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Abstract

We study the tracking of a trajectory for a nonholonomic system by recasting the problem as a
constrained optimal control problem. The cost function is chosen to minimize the error in positions
and velocities between the trajectory of a nonholonomic system and the desired reference trajec-
tory, both evolving on the distribution which defines the nonholonomic constraints. The problem is
studied from a geometric framework. Optimality conditions are determined by the Pontryagin Max-
imum Principle and also from a variational point of view, which allows the construction of geometric
integrators. Examples and numerical simulations are shown to validate the results.
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1 Introduction

Nonholonomic optimal control problems arise in many engineering applications, for instance systems with
wheels, such as cars and bicycles, and systems with blades or skates. There are thus multiple applications
in the context of wheeled motion, space or mobile robotics and robotic manipulation. The earliest work
on control of nonholonomic systems is by R. W. Brockett in [9]. A. M. Bloch [1], [2] has examined several
control theoretic issues which pertain to both holonomic and nonholonomic systems in a very general
form. The seminal works about stabilization in nonholonomic control systems were done by A. M. Bloch,
N. H. McClamroch, and M. Reyhanoglu in [2], [5], [6], [7], and more recent results on the topic has been
developed by A. Zuyev [32].

Geometrically, a conservative dynamical system of mechanical type is completely determined by a
Riemannian manifold Q, the kinetic energy of the mechanical system, which is defined through the
Riemannian metric G on Q and the potential forces encoded into a potential (conservative) function
V : Q → R. These objects, together with a non-integrable distribution D ⊂ TQ on the tangent bundle
of the configuration space determines a nonholonomic mechanical system (see [1] and references therein).
Note that the description that we propose for dynamical systems of mechanical type only apply for
conservative systems, as there might be also non-conservative (dissipative and gyroscopic) forces in general
mechanical systems.

Stabilization of an equilibrium point of a mechanical system on a Riemannian manifold has been a
problem well studied in the literature from a geometric framework along the last decades (see [1] and [11]
for a review on the topic). Further extensions of these results to the problem of tracking a smooth and
bounded trajectory can be found in [11] where a proportional and derivative plus feed forward (PD+FF)
feedback control law is proposed for tracking a trajectory on a Riemannian manifold using error functions.
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For trajectory tracking, the usual approach of stabilization of error dynamics [21], [26], [27], [30]
cannot be utilized for nonholonomic systems. This is because there does not exist a C1 (even continuous)
state feedback which can stabilize the trajectory of a nonholonomic system about a desired equilibrium
point. The closed loop trajectory violates Brockett’s condition [10], [7] which states that any system of
the form ẋ = f(x, u) must have a neighborhood of zero in the image of the map x→ f(x, u) for some u
in the control set. This result appears in Theorem 4 in [7].

In this paper, we introduce a geometrical framework in nonholonomic mechanics to study tracking
of trajectories for nonholonomic systems based on [13], [17], [18]. The application of modern tools from
differential geometry in the fields of mechanics, control theory and numerical integration has led to
significant progress in these research areas. For instance, the study on the geometrical formulation of the
nonholonomic equations of motion has led to better understanding of different engineering problems such
locomotion generation, controllability, motion planning, and trajectory tracking [1], [11], [17].

Combining the ideas of geometric methods in control theory, nonholonomic systems and optimization
techniques, in this paper, we study the underlying geometry of a tracking problem for nonholonomic
systems by understanding it as a constrained optimal control problem for mechanical systems subject to
nonholonomic constraints.

Given a reference trajectory γr(t) = (qr(t), vr(t)) on D the problem studied in this work consists
on finding an admissible curve γ(t) ∈ D, solving a dynamical control system, with prescribed boundary
conditions on D and minimizing a cost functional which involves the error between the reference trajectory
and the trajectory one wants to find (in terms of both, positions and velocities), and the effort of the
control inputs. This cost functional is accomplished with a weighted terminal cost (also known as Mayer
term) which induces a constraint into the dynamics on D.

We propose a geometric derivation of the equations of motion for tracking a trajectory of a nonholo-
nomic system as an optimal control problem from two different points of view: as a constrained optimal
control problem on the tangent space to the distribution D and from the Pontryagin Maximum Principle
(PMP), where the optimal Hamiltonian is defined on the cotangent bundle of the constraint distribution.
Both approaches allow the reduction in the degrees of freedom of the equations for the optimal control
problem, compared with typical methods describing the dynamics of a nonholonomic system, as the ones
arising from the application of the classical Lagrange-d’Alembert principle. The main advantages in this
geometric framework consist in the use of a basis of vector fields adapted to D allowing such a reduction
of some degrees of freedom in the dynamics for a nonholonomic mechanical system.

It is well known that (see [1] for instance) Hamilton equations (in the cotangent bundle), are the
dual representation of Euler-Lagrange equations (in the tangent bundle). By employing an arbitrary
discretization of the necessary conditions for optimality arising from the PMP together with a shooting
method for the boundary value problem, one can observe that for mechanical systems, the physical be-
havior of the system is not respected. Therefore it is needed to develop numerical algorithms showing
a good qualitative behavior of solutions in simulations. Our motivation to develop a Lagrangian for-
malism for the optimal trajectory tracking problems is mainly based on the fact that by considering a
Lagrangian formalism it is possible to construct variational integrators. That is, a class of geometric nu-
merical schemes that preserves the qualitative features of the system such as momentum preservation and
symplecticity, and have remarkably good long-time energy behavior. This can be achieved by discretizing
the variational principle, instead of discretizing the equations of motion as is usual in the literature to
construct numerical methods for this class of problems. Moreover, it is also well known that Noether’s
theorem (given in the Lagrangian framework) provides a direct link between symmetries and conserved
quantities which is preserved by the discretization of variational principles in the Lagrangian framework.

To test the efficiency of the proposed approach with the PMP, we use a Runge Kutta integrator
together with a shooting method in the solution of a trajectory optimization for a simple but challenging
benchmark mechanical system: a fully actuated particle subject to a nonholonomic constraint into the
dynamics. We observed in the simulations how difficult is to achieve the reference trajectory in the
constraint submanifold under the boundary conditions in the problem set-up. This motivate to us to
propose a new numerical scheme to achieve the reference trajectory. This new scheme is based on a
variational integrator. Such an integrator is tested in a classical nonholonomic system of mechanical
type: the Chaplyigin sleigh. Numerical simulations exhibit an accurate convergence to the reference
trajectory and a good behavior of the energy associated with the optimal control problem. Preliminaries
results of this work by employing the PMP can be found our conference paper [28].

The paper is structured as follows: we introduce mechanical systems on a manifold, connections on
a Riemannian manifold and the geometry of nonholonomic dynamical systems on Section 2, together
with the examples we used as benchmarks: the nonholonomic particle and the Chaplygin sleigh. Section
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3 introduces the details of the problem under study motivated by the non-existence of a C1 feedback
control to stabilize the error dynamics in nonholonomic systems. Necessary conditions for extrema in the
proposed optimal control problem are studied from the PMP and from a variational formalism in Section
4. The last motivate the construction of variational integrators in Section 5. We also show numerical
results and analyze the results we obtain. A final discussion and further applications and extensions of
this work are presented in Section 6

2 Nonholonomic mechanical systems

Let Q be the configuration space of a mechanical system, a differentiable manifold with dim(Q) = n, and
local coordinates denoted by (qi) for i = 1, . . . , n. Most nonholonomic systems have linear constraints
on velocities, and these are the ones we will consider. Linear constraints on the velocities (or Pfaffian
constraints) are locally given by equations of the form φa(qi, q̇i) = µai (q)q̇i = 0, 1 ≤ a ≤ m, depending,
in general, on their configurations and their velocities.

From an intrinsic point of view, the linear constraints are defined by a regular distribution D on
Q of constant rank (n − m) such that the annihilator of D is locally given at each point of Q by
Doq = span

{
µa(q) = µai dq

i ; 1 ≤ a ≤ m
}

, where µa are independent one-forms at each point of Q.
We restrict ourselves to the case of nonholonomic mechanical systems where the Lagrangian is of

mechanical type, that is, mechanical systems with a dynamics described by a Lagrangian function L :
TQ→ R which is defined by

L(vq) =
1

2
G(vq, vq)− V (q),

with vq ∈ TqQ, where G denotes a Riemannian metric on Q representing the kinetic energy of the systems,
and V : Q→ R is a potential function.

Assume that the Lagrangian system is subject to nonholonomic constraints, defined by a regular
distribution D on Q with corank(D) = m. Denote by τD : D → Q the canonical projection from D to Q,
denote by Γ(τD) the set of sections of τD and also denote by X(Q) the set of vector fields taking values
on D. If X,Y ∈ X(Q), then [X,Y ] denotes the standard Lie bracket of vector fields.

Definition 2.1. A nonholonomic mechanical system on a smooth manifold Q is given by the triple
(G, V,D), where G is a Riemannian metric on Q, representing the kinetic energy of the system, V : Q→ R
is a smooth function representing the potential energy and D a non-integrable smooth distribution on Q
representing the nonholonomic constraints.

Given X,Y ∈ Γ(τD) that is, X(x) ∈ Dx and Y (x) ∈ Dx for all x ∈ Q, then it could happen that
[X,Y ] /∈ Γ(τD) since D is nonintegrable. We want to obtain a bracket definition for sections on D. Using
the Riemannian metric G we can define two complementary orthogonal projectors P : TQ → D and
Q : TQ→ D⊥, with respect to the tangent bundle orthogonal decomposition D ⊕D⊥ = TQ. Therefore,
given X,Y ∈ Γ(τD) we define the nonholonomic bracket [[·, ·]] : Γ(τD) × Γ(τD) → Γ(τD) as [[XA, XB ]] :=
P[XA, XB ]. This Lie bracket verifies the usual properties of a Lie bracket except the Jacobi identity (see
[3], [16] for example).

Definition 2.2. Consider the restriction of the Riemannian metric G to the distribution D, GD : D ×Q
D → R and define ∇G

D
: Γ(τD)× Γ(τD)→ Γ(τD), the Levi-Civita connection determined by the following

two properties:

1. [[X,Y ]] = ∇G
D

X Y −∇G
D

Y X,

2. X(GD(Y, Z)) = GD(∇G
D

X Y,Z) + GD(Y,∇G
D

X Z).

Let (qi) be local coordinates onQ and {eA} be independent vector fields on Γ(τD) (that is, eA(x) ∈ Dx)
such that Dx = span {eA(x)}, x ∈ U ⊂ Q. Then, we can determine the Christoffel symbols ΓABC associ-

ated with the connection ∇GD by ∇G
D

eB eC = ΓABC(q)eA. Note that the coefficients ΓCAB of the connection

∇GD can be also computed by (see [18] for details)

ΓCAB =
1

2
(CBCA + CACB + CCAB) (1)

where the constant structures CCAB are defined by [[XA, XB ]] = CCABXC .
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Definition 2.3. A curve γ : I ⊂ R→ D is admissible if γ(t) =
dσ

dt
(t), where τD ◦ γ = σ.

Given local coordinates onQ, (qi) with i = 1, . . . , n; and {eA} sections on Γ(τD), with A = 1, . . . , n−m,

such that eA = ρiA(q)
∂

∂qi
we introduce induced coordinates (qi, vA) on D, where, if e ∈ Dx then e =

vAeA(x). Therefore, the curve γ(t) = (qi(t), vA(t)) is admissible if q̇i(t) = ρiA(q(t))vA(t).
Consider the restricted Lagrangian function ` : D → R,

`(v) =
1

2
GD(v, v)− V (τD(v)), with v ∈ D.

Definition 2.4. A solution of the nonholonomic problem is an admissible curve γ : I → D such that

∇G
D

γ(t)γ(t) + gradGDV (τD(γ(t))) = 0.

Here the section gradGDV ∈ Γ(τD) is characterized by

GD(gradGDV,X) = X(V ), for every X ∈ Γ(τD).

These equations are equivalent to the nonholonomic equations. Locally, these equations are given by

q̇i = ρiA(q)vA (2)

v̇C = −ΓCABv
AvB − (GD)CBρiB(q)

∂V

∂qi
, (3)

where (GD)AB denotes the coefficients of the inverse matrix of (GD)AB determined by GD(eA, eB) =
(GD)AB .

Remark. The nonholonomic equations (2)-(3) only depend on the coordinates (qi, vA) on D. Therefore
the nonholonomic equations are free of Lagrange multipliers. These equations are equivalent to the
nonholonomic Hamel equations (see [8], for example).

2.1 Example: the Chaplygin sleigh

The Chaplygin sleigh (see [1]) is a rigid body moving on a horizontal plane with three contact points,
two of which slide freely without friction. The third one is a knife edge, which imposes the nonholonomic
constraint of no motion perpendicular to the direction of the blade. The configuration space is Q = SE(2),
with local coordinates (x1, x2, θ). The coordinates (x1, x2) denote the contact point of the blade with the
plane and θ the orientation of the blade.

Figure 1: The Chaplygin sleigh

The Lagrangian is of kinetic type and if we assume that the center of mass lies in the line through
the blade then it is given by

L =
1

2

(
(J +ma2)θ̇2 +m

(
ẋ21 + ẋ22 + 2aθ̇(−ẋ1 sin θ + ẋ2 cos θ)

))
,

where m denotes the mass of the body, J the moment of inertia relative to the center of mass and a
the distance between the center of mass and the contact point of the blade. The matrix of the metric
defining the kinetic Lagrangian is given by m 0 −ma sin θ

0 m ma cos θ
−ma sin θ ma cos θ J +ma2

 .

4



The nonholonomic constraint is ẋ2 cos(θ) = −ẋ1 sin(θ), which defines a non-integrable distribution

D = span

{
∂

∂θ
, cos θ

∂

∂x1
+ sin θ

∂

∂x2

}
.

To derive the nonholonomic equations in adapted coordinates, we choose the following orthonormal
basis adapted to D and D⊥ :

D = span

{
X1 =

1√
J +ma2

∂

∂θ
, X2 =

1√
m

(
cos θ

∂

∂x1
+ sin θ

∂

∂x2

)}
,

D⊥ = span

{
X3 = Γ

(
(J +ma2)

ma
sin θ

∂

∂x1
− (J +ma2)

ma
cos θ

∂

∂x2
+

∂

∂θ

)}
,

with Γ = 1√
(J+ma2)2

ma2 −(J+ma2)
. Denote by (qi, vA) = (x1, x2, θ, v

1, v2, v3) the induced coordinates. A

straightforward computation shows that the functions ρiA are given by

ρ11 = ρ21 = ρ32 = 0, ρ31 =
1√

J +ma2
, ρ12 =

cos θ√
m
, ρ22 =

sin θ√
m
.

In the induced coordinates, the restricted Lagrangian ` : D −→ R is given by `(qi, vA) = 1
2 ((v1)2 +

(v2)2), and the nonholonomic constraint by v3 = 0.
The the nonholonomic equations for the Chaplygin sleigh in the adapted basis are given by (see [12]

for more details)

v̇1 = − a
√
m

J +ma2
v1v2, v̇2 =

a
√
m

J +ma2
(v1)2, (4)

together with the admissibility conditions

ẋ1 =
cos θ√
m
v2, ẋ2 =

sin θ√
m
v2, θ̇ =

1√
J +ma2

v1 (5)

and the nonholonomic constraint v3 = 0.

2.2 Example: The nonholonomic particle

Consider a particle of unit mass evolving in Q = R3 with Lagrangian L(x, y, z, ẋ, ẏ, ż) =
1

2
(ẋ2 + ẏ2 + ż2),

and subject to the constraint ẋ + y ż = 0. The nonholonomic system is defined by the annihilation
of the one form µ(x, y, z) = (1, 0, y). We denote q(t) = (x(t), y(t), z(t))T the vector of positions and
v(t) = (vx(t), vy(t), vz(t))

T the corresponding vector of velocities.

The distribution D is determined by D = span{Y1, Y2} = span
{
∂
∂y ,

∂
∂z − y

∂
∂x

}
. Then, D⊥ = { ∂∂x +

y ∂
∂z}.

Let (x, y, z, v1, v2) be induced coordinates on D. Given the vector fields Y1 and Y2 generating the

distributionD we obtain the relations for q ∈ R3 given by Yj(q) = ρ1j (q)
∂

∂x
+ ρ2j (q)

∂

∂y
+ ρ3j (q)

∂

∂z
, j = 1, 2.

Then, ρ11 = ρ31 = ρ22 = 0, ρ21 = ρ32 = 1, ρ12 = −y.
Each element e ∈ Dq is expressed as a linear combination of these vector fields: e = v1Y1(q)+v2Y2(q).

Therefore, the vector subbundle τD : D → R3 is locally described by the coordinates (x, y, θ; v1, v2); the
first three for the base and the last two, for the fibers.

Observe that e = v1
∂

∂y
+ v2

(
∂

∂z
− y ∂

∂x

)
and, in consequence, D is described by the conditions

(admissibility conditions): ẋ = −yv2, ẏ = v1, ż = v2 as a vector subbundle of TQ where v1 and v2 are
the velocities relative to the basis of D.

The nonholonomic bracket given by [[·, ·]] = P([·, ·]) satisfies

[[Y1, Y2]] = P[Y1, Y2] = P
(
− ∂

∂x

)
=

y

1 + y2

(
∂

∂z
− y ∂

∂x

)
.

Therefore, by using (1) all the Christoffel symbols for the connection ∇G
D

vanish except Γ2
12 which is

given by Γ2
12 =

y

1 + y2
.
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The restriction of the Lagrangian function L on D in the adapted coordinates (v1, v2) is given by

`(x, y, z, y1, y2) =
1

2

(
(v1)2 + (v2)2(y2 + 1)

)
.

Therefore, the nonholonomic equations for the constrained particle are given by

v̇1 = 0, v̇2 = − y

1 + y2
v1v2 (6)

together with the admissibility conditions ẋ = −yv2, ẏ = v1 and ż = v2. Then these equations define a
time-continuous flow FDt : D → D, i.e. FDt ((q(0), v(0))) = (q(t), v(t)), where q(t) = (x(t), y(t), z(t))T and
v(t) = (v1(t), v2(t))T , (q(0), v(0)) ∈ D.

Note that only by taking an adapted basis of vector fields in the nonholonomic distribution D), we
reduced the quantity of equations to solve, without the needed to use Lagrange multipliers to enforce the
nonholonomic constraint.

3 Optimal trajectory tracking problem

Next we present the tracking problem for nonholonomic systems as an optimal control problem. The
objective is the tracking of a suitable reference trajectory γr(t) for a mechanical system with velocity
constraints as described in the previous section. It is assumed that γr(t) ∈ D.

We will analyze the case when the dimension of the inputs set, i.e., control distribution, is equal to
the rank of D. If the rank of D is equal to the dimension of the control distribution, the system will be
called a fully actuated nonholonomic system.

Definition 3.1. A solution of a fully actuated nonholonomic problem is an admissible curve γ : I → D
such that

∇G
D

γ(t)γ(t) + gradGDV (τD(γ(t))) ∈ Γ(τD),

or, equivalently,

∇G
D

γ(t)γ(t) + gradGDV (τD(γ(t))) = uA(t)eA(τD(γ(t))),

where uA are the control inputs.

Locally, the above equations are given by

q̇i = ρiAv
A (7)

v̇A = −ΓACBv
CvB − (GD)ABρiB(q)

∂V

∂qi
+ uA. (8)

As we mentioned in the Introduction, for trajectory tracking, the usual approach of stabilization of
error dynamics [21], [26], [27], [30] cannot be utilized for nonholonomic systems because the closed loop
trajectory violates Brockett’s condition. A common approach to trajectory tracking for nonholonomic
systems found in the literature is the backstepping procedure [19], [20]. This approach is done on basis of
concrete examples, in particular, mobile robots or unicycle models. In [19], [20] the error dynamics of the
unicycle model is shown to be in strict feedback form. Thereafter, integrator backstepping is employed
to choose an appropriate Lyapunov function for stabilization of the error dynamics. This error dynamics
does not evolve on the constrained manifold (unlike our approach). Therefore, Brockett’s condition is not
violated. However, since ρiA(q) is unknown in a general framework (i.e., they depend on the distribution
determined in each particular case), the approach can not be generalized to solve the tracking problem
for a general nonholonomic system with our method and then backstepping needs to be studied for each
system. So we propose a new approach by considering tracking problems for nonholonomic systems as
optimal control problems, and we call this optimal trajectory tracking.

In the following, we shall assume that all the control systems under consideration are controllable in
the configuration space, that is, for any two points q0 and qf in the configuration space Q, there exists
an admissible control u(t) defined on the control set U ⊆ Rn such that the system with initial condition
q0 reaches the point qf at time T , where U is unbounded (see [1] for more details, Section 7.2).

Given a cost function C : D × U → R the optimal control problem consists of finding an admissible
curve γ : I → D which is a solution of the fully actuated nonholonomic problem given initial and final
boundary conditions on D and minimizing the cost functional

J (γ(t), u(t)) :=

∫ T

0

C(γ(t), u(t))dt.

6



For trajectory tracking of a nonholonomic system we consider the following problem
Problem (optimal trajectory tracking): Given a reference trajectory γr(t) = (qr(t), vr(t)) on

D, find an admissible curve γ(t) ∈ D, solving (7)-(8), with prescribed boundary conditions on D and
minimizing the cost functional

J (γ(t)) =
1

2

∫ T

0

(
||γ(t)− γr(t)||2 + ε||uA||2

)
dt+ ωΦ(γ(T ))

=
1

2

∫ T

0

(
||qi(t)− qir(t)||2 + ||vA(t)− vAr (t)||2 + ε||uA||2

)
dt+ ωΦ(T, γ(T ))

where ε > 0 is a regularization parameter, Φ : TQ → R is a terminal cost (Mayer term) and ω > 0 is a
weight for the terminal cost. C and Φ are assumed to be continuously differentiable functions, and the
final state γ(T ) is required to fulfill a constraint r(γ(T ), γr(T )) = 0 with r : D × D → Rd and γr ∈ D
given. The interval length T may either be fixed, or appear as degree of freedom in the optimization
problem. In this work we restrict ourselves to the case when T is fixed.

Remark. Note that if ε = 0 then the optimal control problem turns into a singular optimal control
problem (see [23] Section 3.2). This situation will be analyzed in a future work.

4 Conditions for optimality

In this section we derive necessary conditions for extrema in the optimal trajectory tracking problem.
We present two approaches: the first one is based on the Hamiltonian point of view by considering
Pontryagin’s maximum principle, and the second one is based on considering a Lagrangian point of view.
In the Lagrangian approach, necessary conditions for extrema are derived as solutions of Euler-Lagrange
equations for a Lagrangian defined as the cost functional for the optimal trajectory tracking problem. As
we commented in the Introduction, the motivation to study the Lagrangian approach comes from the fact
that by considering a Hamiltonian formalism, when we simulate the behavior of the planned trajectories
by employing a classical integrator scheme in Section 4.3, we can not obtain results that preserve the
original qualitative structure of solutions. That is, despite we can reach the desired trajectory at the final
time, the planned trajectories does not respect the original movements and behaviors of the continuous-
time system, and therefore the construction of structure preserving numerical methods for this problem
is needed. We construct such a structure preserving methods by discretizing the variational principle
that we present in this section for the Lagrangian approach of the problem.

4.1 Pontryagin Maximum Principle (PMP)

In this section we apply Pontryagin’s maximum principle to the optimal tracking problem.
The Hamiltonian for the problem H : T ∗D × U → R is given by

H(q, v, λ, µ, u) =λ0C(qi, vA, uA) + λiρ
i
A(q)vA + µAv̇

A(qi, vA, uA), (9)

where v̇A comes from equation (8) and λ0 ≥ 0 is a fixed positive constant. Note that λi and µA are the
costate variables. The second and third terms in (9) correspond with the nonholonomic dynamics given
in equations (2) and (3) paired with the costate variables.

We proceed as is usual in the literature (see for instance [1] pp. 337). We first restrict ourselves to
the case of normal extremals, i.e., λ0 6= 0. The optimal curves (q(t), v(t), λ(t), µ(t), u?(t)) must satisfy
equations (7) and (8) together with the adjoint (or costate) equations for H, that is,

−λ̇i =
∂H
∂qi

and − µ̇A =
∂H
∂vA

,

where u? satisfies,

H(q(t), v(t), λ(t), µ(t), u?(t)) = min
u∈U
H(q(t), v(t), λ(t), µ(t), u). (10)

Given that u? minimizes H, then u? is a critical point for H and may be determined by the condition

∂H
∂u

(q(t), v(t), λ(t), µ(t), u?(t)) = 0, t ∈ [0, T ]. (11)

7



Note that by definition of J , u? is determined uniquely from the previous condition by the implicit
function theorem. It follows that there exists a function κ such that u?(t) = κ(q(t), v(t), λ(t), µ(t)). Then
if u? is defined implicitly as a function of (q(t), v(t), λ(t), µ(t)) ∈ T ∗D, by equation (10) we can define
the Hamiltonian function H∗ : T ∗D → R by

H∗(q(t), v(t), λ(t), µ(t)) = H(q(t), v(t), λ(t), µ(t), u?(t)).

H∗ defines a Hamiltonian vector field XH∗ on T ∗D with respect to the canonical symplectic structure on
T ∗D given by ωD = dqi ∧ dλi + dvA ∧ dµA.

The PMP applied to our particular problem, together with the constraints induced by the terminal
cost and the boundary conditions gives the following necessary conditions:

(i) Stationary condition: from (11), µA = −λ0εuA, that is, (uA)? = − µA
λ0ε

.

(ii) State equations: Equations (7) and (8), with uA determined by the stationary condition.

(iii) Adjoint equations (or costate equations):

−λ̇i =
∂H∗

∂qi
= λ0(qi − qir) + λj

∂ρjA(q)

∂qi
vA + µA

∂v̇A

∂qi
,

−µ̇A =
∂H∗

∂vA
= λ0(vA − vAr ) + λiρ

i
A(q) + µB

∂v̇B

∂vA

(iv) Constraint induced by terminal condition: r(γ(T ), γr(T )) = 0,

(v) Transversality conditions: γ(0) := (q(0), v(0)) ∈ D,

λi(T ) = ω
∂Φ

∂qi
(T, γ(T )) + λT

∂r

∂qi
(γ(T ), γr(T )),

µA(T ) = ω
∂Φ

∂vA
(T, γ(T )) + λT

∂r

∂vA
(γ(T ), γr(T )).

Observe that the solutions of the optimal control problem are the critical points of the functional

J̃(γ, u, λ, µ, λT ) = ωΦ(T, γ(T )) + λT r(γ(T ), γr(T ))

+

∫ T

0

[
λ0C(q(t), v(t), u(t)) + λi(t)(q̇

i(t)− ρiA(q(t))vA(t))

+µA(t)(v̇A(t)− v̇A(q(t), v(t), u(t)))
]
dt,

with ω > 0, λ0 ≥ 0, γ(0) ∈ D, λT ∈ R and γr : [0, T ]→ D given.
Note that in the abnormal case, that is, when λ0 = 0, it follows that µA = 0 and therefore the adjoint

equations become in

−λ̇i = λj
∂ρjA(q)

∂qi
vA, 0 = λiρ

i
A(q).

Remark. In the situation for the study of abnormal solutions, the necessary conditions cannot use the
information of the cost function C to select minimizers. That is, abnormal solutions are not useful solutions
for our trajectory tracking problem, since the problem formulation for optimal trajectory tracking depends
explicitly in the distance between the desired trajectory and the optimal one. The unique condition that
we need in our work is the existence of normal solutions, which in our case, are guaranteed by assuming
the controllability of the linearized state equations (see [24]). This is the typical controllability hypothesis
assumed for trajectory tracking and it is the general case in control nonholonomic dynamics.

4.2 Example: Optimal trajectory tracking for the Chaplygin sleigh

Consider the Chaplyigin sleigh of Example 2.1 but subject to input controls. These control inputs are
denoted by u1 and u2. The first control input corresponds to a force applied perpendicular to the center
of mass of the sleigh and the second control input corresponds to the torque applied about the vertical
axis.
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The controlled Euler-Lagrange equations are given by

v̇1 = − a
√
m

J +ma2
v1v2 + u1, v̇2 =

a
√
m

J +ma2
(v1)2 + u2. (12)

together with the admissibility conditions

ẋ1 =
cos θ√
m
v2, ẋ2 =

sin θ√
m
v2, θ̇ =

1√
J +ma2

v1 (13)

and the nonholonomic constraint v3 = 0.
Let γr(t) = ((x1)r(t), (x2)r(t), θr(t), v

1
r(t), v2r(t)) be the reference trajectory, which follows the con-

straint v3r = 0 for all time t and the dynamical equations for the Chaplygin sleigh. In this case, we assume
that the final cost is Φ(T, γ(T )) = 0, and the constraint r(γ(T ), γr) is given by

r(γ(T ), γr) =|x1(T )− (x1)r(T )|2 + |x2(T )− (x2)r(T )|2 + |θ(T )− θr(T )|2

+ |v1(T )− v1r(T )|2 + |v2(T )− v2r(T )|2.

The Hamiltonian for the PMP is given by

H(q, v, λ, µ, u) =
λ0ε

2
(u21 + u22) +

λ0
2

(|x1 − (x1)r|2 + |x2 − (x2)r|2 + |θ − θr|2

+ |v1 − v1r |2 + |v2 − v2r |2) + λ1
cos θ√
m
v2 + λ2

sin θ√
m
v2 +

λ3v
1

√
J +ma2

+ µ1

(
u1 −

a
√
m

J +ma2
v1v2

)
+ µ2

(
u2 +

a
√
m

J +ma2
(v1)2

)

Note that, u?1 = − µ1

λ0ε
and u?2 = − µ2

λ0ε
. Therefore denoting by q = (x1, x2, θ), the optimal Hamilto-

nian H∗ is given by

H∗(q, v, λ, µ) =
λ0
2

{
|x1 − (x1)r|2 + |x2 − (x2)r|2 + |θ − θr|2 + |v1 − v1r |2 + |v2 − v2r |2

}
+ λ1

cos θ√
m
v2 + λ2

sin θ√
m
v2 +

λ3v
1

√
J +ma2

− µ2
1

2λ0ε
− µ2

2

2λ0ε

− µ1
a
√
m

J +ma2
v1v2 + µ2

a
√
m

J +ma2
(v1)2.

The adjoint equations are

λ̇1 = −λ0(x1 − (x1)r), λ̇2 = −λ0(x2 − (x2)r),

λ̇3 = λ0(θr − θ) + λ1
sin θ√
m
v2 − λ2

cos θ√
m
v2, (14)

µ̇1 = −λ0(v1 − v1r)− λ3
1√

J +ma2
+ µ1v

2 a
√
m

J +ma2
− µ2v

1 2a
√
m

J +ma2
,

µ̇2 = −λ0(v2 − v2r)− λ1
cos θ√
m
− λ2

sin θ√
m

+ µ1v
1 a
√
m

J +ma2
.

Finally, the state equations are given now by

v̇1 = − a
√
m

J +ma2
v1v2 − µ1

λ0ε
, v̇2 =

a
√
m

J +ma2
(v1)2 − µ2

λ0ε
. (15)

together with the admissibility conditions

ẋ1 =
cos θ√
m
v2, ẋ2 =

sin θ√
m
v2, θ̇ =

1√
J +ma2

v1 (16)

In addition, the boundary conditions and transversality conditions must be satisfied, in particular, the
optimal trajectory verifies that γ(T ) matches exactly with γr(T ) .
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4.3 Example: Optimal trajectory tracking for the nonholonomic particle

Consider the situation of Example 2.2. Let γr = (xr(t), yr(t), zr(t), v
1
r , v

2
r) be the reference trajectory,

which follows the constraint ẋr = yr żr for all time t and the dynamical equations for the nonholonomic
particle. We wish to control the velocity of the nonholonomic particle. To do that, we add control inputs
in the fiber coordinates v1 and v2. Therefore the dynamical control system to study is given by

v̇1 = u1, v̇2 = u2 − y

1 + y2
v1v2, (17)

together with the admissibility conditions ẋ = −yv2, ẏ = v1 and ż = v2.
The Hamiltonian for the PMP is given by

H(q, v, λ, µ, u) =
λ0
2

(
|x− xr|2 + |y − yr|2 + |z − zr|2 + |v1 − v1r |2 + |v2 − v2r |2

+ ε(u1)2 + ε(u2)2
)
− λ1yv2 + λ2v

1 + λ3v
2 + µ1u

1

+ µ2

(
u2 − y

1 + y2
v1v2

)
.

Note that, u?1 = − µ1

λ0ε
and u?2 = − µ2

λ0ε
. Therefore the optimal Hamiltonian H∗ is given by

H∗(q, v, λ, µ) =
λ0
2

{
|x− xr|2 + |y − yr|2 + |z − zr|2 + |v1 − v1r |2 + |v2 − v2r |2

}
− λ1yv2 + λ2v

1 + λ3v
2 − 1

2λ0ε
(µ2

1 + µ2
2)− µ2v

1v2
y

1 + y2
.

The adjoint equations are

λ̇1 = −λ0(x− xr), λ̇3 = −λ0(z − zr),

λ̇2 = λ1v
2 − λ0(y − yr) + v1v2µ2

(
y2 − 1

(y2 + 1)2

)
, (18)

µ̇1 = −λ2 − λ0(v1 − v1r)− µ2
y

1 + y2
v2,

µ̇2 = −λ3 + λ1y − λ0(v2 − vr2)− µ2
y

1 + y2
v1.

Finally, the state equations are given now by

v̇1 = − µ1

λ0ε
, v̇2 = − µ2

λ0ε
− y

1 + y2
v1v2, (19)

together with the admissibility conditions ẋ = −yv2, ẏ = v1 and ż = v2. In addition, we consider a final
cost Φ(T, γ(T )) (but not a function r) and the boundary conditions and transversality conditions must
be satisfied.

We now test with numerical simulations how the proposed method works. We choose an arbitrary
trajectory satisfying the nonholonomic dynamics and we solve the boundary value problem by using a
single shooting method.

Denote by Fλµ : [0, T ]× T ∗D → T ∗D the integral flow given by equations (18) on T ∗D and γ(0) ∈ D
the initial condition for the state dynamics. The initial guess for the initial condition of the costate
variables is denoted by α = Fλµ (0). We wish to find the initial condition of the costates for which

Fλµ (T, γ(0), α) = (01×5)T . The goal is to find the root of the polynomial

Fλµ (α) =


λ1(T, γ(0), α) + ω(x(T, α)− xr(T ))
λ2(T, γ(0), α) + ω(y(T, α)− yr(T ))
λ3(T, γ(0), α) + ω(z(T, α)− zr(T ))

µ1(T, α)
µ2(T, α)


where T ∈ R+ is the final time, ω ∈ R+ is a weight for the terminal cost and Fλµ (τ, γ(0), p0) is the flow
of the adjoint equations (18) starting at (γ(0), p0). The root finder used in both situations was the fsolve
routine in MATLAB.

Case 1: Singular case.
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Figure 2: Singular case, c1 = 0: Trajectories minimizing the cost function J , evolving on D and tracking
the reference trajectory γr in time T and control inputs
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For the initial condition γ(0) =
(
2 3 2; 0.5 0.4

)
and reference trajectory γr(t) =

(
−t 1 t; 0 1

)
,

p0 = 01×5, T = 5, ω = 1 and ε = 9 we exhibit the results in Figure 4.3.
Case 2: Arbitrary reference trajectory
For the intial condition γ(0) =

(
0.5 0.2 0.7; 0.5 0.4

)
and reference trajectory γr(t) = (1, 0, t+ 1, 0, 1),

p0 = 01×5, T = 4, ω = 1 and ε = 7 we exhibit the results in Figure 4.3.
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Figure 3: Trajectories minimizing the cost function J , evolving on D and tracking the reference trajectory
γr in time T and control inputs

Minimizing the cost functional, while evolving on the constraint submanifold and remaining differ-
entiable by solving a boundary value problem using a single shooting method is a difficult task and not
always numerically stable. Moreover, here we are not considering time as an independent variable, which
will only complicate things further. The need for using proper regularization parameters and final weights
is crucial in order to get accurate results. In the next section we will improve the behavior in simulations
by constructing variational integrators.

4.4 Variational (Lagrangian) approach

Next we derive necessary conditions for optimality in the optimal control problem following a variational
approach as in [3], [14], [16]. Define the submanifold D(2) of TD by D(2) := {a ∈ TD | a = γ̇}, where
γ : I → D is an admissible curve. We can choose coordinates (xi, vA, v̇A) on D(2), where the inclusion
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on TD, iD(2) : D(2) ↪→ TD, is given by iD(2)(qi, vA, v̇A) = (qi, vA, ρiA(q)vA, v̇A). Therefore, D(2) is locally
described by the constraint on TD given by q̇i − ρiAvA = 0.

The optimal control problem can be alternatively studied by the function L : D(2) → R, where

L(qi, vA, v̇A) =λ0C
(
qi, vA, v̇A + ΓACBv

BvC + (GD)ABρiB(q)
∂V

∂qi

)
where λ0 ≥ 0.

Then, the Lagrangian function L : D(2) → R is given by

L(qi, vA, v̇C) =
λ0
2

(
||γ(t)− γr(t)||2 + ε||uA||2

)
=

1

2

(
||qi − qir||2 + ||vA − vAr ||2

+ε||ΓACBvCvB + v̇A + (GD)ABρiB(q)
∂V

∂qi

∣∣∣∣∣∣2)
To derive the optimality conditions for the optimal tracking problem determined by L we use standard

variational calculus for systems with constraints by defining the augmented Lagrangian L̃ = L− λi(q̇i −
ρiA(q)vA). Therefore, the optimality conditions are given by the second-order Euler-Lagrange equations

for L̃ (see [1], [3], [14], [16]) given by

λ̇i =
∂L
∂qi

+ λj
∂ρjA
∂qi

vA, q̇i = ρiA(q)vA,
d

dt

(
∂L
∂v̇A

)
=

∂L
∂vA

+ ρiA(q)λi, (20)

Observe that these equations arise from a constrained variational problem and the nonholonomic
behavior is locally represented by the coordinates (qi, vA) given by taking an adapted basis of vector
fields in the nonholonomic distribution D. The constraint enforced by the Lagrange multiplier λi comes
from the constraint arising from submanifold D(2) and the solutions of the optimal control problem are
the critical points of the functional

J̃(γ, q, v, v̇, λ, λT ) = ωΦ(T, γ(T )) + λT r(γ(T ), γr(T )) +

∫ T

0

[
L − λi(q̇i − ρiA(q)vA)

]
dt,

with ω > 0, γ(0) ∈ D, λT ∈ R and γr : [0, T ]→ D given.
The optimal control problem for the nonholonomic system given by (D(2),L) with L : D(2) → R

is called regular if and only if the matrix

(
∂2L

∂v̇A∂v̇B

)
is non singular (see [3], [16]). For the proposed

optimal trajectory tracking problem the system is always regular as long as ε 6= 0. Note that our result
coincides with the observation given in [23] Section 3.2, and our Remark 3, about when this class of
optimal control problem becomes singular.

Remark. The regularity condition is necessary to show the equivalence between the optimality conditions
obtained by the variational approach and the ones obtained by employing the PMP as it was shown in [3]
(see Section 4 is [3]) by using techniques of symplectic geometry. Therefore, since the optimal tracking
problem for the nonholonomic system given by (D(2),L) is regular, both formalisms are equivalent.

4.5 Example: Optimal trajectory tracking for the nonholonomic particle

Consider the situation of Example 2.2.
The cost function C : D × U → R for the optimal trajectory tracking problem is given by

C(q, v, u) =
λ0
2

(
|x− xr|2 + |y − yr|2 + |z − zr|2

+|v1 − v1r |2 + |v2 − v2r |2 + ε((u1)2 + (u2)2)
)
,

and the terminal cost is determined by the function

r(γ(T ), γr(T )) =|x(T )− xr(T )|2 + |y(T )− yr(T )|2 + |z(T )− zr(T )|2

+|v1(T )− v1r(T )|2 + |v2(T )− v2r(T )|2

with T ∈ R+ fixed.
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Denoting by (x, y, z, v1, v2, v̇1, v̇2) induced coordinates on D(2) determined by the basis of vector fields
Y1, Y2 which span D (see Example 2.2), the cost function C induces the Lagrangian L : D(2) → R given
by

L(q, v, v̇) =
λ0
2

(
|x− xr|2 + |y − yr|2 + |z − zr|2 + |v1 − v1r |2 + |v2 − v2r |2

+ε(v̇1)2 + ε

(
(v̇2)2 +

y2

(1 + y2)2
(v1v2)2 +

2yv1v2v̇2

1 + y2

))
,

with q = (x, y, z), v = (v1, v2) and v̇ = (v̇1, v̇2).
The extended Lagrangian is given by

L̃(q, v, v̇) = L(q, v, v̇)− λ1(ẋ+ yv2)− λ2(ẏ − v1)− λ3(ż − v2).

Necessary conditions for optimality are given by the solutions of the following system of nonlinear
equations:

λ̇1 =− λ0(x− xr), λ̇3 = −λ0(z − zr)

λ̇2 =ελ0v
1v2(y2 − 1)

(
v̇2

(1 + y2)2
+

(v1v2)y

(1 + y2)3

)
+ λ1v

2 − λ0(y − yr),

λ0εv̈
1 =λ0(v1 − v1r) + λ2 +

λ0εyv
2v̇2

(1 + y2)
+
λ0εv

1(yv2)2

(1 + y2)2
,

λ0εv̈
2 =λ0(v2 − v2r)− λ1y + λ3 +

2λ0εyv
1

1 + y2

(
yv1v2

1 + y2
+ v̇2

)
,

together with the admissibility conditions ẋ = −yv2, ẏ = v1 and ż = v2.

5 Construction of variational integrators

Variational integrators (see [25] for details) are derived from a discrete variational principle. These
integrators retain some of the main geometric properties of the continuous systems, such as symplecticity,
momentum conservation (as long as the symmetry survives the discretization procedure), and good
(bounded) behavior of the energy associated to the system. of these type of variational integrators.

A discrete Lagrangian is a differentiable function Ld : Q × Q → R, which may be considered as an
approximation of the action integral defined by a continuous regular Lagrangian L : TQ → R. That is,
given a time step h > 0 small enough,

Ld(q0, q1) ≈
∫ h

0

L(q(t), q̇(t)) dt,

where q(t) is the unique solution of the Euler-Lagrange equations for L with boundary conditions q(0) = q0
and q(h) = q1.

We construct the grid {tk = kh | k = 0, . . . , N}, with Nh = T and define the discrete path space
Pd(Q) := {qd : {tk}Nk=0 → Q}. We identify a discrete trajectory qd ∈ Pd(Q) with its image qd = {qk}Nk=0,
where qk := qd(tk). The discrete action Ad : Pd(Q)→ R for this sequence is calculated by summing the
discrete Lagrangian on each adjacent pair and is defined by

Ad(qd) = Ad(q0, ..., qN ) :=

N−1∑
k=0

Ld(qk, qk+1). (21)

We would like to point out that the discrete path space is isomorphic to the smooth product manifold
which consists of N+1 copies of Q. The discrete action inherits the smoothness of the discrete Lagrangian
and the tangent space TqdPd(Q) at qd is the set of maps vqd : {tk}Nk=0 → TQ such that τQ ◦ vqd = qd
which will be denoted by vqd = {(qk, vk)}Nk=0, where τQ : TQ→ Q is the canonical projection.

For any product manifold Q1 × Q2, T
∗
(q1,q2)

(Q1 × Q2) ' T ∗q1Q1 ⊕ T ∗q2Q2, for q1 ∈ Q1 and q2 ∈ Q2

where T ∗Q denotes the cotangent bundle of a differentiable manifold Q. Therefore, any covector α ∈
T ∗(q1,q2)(Q1 × Q2) admits an unique decomposition α = α1 + α2 where αi ∈ T ∗qiQi, for i = 1, 2. Thus,
given a discrete Lagrangian Ld we have the following decomposition

dLd(q0, q1) = D1Ld(q0, q1) +D2Ld(q0, q1),
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where D1Ld(q0, q1) ∈ T ∗q0Q and D2Ld(q0, q1) ∈ T ∗q1Q.
The discrete variational principle, states that the solutions of the discrete system determined by Ld

must extremize the action sum given fixed points q0 and qN . Extremizing Ad over qk with 1 ≤ k ≤ N −1,
we obtain the following system of difference equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0. (22)

These equations are usually called the discrete Euler-Lagrange equations. Given a solution {q∗k}k∈N
of eq.(22) and assuming the regularity hypothesis (the matrix (D12Ld(qk, qk+1)) is regular), it is possible
to define implicitly a (local) discrete flow ΥLd

: Uk ⊂ Q×Q→ Q×Q by ΥLd
(qk−1, qk) = (qk, qk+1) from

(22), where Uk is a neighborhood of the point (q∗k−1, q
∗
k).

In order to construct structure-preserving variational integrators for nonholonomic mechanical control
systems, one starts by considering the Lagrangian function L : D(2) → R, where D(2) is the submanifold
of TD. For simplicity in our computations, from now on, we assume Q is a real finite dimensional vector

space. The tangent bundle of D can be discretized as D ×D. We define the submanifold D(2)
d of D ×D

as

D(2)
d =

{
(qi0, v

A
0 , q

i
1, v

A
1 ) ∈ D ×D | q

i
1 − qi0
h

= ρiA

(
qi0 + qi1

2

)(
vA0 + vA1

2

)}
,

representing the discretization of D(2) ⊂ TD. We assume that Q is a vector space everywhere.
One then discretizes the Lagrangian L : D(2) → R (we only discuss the mid-point rule here) as

Ld : D(2)
d → R,

Ld(qik, vAk , qik+1, v
A
k+1) = hL(qik+1/2, v

A
k+1/2, v

A
k,k+1), (23)

where (qik, v
A
k , q

i
k+1, v

A
k+1) ∈ D(2)

d and where we are using the notation zk+1/2 = 1
2 (zk+zk+1) and zk,k+1 =

1
h (zk+1 − zk).

Note that the discretization (23) is carried out after writing the continuous-time Lagrangian L as a
function of (qi, vA, v̇A).

The variational integrator for the optimal control problem of the nonholonomic system is determined
by minimizing the discrete action sum

Ad({qk}N−1k=0 ) =

N−1∑
k=0

Ld(qik, vAk , qik+1, v
A
k+1)

over the path (q1, . . . , qN−1, v1, . . . , vN−1) given fixed initial and final points q0, v0 and qN , vN , respec-

tively, and subject to the discrete constraint functions Ψj
d : D(2)

d → R with j = 1, . . . , n = dim(Q) given
by

Ψj
d(q

i
k, v

A
k , q

i
k+1, v

A
k+1) = qik,k+1 − ρ

j
A(qik+1/2)(vAk,k+1).

By considering the extended discrete action sum

Ãd({qk}Nk=0) = Ad({qk}Nk=0) +

N−1∑
k=1

(λkj )TΨj
d(q

i
k, v

A
k , q

i
k+1, v

A
k+1),

where λkj = (λk1 , . . . , λ
k
n) ∈ Rn are the Lagrange multipliers. By extremizing the extended discrete

action sum, with respect to variations δqik, δvAk and δλkj , given fixed initial and final points q0, qN , v0, vN ,
satisfying the constraints, and using discrete integration by parts, leads to the following discrete Euler-
Lagrange equations:

0 =D1Ld(qik, vAk , qik+1, v
A
k+1) +D3Ld(qik−1, vAk−1, qik, vAk )

+ λkjD1Ψj
d(q

i
k, v

A
k , q

i
k+1, v

A
k+1) + λk−1j D3Ψj

d(q
i
k−1, v

A
k−1, q

i
k, v

A
k ),

0 =D2Ld(qik, vAk , qik+1, v
A
k+1) +D4Ld(qik−1, vAk−1, qik, vAk )

+ λkjD2Ψj
d(q

i
k, v

A
k , q

i
k+1, v

A
k+1) + λk−1j D4Ψj

d(qk−1, vk−1, qk, vk),

0 =Ψj
d(q

i
k, v

A
k , q

i
k+1, v

A
k+1),

for k = 1, . . . , N − 1 and j = 1, . . . , n and where Di represents the derivative with respect to the ith

argument. Note that initial conditions must belong to D and, (qN , vN ) = γr(Nh) (which is equivalent
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to impose that the constraint r holds in discrete time) and fix (qN , vN ) to Φ(T, γ(T )) if we consider the
final cost.

If the matrix

M =

 D13Ld D14Ld D13Ψj
d

D23Ld D24Ld D14Ψj
d

D23Ψj
d D24Ψj

d 0


is non singular, the condition for local solvability of the constrained system is fulfilled and by the implicit
function theorem the last set of equations determines an implicit local flow map, giving rise to the update

map Υ : D(2)
d × Rn → D(2)

d × Rn

Υ(qik−1, v
A
k−1, q

i
k, v

A
k , λ

k−1) = (qik, v
A
k , q

i
k+1, v

A
k+1, λ

k).

5.1 Example: the Chaplygin sleigh

Consider the Chaplyigin sleigh of Example 2.1 but subject to input controls. As we saw in Example 4.2
the controlled Euler-Lagrange equations are given by

v̇1 = − a
√
m

J +ma2
v1v2 + u1, v̇2 =

a
√
m

J +ma2
(v1)2 + u2.

together with the admissibility conditions

ẋ1 =
cos θ√
m
v2, ẋ2 =

sin θ√
m
v1, θ̇ =

1√
J +ma2

v1 (24)

and the nonholonomic constraint v3 = 0.
Here, D(2) is defined by (x1, x2, θ, v

1, v2, ẋ1, ẋ2, θ̇, v̇
1, v̇2) ∈ TD, satisfying (24). Then the optimal

control problem consists of finding an admissible curve satisfying the previous equations given boundary
conditions on D and minimizing the functional

J (x1, x2, θ, v
1, v2, u1, u2) =

∫ T

0

λ0
2

(|x1 − (x1)r|2 + |x2 − (x2)r|2 + |θ − θr|2

+ |v1 − v1r |2 + |v2 − v2r |2) +
λ0ε

2

(
u21 + u22

)
dt

for the cost function C : D × U → R given by

C(x1, x2, θ, v1, v2, u1, u2) =
λ0ε

2
(u21 + u22) +

λ0
2

(|x1 − (x1)r|2 + |x2 − (x2)r|2

+ |θ − θr|2 + |v1 − v1r |2 + |v2 − v2r |2),

where γ(t) = (x1(t), x2(t), θ(t), v1(t), v2(t)) and also we must to take care that θ ∈ [0, 2π).
The optimal control problem is equivalent to solving the constrained variational problem determined

by L : D(2) → R, where

C(x1, x2, θ, v1, v2, v̇1, v̇2) =
λ0
2

(
|x1 − (x1)r|2 + |x2 − (x2)r|2 + |θ − θr|2 (25)

+|v1 − v1r |2 + |v2 − v2r |2
)

+ λ0ε(v̇
1 + ηv1v2)2 (26)

+ λ0ε(v̇
2 − η(v1)2)2.

where η =
a
√
m

J +ma2
. We also introduce the discrete version of constraint constraint r(γ(T ), γr(T )) = 0

where

rd(γd,N , (γr)d,N ) =|x1,N − (x1)r,N |2 + |x2,N − (x2)r,N |2 + |θN − θr,N |2

+ |v1N − (v1)r,N |2 + |v2N − (v2)r,N |2 ,

where (γr)d denotes a discrete reference trajectory. This can be, for instance, an uncontrolled instance
of the same system.
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Consider the extended Lagrangian

L̃ = L+ λ1

(
ẋ1 −

cos θ√
m
v2
)

+ λ2

(
ẋ2 −

sin θ√
m
v2
)

+ λ3

(
θ̇ − 1√

J +ma2
v1
)

with

L =
λ0
2

(
|x1 − (x1)r|2 + |x2 − (x2)r|2 + |θ − θr|2 + |v1 − v1r |2 + |v2 − v2r |2

+ε(v̇1 + ηv1v2)2 + ε(v̇2 − η(v1)2)2
)

where η =
a
√
m

J +ma2
.

The optimality conditions are then given by

λ̇1 =λ0(x1 − (x1)r), λ̇2 = λ0(x2 − (x2)r), λ̇3 = λ0(θ − θr) + λ1
sin θ√
m
v2 − λ2

cos θ√
m
v2,

v̈1 =(v̇1 + ηv1v2)v2η − 2ηv1(v̇2 − η(v1)2) +
(v1 − v1r)

λ0ε
− λ2 sin θ

λ0ε
√
m
− λ3

λ0ε
√
J +ma2

− ηv̇1v2 − ηv1v̇2,

v̈2 =2ηv1v̇1 + (v̇1 + ηv1v2)ηv1 − λ1 cos θ

λ0ε
√
m

+
(v1 − v2r)

λ0ε
,

together with the admissibility conditions (24).
The variational integrator for the optimal control problem of the Chaplygin sleigh is constructed by

the discretization of the Lagrangian (26) and the construction of the space D(2)
d which determines the

discrete constraint.
Let h ∈ R+ be the time step. To simulate solutions of the tracking problem we apply the mid-point

rule to the cost function and constraints, for h = 0.1 and N = 50 intervals (and therefore 51 nodes).
For the initial condition γ(0) = (x01, x

0
2, θ0, v

1
0 , v

2
0) = (0, 0, 4π/3, 1/4, 1), λ0 = 1, λ(T ) = λT arbitrary

for the shooting and the reference trajectory γr(t) is the uncontrolled trajectory of a Chaplygin sleigh

with γr(0) = (xref1 , xref2 , θref , v
1
ref , v

2
ref ) = (0, 1/2, 0, 1/3, 1), T = 5, ε = 1, m = 1, J = 4 and a = 0.2,

λ0 = λ(t0) = 0, we exhibit the results in Figures 5.1, 5.1, 5.1, 5.1 and 5.1.
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Figure 4: Trajectories minimizing the cost function J , evolving on D and tracking the reference trajectory
γr in time T . Note that the initial conditions of the controlled trajectory oblige it to stop its forward
motion, back up and turn to correct its direction. Left: controlled trajectory in blue, reference trajectory
γr in red. Right: Superimposed quasivelocities in yellow and control vector field in purple.

The controlled generated by our trajectory planning to track the desires configurations have not been
assessed in terms of their stability; we would, therefore, like to find a method for incorporating the
stability of the nonholonomic system into our methodology. Similarly, it would be of interest to study
the cost of tracking them as a reference trajectory. Finally, the method proposed in this work can only
guarantee local optimality, and in our simulations the controlled Chaplygin sleigh displayed a multitude
of local minima. Incorporating discrete mechanics into methods seeking the global optimum of a cost
functional, or bounds on it, remains an open task.
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Figure 5: Trajectories minimizing the cost function J , evolving on D and tracking the reference trajectory
γr in time T . 3D representation with angle in vertical axis. The blue curve represents the controlled
trajectory and the red curve the reference trajectory γr, the yellow vectors show the quasivelocities along
the evolution of the curve and the purple vectors represent the control vector field. The dotted lines are
the planar projection of the trajectories onto the θ = 0 plane.
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Figure 6: Control inputs minimizing the cost function J , evolving on D and tracking the reference
trajectory γr in time T . Left: Representation of the control curve (u1, u2), with red circles marking each
time step. Right: Time evolution of the controls.

6 Final Discussion

A class of nonlinear optimal control problems has been identified to study tracking of trajectories for
nonholonomic systems after detecting fundamental issues in the study of the error dynamics applied
to these problems. The nonlinear features arise directly from physical assumptions about constraints
and Lagrangian dynamics on the motion of a mechanical system. The geometric framework introduced
permits to study mechanical systems reduced by Lie group symmetries and multi-agent systems [15],
which will be further developed in an extension of this work, as well as variational interpolation problems
[4]. We have studied how to employ a shooting method and identify control issues for this class of
systems and, we have derived new insights in this fundamental problem based on optimal control theory
and tracking of trajectories. The general approach described on this paper makes substantial use of the
geometric approach to nonlinear control. However, the specific nonlinear control strategy suggested is
substantially different, both conceptually and in detail, from the smooth nonlinear control strategies most
commonly studied in the literature.

Minimizing the cost function while evolving on the constraint submanifold and remaining differen-
tiable by solving a boundary value problem using a single shooting method is a difficult task and not
very numerically stable, and this without considering time as an independent variable, which will only
complicate things further. In this work we consider tracking a trajectory as being synonymous with con-
verging into it in a finite and prescribed time. Nevertheless, we believe that the optimality of the method
may be improved by considering time as an additional degree of freedom, and setting the final time as a
free and optimizable. This extension will be considered in a further publication. Next by analyzing the
convergence to the reference trajectory by modifying the problem statement for a time horizon problem
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Figure 7: Left: Time evolution of the action integral J using our variational integrator. Right: Time
evolution of the cost function C using our variational integrator.
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Figure 8: Time evolution comparison of the energy of the controlled sleigh. The blue line represents
the one obtained via MATLAB’s ode45 and the red line via our variational method. Note that our dis-
cretization is coarser (only 51 equidistant points) but it still manages to capture the behaviour remarkably
well.

will be explored. The idea is to include an external dissipative force and study the problem by employing
the dynamic programming principle and approximate the infinite time horizon problem with a the finite
horizon problem with terminal cost as in [29].
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