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Stationary waves with prescribed L2-norm for the planar

Schrödinger-Poisson system

SILVIA CINGOLANI LOUIS JEANJEAN

Abstract

The paper deals with the existence of standing wave solutions for the Schrödinger-Poisson system with

prescribed mass in dimension N = 2. This leads to investigate the existence of normalized solutions for

an integro-differential equation involving a logarithmic convolution potential, namely











−∆u+ γ
(

log | · | ∗ |u|2
)

u = a|u|p−2
u in R

2
,

∫

R2

|u|2dx = c

where c > 0 is a given real number. Under different assumptions on γ ∈ R, a ∈ R, p > 2, we

prove several existence and multiplicity results. With respect to the related higher dimensional cases, the

presence of the logarithmic kernel, which is unbounded from above and below, makes the structure of the

solution set much richer and it forces the implementation of new ideas to catch the normalized solutions.

Keywords: Nonlinear Schrödinger-Poisson systems; stationary waves; normalized solutions; logarithmic

convolution kernel; variational methods.

1 Introduction

We consider the Schrödinger-Poisson system of the type

(1.1)

{

iψt −∆ψ + γwψ = a|ψ|p−2ψ,

∆w = |ψ|2
in R

N × R

where ψ : RN × R → C is the (time-dependent) wave function, γ ∈ R, a ∈ R, p > 2. The function w
represents an internal potential for a nonlocal self-interaction of the wave function ψ. The standing wave

ansatz ψ(x, t) = e−iλtu(x), λ ∈ R, reduces (1.1) to the system

(1.2)

{

−∆u+ λu+ γ wu = a|u|p−2u,

∆w = u2
for u : RN → R.

The second equation determinesw : RN → R only up to harmonic functions, but it is natural to choosew as

the Newton potential of u2, i.e., the convolution of u2 with the fundamental solution ΦN of the Laplacian.

With this formal inversion of the second equation in (1.2), we obtain the integro-differential equation

(1.3) −∆u+ λu+ γ[ΦN ∗ |u|2]u = a|u|p−2u in R
N ,

where ΦN (x) = − 1
N(N−2)ωd

|x|2−N in case N ≥ 3 and ΦN(x) = 1
2π log |x| in case N = 2. Here, as

usual, ωN denotes the volume of the unit ball in RN .
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Due to its physical relevance in physics, the system has been extensively studied and it is quite well

understood in the case N ≥ 3. In particular variational methods are employed to derive existence and

multiplicity results of standing waves solutions [1, 2, 12, 20, 23–25] and [8, 18, 21, 22] for standing wave

solutions with prescribed L2-norm.

In two dimensions, due to the logarithmic nature of its convolution kernel, the nonlocal nonlinearity

exhibits some serious mathematical differences to the higher dimensional case. The study of planar nonlocal

problems (1.3) remained for a long time an open field of investigation, apart from some numerical studies

suggesting the existence of bound states [17].

In contrast with the higher-dimensional case N ≥ 3, the applicability of variational methods is not

straightforward for N = 2. Although (1.3) has, at least formally, a variational structure related to the

energy functional

I(u) =
1

2

∫

R2

(

|∇u|2 + λu2
)

dx+
γ

8π

∫

R2

∫

R2

log(|x− y|2)|u(x)|2|u(y)|2dxdy −
a

p

∫

R2

|u|pdx

this energy functional is not well-defined on the natural Sobolev space H1(R2).
Inspired by [27], T. Weth and the first author [13] developed a variational framework to deal with the

equation (1.3), within the smaller Hilbert space

X :=
{

u ∈ H1(R2) |

∫

R2

log(1 + |x|)|u(x)|2dx <∞
}

,

endowed with a norm defined for each function u ∈ X by

‖u‖2X :=

∫

R2

|∇u(x)|2 + |u(x)|2
(

1 + log(1 + |x|)
)

dx.

Even if X provides a variational framework for (1.3), some difficulties however arise in the application of

variational arguments, since the norm of X is not invariant under translations whereas the functional I is

invariant under translations of R2 and the quadratic part of the functional I is never coercive on X . In [13],

for λ > 0 fixed, the authors constructed a sequence of solution pairs (±un)n∈N ⊂ X to the equation (1.3)

such that I(un) → ∞ as n → +∞, under the assumption p ≥ 4 and γ > 0, a ≥ 0. They also provided a

variational characterization of the least energy solution. Successively, Du and Weth proved the existence of

ground state solutions and of infinitely many nontrivial changing sign solutions for (1.3) when 2 < p < 4.

When a = 0, γ > 0, the equation (1.3) is also referred to as the planar Choquard equation and it can be

derived from the Schrödinger-Newton [25]. In [13], it has been showed that every positive solution u ∈ X
of (1.3) is radially symmetric up to translation and strictly decreasing in the distance from the symmetry

center. Moreover u is unique up to translation in R
2. In [11], Bonheure, Van Schaftingen and the first

author obtained sharp decay estimates of this unique positive solution to the logarithmic Choquard equation

(1.3) and they showed the nondegeneracy of the unique positive ground state. We also mention the recent

paper [6] for the existence of the ground state of (1.3), with a = 0, γ = 1, via relaxed problems.

In the present paper we are interested to study existence of standing waves solutions for the planar

Schrödinger-Poisson system with prescribed mass, which is a physically relevant open problem. To this

aim, for any c ∈ R, c > 0, we consider the problem of finding of solutions to

(1.4)











−∆u+ γ
(

log | · | ∗ |u|2
)

u = a|u|p−2u in R
2,

∫

R2

|u|2dx = c.

Solutions to (1.4) can be obtained as critical points of the energy functional

F (u) =
1

2
A(u) +

γ

4
V (u)−

a

p
C(u)
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where

A(u) =

∫

R2

|∇u(x)|2 dx, V (u) =

∫∫

R2×R2

|u(x)|2|u(y)|2 log(|x− y|) dx dy

and

C(u) =

∫

R2

|u(x)|p dx

under the constraint

(1.5) S(c) = {u ∈ X | ‖u‖2L2 = c}.

If p > 2, F is well defined and C1 on X (see for example [13, Lemma 2.2]) and any critical point u of

F|S(c) corresponds to a solution of (1.3) where the parameter λ ∈ R appears as a Lagrange multiplier.

We shall seek for normalized solutions to (1.4) using variational arguments and we address a situation

which is substantially different compared to those considered in the three dimensional case [8, 18, 21, 22],

since the logarithmic kernel changes it sign and the energy functional can unbounded from above and below

on the constraint. This forces the implementation of new ideas to catch the normalized solutions.

As a first main result, we explicit conditions under which the functional F is bounded from below on

S(c) and the infimum

(1.6) m = inf
S(c)

F

is achieved. We prove the following result.

Theorem 1.1. Assume γ > 0 and that one of the three following conditions holds:

(i) a ≤ 0 and p > 2, (ii) a > 0 and p < 4, (iii) a > 0, p = 4 and c <
2

aKGN
,

where KGN is the best constant of the Gagliardo-Nirenberg inequality (2.15). Then the infimum m defined

in (1.6) is achieved. In addition any minimizing sequence has, up to translation, a subsequence converging

strongly in X .

Note that the property of convergence of the minimizing sequences insured by Theorem 1.1 provides a

strong indication that the set of standing waves associated to the set of minimizers for F on S(c) is orbitally

stable.

In all the other cases that we shall now consider the functionalF will be unbounded from below on S(c)
and, in particular, it will not be possible to find a global minimizer. To overcome this difficulty we shall

exploit the property that F , restricted to S(c), possesses a natural constraint, namely a set, that we denote

by Λ(c), that contains all the critical points of F restricted to S(c).
Precisely, for each u ∈ L2(R2) and t > 0, we consider the dilations

ut(x) := t u(tx) for all x ∈ R
2,

which define an action of the group ((0,∞),×) on S(c), since ||ut||2L2 = ||u||2L2 . By easy computations,

we also get

(1.7) A(ut) = t2 A(u), C(ut) = tp−2 C(u) and V (ut) = V (u)− c2 log t.

Defining the fiber map t ∈ (0,∞) 7→ gu(t) := F (ut), we can derive the formula

(1.8)
d

dt
F (ut) =

Q(ut)

t
,

3



where we have set

(1.9) Q(u) :=
d

dt

∣

∣

∣

∣

t=1

F (ut) = A(u)− a
p− 2

p
C(u)− γ

c2

4
.

Actually the conditionQ(u) = 0 corresponds to a Pohozaev identity and the set

Λ(c) := {u ∈ S(c) | Q(u) = 0} = {u ∈ S(c) | g′u(1) = 0}

appears as a natural constraint. As we shall see, in Lemma 3.12, when γ > 0, F restricted to Λ(c) is

bounded from below.

We also recognize that for any u ∈ S(c), the dilated function us(x) = su(sx) belongs to the constraint

Λ(c) if and only if s ∈ R is a critical value of the fiber map t ∈ (0,∞) 7→ gu(t), namely g′u(s) = 0.

Moreover it happens that g′u(s) = g′us(1), so that if s is a critical point of gu, then us can be seen as a

projection of u on the set Λ(c).
Now setting

c0 = 2

[

p(p− 4)
p−4
2

(p− 2)
p

2

1

aγ
p−4
2 KGN

]
1

p−3

,

we show that if γ > 0, a > 0, p > 4, and c < c0, then the set Λ(c) is a submanifold of X of codimension 2
and a submanifold of S(c) of codimension 1.

At this stage, is view of the geometric profile of gu(s), and inspired by [28], see also [26] for a very

recent applications of this idea, we are lead to decompose Λ(c) into three disjoint subsets

Λ+(c) = {u ∈ S(c) | g′u(1) = 0, g′′u(1) > 0}

Λ−(c) = {u ∈ S(c) | g′u(1) = 0, g′′u(1) < 0}

Λ0(c) = {u ∈ S(c) | g′u(1) = 0, g′′u(1) = 0}.

Firstly we recognize that for any u ∈ S(c), there exist an unique s+u > 0 such that us
+

∈ Λ+(c) and an

unique s−u > 0 such that us
−

∈ Λ−(c). Such s+u and s−u are respectively strict local minimum point and

strict local maximum point for gu. Finally setting

I+ : S(c) → R I+(u) = F (s+u u(s
+
u u(x)))

and

I− : S(c) → R I−(u) = F (s−u u(s
−
u u(x))),

we pass to minimize the functionals I± on S(c), which correspond to minimize F on Λ±(c).
Precisely, setting

γ+(c) := inf
Λ+(c)

F (u) and γ−(c) := inf
Λ−(c)

F (u),

we prove the following result.

Theorem 1.2. Let γ > 0, a > 0, p > 4, c < c0. Then Λ0(c) = ∅, while Λ±(c) are not empty and there

exist

u+ ∈ Λ+(c) such that F (u+) = γ+(c) and u− ∈ Λ−(c) such that F (u−) = γ−(c).

In addition u+ and u− are critical points of F restricted to S(c).
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We remark that the first solution u+, which appears in Theorem 1.2 as a global minimizer of F restricted

to Λ(c), can also be characterized as a local minimizer of F on the set S(c) ∩ Ak0 where

Ak0 = {u ∈ X |A(u) ≤ k0} where k0 =
(p− 2)

(p− 4)

γc2

4
,

see Theorem 3.6. Also the second solution u− corresponds to a critical point of mountain-pass type for

F on S(c). The existence of two critical points on S(c), one being a local minimizer and the second one

of mountain-pass type is reminiscent of recent works [7, 16, 19, 26] where a similar structure have been

observed for prescribed norm problems.

Regarding the existence of more than two solutions we derive the following result.

Theorem 1.3. Let γ > 0, a > 0, p > 4 and c < c0. Then F constrained to S(c) possess an infinity

of critical points lying on Λ+(c) and an infinity of critical points lying on Λ−(c). These critical points

correspond to radially symmetric functions.

Next we consider the case γ < 0 which appears more involved than the case γ > 0. Note in particular

that when γ < 0 and for λ > 0 fixed, there are still no results of existence or non-existence of solutions to

(1.3) set on R2.

Firstly, we notice that if a ≤ 0 and p > 2, for each u ∈ S(c) the fiber map gu(t) := F (ut) is strictly

increasing and so we can state the following non-existence result.

Theorem 1.4. Let γ < 0, a ≤ 0 and p > 2. Then F do not has critical points on S(c).

Concentrating now on the case γ < 0, a > 0 and p < 4 we observe that for K1 ∈ R given by

K1 =
1

2
4−p
2

1

KGN

p

23−p(p− 2)
p
2 (4− p)

4−p
2

we have, see Lemma 4.1,

Λ(c) 6= ∅ if and only if a ≥ K1 γ
4−p

2 c3−p,

and, see Lemma 4.2,

inf
Λ(c)

F (u) = −∞, if a > K1 γ
4−p

2 c3−p.

However, see Lemma 4.3,

sup
Λ(c)

F (u) <∞, if a ≥ K1 γ
4−p

2 c3−p

and, setting K2 = 2
4−p
2 K1, we are able to show that Λ(c) is a submanifold, of class C1, of codimension

2 of X and a submanifold of codimension 1 in S(c) if K1 γ
4−p

2 c3−p ≤ a < K2 γ
4−p

2 c3−p and then that

supΛ(c) F (u) is achieved by a critical point of F to S(c) (see Theorem 4.7).

In the aim to find more than one solution, we may now try to follow the approach, relying on the

decomposition of the natural constraint Λ(c) into three disjoint subsets Λ+(c), Λ0(c) and Λ−(c), developed

when γ > 0. At this point we face a new difficulty. For any choice of a and c there always exists a u ∈ S(c)
such that ut 6∈ Λ(c) for any t > 0. Namely an arbitrary u ∈ S(c) cannot always be projected on Λ(c).

To overcome this problem our idea is, roughly speaking, to introduce an open subset V of S(c), such that

for any u ∈ V the dilation ut ∈ V for any t > 0 and there exists an unique s−u > 0 such that us
−

u ∈ Λ−(c)

and an unique s+u > 0 such that us
+
u ∈ Λ+(c). Such values us

−

u and us
+

are respectively strict local

5



maximum and strict local minimum point of gu. This geometry holds as soon as a > K1γ
4−p

2 c3−p and it

makes sense to define the functionals

I+ : V → R I+(u) = F (s+u u(s
+
u u(x))),

I− : V → R I−(u) = F (s−u u(s
−
u u(x)))

and to try to maximize the functionals I± on V , which correspond to maximize F on Λ±(c) ∩ V .

However, since V has a boundary, we need to insure that our deformation arguments take place inside

V . The additional condition a < K2γ
4−p

2 c3−p insures that Λ(c) ⊂ V and that the superlevels of I± are

complete. Actually we show that if vn → v0 ∈ ∂V strongly in X , then I±(vn) → −∞, see Lemma 4.18.

At this point setting

γ+(c) := sup
Λ+(c)

F (u) and γ−(c) := sup
Λ−(c)

F (u)

we are able to prove the following result.

Theorem 1.5. Assume that γ < 0 and p < 4. For K1 γ
4−p
2 c3−p < a < K2 γ

4−p
2 c3−p there exist

u− ∈ Λ−(c) such that F (u−) = γ−(c) and u+ ∈ Λ+(c) such that F (u+) = γ+(c).

In addition u− and u+ are critical points of F restricted to S(c).

We remark that the case γ < 0, a > 0 and p > 4 seems completely open. Under these assumptions, the

geometric picture is somehow simpler than when p < 4, in particular for any u ∈ S(c) there exists a unique

t > 0 such that ut ∈ Λ(c) but what is unclear is how to identify a possible minimax level.

We end this introduction by mentioning that in the case γ < 0 the existence of more than two solutions

remains an open, challenging problem.

The paper is organized as follows. In Section 2, we establish some preliminaries. Section 3 is devoted

the case γ > 0. In Subsection 3.1 we give the proof of Theorem 1.1 and in Subsection 3.2 the one of

Theorem 3.6. Subsections 3.3 and 3.4 are devoted to the proofs of Theorems 1.2 and 1.3 respectively.

Section 4 deals with the case where γ < 0. In Subsection 4.1 we derive some properties of Λ(c). In

Subsection 4.2 we give the proof of Theorem 4.7 and in Subsection 4.3 the one of Theorem 1.5.

Acknowledgments. S. Cingolani is member of the Gruppo Nazionale per l’Analisi Matematica, la Proba-

bilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). This work

has been carried out in the framework of the Project NONLOCAL (ANR-14-CE25-0013), funded by the

French National Research Agency.

Notation. In this paper we denote for any 1 ≤ p < ∞, by Lp(R2) the usual Lebesgue space with

norm ‖u‖pp :=
∫

R2 |u|
p dx, and by H the usual Sobolev space H1(R2) endowed with the norm ‖u‖2 :=

∫

R2 |∇u|
2 + |u|2 dx. We denote by → and ⇀ the strong convergence and the weak convergence, respec-

tively. We shall write lim for lim sup and lim for lim inf .

2 Preliminary results

In this section we present various preliminary results. When it is not specified they are assumed to hold for

any γ ∈ R, a ∈ R, p > 2 and any c > 0.

As already indicated, following [13, 27], we shall work in the Hilbert space

X := {u ∈ H1(R2) : |u|2∗ <∞}

6



where

|u|2∗ :=

∫

R2

log(1 + |x|)u2(x) dx,

with X endowed with the norm given by ‖u‖2X := ‖u‖2 + |u|2∗. As in [13] we introduce the symmetric

bilinear forms

(u, v) 7→ B1(u, v) =

∫

R2

∫

R2

log(1 + |x− y|)u(x)v(y) dxdy,

(u, v) 7→ B2(u, v) =

∫

R2

∫

R2

log
(

1 +
1

|x− y|

)

u(x)v(y) dxdy,

(u, v) 7→ B0(u, v) = B1(u, v)−B2(u, v) =

∫

R2

∫

R2

log(|x− y|)u(x)v(y) dxdy,

and we define on X the associated functionals

V1(u) = B1(u
2, u2) =

∫

R2

∫

R2

log(1 + |x− y|)u2(x)u2(y) dxdy,

V2(u) = B2(u
2, u2) =

∫

R2

∫

R2

log
(

1 +
1

|x− y|

)

u2(x)u2(y) dxdy.

Note that V (u) = V1(u)− V2(u). We shall use the following results from [13].

Lemma 2.1. [13, Lemma 2.2]

(i) The space X is compactly embedded in Ls(R2) for all s ∈ [2,∞).

(ii) The functionals V, V1, V2 and F are of class C1 on X .

Moreover, V ′
i (u)v = 4Bi(u

2, uv) for u, v ∈ X and i = 1, 2.

(iii) V2 is continuous (in fact continuously differentiable) on L
8
3 (R2).

(iv) V1 is weakly lower semicontinuous on H1(R2).

Lemma 2.2. [13, Lemma 2.1] Let (un) be a sequence in L2(R2) such that un
L2(R2)
−→ u 6= 0 pointwise a.e.

on R2. Moreover, let (vn) be a bounded sequence in L2(R2) such that

(2.1) sup
n∈N

B1(u
2
n, v

2
n) <∞.

Then there exists n0 ∈ N and C > 0 such that |vn|∗ < C for n ≥ n0.

If, moreover,

(2.2) B1(u
2
n, v

2
n) → 0 and ‖vn‖2 → 0 as n→ ∞,

then

(2.3) |vn|∗ → 0 as n→ ∞.

Lemma 2.3. [13, Lemma 2.6] Let (un), (vn), (wn) be bounded sequences in X such that un
X
⇀ u weakly

in X . Then, for every z ∈ X , we have

B1(vn wn, z(un − u)) → 0.

From Lemmas 2.2 and 2.3 we obtain

7



Lemma 2.4. Let (un) ⊂ S(c) be such that un
X
⇀ u, un

H
→ u and V1(un) → V1(u). Then un

X
→ u.

Proof. In order to show that un → u in X, we have to prove that |un − u|∗ → 0. Since un
H
→ u, then

un → u in L2(R2) with u 6= 0. Hence, by Lemma 2.2, we actually only need to prove that

B1(un
2, (un − u)2) → 0.

But we have

B1(un
2, (un − u)2) = V1(un)− 2B1(un

2, (un − u)u)−B1(un
2, u2).

Since (un) is bounded in X and un ⇀ u in X, we know from Lemma 2.3 that

B1(un
2, (un − u)u) → 0.

Hence,

limB1(un
2, (un − u)2) ≤ limV1(un)− limB1(un

2, u2) ≤ limV1(un)− V1(u)

by Fatou’s Lemma since we may assume that un → u pointwise almost everywhere in R
2. Since V1(un) →

V1(u) and B1(un
2, (un − u)2) ≥ 0, we conclude that B1(un

2, (un − u)2) → 0. Whence the result.

Our next two lemmas explore the links between the compactness of a sequence in L2(R2) and the

boundedness on the functional V1.

Lemma 2.5. Let (un) ⊂ S(c) and assume the existence of ε ∈ (0, c) such that for all R > 0, we have

lim sup
x∈R2

∫

B(x,R)

un
2 ≤ c− ε.

Then,

limV1(un) = +∞.

Proof. Let R > 0. We denote

εn = sup
x∈R2

∫

B(x,R)

un
2.

Up to a subsequence, we can assume that lim εn ≤ c− ε. Then,

V1(un) ≥

∫∫

|x−y|≥R

un
2(x)un

2(y) log(1 + |x− y|)dxdy

≥ log(1 +R)

[

c2 −

∫∫

|x−y|≤R

un
2(x)un

2(y)dxdy

]

.

But
∫∫

|x−y|≤R

un
2(x)un

2(y) =

∫

R2

un
2(x)

∫

B(x,R)

un
2(y) ≤ c εn,

hence,

V1(un) ≥ log(1 +R) c [c− εn] ≥ log(1 +R) c
ε

2

for n large enough, which implies

limV1(un) ≥ log(1 +R) c
ε

2
.

Letting R go to infinity, we get the result.
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As a consequence of Lemma 2.5, we obtain,

Lemma 2.6. Let (un) be a sequence of S(c) such that (V1(un)) is bounded.

Then there exists a subsequence of (un) which, up to translation, converges to u in L2(R2).
More precisely, for all k ≥ 1, there exist nk → ∞ and xk ∈ R

2 such that unk
(· − xk) → u strongly in

L2(R2).
In addition if the sequence (un) consists of radial functions than necessarily the sequence (xk) ⊂ R2

is bounded.

Proof. Since (V1(un)) is bounded, we deduce from Lemma 2.5 that for all k ≥ 1, there exist Rk > 0,

nk → ∞ and xk ∈ R2 such that
∫

B(xk,Rk)

unk

2 > c−
1

k
.

Let us set

vk = unk
(·+ xk).

Since vk ∈ S(c), we may assume that, up to subsequence, vk ⇀ v weakly in L2(R2). Moreover, since for

all k ≥ 1,
∫

R2 vk
2 ≥

∫

B(0,Rk)
vk

2 > c− 1
k , then

lim ||vk||
2
2 = c.

Hence, vk → v strongly in L2(R2).
Now if (un) is a sequence of radially symmetric functions we claim that necessarily (xk) ⊂ R2 is

bounded. Indeed by Lemma 2.5 we can fix a R > 0 such that

lim sup
x∈R2

∫

B(x,R)

un
2 ≥

3

4
c.

Then, using the definition of the supremum and the fact that each un is radial if we assume that (xk) is

unbounded we can find a n0 ∈ N where xn0 satisfies |xn0 | > R such that

∫

B(xn0 ,R)

un
2 ≥

2

3
c and

∫

B(−xn0 ,R)

un
2 ≥

2

3
c,

providing a contradiction.

Our next result establish, under general assumptions, a Pohozaev identity satisfies by the critical points

of F . A previous, less general version was derived in [14, Lemma 2.4] and we make used of ingredients

introduced there in our proof. Note however that we do not make use of the exponential decay of the

solutions which is likely not available under our more general assumptions. As a consequence of this

Pohozaev identify any critical point u ∈ X of F satisfies Q(u) = 0 and this property will proved crucial in

Lemma 2.8.

Lemma 2.7. Any weak solution u ∈ X to

(2.4) −∆u+ λu+ γ(log(| · | ∗ |u|2)u = a|u|p−2u

where λ ∈ R, γ ∈ R and p > 2, satisfies the Pohozaev identity

λ

∫

R2

|u(x)|2dx+ γ

∫

R2

∫

R2

log(|x− y|)|u(x)|2|u(y)|2dxdy

+
γ

4

(

∫

R2

|u(x)|2dx
)2

−
2a

p

∫

R2

|u(x)|pdx = 0.(2.5)

As a consequence it satisfies Q(u) = 0 where Q is defined in (1.9).
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Proof. Since u ∈ X ⊂ H1(R2), standard elliptic regularity theory yields that u ∈ W 2,p
loc (R

2) for every

p ∈ [1,∞) and that u ∈ C2(R2). In [13, Proposition 2.3] it is proved that the function w : R2 7→ R given

by w(x) =
∫

R2 log |x− y|u2(y) dy is of class C3 on R
2 and satisfies

w(x) − ‖u‖22 log |x| → 0 as |x| → ∞.

Since u ∈ X this implies in particular that wu2 ∈ L1(R2). For notational convenience, let us introduce the

functions

g(s) = a|s|p−2s− λs and G(s) =

∫ s

0

g(t)dt =
a|s|p

p
−
λs2

2

which belong to C1(R), since p > 2. First, following [9, Proposition 1], we multiply the equation (2.4) by

x · ∇u and integrate by parts to get a Pohozaev type identity on a ball BR(0) := {x ∈ R2 | |x| < R}. So

let R > 0. Since, for any function u ∈ C2(R2) we have

∆u(x · ∇u) = div
(

∇u(x · ∇u)− x
|∇u|2

2

)

on R
2,

the divergence theorem gives

(2.6)

∫

BR(0)

−∆u(x · ∇u)dx = −
1

R

∫

∂BR(0)

|x · ∇u|2dσ +
R

2

∫

∂BR(0)

|∇u|2dσ.

Similarly, since g(u)(x · ∇u) = div(xG(u)) − 2G(u) on R2, we have

(2.7)

∫

BR(0)

g(u)(x · ∇u)dx = −2

∫

BR(0)

G(u)dx +R

∫

∂BR(0)

G(u)dσ.

Moreover, since wu(x · ∇u) = 1
2

(

div[xwu2]− u2(x · ∇w)− 2wu2
)

, we have

(2.8) γ

∫

BR(0)

wu(x · ∇u)dx = −
γ

2

∫

BR(0)

u2(x · ∇w)dx − γ

∫

BR(0)

wu2dx+
γR

2

∫

∂BR(0)

wu2dσ.

Thus, multiplying (2.4) by x · ∇u and integrating on BR(0), we deduce from (2.6)-(2.8) that

(2.9)
∫

BR(0)

(

γ
u2(x · ∇w)

2
+γwu2−2G(u)

)

dx =

∫

∂BR(0)

(

−
|x · ∇u|2

R
+R

( |∇u|2

2
+
γwu2

2
−G(u)

))

dσ.

Next, still following [9, Proposition 1], let us prove that the right hand side in (2.9) converges to zero for a

suitable sequence Rn → ∞, i.e

Rn

∫

∂BRn (0)

|f |dσ → 0 for the function x 7→ f(x) =
|∇u|2

2
+
γwu2

2
−G(u)−

|x · ∇u|2

|x|2
.

Actually it is a direct consequence of the observation that f ∈ L1(R2). Indeed, if there is no such sequence

(Rn), it follows that

∫

∂BR(0)

|f |dσ ≥
c

R
for R ≥ R0 for some constants c, R0 > 0

and then
∫

R2

|f |dx =

∫ ∞

0

dR

∫

∂BR(0)

|f |dσ ≥ c

∫ ∞

R0

1

R
dR = ∞.
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The fact that f ∈ L1(R2) follows directly using that u ∈ H1(R2) which implies that |∇u|2 and G(u) are

in L1(R2) and from the already observed property that wu2 ∈ L1(R2).
At this point we deduce from (2.9) that

(2.10)

∫

R2

(γu2(x · ∇w)

2
+ γwu2 − 2G(u)

)

dx = lim
n→∞

Rn

∫

∂BRn (0)

|f |dσ = 0.

Now using again that wu2 and G(u) belong to L1(R2) we deduce from (2.10) that u2(x · ∇w) ∈ L1(R2).
A direct calculation now gives

x · ∇w(x) =

∫

R2

|x|2 − x · y

|x− y|2
u2(y)dy, for x ∈ R

2,

and thus
∫

R2

u2(x · ∇w)dx =

∫

R2

∫

R2

|x|2 − x · y

|x− y|2
u2(x)u2(y)dy

+
1

2

∫

R2

∫

R2

|x|2 + |y|2 − 2x · y

|x− y|2
u2(x)u2(y)dy =

1

2

(

∫

R2

u2dx
)2

.(2.11)

From (2.10) and (2.11) we deduce that (2.5) holds.

Now multiplying (2.4) by u and integrating we get that

∫

R2

|∇u(x)|2dx+ λ

∫

R2

|u(x)|2dx+ γ

∫

R2

∫

R2

log(|x− y|)|u(x)|2|u(y)|2dxdy

= a

∫

R2

|u(x)|pdx(2.12)

Combining (2.5) and (2.12) it follows that

∫

R2

|∇u|2dx−
a(p− 2)

p

∫

R2

|u(x)|pdx−
γc2

4
= 0

and thus, by definition, Q(u) = 0.

Lemma 2.8. Let (un) ⊂ Λ(c) be a Palais-Smale sequence for F restricted to S(c) bounded in X . Then,

up to a subsequence, un → u strongly in X . In particular u is a critical point of F restricted to S(c).

Proof. We claim that there exists a λ ∈ R such that (un) is Palais-Smale sequence for the functional

F (u) + λ
2 ||u||2. Indeed since (un) ⊂ X is bounded we know from [10, Lemma 3] (adapted from the unit

sphere to S(c)), that ‖dF|S(c)
(un)‖X∗ = on(1) is equivalent to ‖dF (un)−

1
cdF (un)(un)un‖X∗ = on(1).

Now letting

(2.13) λn := −
1

c
dF (un)(un) = −

1

c

[

A(un) + γV (un)− aC(un)
]

,

since (un) ⊂ X is bounded we deduce that (λn) ⊂ R is bounded. So, up to a subsequence, λn → λ ∈ R as

n→ ∞ and this proves the claim. At this point, using that (un) ⊂ X is bounded and dF (un) +
λ
2un → 0

in X∗ we shall deduce that (un) strongly converges in X to a u ∈ X which will thus be a critical point of

F restricted to S(c).
Since (un) is bounded in X we can assume, passing to a subsequence if necessary, that un ⇀ u weakly

in X and, see Lemma 2.1(i), that un → u strongly in Ls(R2) for s ∈ [2,∞). Next we observe that, since

for any φ ∈ X ,

(dF (un) +
λ

2
un)φ→ 0

11



we have that

dF (u) +
λ

2
u = 0 in X∗.

Namely u is solution to (2.4) and by Lemma 2.7 we deduce that Q(u) = 0. Now observe that, since

(un) ⊂ Λ(c), we have, using that Q(u) = 0

0 = Q(un) = A(un)− a
p− 2

p
C(un) +

γc2

4
= A(u)− a

p− 2

p
C(u) +

γc2

4
.

Since C(un) → C(u) we then necessarily have A(un) → A(u). In particular un → u in H1(R2). Finally

we observe that, since A(un) → A(u) and un → u strongly in Ls(R2) for s ∈ [2,∞),

o(1) = (F ′(un) +
λ

2
un)(un − u)(2.14)

= o(1) +A(un)−A(u) +
γ

4
V ′(un)(un − u)− a

∫

R2

|un|
p−2un(un − u)

= o(1) +
γ

4
[V ′

1(un)(un − u)− V ′
2 (un)(un − u)]

where
∣

∣

∣
V ′
2(un)(un − u)

∣

∣

∣
= |B2(u

2
n, un(un − u))

∣

∣

∣
≤ ||un||

3
8
3
||un − u|| 8

3
→ 0

as n→ ∞ and

V ′
1(un)(un − u) = B1(u

2
n, un(un − u)) = B1(u

2
n, (un − u)2) +B1(u

2
n, u(un − u))

with

B1(u
2
n, u(un − u)) → 0 as n→ ∞

by Lemma 2.3. Combining these estimates we obtain that

o(1) = o(1) +B1(u
2
n, (un − u)2),

which implies that B1(u
2
n, (un − u)2) → 0 as n → ∞. Hence by Lemma 2.2, |un − u|∗ → 0 as n → ∞.

We conclude that ||un − u||X → 0 as n→ ∞ as claimed. This ends the proof of the lemma.

Finally, for future reference, note that using the Gagliardo-Nirenberg inequality

(2.15) ||u||p ≤ K
1
p

GN ||∇u||β2 ||u||
1−β
2 where β = 2

(1

2
−

1

p

)

we obtain that

(2.16) C(u) = ‖u‖pp ≤ KGN A(u)
p
2−1 c.

Also by (2.2) in [13]

|V2(u)| ≤ C0||u||
4
8/3

and using (2.15) with p = 8
3 we get that for some best constant K > 0, for all u ∈ H ,

(2.17) |V2(u)| ≤ K
√

A(u) c
3
2 .
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3 The case γ > 0

Throughout this section we assume that γ > 0.

Lemma 3.1. Assume that γ > 0 and let (un) ⊂ S(c) be a bounded sequence in H such that F (un) ≤ d
for some d ∈ R. Then there exists a sequence (xn) ⊂ R

2 such that ũn = un(· − xn) has a subsequence

converging weakly in X.

If in addition (un) ⊂ S(c) consists in radially symmetric functions, the sequence (xn) ⊂ R2 is bounded.

Proof. Since A(un) is bounded, hence V2(un) and ‖un‖pp are also bounded by (2.17) and (2.16). Now

since F (un) is bounded, then V1(un) also. We then deduce by Lemma 2.6 the existence of (xn) ⊂ R2,

which is bounded if (un) ⊂ S(c) consists in radially symmetric functions, such that, if we denote

ũn = un(· − xn),

then, up to a subsequence,

ũn
L2(R2)
−→ u.

Now, by Lemma 2.2, since V1(ũn) = V1(un) is bounded and ũn → u 6= 0 in L2(R2), we deduce that |un|∗
is bounded, so (ũn) is bounded in X. Since X is a Hilbert space, then, up to subsequence, we may assume

that ũn ⇀ u.

Lemma 3.2. Assume that γ > 0 and let (un) ⊂ S(c) be such that un
X
⇀ u. Then F (u) ≤ limF (un). If

moreover F (un) → F (u) then un
X
−→ u ∈ S(c).

Proof. Since X is compactly embedded in Ls(R2) for all x ∈ [2,∞), see Lemma 2.1(i), we deduce that

u ∈ S(c), C(un) → C(u) and by the continuity of V2 on L
8
3 (R2), see Lemma 2.1(iii), that V2(un) →

V2(u). The fact that

F (u) ≤ limF (un)

then follows from the weak lower semicontinuity of u 7→ V1(u) on H (and thus on X), see Lemma 2.1(iv),

and of u 7→ A(u) on H .

Now assume that F (un) → F (u). We shall see that A(un) → A(u) and V1(un) → V1(u), which in

particular implies that un → u strongly in H and then, by Lemma 2.4 that un
X
−→ u. Indeed, considering

F (un)− F (u), we get

(3.1)
1

2
[A(un)−A(u)] +

γ

4
[V1(un)− V1(u)] = o(1).

Hence, taking the liminf, we get

1

2
[limA(un)− A(u)] +

γ

4
[limV1(un)− V1(u)] ≤ 0.

Using the lower semicontinuity of A (resp. V1) with respect to the weak H1 (resp. X) convergence, we

then deduce that

limA(un) = A(u) and limV1(un) = V1(u).

Taking the limsup in (3.1), we get the desired result.
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3.1 Proof of Theorem 1.1.

This subsection is mainly devoted to the proof of Theorem 1.1. We start with the following lemma.

Lemma 3.3. Under the assumption of Theorem 1.1, m = inf
S(c)

F > −∞.

Proof. First case: a ≤ 0 and p > 2.

Then, since V1 ≥ 0 and a ≤ 0, we have for all u ∈ X , using (2.17)

(3.2) F (u) ≥
1

2
A(u)−

γ

4
V2(u) ≥

1

2
A(u)−

γ

4
K

√

A(u) c
3
2 ,

whence the result.

Second case: a > 0 and p < 4.

Then, for all u ∈ X , we have, using (2.17) and (2.16)

(3.3) F (u) ≥
1

2
A(u)−

γ

4
K

√

A(u) c
3
2 −

a

p
KGN A(u)

p
2−1 c,

whence the result since p
2 − 1 < 1.

Third case: a > 0, p = 4 and c <
2

aKGN
.

From (3.3) we get that

F (u) ≤
(1

2
−
a

4
KGNc

)

A(u)−
γ

4
K

√

A(u) c
3
2

and the result follows here also.

As a consequence of Lemma 3.3 and of the convergence results of Section 2 we can now give

Proof of Theorem 1.1. By Lemma 3.3 we know thatm > −∞. Now let (un) be a minimizing sequence for

(1.6). Since (F (un)) is bounded from above we deduce from (3.2) or (3.3), that (un) is bounded inH . Thus

we deduce from Lemma 3.1 the existence of (xn) ⊂ R2 such that, if we denote ũn = un(· − xn), then, up

to a subsequence, we may assume that ũn ⇀ u. Moreover, recording that the embedding X ⊂ L2(R2) is

compact, we have that u ∈ S(c). At this point, since F is invariant by translation, we deduce from Lemma

3.2 that F (u) = m and that ũn → u in X .

We end this section by observing that setting

Σ = {u ∈ S(c), F (u) = m},

and for any R > 0,

Σ(R) = Σ ∩BX(0, R)

we have

Lemma 3.4. There exists R > 0 such that Σ = R2 ∗ Σ(R).

Proof. We argue by contradiction. Assume that for all n ≥ 1, there exists un ∈ Σ such that un /∈ R2∗Σ(n).
Reasoning as in the proof of Theorem 1.1 we deduce that there exists a sequence (xn) of R2 such that

ũn = un(· − xn)

has a subsequence bounded in X . But by hypothesis, ũn /∈ Σ(n) so ‖ũn‖X ≥ n, which is a contradiction.
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3.2 Existence of a local minima on S(c).

In this subsection we always assume that a > 0, p > 4. We also set

k0 =
(p− 2)

(p− 4)

γ c2

4
.

Lemma 3.5. Assume that γ > 0, a > 0 and p > 4. If Q(u) ≤ 0 and A(u) = k0, then c ≥ c0, where c0
depends on p, a and γ by the following formula :

c0 = 2

[

p(p− 4)
p−4
2

(p− 2)
p

2

1

KGN

1

aγ
p−4
2

]
1

p−3

.

As a consequence, if Q(u) ≤ 0 and c < c0, then A(u) 6= k0.

Proof. Since Q(u) ≤ 0, we have

A(u) ≤ a
p− 2

p
C(u) +

γ c2

4

and by Gagliardo-Nirenberg inequality (2.15), since A(u) = k0, we deduce

p− 2

p− 4

γ c2

4
≤ a

p− 2

p
KGN

[

p− 2

p− 4

γ c2

4

]

p−2
2

c+
γ c2

4
,

then

2

p− 4

γ c2

4
≤ a

p− 2

p
KGN

[

p− 2

p− 4

]

p−2
2 γ

p−2
2

2p−2
cp−1,

so

2p−3 p(p− 4)
p−4
2

(p− 2)
p

2

1

KGN

1

aγ
p−4
2

≤ cp−3,

whence the result.

Now we set

Ak0 = {u ∈ X, A(u) ≤ k0}

and we define

(3.4) ml = inf
S(c)∩Ak0

F.

Theorem 3.6. Let γ > 0, a > 0 and p > 4. Assume that c < c0, then any minimizing sequence for ml

defined in (3.4) has, up to translations, a subsequence converging strongly in X. In particular the infimum

is achieved. Also any minimizer of (3.4) is a critical point of F on S(c).

Proof. Let (un) be a minimizing sequence for (3.4). Reasoning exactly as in the proof of Theorem 1.1 we

see that there exists a sequence of (xn) ⊂ R
2 such that, ũn = un(· − xn), converges strongly towards a

u ∈ X . Obviously u ∈ Ak0 and F (u) = ml. Thus to end the proof it just remains to show that u satisfies

A(u) < k0.

Let us assume by contradiction that A(u) = k0. Then we see directly from Lemma 3.5 that necessarily

Q(u) > 0. But then we consider ut0 with t0 < 1 close to 1. Recording (1.7) and (1.8) it follows that

ut0 ∈ Ak0 and F (ut0) < F (u) providing a contradiction. This ends the proof.
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3.3 Proof of Theorem 1.2.

In this subsection we start to be interested in the multiplicity of solutions. We shall always assume that

a > 0 and p > 4. For any u ∈ S(c) we denote gu : (0,∞) → X the function defined by

gu(t) = F (ut) =
t2

2
A(u) +

γ

4
V (u)−

γc2

4
log t−

atp−2

p
C(u)

where ut(x) = tu(tx) for all x ∈ R2. Clearly gu is C2 on (0,∞) and we obviously have

Λ(c) := {u ∈ S(c) | Q(u) = 0} = {u ∈ S(c) | g′u(1) = 0}.

Lemma 3.7. For any u ∈ S(c), a value s ∈ R is critical for gu(t) if and only if us ∈ Λ(c).

Proof. Fix u ∈ S(c). We have

g′u(t) =
1

t

(

t2A(u)−
γc2

4
− a

(p− 2)

p
tp−2C(u)

)

.

Therefore s > 0 is a critical value for gu if and only if

s2A(u)−
γc2

4
− a

(p− 2)

p
sp−2C(u) = 0

which means

A(us)−
γc2

4
− a

(p− 2)

p
C(us) = 0

namely g′us(1) = 0 and thus us ∈ Λ(c).

Now we prove the following lemmas.

Lemma 3.8. If c < c0, then Λ(c) is a submanifold of codimension 2 ofX and a submanifold of codimension

1 in S(c).

Proof. By definition, u ∈ Λ(c) if and only if G(u) := ‖u‖22 − c = 0 and Q(u) = 0. It is easy to check that

G,Q are of C1 class. Hence we only have to prove that for any u ∈ Λ(c),

(dG(u), dQ(u)) : X → R
2 is surjective.

If this failed, we would have that dG(u) and dQ(u) are linearly dependent, which implies that there exists

a ν ∈ R such that for any ϕ ∈ X ,

2

∫

RN

∇u · ∇ϕdx − a(p− 2)

∫

RN

|u|p−2uϕdx = 2ν

∫

RN

uϕdx,

namely that u solves

−∆u− a
(p− 2)

2
|u|p−2u = νu.

At this point from Lemma 2.7 we deduce that

A(u) =
a(p− 2)2

2p
C(u)

and then, since Q(u) = 0 we obtain that A(u) = k0 which contradicts Lemma 3.5.
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Lemma 3.9. Let u ∈ S(c) such that Q(u) = 0 and d
dt

∣

∣

t=1
Q(ut) = 0. Then A(u) = k0.

Proof. First, a simple computation shows that

d

dt

∣

∣

∣

∣

t=1

Q(ut) = 2A(u)− a
(p− 2)2

p
C(u).

So by hypothesis,

a
p− 2

p
C(u) =

2

p− 2
A(u).

But we also know that Q(u) = A(u)− a p−2
p C(u)− γ c2

4 = 0, so

(

1−
2

p− 2

)

A(u) = γ
c2

4
,

i.e. A(u) = k0.

Let us denote

Λ+(c) = {u ∈ S(c) | g′u(1) = 0, g′′u(1) > 0}.

Λ−(c) = {u ∈ S(c) | g′u(1) = 0, g′′u(1) < 0}.

Λ0(c) = {u ∈ S(c) | g′u(1) = 0, g′′u(1) = 0}.

Observe that Λ0(c) = ∅ when c < c0 by Lemmas 3.5 and 3.9.

Lemma 3.10. Let c < c0. For any u ∈ S(c), there exists

1. a unique s+u > 0 such that us
+
u ∈ Λ+(c). Such s+u is a strict local minimum point for gu.

2. a unique s−u > 0 such that us
−

u ∈ Λ−(c). Such s−u is a strict local maximum point for gu.

Proof. Fix u ∈ S(c) with c < c0. Let t∗ =
[ 2pA(u)
a(p−2)2C(u)

]1/(p−4)
, which means

2(t∗)2A(u) =
a(p− 2)2

p
(t∗)p−2C(u)

namely

2A(ut
∗

) =
a(p− 2)2

p
C(ut

∗

).

It follows that

(3.5) 2A(ut) >
a(p− 2)2

p
C(ut), ∀ 0 < t < t∗

and

(3.6) 2A(ut) <
a(p− 2)2

p
C(ut), ∀t > t∗.

By (3.5) we have that for any t ∈ (0, t∗),

g′u(t) =
1

t

(

A(ut)−
γc2

4
− a

(p− 2)

p
C(ut)

)

>
1

t

(

A(ut)−
γc2

4
−

2

(p− 2)
A(ut)

)

=
1

t

( (p− 4)

(p− 2)
A(ut)−

γc2

4

)

.(3.7)
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Now we prove that if c < c0, then

(3.8) A(ut
∗

) >
γc2

4

(p− 2)

(p− 4)
= k0.

In fact, taking into account the Gagliardo-Nirenberg inequality, we have

(t∗)2A(u)
(p− 4)

(p− 2)
−
γc2

4
=

[ 2pA(u)

a(p− 2)2C(u)

]
2

p−4A(u)
p− 4

p− 2
−
γc2

4

=

(

A(u)
)

p−2
p−4

(

C(u)
)

2
p−4

[ 2p

a(p− 2)2
]

2
p−4

(p− 4)

(p− 2)
−
γc2

4

≥

(

A(u)
)

p−2
p−4

[

KGNA(u)
p−2
2 c

]
2

p−4

[ 2p

a(p− 2)2
]

2
(p−4)

(p− 4)

(p− 2)
−
γc2

4

≥ c2
(

c
2(3−p)
(p−4)

[ 2p

a(p− 2)2KGN

]
2

(p−4)
(p− 4)

(p− 2)
−
γ

4

)

= c2
(

c
2(3−p)
(p−4)

[ 2p

aKGN

]
2

(p−4)
(p− 4)

(p− 2)
p

p−4

−
γ

4

)

> 0(3.9)

since

c < c0 = 2
[p(p− 4)

p−4
2

(p− 2)p/2
1

KGN

1

aγ
p−4
2

]
1

p−3

.

It follows that there exists δ > 0 such that for any t ∈ (t∗ − δ, t∗)

A(ut) > k0.

By (3.7) we infer that for any t ∈ (t∗ − δ, t∗), g′u(t) > 0 and thus gu(t) is increasing in (t∗ − δ, t∗).
Taking into account that the function gu(t) → +∞ as t → 0+ and gu(t) → −∞ as t → +∞, we

conclude that there exists at least a critical point s+u < t∗ which is a local minimum point of gu and a

critical point s−u > t∗ which is a local maximum point of gu. We first consider s−u > 0. Since s−u > t∗,

from (3.6) we derive that

(3.10) 2(s−u )
2A(u)− a

(p− 2)2

p
(s−u )

p−2C(u) < 0.

Moreover from (3.10) and the fact that g′u(s
−
u ) = 0, we derive that

g′′u(s
−
u ) =

1

(s−u )2

(

A(us
−

u ) +
γc2

4
− a

(p− 2)(p− 3)

p
C(us

−

u )
)

=
1

(s−u )2

(

2(s−u )
2A(u)− a

(p− 2)2

p
(s−u )

p−2C(u)
)

< 0.(3.11)

Therefore s−u is a strict maximum point for gu and us
−

u ∈ Λ−(c).
We have to show that s−u is unique. By contradiction we assume that there exists zu > 0 an other critical

point of gu which is a local maximum point.

Firstly we observe that if 0 < zu < t∗, then from g′u(zu) = 0 and (3.5) it results

g′′u(zu) =
1

z2u

(

2z2uA(u)− a
(p− 2)2

p
zp−2
u C(u)

)

> 0(3.12)
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which is a contradiction. This implies that zu > t∗ and thus arguing as before we have g′′u(zu) < 0 namely

uzu ∈ Λ−(c). We derive the existence of an other critical point θu > t∗, which is a local minima for gu.

Taking into account (3.6), we again deduce g′′u(θu) < 0, which is a contradiction. Therefore the point su is

unique.

Now a direct adaptation of the argument used for s−u > 0 leads to conclude that s+u > 0 is the unique

local minimum point for gu.

Lemma 3.11. Let c < c0. The maps u ∈ S(c) 7→ su+ ∈ R and u ∈ S(c) 7→ su− ∈ R are of class C1.

Proof. It is a direct application of the Implicit Function Theorem on the C1 function Ψ : R × S(c) →
R, defined by Ψ(s, u) = g′u(s), taking into account that Ψ(s±u , u) = 0, ∂sΨ(s+u , u) = g′′u(s

+
u ) > 0,

∂sΨ(s+u , u) = g′′u(s
−
u ) < 0 and Λ0(c) = ∅.

Lemma 3.12. F restricted to Λ(c) is coercive on H and bounded from below by a positive constant.

Proof. Firstly we observe that if u ∈ Λ(c), then

(3.13) C(u) =
p

a(p− 2)

[

A(u)−
γc2

4

]

.

Taking into account that γV1(u) ≥ 0 and (2.17), we get that

F (u) ≥
1

2
A(u)−

γc3/2

4
A(u)

1
2 −

1

p− 2

[

A(u)−
γc2

4

]

≥
[1

2
−

1

p− 2

]

A(u)−
γc3/2

4
A(u)

1
2 .

Since p > 4, this concludes the proof.

In view of Lemma 3.12 we can define

γ+(c) := inf
Λ+(c)

F (u) and γ−(c) := inf
Λ−(c)

F (u).

Aiming to prove Theorem 1.2 we shall establish the existence of a Palais-Smale sequence (un) ⊂ Λ+(c)
(respectively (un) ⊂ Λ−(c)) for F restricted to S(c). Our arguments are inspired from [5].

We start by recalling the following definition [15, Definition 3.1].

Definition 3.13. Let B be a closed subset of a metric space Y . We say that a class G of compact subsets of

Y is a homotopy stable family with closed boundaryB provided

1. every set in G contains B;

2. for any A ∈ G and any η ∈ C([0, 1] × Y, Y ) satisfying η(t, x) = x for all (t, x) ∈ ({0} × Y ) ∪
([0, 1]×B), we have η({1} ×A) ∈ G.

We explicitly observe that B = ∅ is admissible. Now we define the two functionals

I+ : S(c) 7→ R by I+(u) = F (us
+
u )

and

I− : S(c) 7→ R by I−(u) = F (us
−

u ).

Note that since the maps u 7→ su+ and u 7→ su− are of class C1, see Lemma 3.11, the functionals I+ and

I− are of class C1.

Lemma 3.14. The maps TuS(c) → T
us

+
u
S(c) defined by ψ → ψs

+
u and TuS(c) → T

us
−

u
S(c) defined by

ψ → ψs
−

u are isomorphisms.
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Proof. We give a proof of the first statement and to shorten the notation we set s = s+u and us = us
+
u . For

ψ ∈ TuS(c) we have
∫

R2

us(x)ψs(x) dx =

∫

R2

su(sx)sψ(sx) dx =

∫

R2

u(y)ψ(y) dy = 0.

As a consequence, ψs ∈ TusS(c) and the map is well defined. Clearly it is linear and the rest of the proof

is standard, see for example [5, Lemma 3.6].

Lemma 3.15. We have that dI+(u)[ψ] = dF (us
+
u )[ψs

+
u ] and dI−(u)[ψ] = dF (us

−

u )[ϕs
−

u ] for any u ∈
S(c) and ψ ∈ TuS(c).

Proof. We give the proof for I+, we set here su = s+u and ψsu = ψs
+
u . Our proof is inspired by [4, Lemma

3.2]. Let ψ ∈ TuS(c). Then ψ = γ′(0) where γ : (−ε, ε) 7→ S(c) is a C1-curve with γ(0) = u. We

consider the incremental quotient

(3.14)
I+(γ(t))− I+(γ(0))

t
=
F (γ(t)st)− F (γ(0)s0)

t

where st := sγ(t) (notice that s0 = su). Recalling that st is a strict local minimum of s 7→ F (us) and using

that u 7→ s+u is continuous, see Lemma 3.11, we get for |t| small

F (γ(t)st)− F (γ(0)s0) ≥ F (γ(t)st)− F (γ(0)st) =
s2t
2

[

A(γ(t)) −A(γ(0)
]

+
γ

4

[

V (γ(t))− V (γ(0))
]

−
asp−2
t

p

[

C(γ(t)) − C(γ(0))
]

= s2t

∫

R2

∇γ(τ1t) · ∇γ
′

(τ1t)t dx+ γ

∫

R2

∫

R2

log|x− y|(γ(τ2t))
2(x)γ(τ2t)(y)γ

′

(τ2t)(y) dxdy.

−asp−2
t

∫

R2

|γ(τ3t)|
p−2γ(τ3t)γ

′

(τ3t)t dx

for some τ1, τ2, τ3 ∈ (0, 1). Analogously

F (γ(t)st)− F (γ(0)s0) ≤ F (γ(t)s0)− F (γ(0)s0) = s20

∫

R2

∇γ(τ4t) · ∇γ
′

(τ4t)t dx

+γ

∫

R2

∫

R2

log|x− y|(γ(τ5t))
2(x)γ(τ2t)(y)γ

′

(τ5t)(y) dxdy.

−asp−2
0

∫

R2

|γ(τ6t)|
p−2γ(τ6t)γ

′

(τ6t)t dx

for some τ4, τ5, τ6 ∈ (0, 1). Now from (3.14) we deduce that

lim
t→0

I+(γ(t))− I+(γ(0))

t
= s2u

∫

R2

∇u · ∇ψ dx+ γ

∫

R2

∫

R2

log |x− y|u2(x)u(y)ψ(y) dxdy

−asp−2
u

∫

R2

|u(x)|p−2u(x)ψ(x) dx

=

∫

R2

∇(usu) · ∇(ψsu) dx + γ

∫

R2

∫

R2

log |x− y|(usu)2(x)usu(y)ψsu(y) dxdy

+γ log(su)

∫

R2

∫

R2

u2(x)u(y)ψ(y) dxdy − a

∫

R2

|usu(x)|p−2usu(x)ψsu(x) dx.

= DF (usu)[ψsu ] + γ log(su)

∫

R2

u2(x) dx

∫

R2

u(y)ψ(y) dy = DF (usu)[ψsu ]

for every u ∈ S(c) and ψ ∈ TuS(c).
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In our next lemma I± denotes either I+ or I− and accordingly Λ±(c) denotes Λ+(c) (or Λ−(c)) and

su = s+u (or su = s−u ).

Lemma 3.16. Let G be a homotopy stable family of compact subsets of S(c) with closed boundary B and

let

e±G := inf
A∈G

max
u∈A

I±(u).

Suppose thatB is contained in a connected component of Λ±(c) and that max{sup I±(B), 0} < e±G <∞.

Then there exists a Palais-Smale sequence (un) ⊂ Λ±(c) for F restricted to S(c) at level e±G .

Proof. Take (Dn) ⊂ G such that maxu∈Dn
I±(u) < e±G + 1

n and

η : [0, 1]× S(c) → S(c), η(t, u) = u1−t+tsu .

Since su = 1 for any u ∈ Λ±(c), andB ⊂ Λ±(c), we have η(t, u) = u for (t, u) ∈ ({0}×S(c))∪ ([0, 1]×
B). Observe also that η is continuous. Then, using the definition of G, we have

An := η({1} ×Dn) = {usu : u ∈ Dn} ∈ G.

Also notice that An ⊂ Λ±(c) for all n ∈ N. Let v ∈ An, i.e. v = usu for some u ∈ Dn and I±(u) =
I±(v). So maxAn

I± = maxDn
I± and therefore (An) ⊂ Λ±(c) is another minimizing sequence of e±G .

Using the minimax principle [15, Theorem 3.2], we obtain a Palais-Smale sequence (ũn) for I± on S(c) at

level e±G such that distX(ũn, An) → 0 as n → ∞. Now writing sn = sũn
to shorten the notations, we set

un = ũsnn ∈ Λ±(c). We claim that there exists C > 0 such that,

(3.15)
1

C
≤ s2n ≤ C

for n ∈ N large enough. Indeed, notice first that

(3.16) s2n =
A(un)

A(ũn)
.

Since by definition we have F (un) = I±(ũn) → e±G , we deduce from Lemma 3.12, that there existsM > 0
such that

(3.17)
1

M
≤ A(un) ≤M.

On the other hand, since (An) ⊂ Λ±(c), is a minimizing sequence for e±G and F is H coercive on Λ±(c),
we deduce that (An) is uniformly bounded in H and thus from distX(ũn, An) → 0 as n → ∞, it implies

that supnA(ũn) < ∞. Also, since An is compact for every n ∈ N, there exists a vn ∈ An such that

distX(ũn, An) = ‖vn − ũn‖X and, using once again Lemma 3.12 we also deduce that, for a δ > 0,

A(ũn) ≥ A(vn)−A(ũn − vn) ≥
δ

2
.

This proves the claim.

Next, we show that (un) ⊂ Λ±(c) is a Palais-Smale sequence for F on S(c) at level e±G . Denoting by

‖.‖∗ the dual norm of (Tun
S(c))∗, we have

‖dF (un)‖∗ = sup
ψ∈TunS(c), ‖ψ‖≤1

|dF (un)[ψ]| = sup
ψ∈TunS(c), ‖ψ‖≤1

|dF (un)[(ψ
−sn)sn ]|.
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From Lemma 3.14 we know that Tũn
S(c) → Tun

S(c) defined by ψ → ψsn is an isomorphism. Also, from

Lemma 3.15 we have that dI±(ũn)[ψ
−sn ] = dF (un)[(ψ

−sn)sn ]. It follows that

(3.18) ‖dF (un)‖∗ = sup
ψ∈TunS(c), ‖ψ‖≤1

|dI±(ũn)[ψ
−sn ]|.

At this point it is easily seen from (3.15) that (increasing C if necessary) ‖ψ−sn‖ ≤ C‖ψ‖ ≤ C and we

deduce from (3.18) that (un) ⊂ Λ±(c) is a Palais-Smale sequence for F on S(c) at level e±G .

Lemma 3.17. There exists a Palais-Smale sequence (un) ⊂ Λ+(c) for F restricted to S(c) at the level

γ+(c) and a Palais-Smale (un) ⊂ Λ−(c) for F restricted to S(c) at the level γ−(c).

Proof. Let us assume that (un) ⊂ Λ+(c), the other case can be treated similarly. We use Lemma 3.16

taking the set Ḡ of all singletons belonging to S(c) and B = ∅. It is clearly a homotopy stable family of

compact subsets of S(c) (without boundary). Since

e+
Ḡ
:= inf

A∈Ḡ
max
u∈A

I+(u) = inf
u∈S(c)

I+(u) = γ+(c)

the lemma follows directly from Lemma 3.16.

Now we are ready to give

Proof of Theorem 1.2. We give the proof for u+, the one for u− is almost identical. Let (un) ⊂ Λ+(c) be

a Palais-Smale sequence for F restricted to S(c) at level γ+(c) whose existence is insured by Lemma 3.17.

By Lemma 3.12 we know that (un) is bounded in H . Also since the functional F is translational invariant,

in view of Lemma 3.1 it is not restrictive to assume that (un) ⊂ Λ+(c) is bounded in X . At this point we

conclude using Lemma 2.8.

3.4 Proof of Theorem 1.3.

We are now interested in the existence of infinitely many solutions lying on Λ+(c) and Λ−(c). For this

we shall work in the subspace Xrad of X consisting of radially symmetric functions. We set Λrad(c) =
Λ(c) ∩Xrad.

We denote by σ : X → X the transformation σ(u) = −u. The following definition is [15, Definition

7.1].

Definition 3.18. Let B be a closed subset of a metric space Y . We say that a class G of compact subsets of

Y is a σ-homotopy stable family with closed boundaryB if

1. every set in G is σ-invariant.

2. every set in G contains B;

3. for any A ∈ G and any η ∈ C([0, 1] × Y, Y ) satisfying, for all t ∈ [0, 1], η(t, u) = η(t, σ(u)),
η(t, x) = x for all (t, x) ∈ ({0} × Y ) ∪ ([0, 1]×B), we have η({1} ×A) ∈ G.

Lemma 3.19. Let F be a σ-homotopy stable family of compact subsets of Λ±
rad(c) with a close boundary

B. Let cF := infA∈F maxu∈A F (u). Suppose that B is contained in a connected component of Λ±
rad(c)

and that max{supF (B), 0} < cF <∞. Then there exists a Palais-Smale sequence (un) ⊂ Λ±
rad(c) for F

restricted to S(c) at level cF .

Proof. We are only sketchy here and refer to [5] for the proofs of closely related results. The proof of

Lemma 3.19 first relies on an equivariant version of Lemma 3.16, whose proof is almost identical to the one

of Lemma 3.16. Then the lemma follows just as [5, Theorem 3.2] follows from [5, Proposition 3.9].
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Remark 3.20. Lemma 3.19 establishes that, if the assumptions of the equivariant minimax principle [15,

Theorem 7.2] are satisfied by the functionalF constrained to Λ±(c), then we can find a “free" Palais-Smale

sequence for F on S(c) made of elements of Λ±(c).

Now let H := Λ+(c) ∩Xrad (or H := Λ−(c) ∩Xrad) and recall, in this notation, the definition of the

genus of a set due to M.A. Krasnosel’skii.

Definition 3.21. Let A be a family of sets A ⊂ H such that A is closed and symmetric (u ∈ A if and only

if −u ∈ A). For every A ∈ A, the genus of A is defined by

γ(A) := min{n ∈ N : ∃ ϕ : A→ R
n\{0}, ϕ is continuous and odd}.

When there is no ϕ as described above, we set γ(A) = ∞.

Let AH be the family of compact and symmetric sets A ⊂ H. For any k ∈ N+, define

Γk := {A ∈ AH : γ(A) ≥ k}

and

βk := inf
A∈Γk

sup
u∈A

F (u).

Lemma 3.22. Let c < c0. For any k ∈ N+, Γ−
k 6= ∅ and Γ+

k 6= ∅.

Proof. We give the proof for Γ+
k . Let V ⊂ Xrad be such that dimV = k. We set SV (c) := V ∩ S(c). By

the basic property of the genus, see [3, Theorem 10.5], we have that γ(SV (c)) = dimV = k. In view of

Lemma 3.10, for any u ∈ SV (c) there exists unique s+u > 0 such that us
+
u ∈ Λ+(c). It is easy to check

that the mapping ϕ : SV (c) → Λ(c) defined by ϕ(u) = us
+
u is continuous and odd. Then [3, Lemma 10.4]

leads to γ(ϕ(SV (c))) ≥ γ(SV (c)) = k and this shows that Γk 6= ∅.

Proof of Theorem 1.3. We give the proof for Λ+(c), the case of Λ−(c) is identical. Consider the minimax

level βk. From Lemma 3.22 we know that each of the classes Γk is non empty and thus to each of them we

can apply Lemma 3.19 to obtain the existence of Palais-Smale sequences (ukn) ⊂ Λ+
rad(c) for F restricted

to S(c) at the levels βk. Since ukn is radial we know from Lemmas 2.6 and Lemma 3.1 that (ukn) ⊂ Xrad is

bounded in X . At this point we conclude using Lemma 2.8 that (ukn)n converges to a uk which is a critical

point of F on S(c). Now to show that if two (or more) values of βk coincide, than F has infinitely many

critical points at level ck, one can either proceed in the usual way, or adapt [5, Lemma 6.4] to the present

setting.

4 The case γ < 0

In this section, for convenience, we change γ into −γ and thus we write

F (u) =
1

2
A(u)−

γ

4
V (u)−

a

p
C(u)

with γ > 0. With this change note that the function gu : (0,∞) → X becomes

gu(t) = F (ut) =
t2

2
A(u)−

γ

4
V (u) +

γc2

4
log t−

a

p
tp−2C(u).

Obviously we still have that gu is C2 on (0,∞) and

(4.1) g′u(t) =
1

t

(

t2A(u) +
γc2

4
−
a(p− 2)

p
tp−2C(u)

)

.
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Firstly, we notice that if a ≤ 0 and p > 2, for each u ∈ S(c) the fiber map gu(t) := F (ut) is strictly

increasing and so we can immediately derive Theorem1.4.

Also note that

Λ(c) = {u ∈ S(c) | Q(u) = 0} = {u ∈ S(c) | g′u(1) = 0}.

For future reference observe that defining

(4.2) t∗u =
[a(p− 2)2C(u)

2pA(u)

]1/(4−p)

we have that

(4.3) 2A(ut
∗

u) =
a(p− 2)2

p
C(ut

∗

u).

Furthermore notice that

(4.4) 2A(ut) <
a(p− 2)2

p
C(ut), ∀ 0 < t < t∗u

and

(4.5) 2A(ut) >
a(p− 2)2

p
C(ut), ∀ t > t∗u.

In what follows we always assume that a > 0 and p < 4. The following quantities will play a crucial

role in this section,

K1 =
1

2
4−p
2

1

KGN

p

23−p(p− 2)
p
2 (4− p)

4−p
2

.

and

K2 = 2
4−p

2 K1 =
1

KGN

p

23−p(p− 2)
p

2 (4− p)
4−p

2

.

4.1 Properties of Λ(c)

Lemma 4.1. Assume that γ < 0 and p < 4. Then

Λ(c) 6= ∅ if and only if a ≥ K1γ
4−p

2 c3−p.

Proof. Let u ∈ S(c) and t > 0. Defining

φu(t) = Q(ut) = A(u)t2 − a
(p− 2)

p
C(u)tp−2 +

γc2

4

we have g′u(t) =
1
t φu(t). Thus the function φu achieves its minimum at t∗u given in (4.2) and

(4.6) φu(tu
∗) = γ

c2

4
− K̃1

[ C(u)2

A(u)p−2

]1/(4−p)

a2/(4−p)

where K̃1 =
(p− 2)p/(4−p)(4− p)

p2/(4−p)2(p−2)/(4−p)
. By Gagliardo-Nirenberg inequality (2.15), we have

C(u)2

A(u)p−2
≤ K2

GNc
2
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which leads to

inf
u∈S(c)

Q(u) ≥ γ
c2

4
− K̃1[KGN a c]2/(4−p).

Hence if a < K1γ
4−p

2 c3−p, then infS(c)Q(u) > 0, and so Λ(c) = ∅. Now, since the best constant in the

Gagliardo-Nirenberg inequality is reached, say by ū ∈ S(c), we also have that

inf
u∈S(c)

Q(u) = Q(ū) = γ
c2

4
− K̃1[KGN a c]2/(4−p).

Thus if a > K1γ
4−p

2 c3−p, then

inf
u∈S(c)

Q(u) < 0

and since limt→∞ φu(t) = +∞, we deduce by continuity that Λ(c) 6= ∅. If a = K1γ
4−p

2 c3−p, then

Q(ū) = 0 and so Λ(c) 6= ∅.

Lemma 4.2. Assume that γ < 0 and p < 4. Then if

(4.7) a > K1 γ
4−p

2 c3−p,

we have that inf
Λ(c)

F = −∞.

Proof. Our proof borrows ideas from [8]. First observe that if u ∈ S(c) is such that Q(u) ≤ 0 then since

Q(ut) → +∞ as t → ∞ there exists a t ≥ 1 such that Q(ut) = 0 and F (ut) ≤ F (u). So we only

need to prove that there exists a sequence (un) ⊂ S(c) with Q(un) ≤ 0 and F (un) → −∞ as n → ∞.

Let c > 0 satisfies (4.7) and assume first that p > 3. Then there exists a c1 > 0 such that c > c1 and

{u ∈ S(d) : Q(u) < 0} 6= ∅ for d > c1. We set η = c − c1 > 0 and take u ∈ C∞
0 (R2), u ≥ 0 with

||u||22 = c− η
2 and Q(u) < 0. We also choose a v ∈ C∞

0 (R2), v ≥ 0 with ||v||22 = η
2 . We now consider the

sequence

un(x) = u(x) +
1

n
v
( 1

n
(x− nR)

)

:= u(x) + vn(x)

where R > 0 is choosen sufficiently large so that the supports of u and vn are disjoints. Clearly

Q(un) = A(u + vn)− a
p− 2

p
C(u+ vn) +

γc2

4

= A(u)− a
p− 2

p
C(u) +

γc2

4
+A(vn)− a

p− 2

p
C(vn)

→ A(u)− a
p− 2

p
C(u) +

γc2

4
< 0,

since A(vn) → 0 and C(vn) → 0 as n → ∞. Also we easily observe that, because the functions u and

vn are non negative, that V1(un) ≥ V1(vn) and that V1(vn) → +∞ as n → ∞. We then deduce that

F (un) → −∞ proving the lemma in the case p > 3.

Now if we assume that p ≤ 3 there exists a c1 > 0 (c1 = +∞ if p = 3) such that c < c1 and

{u ∈ S(d) : Q(u) < 0} 6= ∅ for d < c1 We then modify the previous proof by taking u ∈ C∞
0 (R2), u ≥ 0

with ||u||22 = c
2 and Q(u) < 0 and consider instead the sequence

un(x) = u(x) +
1

n
u
( 1

n
(x − nR)

)

.

By similar arguments we obtain Q(un) → Q(u) < 0 and F (un) → −∞ as n→ ∞.
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Lemma 4.3. Assume that γ < 0, a > 0 and p < 4. Then,

1. F restricted to Λ(c) is bounded from above.

2. For any m1 ∈ R, there exists a m2 ∈ R such that, for all u ∈ Λ(c), A(u) ≤ m2 and V1(u) ≤ m2 if

F (u) ≥ m1.

Proof. Let u ∈ Λ(c). From

(4.8) C(u) =
p

a(p− 2)

[

A(u) +
γc2

4

]

and γV1(u) ≥ 0, we deduce

F (u) ≤
1

2
A(u) +

γc3/2

4
A(u)

1
2 −

1

p− 2

[

A(u) +
γc2

4

]

≤ −
(4 − p)

2(p− 2)
A(u) +

γc3/2

4
A(u)

1
2 .

Since 2 < p < 4, both points follow.

The following three lemmas give information on the geometric structure of Λ(c).

Lemma 4.4. Assume that γ < 0, a > 0 and p < 4. If Q(u) ≤ 0 (resp. Q(u) < 0) and A(u) = k0 then

a ≥ K2 γ
4−p

2 c3−p
(

resp. a > K2 γ
4−p

2 c3−p
)

Proof. Since Q(u) ≤ 0, we have

A(u) ≤ a
p− 2

p
C(u)−

γc2

4
.

Then, by Gagliardo-Nirenberg and since A(u) = k0, we get

p− 2

4− p

γc2

4
≤ a

p− 2

p
KGN

[

p− 2

4− p

γc2

4

]

p−2
2

c−
γc2

4
[

p− 2

4− p
+ 1

]

γc2

4
=

1

4− p

γc2

2
≤ aKGN

(p− 2)
p

2

p(4− p)
p−2
2 2p−2

γ
p−2
2 cp−1

γ
4−p

2 c3−p
1

KGN

p

(4 − p)
4−p

2 23−p(p− 2)
p

2

≤ a

K2 γ
4−p

2 c3−p ≤ a,

whence the result.

Lemma 4.5. Assume that γ < 0, a > 0 and p < 4. Let u ∈ S(c) such that Q(u) = 0 and d
dt

∣

∣

t=1
Q(ut) =

0. Then A(u) = k0.

Proof. First, a simple computation shows that

d

dt

∣

∣

∣

∣

t=1

Q(ut) = 2A(u)− a
(p− 2)2

p
C(u).

So by hypothesis,

a
p− 2

p
C(u) =

2

p− 2
A(u).

But we also know that Q(u) = A(u)− a p−2
p C(u) + γ c2

4 = 0, so

(

2

p− 2
− 1

)

A(u) = γ
c2

4
,

i.e. A(u) = k0.
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4.2 Proof of Theorem 4.7

In order to prove Theorem 4.7 we first establish the following lemma.

Lemma 4.6. Assume that γ < 0 and p < 4. Then if K1 γ
4−p

2 c3−p ≤ a ≤ K2 γ
4−p

2 c3−p, M := sup
Λ(c)

F is

achieved on Λ(c).

Proof. From Lemma 4.3 we already know that M < ∞ and that for any maximizing sequence (un) ⊂
Λ(c), (A(un)) is bounded. Clearly also (V1(un)) is bounded. Hence, using previous arguments we may

assume that, up to a subsequence and translations, (un) is bounded in X and that, for some u ∈ S(c),

un
X
⇀ u ∈ S(c) and un

H
⇀ u. In addition we have that V2(un) → V2(u). At this point it is convenient to

introduce the functional

(4.9) G(u) = −
4− p

2(p− 2)
A(u)−

γ

4
V (u)− γ

c2

4(p− 2)
.

which coincide with F on the set Λ(c). SinceA (resp. V1) is lowersemicontinuous for the weak convergence

on H (resp. X) and since G is invariant by translation, we deduce that M ≤ G(u).
Similarly, C is continuous for the weak convergence in X and A is lower semicontinuous for the weak

convergence in H , hence Q(u) ≤ 0. To conclude we just need to show that Q(u) = 0. Observe that by a

direct calculation, for any t > 0,

G(ut) = −
4− p

2(p− 2)
A(u) t2 +

γc2

4
log t−

γ

4
V (u),

and thus

(4.10)
d

dt
G(ut) = −

4− p

(p− 2)
A(u) t+

γc2

4

1

t
.

Note that v := d
dt

∣

∣

t=1
G(ut) = 0 is equivalent to A(u) = k0. Since Q(u) ≤ 0 we thus know from Lemma

4.4 that v 6= 0. We shall now prove that neither v < 0 nor v > 0 is possible if Q(u) < 0 and it will end the

proof.

First assume that v < 0. Since Q(ut) →
γc2

4
> 0 as t → 0, assuming that Q(u) < 0, there exists a

t0 < 1 such that Q(ut0) = 0 and Q(ut) ≤ 0 if t ∈ [t0, 1]. Thus, again by Lemma 4.4, we deduce that
d
dtG(u

t) < 0 for t ∈ [t0, 1] and consequently G(ut0) = F (ut0) > M in contradiction with the definition

of M . Assume now that v > 0. Since Q(ut) → +∞ as t→ ∞ there exists a t1 > 1 such that Q(ut1) = 0
and Q(ut) ≤ 0 if t ∈ [1, t1]. Thus, again by Lemma 4.4, we deduce that d

dtG(u
t) > 0 for t ∈ [1, t1] which

lead to the same contradiction.

At this point we are ready to give

Theorem 4.7. Assume γ < 0, p < 4 and

K1 γ
4−p

2 c3−p ≤ a < K2 γ
4−p

2 c3−p.

Then supΛ(c) F (u) <∞ and it is achieved by a critical point of F restricted to S(c).

Proof. We shall see in Lemma 4.15 that, under the assumptions of the theorem, Λ(c) is a submanifold of X

of codimension 2. By Lemma 4.6 we know that there exists u ∈ Λ(c) such that

F (u) = max
Λ(c)

F.
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Since u is a maximizer of F on Λ(c), hence a critical point, there exist two Lagrange multipliers λ, µ such

that

(4.11) dF (u) = λ (u, ·) + µ dQ(u).

Our aim is to show that µ = 0. Observe that (4.11) can be rewritten as

(4.12) − (1− 2µ)∆u− γ(log| · | ∗ |u|2)u− λu = a(1− µ(p− 2))|u|p−2u

and thus from Lemma 2.7 we obtain that

(4.13) (1− 2µ)A(u)− a
(p− 2)(1− µ(p− 2))

p
C(u) +

γc2

4
= 0.

Now using that Q(u) = 0 we obtain from (4.13) that

(4.14)
p− 2

p
µ(4− p)C(u) =

γc2

2
µ.

If µ = 0 we are done, so we assume that µ 6= 0. We then deduce that

(4.15) C(u) =
p

a(p− 2)(4− p)

γc2

2

and inserting (4.15) intoQ(u) = 0 we deduce thatA(u) = k0. This contradiction proves that µ = 0 namely

that u is a critical point of F restricted to S(c).

Remark 4.8. We also would like to express the sufficient conditions given in Theorem 4.7 in term of c > 0
since an interesting phenomenon then occurs. Actually, there is a strong qualitative change depending on

the position of p with respect to the, thus critical, exponent 3. In particular, our result says that F |S(c) has

no critical point

• if c > 0 is large for 2 < p < 3.

• if c > 0 is small for 3 < p < 4.

• if a < K1 γ
4−p
2 but without condition on c > 0 if p = 3.

In the following table, we express the sufficient conditions given by Theorem 4.7 in term of c.

Nonexistence Existence ci, i = 1, 2

2 < p < 3 c > c1 c2 < c ≤ c1
1

Ki

1
3−p

a
1

3−p

γ
4−p

2(3−p)

p = 3 a < K1 γ
4−p

2 K1 γ
4−p

2 ≤ a < K2 γ
4−p

2

3 < p < 4 c < c1 c1 ≤ c < c2 Ki
1

p−3 γ
4−p

2(p−3)

a
1

p−3

4.3 Proof of Theorem 1.5

Considering a sequence (un) ⊂ S(c) such that C(un) = 1 andA(un) → ∞, we deduce from (4.6) that for

any a > 0 and c > 0 there always exists a u ∈ S(c) such that us 6∈ Λ(c) for any s > 0. For this reason we

shall localized our search of critical points into the subset of S(c) given by

V = {u ∈ S(c) | (t∗u)
2A(u) > k0}.

The following result gives an alternative characterization of V and some first properties.
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Lemma 4.9. Assume that γ < 0, a > 0 and p < 4. We have

1. u ∈ V ⇐⇒ inft>0Q(ut) = Q(ut
∗

u) < 0.

2. If a > K1γ
4−p
2 c3−p, then V is an open, not empty subset in S(c).

Proof. By definition, u ∈ V if and only if

(4.16) A(ut
∗

u) > k0 =
(p− 2)

(4− p)

γc2

4
.

But (4.16) is equivalent to

(4.17) A(ut
∗

u) +
γc2

4
<

2

p− 2
A(ut

∗

u)

and recording that by definition of t∗u,

2

p− 2
A(ut

∗

u) = a
(p− 2)

p
C(ut

∗

u)

it is also equivalent to

A(ut
∗

u)a
(p− 2)

p
C(ut

∗

u) +
γc2

4
< 0

namely to Q(ut
∗

u) < 0. This proves the first point. Now, arguing as in the proof of Lemma 4.1, we see that

if a > K1γ
4−p

2 c3−p, there exists u ∈ S(c) such that Q(u) < 0 proving that V is non empty. The fact that

V is open in S(c), follows from the continuity of the map u 7→ t∗u.

Remark 4.10. For future reference note that it can be checked, by direct calculations, that if Q(u) = 0 and

A(u) = k0 then t∗u = 1 and thus u /∈ V .

Our next result can be deduced from the characterization of V given in Lemma 4.9 but we provide here

a proof directly based on the definition of V .

Lemma 4.11. Assume that γ < 0 and p < 4. Let a > K1γ
4−p

2 c3−p, then for any u ∈ V , we have that

us ∈ V for any s > 0.

Proof. Let u ∈ V , namely u ∈ S(c) and (t∗u)
2A(u) > k0. We define v = us and we evaluate

t∗v =
[

a
(p− 2)2

2p

C(v)

A(v)

]1/(4−p)

=
[ (s)p−2

(s)2
a
(p− 2)2

2p

C(u)

A(u)

]1/(4−p)

=
t∗u
s
.

It follows that

t∗v
2A(v) =

(t∗u)
2

s2
s2A(u) = (t∗u)

2A(u) > k0

and thus v ∈ V .

Let us now denote

Λ+(c) = {u ∈ V | g′u(1) = 0, g′′u(1) > 0},

Λ0(c) = {u ∈ V | g′u(1) = 0, g′′u(1) = 0},

Λ−(c) = {u ∈ V | g′u(1) = 0, g′′u(1) < 0}.

Observe that Λ0(c) = ∅ by Lemma 4.5 and Remark 4.10.
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Lemma 4.12. Let a > K1γ
4−p

2 c3−p. For any u ∈ V , there exists

1. a unique s+u > 0 such that us
+
u ∈ Λ+(c). Such s+u is a strict local minimum point for gu.

2. a unique s−u > 0 such that us
−

u ∈ Λ−(c). Such s−u is a strict local maximum point for gu.

Proof. Fix u ∈ V . Since (t∗u)
2A(u) > k0, we deduce that

g′u(t
∗
u) =

1

t∗u

(

A(ut
∗

u) +
γc2

4
− a

(p− 2)

p
C(ut

∗

u)
)

=
1

t∗u

(

A(ut
∗

u) +
γc2

4
−

2

(p− 2)
A(ut

∗

u)
)

=
1

t∗u

(γc2

4
−

(4− p)

(p− 2)
t∗u

2A(u)
)

< 0.(4.18)

Moreover by (4.4) we have that for any t ∈ (0, t∗u) we have

g′u(t) =
1

t

(

A(ut) +
γc2

4
− a

(p− 2)

p
C(ut)

)

<
1

t

(

A(ut) +
γc2

4
−

2

(p− 2)
A(ut)

)

=
1

t

(γc2

4
−

(4− p)

(p− 2)
t2A(u)

)

.(4.19)

By (4.19) we infer that there exists δ > 0 such that for any t ∈ (t∗u − δ, t∗u), g
′
u(t) < 0 and thus gu(t) is

decreasing in (t∗u− δ, t∗u). Taking into account that the function gu(t) → −∞ as t→ 0+ and gu(t) → +∞
as t → +∞, we conclude that there exists at least a critical point s+u > t∗u which is a local minimum point

of gu and a critical point s−u < t∗u which is a local maximum point of gu.

Since s+u > t∗u, from (4.5) we derive that

(4.20) 2(s+u )
2A(u)− a

(p− 2)2

p
(s+u )

p−2C(u) > 0.

Moreover from (4.20) and the fact that g′u(s
+
u ) = 0, we derive that

g′′u(s
+
u ) =

1

(s+u )2

(

A(us
+
u )−

γc2

4
− a

(p− 2)(p− 3)

p
C(us

+
u )

)

(4.21)

=
1

(s+u )2

(

2(s+u )
2A(u)− a

(p− 2)2

p
(s+u )

p−2C(u)
)

> 0(4.22)

Therefore s+u is a strict minimum point for gu and us
+
u ∈ Λ+(c).

We have to show that s+u is unique. By contradiction we assume that there exists z+u > 0 an other

critical point of gu which is a local minimum point.

Firstly we observe that if 0 < z+u < t∗u, then from g′u(z
+
u ) = 0 and (4.4) it results

g′′u(z
+
u ) =

1

(z+u )2

(

2(z+u )
2A(u)− a

(p− 2)2

p
(z+u )

p−2C(u)
)

< 0(4.23)

which is a contradiction. This implies that z+u > t∗u and thus arguing as before we have g′′u(z
+
u ) < 0 namely

uz
∗

u ∈ Λ+(c). We derive the existence of an other critical point θu > t∗u, which is a local maximum for gu.

Taking into account (4.5), we again deduce g′′u(θu) > 0, which is a contradiction. Therefore the point s+u is

unique.

Now a direct adaptation of the argument used for s−u leads to conclude that s+u > 0 is the unique local

maximum for gu.
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For future reference note

Lemma 4.13. Assume that γ < 0 and p < 4. If a > K1 γ
4−p

2 c3−p, the maps u ∈ V 7→ su+ ∈ R and

u ∈ V 7→ su− ∈ R are of class C1.

Proof. It is a direct application of the Implicit Function Theorem on the C1 function Ψ : R × V →
R, defined by Ψ(s, u) = g′u(s), taking into account that Ψ(s±u , u) = 0, ∂sΨ(s+u , u) = g′′u(s

+
u ) > 0,

∂sΨ(s+u , u) = g′′u(s
−
u ) < 0 and Λ0(c) = ∅ by Lemma 4.5 and Remark 4.10.

Lemma 4.14. Let γ < 0 and p < 4. Assume that a > K1γ
4−p

2 c3−p, then Λ(c) ∩ V is a submanifold, of

class C1, of codimension 2 of X and a submanifold of codimension 1 in S(c).

Proof. Note that the assumption a > K1γ
4−p

2 c3−p is just used to guarantee that V is an open, not empty

subset in S(c). By definition, u ∈ Λ(c) if and only if G(u) := ‖u‖22 − c = 0 and Q(u) = 0. It is easy to

check that G,Q are of C1 class. Hence we only have to prove that for any u ∈ Λ(c),

(dG(u), dQ(u)) : X → R
2 is surjective.

If this failed, we would have that dG(u) and dQ(u) are linearly dependent, which implies that there exists

a ν ∈ R such that for any ϕ ∈ X ,

2

∫

RN

∇u · ∇ϕdx − a(p− 2)

∫

RN

|u|p−2uϕdx = 2ν

∫

RN

uϕdx,

namely that u solves

−∆u− a
(p− 2)

2
|u|p−2u = νu.

At this point from Lemma 2.7 we deduce that

(4.24) A(u) =
a(p− 2)2

2p
C(u).

Then on one hand, sinceQ(u) = 0 we obtain thatA(u) = k0. On the other hand (4.24) implies that t∗u = 1.

Thus, from the definition of V , one deduce that u /∈ V which contradicts our assumption.

Lemma 4.15. Assume that γ < 0, a > 0 and p < 4. If a < K2γ
4−p

2 c3−p then it holds that Λ(c) ⊂ V . In

particular Λ(c) is a submanifold, of class C1, of codimension 2 of X and a submanifold of codimension 1
in S(c).

Proof. If u ∈ Λ(c), then φu(1) = Q(u) = 0. Since t∗u is the minimum point of φu, we deduce that

Q(ut
∗

u) = φu(t
∗
u) ≤ 0. Since a < K2γ

4−p

2 c3−p we deduce from Lemma 4.4 and 4.5 that Q(ut
∗

u) = 0 is

not possible. Thus Q(ut
∗

u) < 0 and we get from Lemma 4.9 that u ∈ V .

From now on we assume that a < K2 γ
4−p

2 c3−p. In view of Lemma 4.3 we can define

γ+(c) := sup
Λ+(c)

F (u) and γ−(c) := sup
Λ−(c)

F (u).

Aiming to prove Theorem 1.5 we shall establish the existence of a Palais-Smale sequence (un) ⊂ Λ+(c)
(respectively (un) ⊂ Λ−(c)) for F restricted to S(c). Arguing as in Section 4, we define the two functionals

I+ : V 7→ R by I+(u) = F (us
+
u ) and I− : V 7→ R by I−(u) = F (us

−

u ).

By Lemma 4.13, the maps u 7→ su+ and u 7→ su− are of class C1 and thus the functionals I+ and I− are

of class C1. As in Section 4, we can prove the following results.
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Lemma 4.16. The maps TuV → T
us

+
u
V defined by ψ → ψs

+
u and TuV → T

us
−

u
V defined by ψ → ψs

−

u

are isomorphisms.

Lemma 4.17. We have that dI+(u)[ψ] = dF (us
+
u )[ψs

+
u ] for any u ∈ V , ψ ∈ TuV and dI−(u)[ψ] =

dF (us
−

u )[ϕs
−

u ] for any u ∈ V and ψ ∈ TuV .

In our next lemma I± denotes either I+ or I− and accordingly Λ±(c) denotes Λ+(c) (or Λ−(c)) and

su = s+u (or su = s−u ). This lemma is crucial to guarantee that it is possible to develop a minimax argument

inside V .

Lemma 4.18. Assume that γ < 0, p < 4 and let

K1 γ
4−p

2 c3−p < a < K2 γ
4−p

2 c3−p.

If (vn) ⊂ V is a sequence with vn → v0 ∈ ∂V strongly in X , then I±(vn) → −∞.

Proof. Let (vn) ⊂ V such that vn → v0 ∈ ∂V strongly in X , as n→ ∞.

Since vn ∈ V , we have (t∗vn)
2A(vn) > k0 and s−vn ≤ t∗vn ≤ s+vn . Moreover since v0 ∈ ∂V , we have

(t∗v0)
2A(v0) = k0, t∗v0 6= 0 and lim sup s−vn ≤ t∗v0 ≤ lim inf s+vn .

Now if (s+vn) is bounded from above, then up to a subsequence, it converges to s̄ 6= 0 and t∗v0 ≤ s̄.

Moreover since vn → v0 strongly in X and Q(v
s+vn
n ) = 0, we infer that Q(vs̄0) = 0.

At this point we deduce from Lemma 4.15 that vs̄0 ∈ V and thus, by Lemma 4.11 we have v0 ∈ V in

contradiction with the assumption that v0 ∈ ∂V .

We conclude that (s+vn) is not bounded from above and thus, up to a subsequence, s+vn → +∞, as

n→ ∞. Taking into account that

I+(vn) = G(v
s+vn
n ) = −

4− p

2(p− 2)
(s+vn)

2 A(vn)−
γ

4
V (vn) + c2

γ

4
log(s+vn)− γ

c2

4(p− 2)

we deduce that I+(vn) → −∞, as n→ ∞.

On the other side, up to subsequences, (s−vn) converges to s̄, as n → ∞. If s̄ 6= 0, we can argue as

before, deriving a contradiction. It follows that s−vn → 0+ as n→ ∞. Taking into account that

I−(vn) = G(v
s−vn
n ) = −

4− p

2(p− 2)
(s−vn)

2 A(vn)−
γ

4
V (vn) + c2

γ

4
log(s−vn)− γ

c2

4(p− 2)

we deduce that I−(vn) → −∞, as n→ ∞.

Lemma 4.19. Assume that γ < 0, p < 4 and that K1 γ
4−p

2 c3−p < a < K2 γ
4−p

2 c3−p. Let G be a

homotopy stable family of compact subsets of V with closed boundaryB and let

e±G := sup
A∈G

min
u∈A

I±(u).

Suppose that B is contained in a connected component of Λ±(c) and that

min{inf I±(B), 0} > e±G > −∞.

Then there exists a Palais-Smale sequence (un) ⊂ Λ±(c) for F restricted to V at level e±G .

Proof. Take (Dn) ⊂ G such that minu∈Dn
I±(u) > e±G − 1

n and

η : [0, 1]× V → V, η(t, u) = u1−t+tsu .
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Since su = 1 for any u ∈ Λ±(c), andB ⊂ Λ±(c), we have η(t, u) = u for (t, u) ∈ ({0}×V )∪([0, 1]×B).
Observe also that η is continuous. Then, using the definition of G, we have

An := η({1} ×Dn) = {usu : u ∈ Dn} ∈ G.

Also notice that An ⊂ Λ±(c) for all n ∈ N. Let v ∈ An, i.e. v = usu for some u ∈ Dn and I±(u) =
I±(v). In particular we have minAn

I± = minDn
I± and therefore (An) ⊂ Λ±(c) is another maximizing

sequence of e±G . Now by Lemma 4.18, we derive that the superlevels of (I±)d are complete for any d ∈ R.

A direct adaption of the minimax principle [15, Theorem 3.2] implies the existence of a Palais-Smale

sequence (ũn) for I± on V at level e±G such that distX(ũn, An) → 0 as n → ∞. Now writing sn = sũn

to shorten the notations, we set un = ũsnn ∈ Λ±(c). We claim that there exists C > 0 such that,

(4.25)
1

C
≤ s2n ≤ C

for n ∈ N large enough. Indeed, notice first that

(4.26) s2n =
A(un)

A(ũn)
.

By Gagliardo-Nirenberg inequality and

(4.27) C(un) =
p

a(p− 2)

[

A(un) +
γc2

4

]

there exists C > 0 such that

(4.28) C ≤ A(un)

for n ∈ N. Moreover since F (un) = I±(ũn) → e±G , we know from Lemma 4.3 (ii), that there exists

M > 0 such that A(un) ≤ M . Also, since (An) ⊂ Λ±(c), is a maximizing sequence for e±G , we deduce,

still by Lemma 4.3 (ii), that (An) is uniformly bounded inH and thus from distX(ũn, An) → 0 as n→ ∞,

it implies that supnA(ũn) < ∞. Moreover since An is compact for every n ∈ N, there exists a vn ∈ An
such that distX(ũn, An) = ‖vn − ũn‖X and, using (4.28), we deduce that

A(ũn) ≥ A(vn)−A(ũn − vn) ≥ K

for some K > 0 and this proves the claim.

Next, we show that (un) ⊂ Λ±(c) is a Palais-Smale sequence for F on V at level e±G .

Denoting by ‖.‖∗ the dual norm of (Tun
S(c))∗ and recalling that V is open in S(c), we have

‖dF (un)‖∗ = sup
ψ∈TunV, ‖ψ‖≤1

|dF (un)[ψ]| = sup
ψ∈TunV, ‖ψ‖≤1

|dF (un)[(ψ
−sn)sn ]|.

From Lemma 3.14 we know that Tũn
V → Tun

V defined by ψ → ψsn is an isomorphism. Also, from

Lemma 3.15 we have that dI±(ũn)[ψ
−sn ] = dF (un)[(ψ

−sn)sn ]. It follows that

(4.29) ‖dF (un)‖∗ = sup
ψ∈TunV, ‖ψ‖≤1

|dI±(ũn)[ψ
−sn ]|.

At this point it is easily seen from (3.15) that (increasing C if necessary) ‖ψ−sn‖ ≤ C‖ψ‖ ≤ C and we

deduce from (4.29) that (un) ⊂ Λ±(c) is a Palais-Smale sequence for F on V at level e±G .
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Lemma 4.20. Assume that γ < 0, p < 4 and that

K1 γ
4−p

2 c3−p < a < K2 γ
4−p

2 c3−p.

There exists a Palais-Smale sequence (un) ⊂ Λ+(c) for F restricted to V at the level γ+(c) and a Palais-

Smale sequence (un) ⊂ Λ−(c) for F restricted to V at the level γ−(c).

Proof. Let us assume that (un) ⊂ Λ+(c), the other case can be treated similarly. We use Lemma 4.19

taking the set Ḡ of all singletons belonging to V and B = ∅. It is clearly a homotopy stable family of

compact subsets of V (without boundary). Since

e+
Ḡ
:= sup

A∈Ḡ

min
u∈A

I+(u) = sup
u∈V

I+(u) = γ+(c)

the lemma follows directly from Lemma 4.19.

Now we are ready to give

Proof of Theorem 1.5. We give the proof for u+, the one for u− is almost identical. Let (un) ⊂ Λ+(c)
be a Palais-Smale sequence for F restricted to V at level γ+(c) whose existence is insured by Lemma

4.20. By Lemma 4.3 we know that (un) is bounded in H and that (V1(un)) stays bounded. Also since the

functional F is translational invariant, reasoning as in the proof of Lemma 3.1 it is not restrictive to assume

that (un) ⊂ Λ+(c) is bounded in X . At this point we conclude using Lemma 2.8.
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