are compatible with {λT }, we have

W2(µ0, µ1) ≤ WT (PT µ0, PT µ1) + ε (6.11)

for all µ0, µ1 ∈ P(Ω), whenever [T ] ≤ h.

Proof. To obtain a contradiction, we suppose that the opposite holds, i.e., there exists
ε > 0, a sequence of meshes {T } with [T ]→ 0, and probability measures µT0 , µ

T
1 ∈ P(T ),

such that

WT (PT µ
T
0 , PT µ

T
1 ) <W2(µT0 , µ

T
1 )− ε . (6.12)

Let (mTt )t∈[0,1] ⊆ P(T ) be a constant speed geodesic connecting PT µ
T
0 and PT µ

T
1 , so

that ˆ 1

0
A∗T (mTt , ṁ

T
t ) dt =WT (PT µ

T
0 , PT µ

T
1 )2 . (6.13)

Set µ̃Tt := H[T ]QTm
T
t . Then, for almost every t ∈ [0, 1], Lemma 3.4 yields

A∗(µ̃Tt , ˙̃µTt ) ≤ CA∗T (mTt , ṁ
T
t ) ,

where the constant C <∞ does not depend on T or t. Consequently, for 0 ≤ t1 ≤ t2 ≤ 1,

W2(µ̃Tt1 , µ̃
T
t2) ≤

ˆ t2

t1

√
A∗(µ̃Tt , ˙̃µTt ) dt

≤ C
ˆ t2

t1

√
A∗T (mTt , ṁ

T
t ) dt ≤ C

√
t2 − t1WT (PT µ

T
0 , PT µ

T
1 ) ,

(6.14)

and hence by (6.12) the family of curves {(µ̃Tt )t}T is equicontinuous. Since (P(Ω),W2) is
compact, the Arzelà–Ascoli Theorem yields a subsequence of meshes and a W2-continuous
curve of probability measures (λt)t∈[0,1] in P(Ω) such that W2(µ̃Tt , λt)→ 0 for all t ∈ [0, 1]

as [T ] → 0. Moreover, since W2(µ̃Tt , QTm
T
t ) ≤ C

√
[T ] by Lemma 2.2, it follows that

QTm
T
t → λt in (P(Ω),W2) as [T ]→ 0.

For δ ∈ (0, 1
2), let t 7→ mT ,δt be a time-regularised version of t 7→ mTt , as defined in

Lemma 6.2. It follows from this lemma that QTm
T ,δ
t ⇀ λδt and QT ṁ

T ,δ
t ⇀ λ̇δt for all

t ∈ [0, 1] as [T ]→ 0. Moreover, by Lemma 3.2,

λδ0 = λ0 = lim
[T ]→0

QTm
T
0 = lim

[T ]→0
QT (PT µ

T
0 ) = lim

[T ]→0
µT0 ,

and similarly lim[T ]→0 µ
T
1 = λδ1, where the convergence is with respect to W2. Conse-

quently,

lim
[T ]→0

W2(µT0 , µ
T
1 ) = W2(λ0, λ1) .

Using Proposition 6.6 and Fatou’s Lemma, Lemma 6.2, and (6.13), it follows that

W2(λ0, λ1)2 ≤
ˆ 1

0
A∗(λδt , λ̇δt ) dt ≤ lim inf

[T ]→0

ˆ 1

0
A∗T (mT ,δt , ṁT ,δt ) dt

≤ 1

1− 2δ
lim inf
[T ]→0

ˆ 1

0
A∗T (mTt , ṁ

T
t ) dt

=
1

1− 2δ
lim inf
[T ]→0

WT (PT µ0, PT µ1)2 .
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Since δ ∈ (0, 1
2) is arbitrary, we obtain

lim
[T ]→0

W2(µT0 , µ
T
1 ) ≤ lim inf

[T ]→0
WT (PT µ0, PT µ1) ,

which is the desired contradiction to (6.12).

6.3 Proof of the Gromov–Hausdorff convergence

It remains to prove the corollaries stated in the introduction.

Proof of Corollary 1.5. Fix ε > 0. We will check that there exists h > 0 such that the
map PT : P(Ω)→ P(T ) is ε-isometric and ε-surjective whenever [T ] ≤ h.

The ε-surjectivity holds trivially, as PT is even surjective. To show that PT is ε-
isometric, we combine Theorem 6.4 and Theorem 6.8 to infer that there exists h > 0
such that

|WT (PT µ0, PT µ1)−W2(µ0, µ1)| ≤ ε

for all µ0, µ1 ∈ P(Ω), whenever [T ] ≤ h. This yields the result.

Proof of Corollary 1.6. For i = 0, 1, let µi ∈ P(Ω) and mTi ∈ P(T ) be such that
QTm

T
i ⇀ µi as [T ] → 0. Lemmas 3.3 and 3.2 imply that, for some constant C < ∞

depending only on Ω and ζ (that changes from line to line),

WT (mTi , PT µi) ≤ C
(
W2(QTm

T
i , QT PT µi) + [T ]

)
≤ C

(
W2(QTm

T
i , µi) + [T ]

)
.

As QTm
T
i ⇀ µi, we have W2(QTm

T
i , µi) → 0, and therefore WT (mTi , PT µi) → 0. The

triangle inequality then yields∣∣WT (mT0 ,m
T
1 )−WT (PT µ0, PT µ1)

∣∣ ≤ WT (mT0 , PT µ0) +WT (mT1 , PT µ1)→ 0 .

Since WT (PT µ0, PT µ1) → W2(µ0, µ1) by Theorems 1.1 and 1.4, we obtain the desired
convergence WT (mT0 ,m

T
1 )→W2(µ0, µ1).

The final claim is now straightforward: for 0 ≤ s ≤ t ≤ 1 we have

W2(µs, µt) = lim
[T ]→0

WT (mTs ,m
T
t ) = (t− s) lim

[T ]→0
WT (mT0 ,m

T
1 ) = (t− s)W2(µ0, µ1) ,

which yields the result.

Remark 6.9. Clearly, it follows from the proof of Corollary 1.6 that the one-sided estimate
lim sup[T ]→0WT (mT0 ,m

T
1 ) ≤W2(µ0, µ1) holds under the conditions of Theorem 1.1, even

when the asymptotic isotropy condition fails.
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and Riemannian Ricci curvature bounds. Ann. Probab., 43(1):339–404, 2015.

43



[3] D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov diffusion op-
erators, volume 348 of Grundlehren der Mathematischen Wissenschaften. Springer,
Cham, 2014.

[4] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the
Monge-Kantorovich mass transfer problem. Numer. Math., 84(3):375–393, 2000.

[5] C. Cancès and C. Guichard. Numerical analysis of a robust free energy diminish-
ing finite volume scheme for parabolic equations with gradient structure. Found.
Comput. Math., 17(6):1525–1584, 2017.

[6] E. A. Carlen and J. Maas. Gradient flow and entropy inequalities for quantum
Markov semigroups with detailed balance. J. Funct. Anal., 273(5):1810–1869, 2017.

[7] S.-N. Chow, W. Huang, Y. Li, and H. Zhou. Fokker-Planck equations for a free
energy functional or Markov process on a graph. Arch. Ration. Mech. Anal.,
203(3):969–1008, 2012.

[8] S.-N. Chow, W. Li, and H. Zhou. A discrete Schrödinger equation via optimal
transport on graphs. J. Funct. Anal., 276(8):2440–2469, 2019.

[9] E. B. Davies. Heat kernels and spectral theory, volume 92 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 1989.

[10] K. Disser and M. Liero. On gradient structures for Markov chains and the passage
to Wasserstein gradient flows. Netw. Heterog. Media, 10(2):233–253, 2015.

[11] M. Erbar and J. Maas. Ricci curvature of finite Markov chains via convexity of the
entropy. Arch. Ration. Mech. Anal., 206:997–1038, 2012.

[12] M. Erbar and J. Maas. Gradient flow structures for discrete porous medium equa-
tions. Discrete Contin. Dyn. Syst., 34(4):1355–1374, 2014.

[13] M. Erbar, J. Maas, and M. Wirth. On the geometry of geodesics in discrete optimal
transport. Calc. Var. Partial Differential Equations, 58(1):58:19, 2019.

[14] M. Erbar, M. Rumpf, B. Schmitzer, and S. Simon. Computation of optimal transport
on discrete metric measure spaces. Numer. Math., 144(1):157–200, 2020.
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