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Abstract. Trimming is a common operation in CAD, and, in its simplest formulation, consists
in removing superfluous parts from a geometric entity described via splines (a spline patch). After
trimming the geometric description of the patch remains unchanged, but the underlying mesh is
unfitted with the physical object. We discuss the main problems arising when solving elliptic PDEs
on a trimmed domain. First we prove that, even when Dirichlet boundary conditions are weakly
enforced using Nitsche’s method, the resulting method suffers lack of stability. Then, we develop
novel stabilization techniques based on a modification of the variational formulation, which allow us
to recover well-posedness and guarantee accuracy. Optimal a priori error estimates are proven, and
numerical examples confirming the theoretical results are provided.
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1. Introduction. Complex models are processed within Computer Aided De-
sign (CAD) tools where several geometric manipulations are possible. Geometries
are described as collection of their boundary surfaces, often defined as tensor-product
splines or NURBS, and during the design process these surfaces can be joined, inter-
sected or simply superflous parts can be cut away. All these Boolean operations act
on the original surfaces through a common procedure of trimming. When the super-
fluous surface areas are cut away, the visualization of the resulting surface changes,
while its mathematical description does not. This description of the geometry is called
“boundary representation” (B-rep) (see, e.g., [38, 45], or the recent review [31] and
references therein) and is clearly not well suited for the simulation of PDEs.

Several efforts have been undertaken in the last years to improve the usability of
CAD geometries in the solution of PDEs, especially thanks to the advent of Isogeo-
metric Analysis (IGA) [15, 27] and its tremendous success (see, e.g., [1, 4, 6, 26, 42]).
The geometric modelling community has also provided important inputs to this sci-
entific challenge [41], and, in this respect, volumetric representations (V-rep) are a
major contribution [33]. On the other hand, trimming remains a main tool for the
design of complex models via Boolean operations, and basically all developments of
IGA described above rely on strong requirements on the underlying geometric models
and, in general, do not support trimmed geometric entities. The aim of this paper is
to contribute to the design of isogeometric methods that robustly support trimming
in the geometric description of the computational domain, and do not require the
construction of a global re-parametrization (meshing).

Two main issues arising when dealing with trimmed geometries are the presence
of elements unfitted with the boundary, making the research for efficient quadrature
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rules and the stable imposition of boundary conditions a challenge, and the existence
of basis functions whose support has been cut, affecting the conditioning of the related
linear system. Let us briefly review some of the most successful methods which have
been proposed so far in this regard.

In connection with the construction of quadrature rules on trimmed elements let
us mention, from the engineering side, the pioneering works [35, 48], the shell analysis
on geometric models with B-reps [8, 37], and the finite cell method combined with
IGA [17, 40, 43, 49].

Concerning the lack of stability and the ill-conditioning of the stiffness matrix
we should mention stabilization based on polynomial extrapolation in the parametric
domain [30, 32] and the so-called Cut-IGA method proposed in [20, 28]. The former
traces its roots back to the groundbreaking work [25] where the authors, by mod-
ifying the discrete functional space, tackle both the stability and the conditioning
issues. The theory was proved in [25] for finite elements with (extended) B-splines,
which corresponds to consider below the map F equal to the identity (i.e. without the
isogeometric map), and the polynomial extrapolation may lead to sub-optimal con-
vergence properties, as it will be discussed in Section 6. The latter is a generalization
of the Cut-FEM method [11, 12, 13, 14, 23] born in the framework of fictitious domain
methods for finite elements. It is based on a modification of the weak formulation
of the problem by the addition a penalisation term on the boundary. This technique
aims to deal at the same time with the ill-conditioning and the lack of stability of
the bilinear form. Note that the penalisation term acts on the jumps of the normal
derivatives of all orders over cut elements’ boundaries, which can be very demanding if
high-order B-splines are employed for the analysis (which is usually the case in IGA).

We now describe our simplified mathematical setting. Let Ω0 ⊆ Rd (here d = 2, 3)
be a domain described by a bijective spline map F : (0, 1)d → Ω0, i.e. a patch in the
isogeometric terminology, and let Ω1, . . . ,ΩN be bounded domains of Rd. We assume
that

⋃N
i=1 Ωi are to be cut away from Ω0, i.e.

(1.1) Ω = Ω0 \
N⋃
i=1

Ωi,

and we assume that the computational domain Ω is Lipschitz. After trimming the
mathematical description of the domain remains unchanged, that is, the elements
and basis functions fit the boundary of Ω0 instead of that of Ω. In this paper, we
focus on a simple Poisson problem, with weakly imposed boundary conditions, in
the domain Ω described above. First of all, we discuss the difference between bad
matrix conditioning and lack of stability. The former can be improved by modifying
the chosen basis (preconditioning), while the latter needs to act on the bilinear form
directly.

Regarding the lack of stability, we propose a stabilization technique, inspired by
[24], that acts only on those cut elements that affect stability. For example, in the case
of a Neumann condition on the trimmed boundary, no stabilization is needed. The
stabilization is “minimal” in the sense that no additional parameters are introduced,
in contrast with the CutFEM [13] and Finite Cell methods [17] for instance. Our
stabilization is parameter free and its computation requires only local projections at
the element level, and only for “bad” cut elements. We follow a “local approach” [31],
i.e. we modify the analysis, rather than the geometry, in order to be able to face
the challenges arising from trimming. Moreover, we remain faithful to the so-called
isogeometric paradigm, in the sense that we just locally modify the weak formulation,
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while keeping the discrete functional space unaffected.
We present two different versions of the stabilization. The first one is based

on polynomial extrapolation in the parametric domain, that is easier to implement
from the numerical point of view, but suboptimal in some cases. The second one
is a projection-based stabilization performed directly on the physical domain, which
allows us to recover optimal a priori error estimates.

Concerning the conditioning issue, we do not have a sound solution to the problem,
but we constructed tests to check the behaviour of the condition number of the stiffness
matrix. Numerical evidences show that a rescaling of the stiffness matrix, coupled
with our stabilization, greatly reduces the condition number, although it does not
solve the conditioning issue in all configurations (see Section 8.4). A clear theoretical
understanding of this issue is beyond the scope of this paper and, in this regard,
the interested reader is referred to [34] where a Lp-stable basis is constructed in the
context of B-splines and to [18, 19].

The document is organized as follows. Section 2 presents an overview of isoge-
ometric analysis in trimmed domains. In Section 3 we set the model problem, and
explain the main challenges we need to face, namely integration, conditioning and
numerical stability of the associated linear system. After having explained in detail
in Section 4 the causes for the lack of stability of the simple Nitsche’s formulation, in
Section 5 we present our new stabilization technique. Two possible constructions of
the stabilization operator are suggested and analysed in Section 6, and error estimates
are provided in Section 7. Finally, we conclude by showing some numerical examples,
obtained using the MATLAB library GeoPDEs [47], confirming the theoretical results.

2. Isogeometric analysis on trimmed domains.

2.1. The univariate case. For a more detailed introduction to isogeometric
analysis, we refer the interested reader to the review article [4]. Given two positive
integers p and n, we say that Ξ := {ξ1, . . . , ξn+p+1} is a p-open knot vector if

ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p+1.

We assume ξ1 = 0 and ξn+p+1 = 1. We also introduce Z := {ζ1, . . . , ζM}, the set of
breakpoints, or knots without repetitions, which forms a partition of the unit interval
(0, 1). Note that Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸

m1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
m2 times

, . . . , ζM , . . . , ζM︸ ︷︷ ︸
mM times

}, where
∑M
i=1mi = n+p+

1. Moreover, we assume mj ≤ p for every internal knot and we denote Ii := (ζi, ζi+1)
and its measure hi := ζi+1 − ζi, i = 1, . . . ,M − 1.

We denote as B̂i,p : [0, 1]→ R the i-th B-spline, 1 ≤ i ≤ n, obtained using the Cox-

de Boor formula, see for instance [4]. Moreover, let Sp(Ξ) = span{B̂i,p : 1 ≤ i ≤ n}
the vector space of univariate splines of degree p. Sp(Ξ) can also be characterized as
the space of piecewise polynomials of degree p with kj := p−mj continuous derivatives
at the breakpoints ζj , 1 ≤ j ≤M (Curry-Schoenberg theorem).

Moreover, given an interval Ij = (ζj , ζj+1) = (ξi, ξi+1), we define its support

extension Ĩj as

Ĩj := int
⋃
{supp(B̂k,p) : supp(B̂k,p) ∩ Ij 6= ∅, 1 ≤ k ≤ n} = (ξi−p, ξi+p+1) .

2.2. The multivariate case. Let d be the space dimension. Assume that
M`, n` ∈ N, p ∈ N, Ξ` = {ξ`,1, . . . , ξ`,n`+p+1} and Z` = {ζ`,1, . . . , ζ`,M`

} are given
for every 1 ≤ ` ≤ d. We set the degree p := (p, . . . , p) and Ξ := Ξ1 × · · · × Ξd.
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With no risk of ambiguity we will write p in place of p. Note that the breakpoints
of Z` form a Cartesian grid in the parametric domain Ω̂0 = (0, 1)d. We define the
parametric Bézier mesh

M̂0 = {Qj = I1,j1 × · · · × Id,jd : I`,j` = (ζ`,j` , ζ`,j`+1) : 1 ≤ j` ≤M` − 1},

where each Qj is called Bézier element, with hQj
:= diam (Qj). Let h := max{hQ :

Q ∈ M̂0}, hence we denote M̂0,h = M̂0.
Throughout the manuscript we are going to rely on the following shape-regularity

hypothesis, which allows us to assign hQ as the unique size of the element, without
the necessity of dealing with the length of its edges separately. This hypothesis is
implicitly used throughout the paper in any result involving the mesh size h.

Assumption 2.1. The family of meshes {M̂0,h}h is assumed to be shape-regular,

that is, the ratio between the smallest edge of Q ∈ M̂0,h and its diameter hQ is
uniformly bounded with respect to Q and h.

Remark 2.2. The shape-regularity hypothesis implies that the mesh is locally-
quasi uniform, i.e. the ratio of the sizes of two neighboring elements is uniformly
bounded (see [3]).

Let I := {i = (i1, . . . , id) : 1 ≤ i` ≤ n`} be a set of multi-indices. For each
i = (i1, . . . , id), we define the set of multivariate B-splines

{B̂i,p(x̂) = B̂i1,p(x̂1) . . . B̂id,p(x̂d) : i ∈ I}. Moreover, for an arbitrary Bézier element

Qj ∈ M̂0,h, we define its support extension Q̃j = Ĩ1,j1 × · · · × Ĩd,jd , where Ĩl,j` is the
univariate support extension of the univariate case defined above.

The multivariate spline space in Ω̂ is defined as Sp(Ξ) = span{B̂i,p(x̂) : i ∈ I},
which can also be seen as the space of piecewise multivariate polynomials of coor-
dinate degree p and with regularity across the Bézier elements given by the knots
multiplicities. Note that Sp(Ξ) =

⊗d
`=1 Sp(Ξ`).

Remark 2.3. What has been said so far can be easily generalized to the case of
Non-Uniform Rational B-Splines (NURBS) basis functions. See for instance [15].

Remark 2.4. The previous construction as well as what follows could be done
in a more general setting considering different, but fixed, degrees in each Cartesian
direction. In this case all the inequality constants appearing in the theoretical results
would depend on the difference between the degrees, and would possibly explode if
this difference is not kept bounded. Further generalizations to the anisotropic setting,
either in terms of the mesh or in terms of the degree, would rely on the approximation
theory in anisotropic Sobolev spaces (see, for instance, [5, 16]), These extensions are
far from trivial, and out of the scope of this work.

2.3. Parametrization, mesh and approximation space for trimming do-
mains. Let Ω0 ⊂ Rd be the original domain before trimming. We assume that there

exists a map F ∈
(
Sp0(Ξ0)

)d
such that Ω0 = F(Ω̂0), for given degree p0 and knot

vector Ξ0. We define the (physical) Bézier mesh as the image of the elements in M̂0,h

through F:

M0,h := {K ⊂ Ω : K = F(Q), Q ∈ M̂0,h}.

We denote hK := diam (K) for each K ∈M0,h. To prevent the existence of singular-
ities in the parametrization we make the following assumption.
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Assumption 2.5. The parametrization F : Ω̂0 → Ω0 is bi-Lipschitz. Moreover,
F
∣∣
Q
∈ C∞(Q) for every Q ∈ M̂0,h and F−1

∣∣
K
∈ C∞(K) for every K ∈M0,h.

Some consequences of Assumption 2.5 are the following.
1. hQ ≈ hK , i.e. ∃ C1 > 0, C2 > 0 such that C1hK ≤ hQ ≤ C2hK ;

2. ∃ C > 0 such that, ∀ Q ∈ M̂0,h such that F(Q) = K, it holds
‖DF‖L∞(Q) ≤ C and

∥∥DF−1
∥∥
L∞(K)

≤ C;

3. ∃ C1 > 0, C2 > 0 such that C1 ≤ |det(DF(x̂))| ≤ C2, for all x̂ ∈ Ω̂0.

Let V̂h = Sp(Ξ) be a refinement of Sp0(Ξ0) and define

Vh = span{Bi,p(x) := B̂i,p ◦ F−1(x) : i ∈ I},

where {B̂i,p : i ∈ I} is a basis for V̂h. Note that throughout this document C will
denote generic constants that may change at each occurrence, but that are always
independent of the local mesh size.

Let us clarify the interpolation strategy we are going to rely upon in the rest of
this manuscript. Given a function u ∈ Hs(Ω), s ≥ 1, we extend it using the Sobolev-
Stein extension operator (see, for instance, Section 3.2 of [36]) E : Hs(Ω)→ Hs(Rd)
and denote its restriction to the un-trimmed domain as ũ := E(u)

∣∣
Ω0

, for u ∈ Hs(Ω).

The spline quasi-interpolant operator ([10]) associated to the uncut mesh M0,h is
Π0 : Hs(Ω0)→ Vh. Hence, we are allowed to write ‖Π0(u)‖Hs(Ω) ≤ ‖Π0(ũ)‖Hs(Ω0) ≤
C ‖ũ‖Hs(Ω0) ≤ C ‖u‖Hs(Ω) and, similarly, for every 0 ≤ t ≤ s, ‖u−Π0(u)‖Ht(Ω) ≤
‖ũ−Π0(ũ)‖Ht(Ω0) ≤ Chs−t ‖ũ‖Hs(Ω0) ≤ Chs−t ‖u‖Hs(Ω).

3. The isogeometric formulation. At this point we suppose to trim Ω0 as
explained in (1.1), for simplicity, with N = 1 , i.e. the new domain is Ω = Ω0 \ Ω1.
We denote the trimming curve as Γtrim = ∂Ω ∩ ∂Ω1. Let us consider the Poisson
equation as model problem. Given f ∈ L2(Ω), gD ∈ H

1
2 (ΓD) and gN ∈ H−

1
2 (ΓN ),

find u : Ω→ R such that

(3.1)


−∆u = f in Ω,

u = gD on ΓD,
∂u

∂n
= gN on ΓN ,

where ΓD∪ΓN = Γ =: ∂Ω and Γ̊D∩Γ̊N = ∅, and
∂u

∂n
:= ∇u·n is the normal derivative,

with n the outward unit normal to Γ. Observe that, in general, Γtrim ∩ ΓD 6= ∅.
Let us now develop and extend the notation introduced in Section 2, to adapt it

to trimmed domains.
The approximation space on the trimmed domain Ω is Ṽh := span{Bi,p

∣∣
Ω

: i ∈
I}. The new parametric Bézier mesh is M̂h = {Q ∈ M̂0,h : Q ∩ Ω̂ 6= ∅}, where

Ω̂ = F−1(Ω). The physical mesh is Mh = {F(Q) : Q ∈ M̂h}. and the set of Bézier
elements cut by the trimming curve is denoted as Gh = {K ∈Mh : K ∩ Γtrim 6= ∅}.

For every K ∈ Mh, let hK := diam(K), hmax := maxK∈Mh
hK and hmin :=

minK∈Mh
hK . We define h : Ω→ R+ to be the piecewise constant mesh-size function

of Mh given by h
∣∣
K

:= hK .
First of all, we make an assumption on how the mesh is cut by the boundary.

Assumption 3.1. There exists C > 0 such that, ∀ h > 0, ∀ K ∈ Mh, it holds
|ΓK | ≤ Chd−1

K , where ΓK := ΓD ∩K 6= ∅.
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We denote as Γ̂D := F−1 (ΓD) and as n̂ its outward unit normal.
Since the point is to avoid a reparametrization and a remeshing of the trimmed

domain, it is natural to see the analogy with fictitious domain methods, where the
physical domain, with a possibly complicated topology, is immersed into a simpler,
but unfitted, background mesh. Similarly to fictitious domain methods, we need to
be able to impose essential boundary conditions when the mesh is not fitted with
boundary. Following [21, 44], we decide to employ Nitsche’s method, which in its
symmetric form reads as follows.

Find uh ∈ Ṽh such that

(3.2)

∫
Ω

∇uh · ∇vh −
∫

ΓD

∂uh
∂n

vh −
∫

ΓD

uh
∂vh
∂n︸ ︷︷ ︸

symmetry

+β

∫
ΓD

h−1uhvh︸ ︷︷ ︸
stability

=

∫
Ω

fvh +

∫
ΓN

gNvh−
∫

ΓD

gD
∂vh
∂n

+ β

∫
ΓD

h−1gDvh︸ ︷︷ ︸
consistency

,

where β > 0 is a penalization parameter.
We define

ah(uh, vh) :=

∫
Ω

∇uh · ∇vh −
∫

ΓD

∂uh
∂n

vh −
∫

ΓD

uh
∂vh
∂n

+ β

∫
ΓD

h−1uhvh.

Our main goal is to provide a minimal stabilization to make formulation (3.2)
uniformly well-posed with respect to the mesh-size.

4. Stability. Firstly, we need to clarify what we actually mean by “stability” of
the discrete variational problem (3.2). We introduce the following mesh-dependent
scalar product

(uh, vh)1,h,Ω :=

∫
Ω

∇uh · ∇vh +

∫
ΓD

h−1uhvh,

which induces the discrete norm

(4.1) ‖uh‖21,h,Ω := ‖∇uh‖2L2(Ω) +
∥∥∥h− 1

2uh

∥∥∥2

L2(ΓD)
.

Definition 4.1. Problem (3.2) is stable if there exist β > 0 and α > 0 such that
for every β ≥ β, for every h > 0 it holds that

α ‖uh‖21,h,Ω ≤ ah(uh, uh) ∀ uh ∈ Ṽh,

and for every fixed β ≥ β there exists γ > 0 such that for every h > 0 it holds that

ah(uh, vh) ≤ γ ‖uh‖1,h,Ω ‖vh‖1,h,Ω ∀ uh, vh ∈ Ṽh.

Remark 4.2. The main point of Definition 4.1 is to find β, α and γ that do not
depend on the trimming configuration. In the following lines we will show with a
numerical example that the formulation (3.2) is not stable.
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Remark 4.3. In Definition 4.1 we have followed [44]. Note that the coercivity
constant only depends on β, while the continuity constant depends on the penalization
parameter β, and in particular it grows with β. This dependence of the constant on
β also occurs in Theorem 7.1 and in Proposition 7.4. In practice, β has to be chosen
large enough (i.e. larger than β), but as close as possible to β, to avoid that the
continuity constant deteriorates.

Proposition 4.4. If for all K ∈ Gh we have ΓK = ∅, then problem (3.2) is stable.

Proof. We refer the reader to [44].

The following numerical experience shows that there exists a trimming configuration
for which the formulation (3.2) is not stable according to Definition 4.1. In particular
we show that for every fixed β the continuity constant γ may be arbitrarily large, for
a given h > 0. First, we notice that if γβ is the continuity constant corresponding to
β, then γβ > γ1 for every β > 1. So, we fix β = 1 and show that γ1 can be arbitrarily
large.

Let us consider the following eigenvalue problem. Find uh ∈ Ṽh \ {0} and λh ∈ R
such that
(4.2)∫

Ω

∇uh ·∇vh−
∫

ΓD

∂uh
∂n

vh−
∫

ΓD

uh
∂vh
∂n

+

∫
ΓD

h−1uhvh = λh(uh, vh)1,h,Ω ∀ vh ∈ Ṽh.

As the problem is symmetric, the continuity constant γ1 equals the maximum eigen-
value of (4.2). Let us consider Ω0 = (0, 1)2 and as trimmed domain Ω = (0, 1) ×
(0, 0.757). We fix h = 2−5 as mesh size and p = 3 as degree. We construct a sequence

of discrete spaces
(
Ṽh,ε

)
ε

of degree p and of class C2 at the internal knots, starting

from the uniform knot vectors Ξx, Ξy and substituting in the latter the knot 0.75 with
ξ = 0.757− ε, see Figure 1a. Basically, the horizontal knot line {(x, y) : y = 0.75} is
replaced by {(x, y) : y = ξ}, which is such that the smaller ε > 0 is, the closer to the
trimming curve it becomes.

In Figure 1b we can see the dependence of the spectrum of (4.2) on the magnitude
of ε. In particular, the magnitude of the largest generalized eigenvalue goes to infinity
as ε goes to 0, implying that the discrete formulation (3.2) is not stable, as the
continuity constant can be made arbitrarily large by reducing ε. Going through the
proof of stability, we clearly miss a discrete trace inequality which is uniform with
respect to any mesh-trimming curve configuration, namely:∥∥∥∥h 1

2
∂vh
∂n

∥∥∥∥
L2(ΓK)

≤ C ‖∇vh‖L2(K∩Ω) ,

where C does not depend neither on K nor on K ∩ Ω.
At this point, in order to be able to deal with a well-posed, hence stable, problem

we want to find a way to improve this discrete trace inequality, where the constant
does not depend on how the trimmed boundary intersects the mesh.

5. A new stabilization technique. The goal of this section is to present a
new stabilization technique for the problem (3.2). Our construction is inspired by the
work of J. Haslinger and Y. Renard in [24].

Let us partition the elements of the Bézier mesh into two disjoint sub-families.
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Ω

ε

(a) Sketch of the setting with
amplified distances. We plot
Ω = (0, 1) × (0, 0.757) (in red),
{(x, y) : y = ξ} (in solid blue),
{(x, y) : y = 0.75} (in dotted
gray).
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(b) Maximum generalized eigenvalue
vs ε.

Fig. 1: Testing the lack of stability of formulation (5.2) with respect to trimming.

Definition 5.1. Let θ ∈ (0, 1] and Q ∈ M̂h. We say that Q is a good element if

(5.1)

∣∣∣Ω̂ ∩Q∣∣∣
|Q|

≥ θ.

Otherwise, Q is a bad element. Thanks to the regularity Assumption 2.5 on F,
this classification on the parametric elements induces naturally a classification on the
physical elements. Mg

h stands for the collection of the good physical Bézier elements
and Mb

h for the one of the bad physical elements. Note that Mh \ Gh ⊆ Mg
h and

Mb
h ⊆ Gh. We denote the set of neighbors of K as:

N (K) := {K ′ ∈Mh : dist (K,K ′) ≤ Ch
∣∣
K
} \ {K},

where C does not depend on the mesh size.

The following assumption is not restrictive since it holds true if the mesh is sufficiently
refined.

Assumption 5.2. We assume that for any K ∈Mb
h, N (K) ∩Mg

h 6= ∅.

In what follows, we will use Assumption 5.2 to construct a stable representation
of the normal flux of discrete functions. Let us assume that there exists an operator

Rh : Ṽh → L2(ΓD)

which approximates the normal derivative on ΓD in a sense that will be specified. We
propose the following stabilized formulation of problem (3.2).

Find uh ∈ Ṽh such that
(5.2)

ah(uh, vh) =

∫
Ω

fvh +

∫
ΓN

gNvh −
∫

ΓD

gDRh(vh) + β

∫
ΓD

h−1gDvh ∀ vh ∈ Ṽh,
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where

ah(uh, vh) :=

∫
Ω

∇uh · ∇vh −
∫

ΓD

Rh(uh)vh −
∫

ΓD

uhRh(vh) + β

∫
ΓD

h−1uhvh.

Theorem 5.3. Suppose the following stability property is satisfied: there exists
a uniform C > 0 such that for every K ∈ Gh

(5.3)
∥∥∥h 1

2Rh(vh)
∥∥∥
L2(ΓK)

≤ C ‖∇vh‖L2(Ω∩K′) ∀ vh ∈ Ṽh,

where K ′ = K if K ∈Mg
h, otherwise K ′ ∈ N (K)∩Mg

h. Then problem (5.2) is stable
in the sense of Definition 4.1 (modified accordingly).

Proof. For the continuity, let uh, vh ∈ Ṽh and estimate

|ah(uh, vh)| ≤ ‖∇uh‖L2(Ω) ‖∇vh‖L2(Ω) +
∥∥∥h 1

2Rh(uh)
∥∥∥
L2(ΓD)

∥∥∥h− 1
2 vh

∥∥∥
L2(ΓD)

+
∥∥∥h 1

2Rh(vh)
∥∥∥
L2(ΓD)

∥∥∥h− 1
2uh

∥∥∥
L2(ΓD)

+ β
∥∥∥h− 1

2uh

∥∥∥
L2(ΓD)

∥∥∥h− 1
2 vh

∥∥∥
L2(ΓD)

≤‖uh‖1,h,Ω ‖vh‖1,h,Ω + C ‖∇uh‖L2(Ω) ‖vh‖1,h,Ω + C ‖∇vh‖L2(Ω) ‖uh‖1,h,Ω
+ β ‖uh‖1,h,Ω ‖vh‖1,h,Ω ≤ C ‖uh‖1,h,Ω ‖vh‖1,h,Ω ,

where we employed first Cauchy-Schwarz inequality, the definition of the norm (4.1)

and the stability property (5.3). Take uh ∈ Ṽh. Using Young inequality, with δ > 0,
and, again, the stability property (5.3), we obtain:

ah(uh, uh) ≥‖∇uh‖2L2(Ω) −
1

δ

∥∥∥h 1
2Rh(uh)

∥∥∥2

L2(ΓD)
− δ

∥∥∥h− 1
2uh

∥∥∥2

L2(ΓD)

+ β
∥∥∥h− 1

2uh

∥∥∥2

L2(ΓD)
≥
(

1− C

δ

)
‖∇uh‖2L2(Ω) + (β − δ)

∥∥∥h− 1
2uh

∥∥∥2

L2(ΓD)
,

from which we deduce the coercivity, provided C < δ < β.

Remark 5.4. In order for the solution of (5.2) to be a good approximation of u,
it is clear that we will also need to quantify the error between Rh(uh) and ∂u

∂n . This
fact will be addressed in the next section.

6. Construction of the stabilization operator. The definition of the oper-
ator Rh is not unique. As already observed, we seek for a stable approximation of
the normal derivative on the trimmed part of the boundary, namely on ΓK for every
K ∈ Gh. Here, we propose two different constructions of such an operator.

• a stabilization in the parametric domain: for each K ∈ Mb
h we take the

(unique) polynomial extension of the pull-back of the functions of Ṽh from
Q′ = F−1(K ′) to Q = F−1(K), where K ′ is a good neighbor;

• a stabilization in the physical domain: for each K ∈Mb
h, we first L2-project

the spline functions restricted to the good neighbor K ′ onto the polynomial
space Qp(K ′), then we take their (unique) polynomial extension up to K.

Definition 6.1 (Stabilization in the parametric domain). We define the opera-

tor Rh locally as Rh(vh)
∣∣
K

:= RK(vh) ∀ K ∈ Gh, ∀ vh ∈ Ṽh, where
• if K ∈Mg

h,

RK(vh) :=
∂vh

∣∣
K

∂n
;
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• if K ∈Mb
h, K ′ ∈ N (K) ∩Mg

h,

RK(vh) :=
∂
(
E
(
v̂h
∣∣
Q′

)
◦ F−1

)
∂n

,

where E : Qp(Q′)→ Qp(Q′ ∪Q) is the polynomial natural extension.

Definition 6.2 (Stabilization in the physical domain). An alternative stabiliza-
tion operator can be defined by using the L2-projection in the physical domain. We
define the operator Rh locally as Rh(vh)

∣∣
K

:= RK(vh) ∀ K ∈ Gh, ∀ vh ∈ Ṽh:
• if K ∈Mg

h,

RK(vh) :=
∂vh

∣∣
K

∂n
;

• if K = F(Q) ∈Mb
h, K ′ ∈ N (K) ∩Mg

h,

RK(vh) :=
∂
(
E
(
P (vh

∣∣
K′

)
))

∂n
,

where P : L2 (K ′)→ Qp (K ′) is the L2-orthogonal projection and
E : Qp(K ′)→ Qp(K ′ ∪K) is the polynomial natural extension.

Remark 6.3. Note that in the trivial case where F = Id, the L2-projection P ,
restricted to Ṽh, reduces to the identity operator and the two stabilizations coincide.

6.1. Properties of the stabilization in the parametric domain. We are
now up to verify if our choice of Rh verifies the stability property (5.3). Its proof
relies on a series of quite technical results that are reported in the Appendix.

Theorem 6.4. The stability property (5.3) holds for Rh defined as in Definition
6.1, i.e., there exists C > 0 such that for every K ∈ Gh∥∥∥h 1

2Rh(vh)
∥∥∥
L2(ΓK)

≤ C ‖∇vh‖L2(Ω∩K′) ∀ vh ∈ Ṽh,

where K ′ = K if K ∈Mg
h, otherwise K ′ ∈ N (K) ∩Mg

h.

Proof. Fixed K ∈ Gh, it is enough to prove∥∥∥h 1
2 vh

∥∥∥
L2(ΓK)

≤ C ‖vh‖L2(Ω∩K′) ,

for vh ∈ Ṽh such that vh
∣∣
K

:= E
(
v̂h
∣∣
Q′

)
◦ F−1, where E : Qp(Q′) → Qp(Q′ ∪ Q)

and K = F(Q), K ′ = F(Q′) ∈ N (K) ∩Mg
h. We can restrict ourselves to the case

K ∈Mb
h with good neighbor K ′. It holds:

(6.1)

‖vh‖2L2(ΓK) =

∫
ΓK

|vh|2 dS =

∫
F−1(ΓK)

|v̂h|2 |det (DF)|
∥∥DF−1n̂

∥∥dŜ

≤C
∫
F−1(ΓK)

|v̂h|2 dŜ = C ‖v̂h‖2L2(Γ̂D∩Q) ,

where we have used F−1(ΓK) = F−1(ΓD) ∩ F−1(K) = Γ̂D ∩Q, because F preserves
boundaries (as homeomorphisms do). We then have:

‖v̂h‖L2(Γ̂D∩Q) ≤
∣∣∣Γ̂D ∩Q∣∣∣ 12 ‖v̂h‖L∞(Γ̂D∩Q) ≤

∣∣∣Γ̂D ∩Q∣∣∣ 12 ‖v̂h‖L∞(Q) .
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In the first inequality we have used Hölder inequality. Now, we employ Lemma A.3
and Assumption 3.1:

‖v̂h‖2L2(Γ̂D∩Q) ≤ C
∣∣∣Γ̂D ∩Q∣∣∣ 12 ‖v̂h‖L∞(Q′) ≤ Ch

d−1
2 ‖v̂h‖L∞(Q′) .

At this point, notice that we can use Lemma A.4 because
|Ω∩K′|
|K′| ≥ θ implies

|Ω̂∩Q′|
|Q′| ≥ Cθmin, where C depends just on F, thanks to Assumption 2.5.

Let us continue with the inequalities:

(6.2) ‖v̂h‖L2(Γ̂D∩Q) ≤ Ch
− 1

2 ‖v̂h‖L2(Ω̂∩Q′) ≤ Ch
− 1

2 ‖vh‖L2(Ω∩K′) .

Gathering together (6.1) and (6.2), we conclude the proof.

In what follows, we analyse the approximation properties of the operator Rh, and
provide estimates that will be used in Section 7 to deduce a complete error estimate.

Proposition 6.5. Let 1
2 < k ≤ p. There exists C > 0 such that for every K ∈ Gh

• if 1
2 < k < p− 1

2 , for every v ∈ Hk+1(Ω),:∥∥∥∥h 1
2

(
Rh (Π0(ṽ))− ∂ṽ

∂n

)∥∥∥∥
L2(ΓK)

≤ Chkmax ‖ṽ‖Hk+1(K̃∪K̃′) ,

where K ′ = K if K ∈Mg
h, otherwise K ′ ∈ N (K) ∩Mg

h;
• if p − 1

2 ≤ k ≤ p and each internal knot line is not repeated, for every
v ∈ Hk+1(Ω), for all ε > 0,∥∥∥∥h 1

2

(
Rh (Π0(ṽ))− ∂ṽ

∂n

)∥∥∥∥
L2(ΓK)

≤ Chp−
1
2−ε

max ‖ṽ‖Hk+1(K̃∪K̃′) ,

where K ′ = K if K ∈Mg
h, otherwise K ′ ∈ N (K) ∩Mg

h.

Proof. First of all, let v ∈ Hk+1(Ω), with 1
2 < k ≤ p. We take K ∈ Gh. Let us

distinguish two cases: either K ∈Mg
h or K ∈Mb

h.
If K ∈Mg. We use Lemma A.1 and standard approximation results:∥∥∥∥h 1

2

(
Rh (Π0(ṽ))− ∂ṽ

∂n

)∥∥∥∥2

L2(ΓK)

=

∥∥∥∥h 1
2

(
∂Π0(ṽ)

∂n
− ∂ṽ

∂n

)∥∥∥∥2

L2(ΓK)

≤C
(
‖∇Π0(ṽ)−∇ṽ‖2L2(K) + ‖h(∇Π0(ṽ)−∇ṽ)‖2H1(K)

)
≤C

(∥∥hkṽ∥∥2

Hk+1(K̃)
+
∥∥hkṽ∥∥2

Hk+1(K̃)

)
≤ 2Chkmax ‖ṽ‖

2
Hk+1(K̃) .

If K = F(Q) ∈ Mb
h and K ′ = F(Q′) ∈ N (K) ∩Mg

h be its good neighbor. We
easily obtain:
(6.3)∥∥∥∥h 1

2

(
Rh (Π0(ṽ))− ∂ṽ

∂n

)∥∥∥∥
L2(ΓK)

≤ C

∥∥∥∥∥h 1
2

(
∂

∂n
E
(

Π0 (ṽ) ◦ F
∣∣
Q′

)
− ∂̂̃v
∂n

)∥∥∥∥∥
L2(Γ̂D∩Q)

≤C
(∥∥∥∥h 1

2
∂

∂n

(
E
(

Π0 (ṽ) ◦ F
∣∣
Q′

)
−Π0 (ṽ) ◦ F

)∥∥∥∥
L2(Γ̂D∩Q)

+

∥∥∥∥h 1
2
∂

∂n

(
Π0 (ṽ) ◦ F− ̂̃v)∥∥∥∥

L2(Γ̂D∩Q)

)
.
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The second term converges as expected because of the properties of spline quasi-
interpolants [10]. We focus on the first one. Let q̂ = q ◦ F ∈ Qp(Rd) be a global
polynomial. Note that, trivially, E(q̂

∣∣
Q′

) = q̂
∣∣
Q′

. By triangular inequality:

(6.4) ∥∥∥h 1
2
∂

∂n

(
E
(

Π0 (ṽ) ◦ F
∣∣
Q′

)
−Π0 (ṽ) ◦ F

)∥∥∥
L2(Γ̂D∩Q)

≤
∥∥∥∥h 1

2
∂

∂n
E
(

Π0 (ṽ) ◦ F
∣∣
Q′
− q̂
)∥∥∥∥

L2(Γ̂D∩Q)

+

∥∥∥∥h 1
2
∂

∂n
(q̂ −Π0 (ṽ) ◦ F)

∥∥∥∥
L2(Γ̂D∩Q)

.

Using Corollary A.2, we can bound the last term of (6.4) as follows:

(6.5)

∥∥∥∥h 1
2
∂

∂n
(Π0 (ṽ) ◦ F− q̂)

∥∥∥∥
L2(Γ̂D∩Q))

≤ C ‖(Π0 (ṽ) ◦ F− q̂)‖H1(Q) .

The first term of (6.4) can be bounded using the stability property of Rh, given in
Theorem 6.4:

(6.6)

∥∥∥∥h 1
2
∂

∂n
E
(

Π0 (ṽ) ◦ F
∣∣
Q′
− q̂
)∥∥∥∥

L2(Γ̂D∩Q)

≤ C ‖∇ (Π0 (ṽ) ◦ F− q̂)‖L2(Ω̂∩Q′) .

Thus, combining (6.4), (6.5) and (6.6), we obtain:

(6.7)

∥∥∥h 1
2
∂

∂n

(
E
(

Π0 (ṽ) ◦ F
∣∣
Q′

)
−Π0 (ṽ) ◦ F

)∥∥∥
L2(Γ̂D∩Q)

≤C
∥∥∥(Π0 (ṽ) ◦ F

∣∣
Q′
− q̂
)∥∥∥

H1(Q∪Q′)

≤C
(
‖(Π0 (ṽ)− ṽ) ◦ F‖H1(Q∪Q′) + ‖(ṽ ◦ F− q̂)‖H1(Q∪Q′)

)
.

Again, the first term converges as expected by standard approximation results.
Concerning the other term, there are some issues, related to the regularity of the
parametrization. By the theory of bent Sobolev spaces (see [3]), we have ṽ ∈ Hk+1(Ω0),
but, in general, ṽ ◦ F

∣∣
Q∪Q′ /∈ H

k+1(Q∪Q′), since it is bent by F, a spline of degree p

and regularity p−1 (under the assumption that internal knot lines are not repeated).
It holds, indeed, that ṽ ◦ F

∣∣
Q∪Q′ ∈ H

r+1(Q∪Q′), where r+1 := min{k+1, p+ 1
2−ε},

hence 0 ≤ r ≤ k and 0 ≤ r ≤ p− 1
2 − ε. So, the following inequality follows:

‖ṽ ◦ F− q̂‖H1(Q∪Q′) ≤ Ch
r
max ‖ṽ ◦ F‖Hr+1(Q̃∪Q̃′) ,

where 0 ≤ r ≤ k and 0 ≤ r ≤ p− 1
2 − ε, for any ε > 0. Hence, pushing forward to the

physical domain:

(6.8) ‖ṽ − q‖H1(K∪K′) ≤ Ch
r
max ‖ṽ‖Hr+1(K̃∪K̃′) .

Hence, from (6.7) and (6.8), we deduce:

(6.9)

∥∥∥∥h 1
2

(
Rh (Π0(ṽ))− ∂ṽ

∂n

)∥∥∥∥
L2(ΓK)

≤C
(
hkmax ‖ṽ‖Hk+1(K̃∪K̃′) + hrmax ‖ṽ‖Hr+1(K̃∪K̃′)

)
.

We want to rewrite inequality (6.9) by distinguishing two cases.
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• 1
2 < k < p− 1

2 . In this case,

(6.10)

∥∥∥∥h 1
2

(
Rh (Π0(ṽ))− ∂ṽ

∂n

)∥∥∥∥
L2(ΓK)

≤ Chrmax ‖ṽ‖Hk+1(K̃∪K̃′) ,

for any 0 ≤ r ≤ k. Hence,

(6.11)

∥∥∥∥h 1
2

(
Rh (Π0(ṽ))− ∂ṽ

∂n

)∥∥∥∥
L2(ΓK)

≤ Chkmax ‖ṽ‖Hk+1(K̃∪K̃′) .

• If p− 1
2 ≤ k ≤ p, then

(6.12)

∥∥∥∥h 1
2

(
Rh (Π0(ṽ))− ∂ṽ

∂n

)∥∥∥∥
L2(ΓK)

≤ Chp−
1
2−ε

max ‖ṽ‖Hk+1(K̃∪K̃′) ,

for any ε > 0.

Remark 6.6. Note that if 1
2 < k < p − 1

2 , the estimate is optimal. In the case
p − 1

2 ≤ k ≤ p the estimate is sub-optimal, instead. As already mentioned during
the proof, this is due to the fact that u ∈ Hk+1(K ∪ K ′) does not imply u ◦ F ∈
Hk+1(Q ∪ Q′): if the knot line between K and K ′ is not repeated, namely F ∈
Cp−1(Q∪Q′), then it holds u ◦F ∈ Hr+1(Q∪Q′) with r+ 1 := min{k+ 1, p+ 1

2 − ε}.
Moreover, if the parametrization is less regular than requested in the hypotheses
of Proposition 6.5, then the sub-optimality may be even worse. More precisely, if
F ∈ Cs (Q ∪Q′), which is the case if the knot line is repeated p − s times, then we
have r + 1 := min{k + 1, s + 3

2 − ε}. We will see an example of this sub-optimal
behaviour in the worst case scenario of s = 0 in Section 8.3.

Remark 6.7. Any method based on polynomial extrapolation of the B-splines
in the parametric domain may also suffer of this sub-optimality depending on the
regularity of the isogeometric map F, because the theory of bent Sobolev spaces
from [3] cannot be applied. In particular the method of extended B-splines which
works very well in the parametric domain [25], may suffer a lack of accuracy in the
isogeometric setting [30, 32].

6.2. Properties of the stabilization in the physical domain.

Theorem 6.8. The stability property (5.3) holds for Rh defined as in Definition
6.2, i.e., there exists C > 0 such that for every K ∈ Gh∥∥∥h 1

2Rh(vh)
∥∥∥
L2(ΓK)

≤ C ‖∇vh‖L2(Ω∩K′) ∀ vh ∈ Ṽh,

where K ′ = K if K ∈Mg, otherwise K ′ ∈ N (K) ∩Mg.

Proof. Let us start applying Hölder inequality and Lemma A.3:

‖Rh(vh)‖L2(ΓK) =

∥∥∥∥ ∂∂nE (P (vh
∣∣
K′

)
)∥∥∥∥
L2(ΓK)

≤
√
|ΓK |

∥∥∥∥ ∂∂nE (P (vh
∣∣
K′

)
)∥∥∥∥
L∞(ΓK)

≤
√
|ΓK |

∥∥∇E (P (vh
∣∣
K′

)
)∥∥
L∞(K)

≤ C
√
|ΓK |

∥∥∇P (vh
∣∣
K′

)
∥∥
L∞(K′)

.

We finish with Lemma A.4, Assumption 3.1 and the stability of the L2-orthogonal
projection P , see for instance [7],∥∥∥h 1

2Rh(vh)
∥∥∥
L2(ΓK)

≤Ch− d
2

√
|ΓK |

∥∥∥h 1
2∇P (vh

∣∣
K′

)
∥∥∥
L2(Ω∩K′)

≤C ‖∇P (vh)‖L2(Ω∩K′) ≤ C ‖∇vh‖L2(Ω∩K′) .
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We conclude by summing over K ∈ Gh.

Proposition 6.9. Let 1
2 < k ≤ p. There exists C > 0 such that for every K ∈ Gh∥∥∥∥h 1

2

(
Rh (Π0(ṽ))− ∂ṽ

∂n

)∥∥∥∥
L2(ΓK)

≤ Chk ‖ṽ‖Hk+1(K̃∪K̃′) ∀ v ∈ Hk+1(Ω),

where K ′ = K if K ∈Mg
h, otherwise K ′ ∈ N (K) ∩Mg

h.

Proof. We can focus on the case K ∈Mb
h. Let K ′ ∈ N (K)∩Mg

h and q ∈ Qp (K ′).
(6.13) ∥∥∥∥h 1

2

(
Rh (Π0 (ṽ))− ∂ṽ

∂n

)∥∥∥∥
L2(ΓK)

=

∥∥∥∥h 1
2
∂

∂n

(
E
(
P
(
Π0 (ṽ)

∣∣
K′

))
− ṽ
)∥∥∥∥
L2(ΓK)

≤
∥∥∥∥h 1

2
∂

∂n

(
E
(
P
(
Π0 (ṽ)

∣∣
K′

))
− q
)∥∥∥∥
L2(ΓK)

+

∥∥∥∥h 1
2
∂

∂n
(q − ṽ)

∥∥∥∥
L2(ΓK)

.

Let us focus on the first term. After having observed that P (q) = q, we apply the
stability property proved in Theorem 6.8 and, again, triangular inequality

(6.14)

∥∥∥∥h 1
2
∂

∂n

(
E
(
P
(
Π0 (ṽ)

∣∣
K′

))
− q
)∥∥∥∥
L2(ΓK)

≤ C ‖∇ (Π0 (ṽ)− q)‖L2(Ω∩K′)

≤C
(
‖∇ (q − ṽ)‖L2(Ω∩K′) + ‖∇ (ṽ −Π0 (ṽ))‖L2(Ω∩K′)

)
We choose q = P (v). Note that the second term of (6.13) converges as expected by
the approximation properties of the L2-projection. Plugging (6.14) into (6.13):

(6.15)

∥∥∥∥h 1
2

(
Rh (Π0 (ṽ))− ∂ṽ

∂n

)∥∥∥∥
L2(ΓK)

≤Chk
(
‖ṽ‖Hk+1(K̃′) + ‖ṽ‖Hk+1(K̃)

)
≤Chk ‖ṽ‖Hk+1(K̃∪K̃′) .

We conclude by summing over K ∈ Gh.

7. A priori error estimate. The preparatory results of Propositions 6.5 and
6.9 were needed in order to prove the following convergence theorem.

Theorem 7.1. Let 1
2 < k ≤ p. There exists β > 0 such that, for every β ≥ β, if

u ∈ Hk+1(Ω) is the solution to (3.1) and uh ∈ Ṽh solution to (5.2), then

(7.1) ‖u− uh‖1,h,Ω ≤ C
(
hk ‖u‖Hk+1(Ω) + hr ‖ũ‖Hr+1(Sh)

)
,

where Sh is the strip of width ch, c ≥ 1, such that Sh ⊇
⋃
K∈Mb

h

(
K̃ ∪ K̃ ′

)
, and

K ′ ∈Mg
h ∩N (K). Moreover, (7.1) holds for every r such that:

• 0 ≤ r < p − 1
2 with the stabilization in the parametric domain of Definition

6.1;
• 0 ≤ r ≤ p with the stabilization in the physical domain of Definition 6.2.

Proof. From Theorems 5.3, 6.4 and 6.8 we know that ah(·, ·) is coercive w.r.t.

‖·‖1,h,Ω, i.e. there exists α > 0 such that for every uh ∈ Ṽh

(7.2) α sup
wh∈Ṽh
wh 6=0

ah(uh, wh)

‖wh‖1,h,Ω
≥ ‖uh‖1,h,Ω .
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Let vh ∈ Ṽh. Using the triangular inequality and coercivity, we get:

(7.3)

‖u− uh‖1,h,Ω ≤‖u− vh‖1,h,Ω + ‖vh − uh‖1,h,Ω

≤‖u− vh‖1,h,Ω + α sup
wh∈Vh
wh 6=0

ah(vh − uh, wh)

‖wh‖1,h,Ω
.

Then, recalling that uh solves (5.2), we get

ah(vh − uh, wh) =ah(vh, wh)− ah(uh, wh) = ah(vh, wh)− Fh(wh)

=

∫
Ω

∇vh · ∇wh −
∫

ΓD

Rh(vh)wh −
∫

ΓD

vhRh(wh) + β

∫
ΓD

h−1vhwh

−
∫

Ω

fwh +

∫
ΓD

gDRh(wh)− β
∫

ΓD

h−1gDwh.

Since u solves (3.1):
∫

Ω
fwh =

∫
Ω
∇u · ∇wh −

∫
ΓD

∂u
∂nwh and u

∣∣
ΓD

= gD, hence:

ah(vh − uh, wh) =

∫
Ω

∇(vh − u) · ∇wh︸ ︷︷ ︸
I

−
∫

ΓD

(Rh(vh)− ∂u

∂n
)wh︸ ︷︷ ︸

II

+

∫
ΓD

(u− vh)Rh(wh)︸ ︷︷ ︸
III

+β

∫
ΓD

h−1(vh − u)wh︸ ︷︷ ︸
IV

.

Let us now estimate the four terms separately. We will leave II for last since its
analysis depends on the choice of the stabilization. Clearly

(7.4) I + IV ≤ C ‖u− vh‖1,h,Ω ‖wh‖1,h,Ω ,

where C > 0 linearly depends on β. Note that this will not compromise the uniformity
of the resulting constant, provided that β is chosen as close as possible to β (see
the discussion in Remark 4.3). Using the stability property (5.3) and taking K ′ ∈
N (K) ∩Mg

h (if K itself is a good element, then take K ′ = K), we get:

(7.5)

III2 ≤
∥∥∥h− 1

2 (u− vh)
∥∥∥2

L2(ΓD)

∑
K∈Gh

∥∥∥h 1
2Rh(wh)

∥∥∥2

L2(ΓK)

≤‖u− vh‖21,h,Ω C
∑
K∈Gh

‖∇wh‖2L2(K′∩Ω) ≤ C ‖u− vh‖
2
1,h,Ω ‖wh‖

2
1,h,Ω .

Let us estimate the term II. By definition of the norm ‖·‖1,h,Ω:

II ≤
∥∥∥∥h 1

2

(
Rh(vh)− ∂u

∂n

)∥∥∥∥
L2(ΓD)

‖wh‖1,h,Ω .

Now, we choose vh = Π0(ũ) and distinguish two cases.
• If we use the stabilization in the parametric domain of Definition 6.1, hence
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apply Proposition 6.5, we get, for any 0 ≤ r < p− 1
2 ,∑

K∈Gh

∥∥∥∥h 1
2

(
Rh (Π0 (ũ))− ∂u

∂n

)∥∥∥∥
L2(ΓK)

‖wh‖1,h,Ω

=
∑
K∈Gh

∥∥∥∥h 1
2

(
Rh (Π0 (ũ))− ∂ũ

∂n

)∥∥∥∥
L2(ΓK)

‖wh‖1,h,Ω

≤
∑
K∈Gh

C
(
hk ‖ũ‖Hk+1(K̃∪K̃′) + hr ‖ũ‖Hk+1(K̃∪K̃′)

)
‖wh‖1,h,Ω ,

• Employing the stabilization in the physical domain of Definition 6.2, hence
apply Proposition 6.9, we obtain∑

K∈Gh

∥∥∥∥h 1
2

(
Rh (Π0 (ũ))− ∂u

∂n

)∥∥∥∥
L2(ΓK)

‖wh‖1,h,Ω

=
∑
K∈Gh

∥∥∥∥h 1
2

(
Rh (Π0 (ũ))− ∂ũ

∂n

)∥∥∥∥
L2(ΓK)

‖wh‖1,h,Ω

≤
∑
K∈Gh

Chk ‖ũ‖Hk+1(K̃∪K̃′) ‖wh‖1,h,Ω .

Therefore, we have that

II ≤ C
(
hk ‖u‖Hk+1(Ω) + hr ‖ũ‖Hk+1(Sh)

)
‖wh‖1,h,Ω ,

where Sh is the strip of width ch, c ≥ 1, such that Sh ⊇
⋃
K∈Mb

h

(
K̃ ∪ K̃ ′

)
, and

K ′ ∈Mg
h ∩N (K) and we can choose any r such that:

• 0 ≤ r < p − 1
2 if we use the stabilization in the parametric domain, hence

apply Proposition 6.5;
• 0 ≤ r ≤ p if we use the one in the physical domain and use Proposition 6.9.

As a consequence, we have that

(7.6)

ah(Π0(ũ)− uh, wh) ≤‖u−Π0(ũ)‖1,h,Ω ‖wh‖1,h,Ω
+ C

(
hk ‖u‖Hk+1(Ω) + hr ‖ũ‖Hk+1(Sh)

)
‖wh‖1,h,Ω

+ C ‖u−Π0(ũ)‖1,h,Ω ‖wh‖1,h,Ω ,

where in (7.4), (7.5) we choose again vh = Π0(ũ).
We now combine the last inequality (7.6) with (7.2) and (7.3) to obtain

‖u− uh‖1,h,Ω ≤ ‖u−Π0(ũ)‖1,h,Ω + α sup
wh∈Ṽh
wh 6=0

ah(Π0(ũ)− uh, wh)

‖wh‖1,h,Ω

≤ (1 + α (1 + C)) ‖u−Π0(ũ)‖1,h,Ω + αC
(
hk ‖u‖Hk+1(Ω) + hr ‖ũ‖Hk+1(Sh)

)
.

Using approximation results of quasi-interpolants in spline spaces [10], we conclude

‖u− uh‖1,h,Ω ≤ C
(
hk ‖u‖Hk+1(Ω) + hr ‖ũ‖Hr+1(Sh)

)
,

where r is the same as above.
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Remark 7.2. As already observed in Remark 6.6, when u ∈ Hk+1(Ω) with 1
2 <

k < p − 1
2 , both stabilizations give rise to optimal a priori error estimates. When

u ∈ Hk+1(Ω) with p − 1
2 ≤ k ≤ p and k > 1

2 , instead, stabilization in Definition
6.1 is sub-optimal. In this case the estimate can be modified and improved using the
following result.

Lemma 7.3. Let ε > 0 and Sh be defined as in Theorem 7.1. Then, there exists
C > 0 such that

‖ũ‖Hr+1(Sh) ≤ Ch
1
2−ε ‖u‖

Hp+3
2
−ε(Ω)

∀ u ∈ Hp+ 3
2−ε(Ω), ∀ 0 ≤ r < p− 1

2
.

Proof. Using the fact that r < p, we are able to recover an integer order for the
Sobolev norm and so to apply Lemma A.7 with s = 1

2 − ε:

‖ũ‖Hr+1(Sh) ≤ ‖ũ‖Hp+1(Sh) ≤ Ch
1
2−ε ‖ũ‖

Hp+3
2
−ε(Ω0)

≤ Ch 1
2−ε ‖u‖

Hp+3
2
−ε(Ω)

.

In the last inequality we used the boundedness of the Sobolev-Stein extension opera-
tor.

Proposition 7.4. Let u ∈ Hp+1(Ω) be the solution to (3.1) and uh ∈ Ṽh solution
to (5.2), obtained using the stabilization in the parametric domain of Definition 6.1.
Then, the following error estimate holds:

‖u− uh‖1,h,Ω ≤ Ch
p′ ‖u‖

Hp′+3
2 (Ω)

∀ 0 ≤ p′ < p.

Proof. It immediately follows combining Theorem 7.1 and Lemma 7.3.

Remark 7.5. At the prize of slightly higher regularity request, optimal conver-
gence rate is to be expected also for stabilization in Definition 6.1.

8. Numerical examples.

8.1. Some details about the implementation. For accurate numerical in-
tegration, we decompose the trimmed elements into smaller quadrilateral tiles where
we compute the integrals. These tiles are reparametrized as Bézier surfaces of the
same degree p as the approximation space used to discretize our PDE, see [2] for a
detailed explanation. We remark that this reparametrization is also used to compute
the boundary integrals.

In order to compute the stabilization terms appearing in (5.2), first of all for each
bad trimmed element K we choose K ′: among all the neighbours of K, we choose
(the) one with the largest relative overlap |K ′ ∩ Ω| / |K ′|. Then we need to locally
project functions living in K ′ (or in Q′) onto the space of polynomials on K ′ (or
Q′) and extend them up to ΓK . For the stabilization in the parametric domain, by
taking as a basis the Bernstein polynomials on Q′ the projection can be computed by
knot insertion, while for the stabilization in the physical domain the L2-projection is
needed anyhow.

8.2. Validation of stability. Let us repeat the numerical experiment of Section
4 in order to validate the effectiveness of our stabilization technique. Let us solve the
eigenvalue problem (4.2) with the stabilization in Definition 6.1 (since F = Id, the two
proposed stabilizations techniques are equivalent) in the trimmed domain of Figure
2a for the same values of ε used in Section 4. The result is shown in Figure 2b.

This time we observe that the spectrum remains bounded independently of ε,
confirming our method to be stable.
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Ω

ε

(a) Sketch of the setting with
exaggerated distances. We plot
Ω = (0, 1) × (0, 0.757) (in red),
{(x, y) : y = ξ} (in solid blue),
{(x, y) : y = 0.75} (in dotted
gray).
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(b) Maximum eigenvalue vs ε.

Fig. 2: Testing the stability of formulation (5.2) with respect to trimming.

8.3. Validation of the a priori error estimate. In the following we focus on
the Poisson problem (5.2) with the difference that, while we impose Dirichlet boundary
conditions weakly on the trimmed parts of the boundary, on the other parts where
the mesh is fitted with the boundary we impose them in the strong sense.

Test 1. Let Ω = Ω0 \ Ω1 be defined as in Figure 3a, where Ω0 = F((0, 1)2)
is a quarter of annulus (F is non linear) constructed with biquadratic NURBS, and
Ω1 is the image of a ball in the parametric domain through the isogeometric map,
namely Ω1 = F(B(0, r)), with r = 0.76. We consider as manufactured solution
uex(x, y) = ex sin(xy). We solve the Poisson problem using the stabilized formulation
(5.2), the stabilization in the parametric domain and the parameters β = 1 and
θ = 0.1. The results of convergence for different values of p, that are displayed Figure
3b, show that we obtain the optimal order of convergence.

Ω
FΩ̂

(a) Trimmed domain.

1/21/41/81/161/321/641/128

10−8

10−6

10−4

10−2

100

102

12

13

14

15

h

en
er
gy

n
or
m

p = 2
p = 3
p = 4
p = 5

(b) Convergence rates.

Fig. 3: Geometry and convergence rates for the quarter of annulus with hole.

Test 2. We now consider the Poisson problem in the L-shaped domain shown in
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Figure 4a, given by Ω = Ω0\Ω1, where Ω0 = (−2, 1)×(−1, 2) and Ω1 = (0, 1)×(−1, 0).
The exact solution is chosen as the singular function that, in polar coordinates, reads
as u(r, ϕ) = r

2
3 sin

(
2
3ϕ
)
∈ H 5

3−δ(Ω), for every δ > 0. The function has a singularity
at the re-entrant corner in the origin, and the domain is chosen in such a way that
the corner is always located in the interior of an element. We employ the formulation
(5.2) together with the stabilization operator in Definition 6.1, noting that since the
parametrization is a simple scaling, both stabilizations are equivalent. This time we
set the parameters θ = 1 and, due to the presence of the singularity, β = (p+ 1) · 10.
The numerical results of Figure 4b agree with the theory as the method converges with
order 2

3 , and the sub-optimal behaviour is due to the low regularity of the reference
solution.

Ω

(a) Trimmed domain.
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10−2
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(b) Convergence rates.

Fig. 4: Geometry description and convergence rates for the L-shaped domain.

Test 3. The goal of this test is to show that, when the regularity of the map-
ping F is low between trimmed elements and their neighbors, the stabilization in the
physical domain is more effective than the ones based on polynomial extensions in the
parametric domain (as it is the case for our stabilization in the parametric domain,
but also for the method proposed in [30]). Let us consider again as the domain Ω0 the
quarter of annulus, this time parametrized with a different map F: starting from the
standard biquadratic NURBS parametrization, we perform knot insertion adding the
knot ξ = 0.75, with multiplicity 2, in the direction corresponding to the angular coor-
dinate, that corresponds to the thick black line in Figure 5a. In order to get a geometry
of class C0, we set the second coordinate of one control point, highlighted in Figure 5b,
equal to 0.5 in homogeneous coordinates. Note that the new parametrization is only of
class C0 in correspondence of the knot line given by F({(x, y) : x ∈ (0, 1), y = 0.75}).
To ensure that this knot line is located between K and K ′, we define the trimmed
domain as Ω = F ((0, 1)× (0, 0.75 + ε)), with ε = 10−8. Here we set θ = 1 and,
because of the lower regularity of the parametrization, β = (p + 1) · 25. We know
from Remarks 6.6 and 6.7 that the convergence rate deriving from the stabilization
in Definition 6.1 (and any stabilization based on polynomial extensions in the para-
metric domain) may suffer of sub-optimality. In particular, from Figure 6a, we see
that the error with the stabilization in the parametric domain is converging just as
h

1
2 for any degree p, while in Figure 6b we observe that the desired convergence rates

are reached when using the stabilization in the physical domain.
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(a) Trimming line in red and dashed, C0 knot
line in thick black.

(b) Control points.

Fig. 5: Lower inter-regularity parametrization of the quarter of annulus.
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(a) Stabilization in Definition 6.1.
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(b) Stabilization in Definition 6.2.

Fig. 6: Comparison of the two stabilizations when F has lower regularity.

8.4. Conditioning. Even if an exhaustive discussion about the conditioning of
the stiffness matrix in trimmed geometries is beyond the scope of this work (for a
more detailed discussion on the topic see, for instance, [18, 19]), we would like to
present some numerical experiments for the sake of completeness. We focus again on
the formulation (5.2) of the Poisson problem. Again, we impose Dirichlet boundary
conditions weakly on the trimmed parts of the boundary, and strongly on the fitted
parts.

Test 1. Let us come back to the quarter of annulus with a hole and, as above,
we employ B-splines of degree p = 3. In Figure 7a we show that our stabilization
coupled with a simple diagonal scaling, which can be interpreted as a left-right Jacobi
preconditioner, is able to solve the conditioning issue. In Figure 7b we compare the
effectiveness of the diagonal rescaling with and without the stabilization, and we
observe that the effect of the stabilization is marginal with respect to the one of the
diagonal preconditioner. The stabilization used is the one in the parametric domain
with β = 1 and θ = 0.1.

Test 2. Let us consider the same configuration as in the test of Figure 1a, for
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Fig. 7: Condition number versus h in quarter of annulus geometry.

which we notice again that the two stabilizations are equivalent. Let us take B-splines
of degree p = 3, as mesh size h = 2−5, and set the penalization parameter β = 1.
After a simple diagonal rescaling as preconditioner, we compare the condition number
of the stiffness matrix, as a function of ε, obtained for the non-stabilized (θ = 0) and
the stabilized (θ = 1) formulations. Note that as the ratio in Definition 5.1 is the
same for all cut elements, it is sufficient to consider only these two values of θ. The
results in Figure 8a show the diagonal rescaling is acting as a robust preconditioner
with respect to the size of the trimming. Then, we perform uniform dyadic refinement
and we plot the condition number as a function of the mesh-size h, obtaining the plots
in Figures 8b and 8c. The results suggest a better behaviour of the condition number
when a stabilized formulation is employed to solve the problem.
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Fig. 8: Condition number study in the domain of Figure 1a.

Test 3. This test is inspired by [18]. Let us embed Ω = (0.19, 0.78)× (0.22, 0.78)
in the untrimmed domain Ω0 = (0, 1)2 with un underlying mesh of size h = 2−3. We
consider B-splines of degree p = 2. Now, let us rotate Ω around its barycenter for
different angles α (see Figure 9a). For each α = i π200 , i = 0, . . . , 100 we face a specific
trimming configuration where there may appear B-splines whose support intersects
in a “pathological way” the domain Ω. Let us denote the “smallest volume fraction”
η := minK∈Gh |Ω ∩K|. In Figure 9b we plot the condition number of the stiffness
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matrix against the smallest volume fraction, in order to compare the non stabilized
case with the stabilized (with parameter θ = 0.5) and diagonally rescaled one. Let us
observe that even if the behaviour of the condition number appears to be much better
after stabilization and diagonal rescaling, it is still strongly affected from the way the
mesh is cut by the trimming boundary. In this regard this is a counter-example to the
fact that diagonal rescaling, together with our stabilization, is a robust preconditioner
with respect to the trimming operation. This will be object of further investigations
by the authors in the future.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) α = 0, π
10
, π
5
, 3π
10
, 2π

5
, π
2

.

100

104

108

1012

1016

1020

1

-4

η

co
n
d
it
io
n
n
u
m
b
er

no stabilization and no diagonal scaling
with stabilization and diagonal scaling

(b) Condition number vs η.

Fig. 9: Condition number the rotating square.

Appendix A. Auxiliary theoretical results.

Lemma A.1. There exists C > 0 depending on ΓD, but independent of the mesh-
boundary intersection, such that for every K ∈M0,h

‖v‖2L2(ΓK) ≤ C
(∥∥∥h− 1

2 v
∥∥∥2

L2(K)
+
∥∥∥h 1

2∇v
∥∥∥2

L2(K)

)
∀ v ∈ H1(K).

Proof. It follows straightforward from Lemma 3 in [23].

Corollary A.2. There exists C > 0 depending on ΓD, but independent of the
mesh-boundary intersection, such that for every K ∈M0,h∥∥∥∥∂vh∂n

∥∥∥∥
L2(ΓK)

≤ C
∥∥∥h− 1

2∇vh
∥∥∥
L2(K)

∀ vh ∈ Ṽh.

Proof. Let us apply Lemma A.1:∥∥∥∥∂vh∂n
∥∥∥∥2

L2(ΓK)

≤ C
(∥∥∥h− 1

2∇vh
∥∥∥2

L2(K)
+
∥∥∥h 1

2D2vh

∥∥∥2

L2(K)

)
∀ vh ∈ Ṽh.

By a standard inverse inequality, see [3], we get∥∥D2vh
∥∥2

L2(K)
≤ C

∥∥h−1∇vh
∥∥2

L2(K)
∀ vh ∈ Ṽh,

where C > 0 depends on the shape regularity constant of the un-trimmed meshM0,h.
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Lemma A.3. Let Q,Q′ ∈ M̂0,h be neighbor elements in the sense of Defini-
tion 5.1. There exists C > 0 such that

‖p‖L∞(Q) ≤ C ‖p‖L∞(Q′) ∀ p ∈ Qk(Rd),

where C depends on k, on the shape regularity of the mesh and on the distance between
Q and Q′.

Proof. The proof follows by a standard scaling argument (see [39] for instance).

The next one says that the L2 norm on the cut portion of an element Q controls the
L∞ (and hence any other) norm on the whole element with an equivalence constant
depending on the relative measure of the cut portion.

Lemma A.4. Let θ ∈ (0, 1]. There exists C > 0 such that for every Q ∈ M̂0,h

and every S ⊂ Q measurable such that |S| ≥ θ |Q|, we have

‖p‖L∞(Q) ≤ Ch
− d

2 ‖p‖L2(S) ∀ p ∈ Qk(Rd),

where C depends only on θ, k and the mesh regularity.

Proof. See Proposition 1 in [22].

Lemma A.5 (Hardy’s inequality, [9] ). Let Ω ⊂ Rd be a bounded open set of class
C1. Then there is a constant C > 0 such that

(A.1)
∥∥∥u
d

∥∥∥
L2(Ω)

≤ C ‖∇u‖L2(Ω) ∀ u ∈ H1
0 (Ω),

where d(x) := dist(x,Γ).

Remark A.6. Viceversa, it is possible to characterize functions in H1
0 (Ω) as func-

tions in H1(Ω) such that u
d ∈ L

2(Ω) ([9]).

Lemma A.7. Let Ω1 ⊂ Ω with boundary Γ1 such that Ω1 = {x ∈ Ω : dist(x,Γ) ≥
Ch}, where C ≥ 1 fixed and dist(Γ,Γ1) ≤ Ch. It holds that

‖v‖L2(Ω\Ω1) ≤ Ch
s ‖v‖Hs

i (Ω) ∀ v ∈ Hs
i (Ω),

where the interpolation space Hs
i (Ω) or

(
H1

0 (Ω), L2(Ω)
)
s,2

is isomorphic to Hs(Ω) for

0 ≤ s < 1
2 , to H

1
2
00(Ω) for s = 1

2 and to Hs
0(Ω) for 1

2 < s ≤ 1 (see [46]).

Proof. We prove the following (like in [29]):

(A.2) ‖v‖L2(Ω\Ω1) ≤ Ch ‖∇v‖L2(Ω) ∀ v ∈ H1
0 (Ω).

We define d(x) := dist(x,Γ) ∀ x ∈ Ω\Ω1. By assumption d(x) ≤ Ch, hence 1 ≤ Ch2

|d(x)|2 .∫
Ω\Ω1

|v|2 ≤ Ch2

∫
Ω\Ω1

|v|2

|d|2
≤ Ch2

∫
Ω

|v|2

|d|2
≤ Ch2

∫
Ω

|∇v|2 ,

where we employed Hardy’s inequality from Lemma A.5. Moreover:

(A.3) ‖v‖L2(Ω\Ω1) ≤ ‖v‖L2(Ω) ∀ v ∈ H1
0 (Ω).

At this point, let us interpolate estimates (A.2) and (A.3), getting

(A.4) ‖v‖L2(Ω\Ω1) ≤ Ch
s ‖v‖Hs

i (Ω) ∀ v ∈ Hs
i (Ω).
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