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Abstract

In the weighted flow-time problem on a single machine, we are given a set of n jobs, where
each job has a processing requirement pj , release date rj and weight wj . The goal is to find a
preemptive schedule which minimizes the sum of weighted flow-time of jobs, where the flow-time
of a job is the difference between its completion time and its released date. We give the first
pseudo-polynomial time constant approximation algorithm for this problem. The algorithm
also extends directly to the problem of minimizing the ℓp norm of weighted flow-times. The
running time of our algorithm is polynomial in n, the number of jobs, and P , which is the
ratio of the largest to the smallest processing requirement of a job. Our algorithm relies on a
novel reduction of this problem to a generalization of the multi-cut problem on trees, which we
call Demand MultiCut problem. Even though we do not give a constant factor approximation
algorithm for the Demand MultiCut problem on trees, we show that the specific instances of
Demand MultiCut obtained by reduction from weighted flow-time problem instances have more
structure in them, and we are able to employ techniques based on dynamic programming. Our
dynamic programming algorithm relies on showing that there are near optimal solutions which
have nice smoothness properties, and we exploit these properties to reduce the size of DP table.
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1 Introduction

Scheduling jobs to minimize the average waiting time is one of the most fundamental problems in
scheduling theory with numerous applications. We consider the setting where jobs arrive over time
(i.e., have release dates), and need to be processed such that the average flow-time is minimized.
The flow-time, Fj of a job j, is defined as the difference between its completion time, Cj , and
release date, rj . It is well known that for the case of single machine, the SRPT policy (Shortest
Remaining Processing Time) gives an optimal algorithm for this objective.

In the weighted version of this problem, jobs have weights and we would like to minimize
the weighted sum of flow-time of jobs. However, the problem of minimizing weighted flow-time
(WtdFlowTime) turns out to be NP-hard and it has been widely conjectured that there should a
constant factor approximation algorithm (or even PTAS) for it. In this paper, we make substantial
progress towards this problem by giving the first constant factor approximation algorithm for this
problem in pseudo-polynomial time. More formally, we prove the following result.

Theorem 1.1. There is a constant factor approximation algorithm for WtdFlowTime where the
running time of the algorithm is polynomial in n and P . Here, n denotes the number of jobs in
the instance, and P denotes the ratio of the largest to the smallest processing time of a job in the
instance respectively.

We obtain this result by reducing WtdFlowTime to a generalization of the multi-cut problem on
trees, which we call Demand MultiCut. The Demand MultiCut problem is a natural generalization
of the multi-cut problem where edges have sizes and costs, and input paths (between terminal pairs)
have demands. We would like to select a minimum cost subset of edges such that for every path in
the input, the total size of the selected edges in the path is at least the demand of the path. When
all demands and sizes are 1, this is the usual multi-cut problem. The natural integer program
for this problem has the property that all non-zero entries in any column of the constraint matrix
are the same. Such integer programs, called column restricted covering integer programs, were
studied by Chakrabarty et al. [7]. They showed that one can get a constant factor approximation
algorithm for Demand MultiCut provided one could prove that the integrality gap of the natural
LP relaxations for the following two special cases is constant – (i) the version where the constraint
matrix has 0-1 entries only, and (ii) the priority version, where paths and edges in the tree have
priorities (instead of sizes and demands respectively), and we want to pick minimum cost subset of
edges such that for each path, we pick at least one edge in it of priority which is at least the priority
of this path. Although the first problem turns out to be easy, we do not know how to round the LP
relaxation of the priority version. This is similar to the situation faced by Bansal and Pruhs [4],
where they need to round the priority version of a geometric set cover problem. They appeal to
the notion of shallow cell complexity [8] to get an O(log logP )-approximation for this problem. It
turns out the shallow cell complexity of the priority version of Demand MultiCut is also unbounded
(depends on the number of distinct priorities) [8], and so it is unlikely that this approach will yield
a constant factor approximation.

However, the specific instances of Demand MultiCut produced by our reduction have more
structure, namely each node has at most 2 children, each path goes from an ancestor to a descendant,
and the tree has O(log(nP )) depth if we shortcut all degree 2 vertices. We show that one can
effectively use dynamic programming techniques for such instances. We show that there is a near
optimal solution which has nice “smoothness” properties so that the dynamic programming table
can manage with storing small amount of information.
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1.1 Related Work

There has been a lot of work on the WtdFlowTime problem on a single machine, though polynomial
time constant factor approximation algorithm has remained elusive. Bansal and Dhamdhere [1] gave
an O(logW )-competitive on-line algorithm for this problem, where W is the ratio of the maximum
to the minimum weight of a job. They also gave a semi-online (where the algorithm needs to know
the parameters P and W in advance) O(log(nP ))-competitive algorithm for WtdFlowTime, where
P is the ratio of the largest to the smallest processing time of a job. Chekuri et al. [10] gave a
semi-online O(log2 P )-competitive algorithm.

Recently, Bansal and Pruhs [4] made significant progress towards this problem by giving an
O(log logP )-approximation algorithm. In fact, their result applies to a more general setting where
the objective function is

∑

j fj(Cj), where fj(Cj) is any monotone function of the completion time
Cj of job j. Their work, along with a constant factor approximation for the generalized caching
problem [5], implies a constant factor approximation algorithm for this setting when all release
dates are 0. Chekuri and Khanna [9] gave a quasi-PTAS for this problem, where the running time
was O(nOǫ(logW logP )). In the special case of stretch metric, where wj = 1/pj , PTAS is known [6, 9].
The problem of minimizing (unweighted) ℓp norm of flow-times was studied by Im and Moseley [12]
who gave a constant factor approximation in polynomial time.

In the speed augmentation model introduced by Kalyanasundaram and Pruhs [13], the algorithm
is given (1 + ε)-times extra speed than the optimal algorithm. Bansal and Pruhs [3] showed that
Highest Density First (HDF) is O(1)-competitive for weighted ℓp norms of flow-time for all values
of p ≥ 1.

The multi-cut problem on trees is known to be NP-hard, and a 2-approximation algorithm was
given by Garg et al. [11]. As mentioned earlier, Chakrabarty et al. [7] gave a systematic study
of column restricted covering integer programs (see also [2] for follow-up results). The notion of
shallow cell complexity for 0-1 covering integer programs was formalized by Chan et al. [8], where
they relied on and generalized the techniques of Vardarajan [14].

2 Preliminaries

An instance of the WtdFlowTime problem is specified by a set of n jobs. Each job has a processing
requirement pj, weight wj and release date rj . We assume wlog that all of these quantities are
integers, and let P denote the ratio of the largest to the smallest processing requirement of a job.
We divide the time line into unit length slots – we shall often refer to the time slot [t, t+ 1] as slot
t. A feasible schedule needs to process a job j for pj units after its release date. Note that we allow
a job to be preempted. The weighted flow-time of a job is defined as wj · (Cj − rj), where Cj is the
slot in which the job j finishes processing. The objective is to find a schedule which minimizes the
sum over all jobs of their weighted flow-time.

Note that any schedule would occupy exactly T =
∑

j pj slots. We say that a schedule is busy if
it does not leave any slot vacant even though there are jobs waiting to be finished. We can assume
that the optimal schedule is a busy schedule (otherwise, we can always shift some processing back
and improve the objective function). We also assume that any busy schedule fills the slots in [0, T ]
(otherwise, we can break it into independent instances satisfying this property).

We shall also consider a generalization of the multi-cut problem on trees, which we call the
Demand MultiCut problem. Here, edges have cost and size, and demands are specified by ancestor-
descendant paths. Each such path has a demand, and the goal is to select a minimum cost subset
of edges such that for each path, the total size of selected edges in the path is at least the demand
of this path.
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In Section 2.1, we describe a well-known integer program for WtdFlowTime. This IP has variables
xj,t for every job j, and time t ≥ rj , and it is supposed to be 1 if j completes processing after time
t. The constraints in the IP consist of several covering constraints. However, there is an additional
complicating factor that xj,t ≤ xj,t−1 must hold for all t ≥ rj. To get around this problem, we
propose a different IP in Section 3. In this IP, we define variables of the form y(j, S), where S
are exponentially increasing intervals starting from the release date of j. This variable indicates
whether j is alive during the entire duration of S. The idea is that if the flow-time of j lies between
2i and 2i+1, we can count 2i+1 for it, and say that j is alive during the entire period [rj+2i, rj+2i+1].
Conversely, if the variable y(j, S) is 1 for an interval of the form [rj+2i, rj+2i+1], we can assume (at
a factor 2 loss) that it is also alive during [rj , rj+2i]. This allows us to decouple the y(j, S) variables
for different S. By an additional trick, we can ensure that these intervals are laminar for different
jobs. From here, the reduction to the Demand MultiCut problem is immediate (see Section 4 for
details). In Section 5, we show that the specific instances of Demand MultiCut obtained by such
reductions have additional properties. We use the property that the tree obtained from shortcutting
all degree two vertices is binary and has O(log(nP )) depth. We shall use the term segment to define
a maximal degree 2 (ancestor-descendant) path in the tree. So the property can be restated as –
any root to leaf path has at most O(log(nP )) segments. We give a dynamic programming algorithm
for such instances. In the DP table for a vertex in the tree, we will look at a sub-instance defined
by the sub-tree below this vertex. However, we also need to maintain the “state” of edges above it,
where the state means the ancestor edges selected by the algorithm. This would require too much
book-keeping. We use two ideas to reduce the size of this state – (i) We first show that the optimum
can be assumed to have certain smoothness properties, which cuts down on the number of possible
configurations. The smoothness property essentially says that the cost spent by the optimum on a
segment does not vary by more than a constant factor as we go to neighbouring segments, (ii) If
we could spend twice the amount spent by the algorithm on a segment S, and select low density
edges, we could ignore the edges in a segment S′ lying above S in the tree.

2.1 An integer program

We describe an integer program for the WtdFlowTime problem. This is well known (see e.g. [4]), but
we give details for sake of completeness. We will have binary variables xj,t for every job j and time
t, where rj ≤ t ≤ T . This variable is meant to be 1 iff j is alive at time t, i.e., its completion time
is at least t. Clearly, the objective function is

∑

j

∑

t∈[rj ,T ]wjxj,t. We now specify the constraints

of the integer program. Consider a time interval I = [s, t], where 0 ≤ s ≤ t ≤ T , and s and t are
integers. Let l(I) denote the length of this time interval, i.e., t− s. Let J(I) denote the set of jobs
released during I, i.e., {j : rj ∈ I}, and p(J(I)) denote the total processing time of jobs in J(I).
Clearly, the total volume occupied by jobs in J(I) beyond I must be at least p(J(I))− l(I). Thus,
we get the following integer program: (IP1)

min
∑

j

∑

t∈[rj ,T ]

wjxj,t (1)

∑

j∈J(I)

xj,tpj ≥ p(J(I))− l(I) for all intervals I = [s, t], 0 ≤ s ≤ t ≤ T (2)

xj,t ≤ xj,t−1 for all jobs j, and time t, rj < t ≤ T (3)

xj,t ∈ {0, 1} for all j, t

It is easy to see that this is a relaxation – given any schedule, the corresponding xj,t variables will
satisfy the constraints mentioned above, and the objective function captures the total weighted
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flow-time of this schedule. The converse is also true – given any solution to the above integer
program, there is a corresponding schedule of the same cost.

Theorem 2.1. Suppose xj,t is a feasible solution to (IP1). Then, there is a schedule for which the
total weighted flow-time is equal to the cost of the solution xj,t.

Proof. We show how to build such a schedule. The integral solution x gives us deadlines for each
job. For a job j, define dj as one plus the last time t such that xj,t = 1. Note that xj,t = 1 for
every t ∈ [rj , dj). We would like to find a schedule which completes each job by time dj : if such a
schedule exists, then the weighted flow-time of a job j will be at most

∑

t≥rj
wjxj,t, which is what

we want.
We begin by observing a simple property of a feasible solution to the integer program.

Claim 2.2. Consider an interval I = [s, t], 0 ≤ s ≤ t ≤ T . Let J ′ be a subset of J(I) such that
p(J ′) > l(I). If x is a feasible solution to (IP1), then there must exist a job j ∈ J ′ such that
xj,t = 1.

Proof. Suppose not. Then the LHS of constraint (2) for I would be at most p(J(I) \ J ′), whereas
the RHS would be p(J ′) + p(J(I) \ J ′)− l(I) > p(J(I) \ J ′), a contradiction.

It is natural to use the Earliest Deadline First rule to find the required schedule. We build the
schedule from time t = 0 onwards. At any time t, we say that a job j is alive if rj ≤ t, and j
has not been completely processed by time t. Starting from time t = 0, we process the alive job
with earliest deadline dj during [t, t+ 1]. We need to show that every job will complete before its
deadline. Suppose not. Let j be the job with the earliest deadline which is not able to finish by
dj . Let t be first time before dj such that the algorithm processes a job whose deadline is more
than dj during [t− 1, t], or it is idle during this time slot (if there is no such time slot, it must have
busy from time 0 onwards, and so set t to 0). The algorithm processes jobs whose deadline is at
most dj during [t, dj ] – call these jobs J ′. We claim that jobs in J ′ were released after t – indeed if
such a job was released before time t, it would have been alive at time t− 1 (since it gets processed
after time t). Further its deadline is at most dj , and so, the algorithm should not be processing a
job whose deadline is more than dj during [t− 1, t] (or being idle). But now, consider the interval
I = [t, dj ]. Observe that l(I) < p(J ′) – indeed, j ∈ J ′ and it is not completely processed during I,
but the algorithm processes jobs from J ′ only during I. Claim 2.2 now implies that there must be
a job j′ in J ′ for which xj′,dj = 1 – but then the deadline of j′ is more than dj, a contradiction.

3 A Different Integer Program

We now write a weaker integer program, but it has more structure in it. We first assume that T is a
power of 2 – if not, we can pad the instance with a job of zero weight (this will increase the ratio P
by at most a factor n only). Let T be 2ℓ. We now divide the time line into nested dyadic segments.
A dyadic segment is an interval of the form [i · 2s, (i+ 1) · 2s] for some non-negative integers i and
s (we shall use segments to denote such intervals to avoid any confusion with intervals used in the
integer program). For s = 0, . . . , ℓ, we define Ss as the set of dyadic segments of length 2s starting
from 0, i.e., {[0, 2s], [2s, 2 · 2s], . . . , [i · 2s, (i + 1) · 2s], . . . , [T − 2s, T ]}. Clearly, any segment of Ss
is contained inside a unique segment of Ss+1. Now, for every job j we shall define a sequence of
dyadic segments Seg(j). The sequence of segments in Seg(j) partition the interval [rj , T ]. The
construction of Seg(j) is described in Figure 1 (also see the example in Figure 2). It is easy to show
by induction on s that the parameter t at the beginning of iteration s in Step 2 of the algorithm is a
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multiple of 2s. Therefore, the segments added during the iteration for s belong to Ss. Although we
do not specify for how long we run the for loop in Step 2, we stop when t reaches T (this will always
happen because t takes values from the set of end-points in the segments in ∪sSs). Therefore the
set of segments in Seg(j) are disjoint and cover [rj , T ].

Algorithm FormSegments(j)
1. Initialize t← rj.
2. For s = 0, 1, 2, . . . ,

(i) If t is a multiple of 2s+1,
add the segments (from the set Ss) [t, t+ 2s], [t+ 2s, t+ 2s+1] to Seg(j)
update t← t+ 2s+1.

(ii) Else add the segment (from the set Ss) [t, , t+ 2s] to Seg(j).
update t← t+ 2s.

Figure 1: Forming Seg(j).

rj2

S4

S2

S3

j1

j2

S1

rj1

Figure 2: The dyadic segments S1, . . . ,S4 and the corresponding Seg(j1), Seg(j2) for two jobs j1, j2

For a job j and segment S ∈ Seg(j), we shall refer to the tuple (j, S) as a job-segment. For a
time t, we say that t ∈ (j, S) (or (j, S) contains t) if [t, t+ 1] ⊆ S. We now show a crucial nesting
property of these segments.

Lemma 3.1. Suppose (j, S) and (j′, S′) are two job-segments such that there is a time t for which
t ∈ (j, S) and t ∈ (j′, S′). Suppose rj ≤ rj′, and S ∈ Ss, S ∈ Ss′ . Then s ≥ s′.

Proof. We prove this by induction on t. When t = rj′ , this is trivially true because s′ would be 0.
Suppose it is true for some t ≥ rj′ . Let (j, S) and (j′, S′) be the job segments containing t. Suppose
S ∈ Ss, S

′ ∈ Ss′ . By induction hypothesis, we know that s ≥ s′. Let (j′, S̃′) be the job-segment
containing t + 1, and let S̃′ ∈ Ss̃′ (S

′ could be same as S̃′). We know that s̃′ ≤ s′ + 1. Therefore,
the only interesting case is s = s′ and s̃′ = s′ + 1. Since s = s′, the two segments S and S′ must
be same (because all segments in Ss are mutually disjoint). Since t ∈ S, t + 1 /∈ S, it must be
that S = [l, t + 1] for some l. The algorithm for constructing Seg(j′) adds a segment from Ss′+1

after adding S′ to Seg(j′). Therefore t+ 1 must be a multiple of 2s
′+1. What does the algorithm

for constructing Seg(j) do after adding S to Seg(j)? If it adds a segment from Ss+1, then we are
done again. Suppose it adds a segment from Ss. The right end-point of this segment would be
(t+1)+2s. After adding this segment, the algorithm would add a segment from Ss+1 (as it cannot
add more than 2 segments from Ss to Seg(j)). But this can only happen if (t+1)+2s is a multiple
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of 2s+1 – this is not true because (t+ 1) is a multiple of 2s+1. Thus we get a contradiction, and so
the next segment (after S) in Seg(j) must come from Ss+1 as well.

We now write a new IP. The idea is that if a job j is alive at some time t, then we will keep
it alive during the entire duration of the segment in Seg(j) containing t. Since the segments in
Seg(j) have lengths in exponentially increasing order (except for two consecutive segments), this
will not increase the weighted flow-time by more than a constant factor. For each job segment
(j, S) we have a binary variable y(j, S), which is meant to be 1 iff the job j is alive during the
entire duration S. For each job segment (j, S), define its weight w(j, S) as wj · l(S) – this is the
contribution towards weighted flow-time of j if j remains alive during the entire segment S. We
get the following integer program (IP2):

min
∑

j

∑

s

w(j, S)y(j, S) (4)

∑

(j,S):j∈J(I),t∈(j,S)

y(j, S)pj ≥ p(J(I)) − l(I) for all intervals I = [s, t], 0 ≤ s ≤ t ≤ T (5)

y(j, S) ∈ {0, 1} for all job segments (j, S)

Observe that for any interval I, the constraint (5) for I has precisely one job segment for
every job which gets released in I. Another interesting feature of this IP is that we do not have
constraints corresponding to (3), and so it is possible that y(j, S) = 1 and y(j, S′) = 0 for two
job segments (j, S) and (j, S′) even though S′ appears before S in Seg(j). We now relate the two
integer programs.

Lemma 3.2. Given a solution x for (IP1), we can construct a solution for (IP2) of cost at most 8
times the cost of x. Similarly, given a solution y for (IP2), we can construct a solution for (IP1)
of cost at most 4 times the cost of y.

Proof. Suppose we are given a solution x for (IP1). For every job j, let dj be the highest t for
which xjt = 1. Let the segments in Seg(j) (in the order they were added) be S1, S2, . . .. Let Sij

be the segment in Seg(j) which contains dj . Then we set y(j, Si) to 1 for all i ≤ ij , and y(j, Si) to
0 for all i > ij . This defines the solution y. First we observe that y is feasible for (IP2). Indeed,
consider an interval I = [s, t]. If xjt = 1 and j ∈ J(I), then we do have y(j, S) = 1 for the job
segment (j, S) containing t. Therefore, the LHS of constraints (2) and (5) for I are same. Also,
observe that

∑

S∈Seg(j)

y(j, S)w(j, S) =

ij
∑

i=1

wj · l(Si) ≤ wj4l(Sij ),

where the last inequality follows from the fact that there are at most two segments from any
particular set Ss in Seg(j), and so, the length of every alternate segment in Seg(j) increases

exponentially. So,
∑ij

i=1 l(si) ≤ 2
(

l(Sij ) + l(Sij−2) + l(Sij−4) + · · ·
)

≤ 4 · l(Sij). Finally observe
that l(Sij ) ≤ 2(dj − rj). Indeed, the length of Sij−1

is at least half of that of Sij . So,

l(Sij ) ≤ 2l(Sij−1) ≤ 2(dj − rj).

Thus, the total contribution to the cost of y from job segments corresponding to j is at most
8wj(dj − rj) = 8wj

∑

t≥rj
xj,t. This proves the first statement in the lemma.

Now we prove the second statement. Let y be a solution to (IP2). For each job j, let Sij be the
last job segment in Seg(j) = {S1, S2, . . .} for which y(j, S) is 1. We set xj,t to 1 for every t ≤ dj ,
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where dj is the right end-point of Sij , and 0 for t > dj . It is again easy to check that x is a feasible
solution to (IP1). For a job j the contribution of j towards the cost of x is

wj(dj − rj) = wj ·

ij
∑

i=1

l(Si) ≤ 4wj · l(Sij ) ≤ 4 ·
∑

(j,S)∈Seg(j)

w(j, S)y(j, S).

The above lemma states that it is sufficient to find a solution for (IP2). Note that (IP2) is a
covering problem. It is also worth noting that the constraints (5) need to be written only for those
intervals [s, t] for which a job segment starts or ends at s or t. Since the number of job segments
is O(n log T ) = O(n log(nP )), it follows that (IP2) can be turned into a polynomial size integer
program.

4 Reduction to Demand MultiCut on Trees

We now show that (IP2) can be viewed as a covering problem on trees. We define the covering
problem, which we call Demand Multi-cut(Demand MultiCut) on trees. An instance I of this
problem consists of a tuple (T ,P, c, p, d), where T is a rooted tree, and P consists of a set of
ancestor-descendant paths. Each edge e in T has a cost ce and size pe. Each path PinP has a
demand d(P ). Our goal is to pick a minimum cost subset of vertices V ′ such that for every path
P ∈ P, the set of vertices in V ′ ∩ P have total size at least d(P ).

We now reduce WtdFlowTime to Demand MultiCut on trees. Consider an instance I ′ of WtdFlowTime
consisting of a set of jobs J . We reduce it to an instance I = (T ,P, c, p, d) of Demand MultiCut.
In our reduction, T will be a forest instead of a tree, but we can then consider each tree as an
independent problem instance of Demand MultiCut.

We order the jobs in J according to release dates (breaking ties arbitrarily) – let ≺J be this total
ordering (so, j ≺J j′ implies that rj ≤ rj′). We now define the forest T . The vertex set of T will
consist of all job segments (j, S). For such a vertex (j, S), let j′ be the job immediately preceding
j in the total order ≺J . Since the job segments in Seg(j′) partition [rj′ , T ], and rj′ ≤ rj, there is
a pair (j′, S′) in Seg(j′) such that S′ intersects S, and so contains S, by Lemma 3.1. We define
(j′, S′) as the parent of (j, S). It is easy to see that this defines a forest structure, where the root
vertices correspond to (j, S), with j being the first job in ≺. Indeed, if (j1, S1), (j2, S2), . . . , (jk, Sk)
is a sequence of nodes with (ji, Si) being the parent of (ji+1, Si+1), then j1 ≺J j2 ≺J · · · ≺J jk, and
so no node in this sequence can be repeated.

For each tree in this forest T with the root vertex being (j, S), we add a new root vertex r and
make it the parent of (j, S). We now define the cost and size of each edge. Let e = (v1, v2) be an
edge in the tree, where v1 is the parent of v2. Let v2 correspond to the job segment (j, S). Then
pe = pj and ce = we · l(S). In other words, picking edge e corresponds to selecting the job segment
(j, S).

Now we define the set of paths P. For each constraint (5) in (IP2), we will add one path in P.
We first observe the following property. Fix an interval I = [s, t] and consider the constraint (5)
corresponding to it. Let VI be the vertices in T corresponding to the job segments appearing in
the LHS of this constraint.

Lemma 4.1. The vertices in VI form a path in T from an ancestor to a descendant.

Proof. Let j1, . . . , jk be the jobs which are released in I arranged according to ≺J . Note that
these will form a consecutive subsequence of the sequence obtained by arranging jobs according
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to ≺J . Each of these jobs will have exactly one job segment (ji, Si) appearing on the LHS of this
constraint (because for any such job ji, the segments in Seg(ji) partition [rji , T ]). All these job
segments contain t, and so, these segment intersect. Now, by construction of T , it follows that the
parent of (ji, Si) in the tree T would be (ji−1, Si−1). This proves the claim.

Let the vertices in VI be v1, . . . , vk arranged from ancestor to descendant. Let v0 be the parent
of v1 (this is the reason why we added an extra root to each tree – just in case v1 corresponds to
the first job in ≺J , it will still have a parent). We add a path PI = v0, v1, . . . , vk to P – Lemma 4.1
guarantees that this will be an ancestor-descendant path. The demand d(P ) of this path is the
quantity in the RHS of the corresponding constraint (5) for the interval I. The following claim is
now easy to check.

Claim 4.2. Given a solution E to the Demand MultiCut instance I, there is a solution to (IP2)
for the instance I ′ of the same objective function value as that of E.

Proof. Consider a solution to I consisting of a set of edges E. For each edge e = (v1, v2) ∈ E where
v2 = (j, S) is the child of v1, we set y(j, S) = 1. For rest of the job segments (j, S), define y(j, S)
to be 0. Since the cost of such an edge e is equal to w(j, S), it is easy to see that the two solutions
have the same cost. Feasibility of (IP2) also follows directly from the manner in which the paths
in P are defined.

This completes the reduction from WtdFlowTime to Demand MultiCut. This reduction is poly-
nomial time because number of vertices in T is equal to the number of job segments, which is
O(n log(nP )). Each path in P goes between any two vertices in T , and there is no need to have
two paths between the same pair of vertices. Therefore the size of the instance I is polynomial in
the size of the instance I ′ of WtdFlowTime.

5 Approximation Algorithm for the Demand MultiCut problem

In this section we give a constant factor approximation algorithm for the special class of Demand
MultiCut problems which arise in the reduction from WtdFlowTime. To understand the special
structure of such instances, we begin with some definitions. Let I = (T ,P, c, p, d) be an instance of
Demand MultiCut. The density ρe of an edge e is defined as the ratio ce/pe. Let red(T ) denote the
tree obtained from T by short-cutting all non-root degree 2 vertices (see Figure 3 for an example).
There is a clear correspondence between the vertices of red(T ) and the non-root vertices in T
which do not have degree 2. In fact, we shall use V (red(T )) to denote the latter set of vertices.
The reduced height of T is defined as the height of red(T ). In this section, we prove the following
result. We say that a (rooted) tree is binary if every node has at most 2 children.

Theorem 5.1. There is a constant factor approximation algorithm for instances I = (T ,P, c, p, d)
of Demand MultiCut where T is a binary tree. The running time of this algorithm is poly(n, 2O(H), ρmax/ρmin),
where n denotes the number of nodes in T , H denotes the reduced height of T , and ρmax and ρmin

are the maximum and the minimum density of an edge in T respectively.

Remark: In the instance I above, some edges may have 0 size. These edges are not considered
while defining ρmax and ρmin.

Before we prove this theorem, let us see why it implies the main result in Theorem 1.1.
Proof of Theorem 1.1: Consider an instance I = (T ,P, c, p, d) of DemandMultiCut obtained via
reduction from an instance I ′ of WtdFlowTime. Let n′ denote the number of jobs in I ′ and P denote
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Figure 3: Tree T and the corresponding tree red(T ). Note that the vertices in red(T ) are also
present in T , and the segments in T correspond to edges in red(T ). The tree T has 4 segments,
e.g., the path between r and u.

the ratio of the largest to the smallest job size in this instance. We had argued in the previous
section that n, the number of nodes in T , is O(n′ log P ). We first perform some pre-processing on
T such that the quantites H, ρmax/ρmin do not become too large.

• Let pmax and pmin denote the maximum and the minimum size of a job in the instance I ′.
Each edge in T corresponds to a job interval in the instance I. We select all edges for which
the corresponding job interval has length at most pmin. Note that after selecting these edges,
we will contract them in T and adjust the demands of paths in P accordingly. For a fixed
job j, the total cost of such selected edges would be at most 4wjpmin ≤ 4wjpj (as in the proof
of Lemma 3.2, the corresponding job intervals have lengths which are powers of 2, and there
are at most two intervals of the same length). Note that the cost of any optimal solution for
I ′ is at least

∑

j wjpj , and so we are incurring an extra cost of at most 4 times the cost of
the optimal solution.

So we can assume that any edge in T corresponds to a job interval in I ′ whose length lies in
the range [pmin, n

′pmax], because the length of the schedule is at most n′pmax (recall that we
are assuming that there are no gaps in the schedule).

• Let cmax be the maximum cost of an edge selected by the optimal solution (we can cycle over
all n possibilities for cmax, and select the best solution obtained over all such solutions). We
remove (i.e., contract) all edges of cost more than cmax, and select all edges of cost at most
cmax/n (i.e., contract them and adjust demands of paths going through them) – the cost of
these selected edges will be at most a constant times the optimal cost. Therefore, we can
assume that the costs of the edges lie in the range [cmax/n, cmax]. Therefore, the densities of
the edges in T lie in the range [ cmax

npmax
, cmax

pmin
].

Having performed the above steps, we now modify the tree T so that it becomes a binary tree.
Recall that each vertex v in T corresponds to a dyadic interval Sv, and if w is a child of v then Sw

is contained in Sv (for the root vertex, we can assign it the dyadic interval [0, T ]). Now, consider
a vertex v with Sv of size 2s and suppose it has more than 2 children. Since the dyadic intervals
for the children are mutually disjoint and contained in Sv, each of these will be of size at most
2s−1. Let S1

v and S2
v be the two dyadic intervals of length 2s−1 contained in Sv. Consider S

1
v . Let

w1, . . . , wk be the children of v for which the corresponding interval is contained in S1
v . If k > 1, we

create a new node w below v (with corresponding interval being S1
v) and make w1, . . . , wk children
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of v. The cost and size of the edge (v,w) is 0. We proceed similarly for S2
v . Thus, each node will

now have at most 2 children. Note that we will blow up the number of vertices by a factor 2 only.
We can now estimate the reduced height H of T . Consider a root to leaf path in red(T ), and

let the vertices in this path be v1, . . . , vk. Let ei denote the parent of vi. Since each vi has two
children in T , the job interval corresponding to ei will be at least twice that for ei+1. From the
first preprocessing step above, it follows that the length of this path is bounded by log(n′P ), where
P denotes pmax/pmin. Thus, H is O(log(n′P )). It now follows from Theorem 5.1 that we can get
a constant factor approximation algorithm for the instance I in poly(n, P ) time.

We now prove Theorem 5.1 in rest of the paper.

5.1 Some Special Cases

To motivate our algorithm, we consider some special cases first. Again, fix an instance I =
(T ,P, c, p, d) of Demand MultiCut. Recall that the tree red(T ) is obtained by short-cutting all
degree 2 vertices in T . Each edge in red(T ) corresponds to a path in T – in fact, there are
maximal paths in T for which all internal nodes have degree 2. We call such paths segments (to
avoid confusion with paths in P). See Figure 3 for an example. Thus, there is a 1-1 correspondence
between edges in red(T ) and segments in T . Recall that every vertex in red(T ) corresponds to a
vertex in T as well, and we will use the same notation for both the vertices.

r

u

v w
x

T

r

u

v w
x

T

Figure 4: The left instance represents a segment confined instance whereas the right one is a
segment spanning instance.

5.1.1 Segment Confined Instances

The instance I is said to be segment confined if all paths in P are confined to one segment, i.e.,
for every path P ∈ P, there is a segment S in T such that the edges of P are contained in S.
An example is shown in Figure 4. In this section, we show that one can obtain constant factor
polynomial time approximation algorithms for such instances. In fact, this result follows from prior
work on column restricted covering integer programs [7]. Since each path in P is confined to one
segment, we can think of this instance as several independent instances, one for each segment. For
a segment S, let IS be the instance obtained from I by considering edges in S only and the subset
PS ⊆ P of paths which are contained in S. We show how to obtain a constant factor approximation
algorithm for IS for a fixed segment S.

Let the edges in S (in top to down order) be e1, . . . , em. The following integer program (IP3)
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captures the Demand MultiCut problem for IS:

min
∑

e∈S

cexe (6)

∑

e∈P

pexe ≥ d(P ) for all paths P ∈ PS (7)

xe ∈ {0, 1} for all e ∈ S (8)

Note that this is a covering integer program (IP) where the coefficient of xe in each constraint
is either 0 or pe. Such an IP comes under the class of Column Restricted Covering IP as described
in [7]. Chakrabarty et al. [7] show that one can obtain a constant factor approximation algorithm for
this problem provided one can prove that the integrality gaps of the corresponding LP relaxations
for the following two special class of problems are constant: (i) 0-1 instances, where the pe values
are either 0 or 1, (ii) priority versions, where paths in P and edges have priorities (which can be
thought of as positive integers), and the selected edges satisfy the property that for each path
P ∈ PS , we selected at least one edge in it of priority at least that of P (it is easy to check that
this is a special case of Demand MultiCut problem by assigning exponentially increasing demands
to paths of increasing priority, and similarly for edges).

Consider the class of 0-1 instances first. We need to consider only those edges for which pe is 1 (
contract the edges for which pe is 0). Now observe that the constraint matrix on the LHS in (IP3)
has consecutive ones property (order the paths in PS in increasing order of left end-point and write
the constraints in this order). Therefore, the LP relaxation has integrality gap of 1.
Rounding the Priority Version We now consider the priority version of this problem. For each
edge e ∈ S, we now have an associated priority pe (instead of size), and each path in P also has a
priority demand p(P ), instead of its demand. We need to argue about the integrality gap of the
following LP relaxation:

min
∑

e∈S

cexe (9)

∑

e∈P :pe≥p(P )

xe ≥ 1 for all paths P ∈ PS (10)

xe ≥ 0 for all e ∈ S (11)

We shall use the notion of shallow cell complexity used in [8]. Let A be the constraint matrix
on the LHS above. We first notice the following property of A.

Claim 5.2. Let A⋆ be a subset of s columns of A. For a parameter k, 0 ≤ k ≤ s, there are at most
k2s distinct rows in A⋆ with k or fewer 1’s (two rows of A⋆ are distinct iff they are not same as
row vectors).

Proof. Columns of A correspond to edges in S. Contract all edges which are not in A⋆. Let S⋆ be
the remaining (i.e., uncontracted) edges in S. Each path in PS now maps to a new path obtained
by contracting these edges. Let P⋆ denote the set of resulting paths. For a path P ∈ P⋆, let E(P )
be the edges in P whose priority is at least that of P . In the constraint matrix A⋆, the constraint
for the path P has 1’s in exactly the edges in E(P ). We can assume that the set E(P ) is distinct
for every path P ∈ P⋆ (because we are interested in counting the number of paths with distinct
sets E(P )).
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Let P⋆(k) be the paths in P⋆ for which |E(P )| ≤ k. We need to count the cardinality of this
set. Fix an edge e ∈ S⋆, let S⋆(e) be the edges in S⋆ of priority at least that of e. Let P be a path
in P⋆(k) which has e as the least priority edge in E(P ) (breaking ties arbitrarily). Let el and er
be the leftmost and the rightmost edges in E(P ) respectively. Note that E(P ) is exactly the edges
in S⋆(e) which lie between el and er. Since there are at most k choices for el and er (look at the k
edges to the left and to the right of e in the set S⋆(e)), it follows that there are at most k2 paths
P in P⋆(k) which have e as the least priority edge in E(P ). For every path in P⋆(k), there are at
most |E⋆| = s choices for the least priority edge. Therefore the size of P⋆(k) is at most sk2.

In the notation of [8], the shallow cell complexity of this LP relaxation is f(s, k) = sk2. It now
follows from Theorem 1.1 in [8] that the integrality gap of the LP relaxation for the priority version
is a constant. Thus we obtain a constant factor approximation algorithm for segment restricted
instances.

5.1.2 Segment Spanning Instances on Binary Trees

We now consider instances I for which each path P ∈ P starts and ends at the end-points of
a segment, i.e., the starting or ending vertex of P belongs to the set of vertices in red(T ). An
example is shown in Figure 4. Although we will not use this result in the algorithm for the general
case, many of the ideas will get extended to the general case. We will use dynamic programming.
For a vertex v ∈ red(T ), let Tv be the sub-tree of T rooted below v (and including v). Let Pv
denote the subset of P consisting of those paths which contain at least one edge in Tv. By scaling
the costs of edges, we will assume that the cost of the optimal solution lies in the range [1, n] – if
cmax is the maximum cost of an edge selected by the optimal algorithm, then its cost lies in the
range [cmax, ncmax].

Before stating the dynamic programming algorithm, we give some intuition for the DP table.
We will consider sub-problems which correspond to covering paths in Pv by edges in Tv for every
vertex v ∈ red(T ). However, to solve this sub-problem, we will also need to store the edges in T
which are ancestors of v and are selected by our algorithm. Storing all such subsets would lead
to too many DP table entries. Instead, we will work with the following idea – for each segment
S, let Bopt(S) be the total cost of edges in S which get selected by an optimal algorithm. If we
know Bopt(S), then we can decide which edges in S can be picked. Indeed, the optimal algorithm
will solve a knapsack cover problem – for the segment S, it will pick edges of maximum total size
subject to the constraint that their total cost is at most Bopt(S) (note that we are using the fact
that every path in P which includes an edge in S must include all the edges in S). Although
knapsack cover is NP-hard, here is a simple greedy algorithm which exceeds the budget Bopt(S)
by a factor of 2, and does as well as the optimal solution (in terms of total size of selected edges)
– order the edges in S whose cost is at most Bopt(S) in order of increasing density. Keep selecting
them in this order till we exceed the budget Bopt(S). Note that we pay at most twice of Bopt(S)
because the last edge will have cost at most Bopt(S). The fact that the total size of selected edges
is at least that of the corresponding optimal value follows from standard greedy arguments.

Therefore, if S1, . . . , Sk denote the segments which lie above v (in the order from the root to
v), it will suffice if we store Bopt(S1), . . . , B

opt(Sk) with the DP table entry for v. We can further
cut-down the search space by assuming that each of the quantities Bopt(S) is a power of 2 (we
will lose only a multiplicative 2 in the cost of the solution). Thus, the total number of possibilities
for Bopt(S1), . . . , B

opt(Sk) is O(logk n), because each of the quantities Bopt(Si) lies in the range
[1, 2n] (recall that we had assumed that the optimal value lies in the range [1, n] and now we are
rounding this to power of 2). This is at most 2O(H log logn), which is still not polynomial in n and
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2O(H). We can further reduce this by assuming that for any two consecutive segments Si, Si+1, the
quantities Bopt(Si) and Bopt(Si+1) differ by a factor of at most 8 – it is not clear why we can make
this assumption, but we will show later that this does leads to a constant factor loss only. We now
state the algorithm formally.
Dynamic Programming Algorithm

We first describe the greedy algorithm outlined above. The algorithm GreedySelect is given
in Figure 5.

Algorithm GreedySelect:

Input: A segment S in T and a budget B.
1. Initialize a set G to emptyset.
2. Arrange the edges in S of cost at most B in ascending order of density.
3. Keep adding these edges to G till their total cost exceeds B.
4. Output G.

Figure 5: Algorithm GreedySelect for selecting edges in a segment S with a budget B.

For a vertex v ∈ red(T ), define the reduced depth of v as its at depth in red(T ) (root has
reduced depth 0). We say that a sequence B1, . . . , Bk is a valid state sequence at a vertex v in
red(T ) with reduced depth k if it satisfies the following conditions:

• For all i = 1, . . . , k, Bi is a power of 2 and lies in the range [1, 2n].

• For any i = 1, . . . , k − 1, Bi/Bi+1 lies in the range [1/8, 8].

If S1, . . . , Sk is the sequence of segments visited while going from the root to v, then Bi will
correspond to Si.

Consider a vertex v ∈ red(T ) at reduced depth k, and a child w of v in red(T ) (at reduced
depth k + 1). Let Λv = (B1, . . . , Bk) and Λw = (B′

1, . . . , B
′
k+1) be valid state sequences at these

two vertices respectively. We say that Λw is an extension of Λv if Bi = B′
i for i = 1, . . . , k. In the

dynamic program, we maintain a table entry T [v,Γv] for each vertex v in red(T ) and valid state
sequence Γv at v. Informally, this table entry stores the following quantity. Let S1, . . . , Sk be the
segments from the root to the vertex v. This table entry stores the minimum cost of a subset E′ of
edges in Tv such that E′ ∪ G(v) is a feasible solution for the paths in Pv, where G(v) is the union
of the set of edges selected by GreedySelect in the segments S1, . . . , Sk with budgets B1, . . . , Bk

respectively.
The algorithm is described in Figure 6. We first compute the set G(v) as outlined above. Let

the children of v in the tree red(T ) be w1 and w2. Let the segments corresponding to (v,w1) and
(v,w2) be S1

k+1 and S2
k+1 respectively. For both these children, we find the best extension of Γv.

For the node wr, we try out all possibilities for the budget Br
k+1 for the segment Sr

k+1. For each of
these choices, we select a set of edges in Sr

k+1 as given by GreedySelect and lookup the table entry
for wr and the corresponding state sequence. We pick the choice for Br

k+1 for which the combined
cost is smallest (see line 7(i)(c)).

We will not analyze this algorithm here because it’s analysis will follow from the analysis of the
more general case. We would like to remark that for any v ∈ red(T ), the number of possibilities
for a valid state sequence is bounded by 2O(H) · log n. Indeed, there are O(log n) choices for B1,
and given Bi, there are only 7 choices for Bi+1 (since Bi+1/Bi is a power of 2 and lies in the range
[1/8, 8]). Therefore, the algorithm has running time polynomial in n and 2O(H).
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Fill DP Table :

Input: A node v ∈ red(T ) at reduced depth k, and a state sequence Λv = (B1, . . . , Bk).
0. If v is a leaf node, set D[v,Λv ] to 0, and exit.
1. Let S1, . . . , Sk be the segments visited while going from the root to v in T .
2. Initialize G(v)← ∅.
3. For i = 1, . . . , k

(i) Let Gi(v) be the edges returned by GreedySelect(Si, Bi).
(ii) G(v)← G(v) ∪Gi(v).

4. Let w1, w2 be the two children of v in red(T ) and
the corresponding segments be S1

k+1, S
2
k+1.

5. Initialize M1,M2 to ∞.
6. For r = 1, 2 (go to each of the two children and solve the subproblems)

(i) For each extension Γwr
= (B1, . . . , Bk, B

r
k+1) of Γv do

(a) Let Gk+1(wr) be the edges returned by GreedySelect(Sr
k+1, B

r
k+1).

(b) If any path in Pv ending in the segment Sr
k+1 is not satisfied by G(v)∪Gk+1(wr)

exit this loop
(c) Mr ← min(Mr, cost of Gk+1(wr) +D[wr,Γwr

]).
7. D[v,Λv ]←M1 +M2.

Figure 6: Filling a table entry D[v,Λv ] in the dynamic program.

5.2 General Instances on Binary Trees

We now consider general instances of Demand MultiCut on binary trees. We can assume that every
path P ∈ P contains at least one vertex of red(T ) as an internal vertex. Indeed, we can separately
consider the instance consisting of paths in P which are contained in one of the segments – this will
be a segment confined instance as in Section 5.1.1. We can get a constant factor approximation for
such an instance.

We will proceed as in the previous section, but now it is not sufficient to know the total cost spent
by an optimal solution in each segment. For example, consider a segment S which contains two
edges e1 and e2; and e1 has low density, whereas e2 has high density. Now, we would prefer to pick
e1, but it is possible that there are paths in P which contain e2 but do not contain e1. Therefore,
we cannot easily determine whether we should prefer picking e1 over picking e2. However, if all
edges in S had the same density, then this would not be an issue. Indeed, given a budget B for
S, we would proceed as follows – starting from each of the end-points, we will keep selecting edges
of cost at most B till their total cost exceeds B. The reason is that all edges are equivalent in
terms of cost per unit size, and since each path in P contains at least one of the end-points of S,
we might as well pick edges which are closer to the end-points. Of course, edges in S may have
varying density, and so, we will now need to know the budget spent by the optimum solution for
each of the possible density values. We now describe this notion more formally.
Algorithm Description We first assume that the density of any edge is a power of 128 – we
can do this by scaling the costs of edges by factors of at most 128. We say that an edge e is of
density class τ if it’s density is 128τ . Let τmax and τmin denote the maximum and the minimum
density class of an edge respectively. Earlier, we had specified a budget B(S) for each segment S
above v while specifying the state at v. Now, we will need to store more information at every such
segment. We shall use the term cell to refer to a pair (S, τ), where S is a segment and τ is a density
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class1. Given a cell (S, τ) and a budget B, the algorithm GreedySelect in Figure 7 describes the
algorithm for selecting edges of density class τ from S. As mentioned above, this procedure ensures
that we pick enough edges from both end-points of S. The only subtlety is than in Step 4, we allow
the cost to cross 2B – the factor 2 is for technical reasons which will become clear later. Note that
in Step 4 (and similarly in Step 5) we could end up selecting edges of total cost up tp 3B because
each selected edge has cost at most B.

Algorithm GreedySelect:

Input: A cell (S, τ) and a budget B.
1. Initialize a set G to emptyset.
2. Let S(τ) be the edges in S of density class τ and cost at most B.
3. Arrange the edges in S(τ) from top to bottom order.
4. Keep adding these edges to G in this order till their total cost exceeds 2B.
5. Repeat Step 4 with the edges in S(τ) arranged in bottom to top order.
6. Output G.

Figure 7: Algorithm GreedySelect for selecting edges in a segment S of density class τ with a
budget B.

As in the previous section, we define the notion of state for a vertex v ∈ red(T ). Let v be a
node at reduced depth k in red(T ). Let S1, . . . , Sk be the segments encountered as we go from the
root to v in T . If we were to proceed as in the previous section, we will store a budget B(Si, τ) For
each cell (Si, τ), i = 1, . . . , k, τ ∈ [τmin, τmax]. This will lead to a very large number of possibilities
(even if assume that for “nearby” cells, the budgets are not very different). Somewhat surprisingly,
we show that it is enough to store this information at a small number of cells (in fact, linear in
number of density classes and H).

To formalize this notion, we say that a sequence Cv = σ1, . . . , σℓ of cells is a valid cell sequence
at v if the following conditions are satisfied : (i) the first cell σ1 is (Sk, τmax), (ii) the last cell
is of the form (S1, τ) for some density class τ , and (iii) if σ = (Si, τ) is a cell in this sequence,
then the next cell is either (Si, τ − 1) or (Si−1, τ + 1). To visualize this definition, we arrange the
cells (Si, τ) in the form of a table shown in Figure 8. For each segment Si, we draw a column
in the table with one entry for each cell (Si, τ), with τ increasing as we go up. Further as we
go right, we shift these columns one step down. So row τ of this table will correspond to cells
(Sk, τ), (Sk−1, τ + 1), (Sk−2, τ + 2) and so on. With this picture in mind, a a valid sequence of
cells starts from the top left and at each step it either goes one step down or one step right. Note
that for such a sequence Cv and a segment Si, the cells (Si, τ) which appear in Cv are given by
(Si, τ1), (Si, τ1 +1), . . . , (Si, τ2) for some τ1 ≤ τ2. We say that the cells (Si, τ), τ < τ1, lie below the
sequence Cv, and the cells (Si, τ), τ > τ2 lie above this sequence (e.g., in Figure 8, the cell (S2, 6)
lies above the shown cell sequence, and (S4, 2) lies below it).

Besides a valid cell sequence, we need to define two more sequences for the vertex v:

• Valid Segment Budget Sequence: This is similar to the sequence defined in Section 5.1.2.
This is a sequence Λ

seg
v := (B

seg

1 , . . . , B
seg

k ), where B
seg

i corresponds to the segment Si. As
before, each of these quantities is a power of 2 and lies in the range [1, 2n]. Further, for any
i, the ratio B

seg

i /B
seg

i+1 lies in the range [1/8, 8].

1For technical reasons, we will allow τ to lie in the range [τmin, τmax + 1]
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Figure 8: w is a vertex at reduced depth 6 and v is the parent of v in red(T ). The segments above
w are labelled S1, . . . , S6 (starting from the root downwards). The cells are arranged in a tabular
fashion as shown – the density classes lie in the range {2, 3, . . . , 7}. The solid line shows a valid cell
sequence for v. The dotted line shows a valid cell sequence for w which is also an extension of the
cell sequence for v – note that once the dotted line meets the solid line (in the cell (S3, 5), it stays
with it till the end.

• Valid Cell Budget Sequence: Corresponding to the valid cell sequence Cv = σ1, . . . , σℓ and
valid budget sequence (B

seg

1 , . . . , B
seg

k ), we have a sequence Λcell
v := (Bcell

1 , . . . , Bcell
ℓ ), where

Bcell
j corresponds to the cell σj. Each of the quantities Bcell

j lies in the range [1, 2n]. Further.
the ratio Bcell

j /Bcell
j+1 lies in the range [1/8, 8].

Intuitively, B
seg

i is supposed to capture the cost of edges picked by the optimal solution in Si,
whereas Bcell

j , where σj = (Si, τ), captures the cost of the density class τ edges in Si which get
selected by the optimal solution. A valid state State(v) at the vertex v is given by the triplet
(Cv,Λ

seg
v ,Λcell

v ) which in addition satisfies the following properties:

(i) For a cell σj = (Si, τ) in Cv, the quantity Bcell
j ≤ B

seg

i . Again, the intuition is clear – the
first quantity corresponds to cost of density class τ edges in Si, whereas the latter denotes
the cost of all the edges in Si (which are selected by the optimal solution).2

Informally, the idea behind these definitions is the following – for each cell σj in Cv, we are given
the corresponding budget Bcell

j . We use this budget and Algorithm GreedySelect to select edges

2During the analysis, Bseg

i will be the maximum over all density classes τ of the density class τ edges selected by
the optimal solution from this segment. But this inequality will still hold.
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corresponding to this cell. For cells σ = (Si, τ) which lie above Cv, we do not have to use any edge
of density class τ from Si. Note that this does not mean that our algorithm will not pick any such
edge, it is just that for the sub-problem defined by the paths in Pv and the state at v, we will not
use any such edge (for covering a path in Pv). For cells σ = (Si, τ) which lie below Cv, we pick all
edges of density class τ and cost at most B

seg

i from Si. Thus, we can specify the subset of selected
edges from S1, . . . , Sk (for the purpose of covering paths in Pv) by specifying these sequences only.
The non-trivial fact is to show that maintaining such a small state (i.e., the three valid sequences)
suffices to capture all scenarios. The algorithm for picking the edges for a specific segment S is
shown in Figure 9. Note one subtlety – for the density class τ1 (in Step 4), we use budget B

seg

i

instead of the corresponding cell budget. The reason for this will become clear during the proof of
Claim 5.12.

Algorithm SelectSegment:

Input: A vertex v ∈ red(T ), State(v) := (Cv,Λ
Seg
v ,Λcell

v ), a segment Si lying above v.
1. Initialize a set G to emptyset.
2. Let (Si, τ1), (Si, τ1 + 1), . . . , (Si, τ2) be the cells in Cv corresponding to the segment Si.
3. For τ = τ1 + 1, . . . , τ2 do

(i) Add to G the edges returned by GreedySelect((Si, τ), B
cell
j ),

where j is the index of (Si, τ) in Cv.
4. Add to G the edges returned by GreedySelect((Si, τ1), B

seg

i ).
5. Add to G all edges e ∈ Si of density class strictly less than τ and for which ce ≤ B

seg

i .
6. Return G.

Figure 9: Algorithm SelectSegment for selecting edges in a segment S as dictated by the state at
v. The notations Bseg and Bcell are as explained in the text.

Before specifying the DP table, we need to show what it means for a state to be an extension of
another state. Let w be a child of v in red(T ), and let Sk+1 be the corresponding segment joining
v and w. Given states State(v) := (Cv,Λ

Seg
v ,Λcell

v ) and State(w) := (Cw,Λ
Seg
w ,Λcell

w ), we say that
State(w) is an extension of State(v) if the following conditions are satisfied:

• If Λ
seg
v = (B

seg

1 , . . . , B
seg

k ) and Λ
seg
w = (B

seg′

1 , . . . , B
seg′

k+1), then B
seg

i = B
seg′

i for i = 1, . . . , k.
In other words, the two sequences agree on segments S1, . . . , Sk.

• Recall that the first cell of Cw is (Sk+1, τmax). Let τ1 be the smallest τ such that the cell
(Sk+1, τ1) appears in Cw. Then the cells succeeding (Sk+1, τ1) in Cw must be of the form
(Sk, τ1 + 1), (Sk−1, τ1 + 2), . . . , till we reach a cell which belongs to Cv (or we reach a cell for
the segment S1). After this the remaining cells in Cw are the ones appearing in Cv. Pictorially
(see Figure 8), the sequence for Cw starts from the top left, keeps going down till (Sk+1, τ1),
and then keeps moving right till it hits Cv. After this, it merges with Cv.

• The sequences Λcell
v and Λcell

w agree on cells which belong to both Cv and Cw (note that the
cells common to both will be a suffix of both the sequences).

Having defined the notion of extension, the algorithm for filling the DP table for D[v, State(v)]
is identical to the one in Figure 6. The details are given in Figure 10. This completes the description
of the algorithm.
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Fill DP Table :

Input: A node v ∈ red(T ) at reduced depth k, State(v) = (Cv,Λ
Seg
v ,Λcell

v ).
0. If v is a leaf node, set D[v, State(v)] to 0, and exit.
1. Let S1, . . . , Sk be the segments visited while going from the root to v in T .
2. Initialize G(v)← ∅.
3. For i = 1, . . . , k

(i) Let Gi(v) be the edges returned by Algorithm SelectSegment(v, Si, State(v)).
(ii) G(v)← G(v) ∪Gi(v).

4. Let w1, w2 be the two children of v in red(T ) and
the corresponding segments be S1

k+1, S
2
k+1.

5. Initialize M1,M2 to ∞.
6. For r = 1, 2 (go to each of the two children and solve the subproblems)

(i) For each extension State(wr) of State(v) do
(a) Let Gk+1(wr) be the edges returned by SelectSegment(wr, S

r
k+1, State(wr)).

(b) If any path in Pv ending in the segment Sr
k+1 is not satisfied by G(v)∪Gk+1(wr)

exit this loop
(c) Mr ← min(Mr, cost of Gk+1(wr) +D[wr, State(wr)]).

7. D[v,Λv ]←M1 +M2.

Figure 10: Filling a table entry D[v, State(v)] in the dynamic program.

5.3 Algorithm Analysis

We now analyze the algorithm.
Running Time

We bound the running time of the algorithm. First we bound the number of possible table
entries.

Lemma 5.3. For any vertex v, the number of possible valid states is O
(

(log n)2 · 2O(H) · (ρmax/ρmin)
2
)

.

Proof. The length of a valid cell sequence is bounded by (τmax − τmin) + 2H. To see this, fix a
vertex v at reduced depth k, with segments S1, . . . , Sk from the root to the vertex v. Consider a
valid cell sequence σ1, . . . , σℓ. For a cell σj = (Si, τ), define a potential Φj = j + 2i+ τ . We claim
that the potential Φj = Φj+1 for all indices j in this sequence. To see this, there are two options
for σj+1 = (Si′ , τ

′) :

• Si = Si′ , τ
′ = τ − 1: Here, Φj+1 = j + 1 + 2i+ τ − 1 = j + 2i+ τ = Φj .

• Si′ = Si−1, τ
′ = τ + 1: Here Φj+1 = j + 1 + 2(i− 1) + τ + 1 = Φj.

Therefore,
ℓ+ τmin ≤ Φl = Φ0 ≤ 2H + τmax.

It follows that ℓ ≤ 2H + τmax− τmin. Given the cell σj, there are only two choices for σj+1. So, the
number of possible valid cell sequences is bounded by 22H+τmax−τmin ≤ 22H · ρmax/ρmin.

Now we bound the number of valid segment budget sequences. Consider such a sequence
B

seg

1 , . . . , B
seg

k . Since B
seg

1 ∈ [1, 2n] and it is a power of 2, there are O(log n) choices for it. Given
B

seg

i , there are at most 7 choices for B
seg

i+1, because B
seg

i+1/B
seg

i is a power of 2 and lies in the range

[1/8, 8]. Therefore, the number of such sequences is at most O(log n) · 7k ≤ O(7H log n). Similarly,
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the number of valid cell budget sequences is at most O(log n) ·7ℓ, where ℓ is the maximum length of
a valid cell sequence. By the argument above, ℓ is at most 2H+τmax−τmin. Combining everything,
we see that the number of possible states for v is bounded by a constant times

22H · ρmax/ρmin · 7
H log n · log n · 72H · ρmax/ρmin,

which implies the desired result.

We can now bound the running time easily.

Lemma 5.4. The running time of the algorithm is polynomial in n, 2H , ρmax/ρmin.

Proof. To fill the table entry for D[v,Γ(v)], where v has children w1, w2, the Algorithm in Figure 10
cycles through the number of possible extensions of Γ(v) for each of the two children. Since any valid
extension of Γ(v) for a child wr is also a valid state at wr, the result follows from Lemma 5.3.

Feasibility
We now argue that the table entries in the DP correspond to valid solutions. Fix a vertex

v ∈ red(T ), and let S1, . . . , Sk be the segments as we go from the root to v. Recall that T (v)
denotes the sub-tree of T rooted below v and P(v) denotes the paths in P which have an internal
vertex in T (v). For a segment S and density class τ , let S(τ) denote the edges of density class τ
in S.

Lemma 5.5. Consider the algorithm in Figure 10 for filling the DP entry D[v, State(v)], and
let G(v) be the set of vertices obtained after Step 3 of the algorithm. Assuming that this table
entry is not ∞, there is a subset Y (v) of edges in T (v) such that the cost of Y (v) is at equal to
D[v, State(v)] and Y (v) ∪G(v) is a feasible solution for the paths in P(v).

Proof. We prove this by induction on the reduced height of v. If v is a leaf, then P(v) is empty,
and so the result follows trivially. Suppose it is true for all nodes in red(T ) at reduced height at
most k− 1, and v be at height k in red(T ). We use the notation in Figure 10. Consider a child wr

of v, where r is either 1 or 2. Let the value of Mr used in Step 7 be equal to the cost of Gk+1(wr)+
D[wr, State(wr)] for some State(wr) given by (Cwr

,Λ
seg
wr ,Λ

cell
wr

), with Λ
seg
v = (B

seg

1 , . . . , B
seg

k ),

Λ
seg
wr = (B

seg′

1 , . . . , B
seg′

k+1) and Λcell
wr

= (Bcell′

1 , . . . , Bcell′

ℓ ). Let G(v) and Gk+1(wr) be as in the
steps 3 and 6(i)(a) respectively. We ensure that G(v) ∪ Gk+1(wr) covers all paths in P(v) which
end before wr. The following claim is the key to the correctness of the algorithm.

Claim 5.6. Let G(wr) be edges obtained at the end of Step 3 in the algorithm in Figure 10 when
filling the DP table entry D[wr, State(wr)]. Then G(wr) is a subset of G(v) ∪Gk+1(wr).

Proof. Let Sr
k+1 be the segment between v and wr. By definition, Gk+1(wr) and G(wr) ∩ S

r
k+1 are

identical. Let us now worry about segments Si, i ≤ k. Fix such a segment Si.
We know that after the cells corresponding to the segment Sr

k+1, the sequence Cwr
lies below

Cv till it meets Cv. Now consider various case for an arbitrary cell σ = (Si, τ) (we refer to the
algorithm SelectSegmentin Figure 9):

• The cell σ lies above Cwr
: G(wr) does not contain any edge of Si(τ).

• The cell σ lies below Cwr
: The cell will lie below Cv as well, and so, G(v) and G(w) will

contain the same edges from Si(τ) (because B
seg

i = B
seg′

i are same).

19



• The cell σ lies on Cwr
: If it also lies on Cv, then the fact that Bcell and Bcell′ values for this

cell are same implies that G(v) and G(wr) pick the same edges from Si(τ) (in case τ happens
to be the smallest indexed density class for which (Si, τ) ∈ Cwr

, then the same will hold for

Cv as well). If it lies below Cv, then the facts that B
seg

i = B
seg′

i , and B
seg

i ≥ Bcell
j = Bcell′

j′ ,
where j and j′ are the indices of this cell in the two cell sequences respectively, imply that
G(v) will pick all the edges fof cost at most B

seg

i from Si(τ), whereas G(wr) will pick only a
subset of these edges.

We see that G(v) ∩ Si contains G(wr) ∩ Si. This proves the claim.

By induction hypothesis, there is a subset Y (wr) of edges in the subtree T (wr) of cost equal
to D[wr, State(wr)] such that Y (wr) ∪ G(wr) satisfies all paths in P(wr). We already know that
G(v) ∪ Gk+1(wr) covers all paths in P(v) which end in the segment Sr

k+1. Since any path in P(v)
will either end in S1

k+1 or S2
k+1, or will belong to P(w1) ∪ P(w2), it follows that all paths in P(v)

are covered by ∪2r=1(Y (wr)∪G(wr)∪Gk+1(wr))∪G(v). Now, the claim above shows that G(wr) ⊆
Gk+1(wr)∪G(v). So this set is same as Y (w1)∪Y (w2)∪Gk+1(w1)∪Gk+1(w2)∪G(v) (and these sets
are mutually disjoint). Recall thatMr is equal to the cost ofGk+1(wr)∪Y (wr), it follows that the the
DP table entry for v for these parameters is exactly the cost of Y (w1)∪Y (w2)∪Gk+1(w1)∪Gk+1(w2).
This proves the lemma.

For the root vertex r, a valid state at r must be the empty set. The above lemma specialized
to the root r implies:

Corollary 5.7. Assuming that D[r, ∅] is not ∞, it is the cost of a feasible solution to the input
instance.

Approximation Ratio Now we related the values of the DP table entries to the values of the
optimal solution for suitable sub-problems. We give some notation first. Let OPT denote an optimal
solution to the input instance. For a segment S, we shall use Sopt to the denote the subset of S
selected by OPT. Similarly, let Sopt(τ) denote the subset of S(τ) selected by OPT. Let Bopt(S, τ)
denote the total cost of edges in Sopt(τ), and Bopt(S) denote the cost of edges in Sopt.

We first show that we can upper bound Bopt(S, τ) by values B⋆(S, τ) values such that the
latter values are close to each other for nearby cells. For two segments S and S′, define the distance
between them as the distance between the corresponding edges in red(T ) (the distance between
two adjacent edges is 1). Similarly, we say that a segment is the parent of another segment if this
relation holds for the corresponding edges in red(T ). Let cells(T ) denote the set of all cells in T .

Lemma 5.8. We can find values B⋆(S, τ) for each cell (S, τ) such that the following proper-
ties are satisfied: (i) for every cell (S, τ), B⋆(S, τ) is a power of 2, and B⋆(S, τ) ≥ Bopt(S, τ),
(ii)

∑

(S,τ)∈cells(T )B
⋆(S, τ) ≤ 16 ·

∑

(S,τ)∈cells(T )B
opt(S, τ) and (iii) (smoothness) for every pair

of segments S, S′, where S′ is the parent of S, and density class τ ,

8B⋆(S, τ + 1) ≥ B⋆(S, τ) ≥ B⋆(S, τ + 1)/8, and 8B⋆(S′, τ) ≥ B⋆(S, τ) ≥ B⋆(S′, τ)/8.

Proof. We define

B⋆(S, τ) :=
∑

i≥0

∑

S′∈Ni(S)

∑

j

Bopt(S′, τ + i+ j)

4i+|j|
,

where i varies over non-negative integers, j varies over integers and the range of i, j are such that
τ + i + j remains a valid density class; and Ni(S) denotes the segments which are at distance at
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most i from S. Note that B⋆(S, τ) is a not a power of 2 yet, but we will round it up later. As of
now, B⋆(S, τ) ≥ Bopt(S, τ) because the term on RHS for i = 0, j = 0, is exactly Bopt(S, τ).

We now verify the second property. We add B⋆(S, τ) for all the cells (S, τ). Let us count the
total contribution towards terms containing Bopt(S′, τ ′) on the RHS. For every segment S ∈ Ni(S

′),
and density class τ ′ − i − j, it will receive a contribution of 1

4i+|j| . Since |Ni(s
′)| ≤ 2i+1 (this is

where we are using the fact that T is binary), this is at most

∑

i≥0

∑

j

2i+1

4i+|j|
≤

∑

i≥0

2i+2

4i
≤ 8.

Now consider the third condition. Consider the expressions for B⋆(S, τ) and B⋆(S′, τ) where
S′ is the parent of S. If a segment is at distance i from S, its distance from S′ is either i or i± 1.
Therefore, the coefficients of Bopt(S′′, τ ′′) in the expressions for B⋆(S, τ) and B⋆(S′, τ) will differ
by a factor of at most 4. The same observation holds for B⋆(S, τ) and B⋆(S, τ +1). It follows that

4B⋆(S, τ + 1) ≥ B⋆(S, τ) ≥ B⋆(S, τ + 1)/4, and 4B⋆(S′, τ) ≥ B⋆(S, τ) ≥ B⋆(S′, τ)/4.

Finally, we round all the B⋆(S, τ) values up to the nearest power of 2. We will lose an extra
factor of 2 in the statements (ii) and (iii) above.

We will use the definition of B⋆(S, τ) in the lemma above for rest of the discussion. For a
segment S, define B⋆(S) as the maximum over all density classes τ of B⋆(S, τ). The following
corollary follows immediately from the lemma above.

Corollary 5.9. Let S and S′ be two segments in T such that S′ is the parent of S. Then B⋆(S)
and B⋆(S′) lie within factor of 8 of each other.

Proof. Let B⋆(S) be equal to B⋆(S, τ) for some density class τ . Then,

B⋆(S) = B⋆(S, τ)
Lemma 5.8
≤ 8B⋆(S′, τ) ≤ 8B⋆(S′).

The other part of the argument follows similarly.

The plan now is to define a valid state State⋆(v) = (C⋆v ,Λ
⋆seg
v ,Λ⋆cell

v ) for each of the vertices
v in red(T ). We begin by defining a critical density τ⋆(S) for each segment S. Recall that S(τ)
denotes the edges of density class τ in S. Let S(≤ τ) denote the edges class of density class at most
τ in S. For a density class τ and a budget B, let S(≤ τ,≤ B) denote the edges in S(≤ τ) which
have cost at most B. Define τ⋆ as the smallest density class τ such that the total cost of edges
in S(≤ τ,≤ B⋆(S)) is at least 4B⋆(S) +

∑

τ ′≤τ B
opt(S, τ ′) (if no such density class exists, set τ to

τmax). Intuitively, we are trying to augment the optimal solution by low density edges, and τ⋆(S)
tells us the density class till which we can essentially take all the edges in S (provided we do not
pick any edge which is too expensive).

Having defined the notion of critical density, we are now ready to define a valid state State⋆(v)
for each vertex v in red(T ). Let v be such a vertex at reduced depth k and let S1, . . . , Sk be the
segments starting from the root to v. Again, it is easier to see the definition of the cell sequence
C⋆v pictorially. As in Figure 11, the cell sequence starts with (Sk, τmax) and keeps going down till
it reaches the cell (Sk, τ

⋆(Sk)). Now it keeps going right as long as the cell corresponding to the
critical density lies above it. If this cell lies below it, it moves down. The formal procedure for
constructing this path is given in Figure 12. For sake of brevity, let τ⋆i denote τ⋆(Si).
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(S5; 7)

(S5; 6)

(S5; 5)

(S5; 4)

(S5; 3)

(S5; 2)

(S4; 6)

(S4; 7)

(S4; 5)

(S4; 3)

(S4; 2)

(S4; 4)

(S3; 7)

(S3; 6)

(S3; 5)

(S3; 4)

(S3; 3)

(S3; 2)

(S2; 7)

(S2; 6)

(S2; 5)

(S2; 4)

(S2; 3)

(S2; 2)

(S1; 7)

(S1; 6)

(S1; 5)

(S1; 4)

(S1; 3)

(S1; 2)

(S6; 7)

(S6; 6)

(S6; 5)

(S6; 4)

(S6; 3)

(S6; 2)

Figure 11: Refer to the notation used in Figure 8. The shaded cells represnt the critical density
class for the corresponding segment. The solid line shows C⋆v and the dotted line shows C⋆w. As an
example, the cell (S4, 4) dominates the cells (S3, 6), (S3, 7) and (S2, 7).

We shall denote the sequence C⋆v by σ⋆
1 , . . . , σ

⋆
ℓ . The corresponding segment budget sequence

and cell budget sequences are easy to define. Define Λ
⋆seg
v = (B

⋆seg
1 , . . . , B

⋆seg
k ), where B

⋆seg
i :=

B⋆(Si). Similarly, define Λ⋆cell
v = (B⋆cell

1 , . . . , B⋆cell
ℓ ) such that for the cell σ⋆

j = (Si, τ), B
⋆cell
j :=

B⋆(Si, τ). This completes the definition of State⋆(v). It is easy to check that these are valid
sequences. Indeed, Lemma 5.8 and Corollary 5.9 show that each of the quantities B

⋆seg
i , B⋆cell

j are
at most 2n, and two such consecutive quantities are within factor of 8 of each other.

Further, let w be a child of v in red(T ). It is again it is to see that State⋆(w) is an extension
of State⋆(v). The procedure for constructing C⋆w ensures that this property holds: this path first
goes down till (Sk+1, τ

⋆(Sk+1)), where Sk+1 is the segment between v and w. Subsequently, it
moves right till it hits C⋆v (see Figure 11 for an example). The following crucial lemma shows that
is alright to ignore the cells above the path C⋆v . Let w1 and w2 be the children of v in red(T ).
We consider the algorithm in Figure 10 for filling the DP entry D[v, State⋆(v)]. Let G⋆(v) be the
edges obtained at the end of Step 3 in this algorithm. Further, let G⋆

k+1(wr) be the set of edges
obtained in Step 6(i)(a) of this algorithm when we use the extension State⋆(wr).

Lemma 5.10. For r = 1, 2, any path in P(v) which ends in the segment Sr
k+1 is satisfied by

G⋆(v) ∪G⋆
k+1(wr).

This is the main technical lemma of the contribution and is the key reason why the algorithm
works. We will show this by a sequence of steps. We say that a cell (Si, τ) dominates a cell (Sj , τ

′)
if j < i and τ ′ − τ > j − i. As in Figure 11, a cell (S, τ) dominates all cells which lie in the upper
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Construct Sequence C⋆v :

Input: A node v ∈ red(T ) at depth k, integers τ⋆1 , . . . , τ
⋆
k

1. Initialise C⋆v to empty sequence, and i← k, τ ← τmax

2. While (i ≥ 1)
(i) Add the cell (Si, τ) to C

⋆
v .

(ii) If τ > τ⋆i , τ ← τ − 1
(iii) Else i = i− 1, τ ← τ + 1.

Figure 12: Construction of the path C⋆v .

right quadrant with respect to it if we arrange the cells as shown in the figure. For a segment Si,
let Dom(Si) be the set of cells dominated by (Si, τ

⋆
i ). The following claim shows why this notion is

useful. For a set E of edges , let p(E) denote
∑

e∈E pe. Recall that S
opt(τ) denotes the set of edges

in S(τ) selected by the optimal solution.

Claim 5.11.
∑

(Sj ,τ)∈Dom(Si)

p(S
opt

j (τ)) ≤ 128−τ⋆
i B⋆(Si, τ

⋆
i ).

Proof. Fix a segment Sj . For sake of brevity, let τ̄ denote τ⋆i + (i − j). Recall that for any pair
(S, τ), B⋆(S, τ) ≥ Bopt(S, τ) (Lemma 5.8). Therefore, terms in the above sum corresponding to Sj

add up to
∑

τ≥τ̄

p(S
opt

j (τ)) ≤
∑

τ≥τ̄

128−τB⋆(Sj , τ).

By repeated applications of Lemma 5.8,

B⋆(Sj , τ) ≤ 8τ−τ⋆
i · 8i−jB⋆(Si, τ

⋆
i ).

Therefore,

∑

τ≥τ̄

p(S
opt

j (τ)) ≤
∑

τ≥τ̄

128−τ · 8τ−τ⋆i · 8i−jB⋆(Si, τ
⋆
i )

= 128−τ⋆
i

∑

τ≥τ̄

16−(τ−τ⋆
i
) · 8i−jB⋆(Si, τ

⋆
i )

≤ 128−τ⋆i ·
2 · 8i−j

16τ̄−τ⋆
i

·B⋆(Si, τ
⋆
i ) = 128−τ⋆i ·

2

8i−j
·B⋆(Si, τ

⋆
i )

Summing over all j < i now implies the result.

Let G⋆
i (v) denote the set of edges selected by the Algorithm SelectSegment in Figure 9 for

the vertex v and segment Si when called with the state State⋆(v). Let G⋆
i (τ, v) be the density τ

edges in G⋆
i (v). The following claim shows that the total size of edges in it is much larger than the

corresponding quantity for the optimal solution.

Claim 5.12. For any segment Si,

∑

τ≤τ⋆
i

p(G⋆
i (τ, v)) −

∑

τ≤τ⋆
i

p(S
opt

i (τ)) ≥ 128−τ⋆
i B⋆(Si, τ

⋆
i ).
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Proof. Recall that for a segment S, density class τ and budget B, S(τ,≤ B) denotes the edges
in S(τ) which have cost at most B. The quantity S(≤ τ,≤ B) was defined similarly for edges of
density class at most τ in S.

Consider the Algorithm SelectSegment for Si with the parameters mentioned above. Note
that τ⋆i is same as τ1 in the notation used in Figure 9. Clearly, for τ < τ⋆i , the algorithm ensures
that G⋆

i (τ, v) contains S
opt

i (τ) (because it selects all edges in Si(τ,≤ B⋆(Si)). Since each egde in
S
opt

i (τ) has cost at most Bopt(Si, τ) ≤ B⋆(Si), this implies that Si(τ,≤ B⋆(Si)) contains S
opt

i (τ)).
For the class τ1, note that the algorithm tries to select edges of total cost at least 4B⋆(Si). Two
cases arise: (i) If it is able to select these many edges, then the fact that the optimal solution
selects edges of total cost at most B⋆(Si) from Si(τ1) implies the result, or (ii) The total cost of
edges in Si(τ1,≤ B⋆(Si)) is less than 4B⋆(Si): in this case the algorithm selects all the edges from
Si(≤ τ1,≤ B⋆(Si)), and so, G⋆

i (τ, v) contains S
opt

i (τ) for all τ ≤ τ⋆i . The definition of τ⋆i implies
that the total cost of edges in ∪τ≤τ⋆

i
G⋆

i (τ, v) \S
opt

i (τ) is at least 4B⋆(Si), and so, the result follows
again.

We are now ready to prove Lemma 5.10. Let P be a path in P(v) which ends in the segment
Sr
k+1. Suppose P starts in the segment Si0 . Note that P contains the segments Si0+1, . . . , Sk, but

may partially intersect Si0 and Sk+1.

Claim 5.13. For a cell (Si, τ) on the cell sequence C⋆(v), p(G⋆
i (τ, v) ∩ P ) ≥ p(S

opt

i (τ) ∩ P ).

Proof. Fix a segment Si which is intersected by P . P contains the lower end-point of this segment
Si. If S

opt

i (τ) ⊆ G⋆
i (τ, v), there is nothing to prove. Else let e be the first edge in S

opt

i (τ) \
G⋆

i (τ, v) as we go up from the lower end-point of this segment. It follows that during Step 5 of
the Algorithm GreedySelect in Figure 7, we would select edges of total cost at least 2Bopt(Si, τ)
(because Bopt(Si, τ) ≤ B⋆(Si, τ)). The claim follows.

Clearly, if (Si, τ) lies below the cell sequence C⋆(v), G⋆
i (τ, v) contains S

opt

i (τ) (because G⋆
i (τ, v)

is same as Si(τ,≤ B⋆(Si)) and B⋆(Si) ≥ Bopt(Si)). Let Above(C
⋆(v)) denotes the cells lying above

this sequence, and Below(C⋆(v)) the ones lying below it. The above claim now implies that

∑

τ :(Si0
,τ)∈C⋆(v)∪Below(C⋆(v))

p(S
opt

i0
(τ) ∩ P ) ≤

∑

τ :(Si0
,τ)∈C⋆(v)∪Below(C⋆(v))

p(G⋆
i0(τ, v) ∩ P ) (12)

Note that any cell (Si, τ), i ≥ i0, lying above C⋆(v) must be dominated by one of the cells
(Si′ , τ

⋆
i′) for i

′ = i0 + 1, . . . , k. Therefore, Claim 5.11 shows that

∑

(Si,τ)∈Above(C⋆(v)),i0≤i≤k

p(S
opt

i (τ)) ≤
∑

i0<i≤k

128−τ⋆i B⋆(Si, τ
⋆
i ) (13)

Further, for cells lying on or below C⋆(v), we get using Claim 5.12 and Claim 5.13

∑

(Si,τ)∈C⋆(v)∪Below(C⋆(v)),i0<i≤k

p(S
opt

i (τ)) ≤
∑

(Si,τ)∈C⋆(v)∪Below(C⋆(v)),i0<i≤k

G⋆
i (τ, v) − 2

∑

i0<i≤k

128−τ⋆
i B⋆(Si, τ

⋆
i )

(14)

Adding the three inequalities above, we see that
∑k

i=i0
p(S

opt

i ∩ P ) is at most
∑k

i=i0
p(G⋆

i (v)).
It remains to consider segment Sr

k+1. In an argument identical to the one in Claim 5.13, we can

argue that p(G⋆
k+1(wr)∩P ) ≥ p(S

r,opt
k+1 ∩P ), where S

r,opt
k+1 denotes the edges in Sr

k+1 selected by the
optimal solution. This completes the proof of the technical Lemma 5.10.

24



Rest of the task is now easy. We just need to show that DP table entries corresponding to these
valid states are comparable to the cost of the optimal solution. For a vertex v ∈ red(T ), we shall
use the notation cells(T (v)) to denote the cells (S, τ), where S lies in the subtree T (v).

Lemma 5.14. For every vertex v, the table entry D[v, State⋆(v)] is at most 20
∑

(S,τ)∈cells(T (v)) B
⋆(S, τ).

Proof. We prove by induction on the reduced depth of v. If v is a leaf, the lemma follows trivially.
Now suppose v has children w1 and w2. Consider the iteration of Step 6 in the algorithm in
Figure 10, where we try the extension State⋆(wr) of the child wr. Lemma 5.10 shows that in Step
6 (b), we will satisfy all paths in P(v) which end in the segment Sr

k+1. We now bound the cost of
edges in Gr

k+1(wr) defined in Step 6(a).

Claim 5.15. The cost of Gr
k+1(wr) is at most 20

∑

τ B
⋆(Sr

k+1, τ).

Proof. We just need to analyze the steps in the algorithm SelectSegment in Figure 9. For sake of
brevity, let τ⋆ denote τ⋆(Sr

k+1), and B⋆ denote B⋆(Sr
k+1). The definition of τ⋆ shows that the total

cost of edges in Sr
k+1(≤ τ⋆,≤ B⋆) is at most

∑

τ≤τ⋆ B
opt(Sr

k+1, τ)+4B⋆ ≤
∑

τ≤τ⋆ B
⋆(Sr

k+1, τ)+4B⋆.
For the density class τ⋆, the set of edges selected would cost at most 6B⋆, because the algorithm
in Figure 7 will take edges of cost up to 3B⋆ from either ends. Similarly, for density classes τ
more than τ⋆, this quantity is at most 6B⋆(S, τ), Summing up everything, and using the fact that
B⋆ = B⋆(S, τ) for some density class τ gives the result.

The lemma now follows by applying induction on D[wr, State
⋆(wr)].

Applying the above lemma to the root vertex r, we see that D[r, ∅] is at most a constant time
∑

(S,τ)B
⋆(S, τ), which by Lemma 5.8, is a constant times the optimal cost. Finally, Lemma 5.7

shows that this entry denotes the cost of a feasible solution. Thus, we have shown the main
Theorem 5.1.

6 Discussion

We give the first pseudo-polynomial time constant factor approximation algorithm for the weighted
flow-time problem on a single machine. The algorithm can be made to run in time polynomial in
n and W as well, where W is the ratio of the maximum to the minimum weight. The rough idea is
as follows. We have already assumed that the costs of the job segments are polynomially bounded
(this is without loss of generality). Since the cost of a job segment is its weight times its length, it
follows that the lengths of the job segments are also polynomially bounded, say in the range [1, nc].
Now we ignore all jobs of size less than 1/n2, and solve the remaining problem using our algorithm
(where P will be polynomially bounded). Now, we introduce these left out jobs, and show that
increase in weighted flow-time will be small.
Further, the algorithm also extends to the problem of minimizing ℓp norm of weighted flow-times.
We can do this by changing the objective function in (IP2) to (

∑

j

∑

s(w(j, S))
py(j, S))1/p and

showing that this is within a constant factor of the optimum value. The instance of Demand

MultiCut in the reduction remains exactly the same, except that the weights of the nodes are now
w(j, S)p. We leave the problem of obtaining a truly polynomial time constant factor approximation
algorithm as open.
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