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SYNCHRONIZATION IN DISCRETE-TIME, DISCRETE-STATE RANDOM

DYNAMICAL SYSTEMS

W. HUANG, H. QIAN, S. WANG∗, F. X.-F. YE∗, AND Y. YI

Abstract. We characterize synchronization phenomenon in discrete-time, discrete-state
random dynamical systems, with random and probabilistic Boolean networks as particular
examples. In terms of multiplicative ergodic properties of the induced linear cocycle, we show
such a random dynamical system with finite state synchronizes if and only if the Lyapunov
exponent 0 has simple multiplicity. For the case of countable state space, characterization of
synchronization is provided in term of the spectral subspace corresponding to the Lyapunov
exponent −∞. In addition, for both cases of finite and countable state spaces, the mechanism
of partial synchronization is described by partitioning the state set into synchronized subsets.
Applications to biological networks are also discussed.

1. Introduction

Deterministic dynamics with discrete-time steps in a discrete-state space has a long tra-
dition since the work of von Neumann on automata in 1950s [28]. The subject was signif-
icantly developed in 1970s [30] parallel to the rise of nonlinear dynamical systems theory.
For complex dynamics that arise in natural and social sciences, statistical physics employs
a stochastic representation of dynamical behavior and phenomena. Stochastic processes and
random dynamical systems (RDS) are two distinctly different types of models that generalize,
respectively, traditional differential equations and deterministic dynamical systems: The for-
mer represents the stochastic movement of an individual system with intrinsic uncertainties;
the latter describes the motions of many individuals under a common deterministic law that
is randomly changing with time due to extrinsic noises [31]. The dynamics of an RDS may
exhibit a counterintuitive phenomenon called noise-induced synchronization: The stochastic
motions of noninteracting systems with different initial states synchronize under a common
noisy law of motion; their individual trajectories converge to one stochastic motion.

This paper concerns the study of synchronization phenomenon in a discrete-time, discrete-
state random dynamical system. More precisely, let S = {sj} denote the state set which can
be either finite or countable and furnished with the discrete topology. For a given measure-
preserving map θ on a probability space (Ω,F , µ), where µ is a probability measure defined
on the σ-algebra F of Ω, a discrete-time, discrete-state random dynamical system (dtds-RDS
for short) is a random cocycle A(n, ·) : S → S, n ∈ N, over (Ω,F , µ, θ), i.e., for each n,
{A(n, ω) : ω ∈ Ω} is a measurable family of continuous mappings on S which satisfies the
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cocycle property over the metric dynamical system (Ω,F , µ, θ) (see Section 2.1). A is called a
finite-state random dynamical system (finite-state RDS for short) or a countable-state random
dynamical system (countable-state RDS for short), when S is a finite set or a countable set
respectively.

The cocycle A admits a unique matrix representation M, called the induced linear cocycle:

M(n, ω) = (Msisj (n, ω)),

Msisj (n, ω) =

{

1, si = A(n, ω)sj ,

0, otherwise,
i, j = 1, 2, · · · ,(1.1)

where n ∈ N, ω ∈ Ω. We will show in Section 2 that M is indeed a linear cocycle over
(Ω,F , µ, θ) acting on Rk, if #S = k, and on ℓ1, if #S = ∞ (see Lemmas 2.1, 2.2).

In parallel to continuous-state RDS theory, the framework of dtds-RDS is more practical
and has enjoyed a wide range of applications in science and engineering [23, 31]. Particularly
fitting examples include the random and probabilistic Boolean networks. The random Boolean
network, introduced in 1969 by S. Kauffman [16, 17] as a simple model for gene regulatory
networks, has two state variables 0, 1 representing “off” and “on” states of a gene respectively.
A network of genes evolves according to a given Boolean function. A random Boolean network
concerns randomly chosen initial data [5], while a probabilistic Boolean network involves
randomly chosen i.i.d. Boolean functions to build a “randomly chosen constituent network”
with deterministic Boolean dynamics in a “random period of time” [27]. Since then, different
forms of Boolean network dynamics has found applications in neural computations, gene
networks, as well as Boltzmann machines that led the current deep learning [1, 8, 12, 21, 32].

To describe a more general random or stochastic Boolean network, we let S be the set
of Boolean variables on the nodes of a network, Ω be the probability space assembling all
possible randomness, noise, or stochasticity in the network, and α(ω) : S → S, ω ∈ Ω be a
measurable family of state transition maps determined by a set of Boolean functions describing
the connectivity of the network. Then

A(n, ω) = α(θn−1ω) ◦ · · · ◦ α(θ(ω)) ◦ α(ω), n ∈ N

defines the random cocycle of the corresponding dtds-RDS and the and the induced linear
cocycle M are the adjacency matrices of the network. With such a general setting, not only do
we allow any finite or countable number of state variables, but also the randomness involved
is also made general which particularly allows the dependency on the past history. We remark
that unlike the case of a discrete stochastic process which emphasizes intrinsic stochasticity in
the movement of each and every individual, the dtds-RDS modeling approach emphasizes the
randomness in the “law of motion" for an entire population of individuals which are governed
by the same law [23].

When A is a finite-state RDS, it generates a random subshift of finite type of the S-
symbolic random skew-product flow over (Ω,F , µ, θ), with induced cocycle M being the
random transition matrices. Indeed, let Σ denote the set SN of all sequences of elements of S
endowed with the product topology, together with the left-shift operator T . Then

ΣA(ω) = {(s0, s1, · · · ) : si ∈ S, Msisi+1
(1, θiω) = 1}, ω ∈ Ω

become a random subshift of finite type in Σ × Ω, i.e., T nΣA(ω) ⊆ ΣA(θ
nω), n ∈ N. We

note that when A is not a finite-state RDS, a similar generating symbolic dynamical system is
undefined and thus the cocycle A is a more general description of the corresponding dtds-RDS.
We note that the above notion of a countable-state RDS allows the dynamical consideration
of a wide range of applications including random lattices and infinite networks.

A well-developed concept in the random dynamical systems theory is synchronization (see
[3, 6, 14, 24] and reference therein), which is intimately related to the “random attractor" in
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random as well as in non-autonomous dynamical systems. Roughly speaking, synchronization
describes the phenomenon that for almost surely two different initial states collapse into a
single one after sufficiently long time. This related property also has interests in neuron biol-
ogy. In [20], synchronization is well discussed for neuron networks, which are formulated by a
system of stochastic differential equations with white noise which is considered as the stimulus
to the network. If along almost each single stimulus realization the response of the network
always remains the same independent of which initials it starts from (i.e., synchronized), then
the neuron network is said to be reliable. Under general conditions, the sign of the maximal
Lyapunov exponent is set as a criterion for the reliability of the network: the negativity of
maximal Lyapunov exponent implies reliability and positivity implies unreliability [20].

In [31], the notion of synchronization for a dtds-RDS is introduced and investigated under
the spirit that an i.i.d dtds-RDS is a more refined model for stochastic systems than its counter
part - the Markov chain. Adopting this notion to the present setting, given a dtds-RDS A
over (Ω,F , µ, θ) and ω ∈ Ω, a pair {s, s′} ⊂ S is said to ω-synchronize if there exists n(ω) ∈ N
such that

A(n, ω)s = A(n, ω)s′, n ≥ n(ω).

A is said to synchronize if for µ-a.e. ω ∈ Ω, any pair {s, s′} ⊂ S ω-synchronizes.
In this paper, refining and generalizing results in [31], we give an equivalent characterization

of synchronization for a dtds-RDS from the viewpoint of the multiplicative ergodic theory.
Our main results state as follows.

Theorem A. Consider a finite-state RDS A with the k-state set S = {s1, · · · , sk}. Then the
following holds:

(i) For any ω ∈ Ω, the Lyapunov exponents of the induced linear cocycle M acting on Rk

exist and take at least the value λ1(ω) = 0 and possibly another value λ2(ω) = −∞.
(ii) For any ω ∈ Ω, there exists a partition of S :

η(ω) = {W1(ω), · · · ,Wm1(ω)(ω)},

where m1(ω) is the multiplicity of the Lyapunov exponent λ1(ω) = 0, such that a pair
{s, s′} ⊂ S ω-synchronizes if and only if s, s′ ∈ Wi(ω) for some integer 1 ≤ i ≤ m1(ω).

(iii) The dtds-RDS A synchronizes if and only if for µ-a.e. ω ∈ Ω, M admits precisely two
Lyapunov exponents λ1(ω) = 0, λ2(ω) = −∞ with respective multiplicities m1(ω) =
1, m2(ω) = k − 1.

For each ω ∈ Ω, the ω-synchronized partition η(ω) stated in Theorem A (ii) can be of course
defined through the equivalence relation that si ∼ sj in S if and only if {si, sj} ω-synchronizes.
We note that not only does Theorem A (ii) characterize the number of equivalence classes
but also the proof of it gives constructive descriptions of the synchronized subsets {Wi(ω)}
explaining the mechanism of partial synchronization.

In applying Theorem A to a particular finite-state RDS A, of importance is the charac-
terization of the multiplicity m1(ω) of the 0 Lyapunov exponent rather than the Lyapunov
exponent itself because it is always attained by (i) above. One useful approach in making
such a characterization for a particular model with ergodic µ is to combine Theorem A with
the multiplicative ergodic theorem (see Theorem 2.1) to show that m1(ω) is a constant for
µ-a.e. ω. This then gives a characterization on whether A is synchronized or otherwise its
number of synchronized subsets. We will demonstrate such applications in Section 5 with a
p53 random network.

For a countable-state RDS, the ω-synchronized partition and subsets can be defined through
the same equivalence relation, but similar constructive descriptions of synchronized subsets are
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not available. In addition, unlike the finite-state case, Lyapunov exponents for a countable-
state RDS need not exist in general, and even they do in some special situation, there can be
uncountably many of them (see Remark 2.2). Nevertheless, we have the following result.

Theorem B. Consider a countable-state RDS A with the state set S = {si : i ∈ N}. Then
the following holds:

(i) For any ω ∈ Ω, let
η(ω) = {Wi(ω) : i ∈ Iω}

be the ω-synchronized partition of S, where Iω is finite or countable and for each
i ∈ Iω, Wi(ω) is a synchronized subset, i.e., s, s′ ∈ Wi(ω) if and only if {s, s′} ⊂ S
ω-synchronizes. Then

{v ∈ ℓ1 : λ(ω,v) = −∞} = {v ∈ ℓ1 :
∑

j:sj∈Wi(ω)

vj = 0, ∀i ∈ Iω},

where λ(ω, v) is the Lyapunov exponent of the induced linear cocycle M associated
with ω, v defined in (2.4).

(ii) The dtds-RDS A synchronizes if and only if for µ-a.e. ω ∈ Ω the Lyapunov exponent
−∞ is attained and

{v ∈ ℓ1 : λ(ω,v) = −∞} =

{

v ∈ ℓ1 :
+∞∑

i=1

vi = 0

}

.

We note that Theorem B (ii) implies that if a countable-state RDS A synchronizes, then the
closure of the spectral subspace associated with the Lyapunov exponent −∞ has codimension-
1 for µ-a.e. ω ∈ Ω.

The paper is organized as follows. In Section 2, we study the induced linear cycles and
their ergodic properties. In particular, Lyapunov exponents are characterized for the finite-
state case and Theorem A (i) is proved. Basic notions of random dynamical systems and a
general multiplicative ergodic theorem are also recalled. Section 3 is devoted to the analysis
of synchronization phenomenon for a finite-state dtds-RDS. We give a characterization of full
synchronization with respect to the Lyapunov exponent 0 and a characterization of partial
synchronization with respect to synchronized subsets. Theorem A (ii), (iii) are proved. Similar
analysis is conducted in Section 4 for the countable-state case. In particular, we give a
characterization of full synchronization with respect to the spectral subspace of the Lyapunov
exponent −∞ and a characterization of partial synchronization with respect to synchronized
subsets. Theorem B (i), (ii) are proved. In Section 5, we give an example of probabilistic
Boolean networks, i.e., the p53 random network, to demonstrate applications of Theorem A.
Some discussions on similar applications in more complicated random networks are also given.

2. Ergodic properties of dtds-Random dynamical systems

In this section, we study basic ergodic properties of the dtds-RDS, and in particular, we
show a multiplicative ergodic theorem for the induced linear cocycle. Notions of random
dynamical systems, cocycles, and the classical multiplicative ergodic theorem will be recalled
for the case of discrete time variable.

2.1. Matrix representations as a cocycle. Let (Ω,F , µ) be a probability space, where
µ is a probability measure defined on the σ-algebra F of Ω. (Ω,F , µ, θ) is called a metric
dynamical system if θ : Ω → Ω is a measurable, measure-preserving transformation, i.e.,
µ(θ−nB) = µ(B), n ∈ N, B ∈ F . Let X be a topological space, called state space. A cocycle
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over (Ω,F , µ, θ) acting on X is a family {Φ(n, ω), n ∈ N, ω ∈ Ω} of continuous mappings on
X which are measurable in ω and satisfy the following cocycle property:

Φ(0, ω) = id, Φ(m+ n, ω) = Φ(n, θmω) ◦ Φ(m,ω), m, n ∈ N, ω ∈ Ω.

With the cocycle property, it is clear that the mapping φ : N×X × Y → X × Y :

φ(n, x, ω) = (Φ(n, ω)x, θnω), n ∈ N, x ∈ X, ω ∈ Ω

defines a measurable skew-product flow on the phase space X×Ω, called a random dynamical
system. If the state space X is a normed vector space and Φ(n, ω) is a bounded linear operator
for each n ∈ N, ω ∈ Ω, then Φ is called a linear cocyle over (Ω,F , µ, θ) acting on X.

Now consider the dtds-RDS A described in Section 1. Let M be the matrix representation
of A defined in (1.1).

Lemma 2.1. M depends on ω ∈ Ω measurably and satisfies the cocycle property over
(Ω,F , µ, θ).

Proof. Denote S = {si} and let Γ = {f : S → S} be the collection of all deterministic
self-maps of S. For each f ∈ Γ, define Mf =: ((Mf )ij) as follows

(2.1) (Mf )ij =

{

1, si = fsj,

0, otherwise,
i, j = 1, 2, · · · .

It is easy to see that {Mf} satisfies

(2.2) Mf1 ·Mf2 = Mf1◦f2 , f1, f2 ∈ Γ.

Note that for fixed n ∈ N and ω ∈ Ω, the matrix representation M in (1.1) satisfies M(n, ω) =
MA(n,ω). The lemma now follows from (2.2), the measurability of A in ω, and the cocycle
property of A. �

The following lemma shows that M is a linear cocycle acting on a suitable state space.

Lemma 2.2. Let A be a dtds-RDS with matrix representation M.
(i) If A is a finite-state RDS with k-state set, then M is a linear cocycle over (Ω,F , µ, θ)

acting on Rk;
(ii) If A is a countable-state RDS, then M is a linear cocycle over (Ω,F , µ, θ) acting on

ℓ1 := {v = (vi)
+∞
i=1 :

+∞∑

i=1
|vi| < +∞}.

Proof. (i) Since for each n ∈ N, M(n, ω) is a k × k matrix, M is a linear cocycle acting on
Rk by noting that any k × k matrix is a bounded linear operator on Rk with respect to the
standard Euclidean norm.

(ii) We only need to verify that for any fixed n ∈ N and ω ∈ Ω, MA(n,ω) defined in (1.1) is

a bounded linear operator on ℓ1. For any v = (vi)
+∞
i=1 ∈ ℓ1, denote (ui)

+∞
i=1 = u = MA(n,ω)v.

Then

ui =







0, A(n, ω)sj 6= si for all j ≥ 1
∑

j:A(n,ω)sj=si

vj, otherwise,

and therefore
+∞∑

i=1

|ui| = ‖u‖1 =
∞∑

i=1

|
∑

j:A(n,ω)sj=si

vj | ≤
+∞∑

i=1

|vi| < +∞.(2.3)

�
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Remark 2.1. We note that for a countable-state RDS A, the induced linear cocycle M needs
not define a cocycle acting on the state space ℓp for 1 < p ≤ +∞. For instance, if for
some n ∈ N and ω ∈ Ω, it satisfies that A(n, ω)si = s1 for all i = 1, 2, · · · . Then v =
(1, 1/2, · · · , 1/n, · · · ) ∈ ℓp for any 1 < p ≤ +∞, but

MA(n,ω)v = (1 + 1/2 + · · ·+ 1/n + · · · , 0, · · · ) /∈ ℓp

because
+∞∑

n=1

1

n
= +∞.

2.2. Multiplicative ergodic properties of dtds-RDS. Following the celebrated work of
Oseledec’s [25], multiplicative ergodic theory has been substantially developed for linear co-
cycles. Below, we state a version of multiplicative ergodic theorem on finite dimensional state
space. Denote log+(·)=max{log(·), 0}.

Theorem 2.1. (Theorem 3.4.1 in [2]) Consider a linear cocycle Φ over a metric dynamical
system (Ω,F , µ, θ) acting on the state space Rk. Assume that log+ ‖Φ(1, ·)‖ ∈ L1(Ω,F , µ).
Then there exist an integer-valued, measurable function r, real-valued, measurable functions

{λi}
r
i=1 with λr possibly being −∞, integer-valued, measurable functions {mi}

r
i=1 with

r∑

i=1
mi =

k, and a measurable filtration Rk = V1 % · · · % Vr % Vr+1 = ∅ such that for µ-a.e. ω ∈ Ω, the
following holds.

(i) (invariance) r(θω) = r(ω), λi(θω) = λi(ω), mi(θω) = mi(ω), i = 1, · · · , r(ω);
(ii) (dimensionality) dimVi(ω)− dimVi+1(ω) = mi(ω), i = 1, · · · , r(ω);
(iii) (exponential growthness) For any v ∈ Vi(ω)\Vi+1(ω), i = 1, · · · , r(ω),

lim
n→+∞

1

n
log ‖Φ(n, ω)v‖ = λi(ω).

Moreover, if µ is ergodic, then all λi(ω)’s, mi(ω)’s and r(ω) are constants for µ-a.e. ω ∈ Ω.

Quantities λi,mi, i = 1, · · · , r are referred to as the Lyapunov exponents and their multi-
plicities, respectively. For cocycles acting on a Banach space, Lyapunov exponents and their
multiplicities can be similarly defined, provided that they exist.

When restricting to the case of finite-state RDS, we have the following refined result for
the Lyapunov exponents which implies Theorem A (i).

Proposition 2.1. Let A be a finite-state RDS and M be the induced linear cocycle over
(Ω,F , µ, θ) acting on the state space Rk equipped with the standard Euclidean norm ‖ · ‖,
where k = #S. Then for any ω ∈ Ω and any v ∈ Rk,

λ(ω,v) := lim
n→+∞

1

n
log ‖M(n, ω)v‖

exists and equals either 0 or −∞, and consequently, the Lyapunov exponents of M take at
most two values λ1 = 0 or λ2 = −∞. Moreover, the Lyapunov exponent λ1 = 0 is always
attained.

Proof. We note that with n, ω varying, there are only a finite number of choices of M(n, ω).
It follows that for any v ∈ Rk, ‖M(n, ω)v‖ only take a finite number of different values for
all n ∈ N, ω ∈ Ω. Now we let ω ∈ Ω be fixed.

If M(n, ω)v 6= 0 for all n ∈ N, then ‖M(n, ω)v‖ have uniform positive upper and lower
bounds, i.e., there exist constants 0 < κ1 < κ2 < +∞ independent of n, ω such that κ1 ≤

‖M(n, ω)v‖ ≤ κ2 for all n ∈ N. Thus, lim
n→+∞

1

n
log ‖M(n, ω)v‖ exists and equals 0.
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If there exists n ∈ N such that M(n, ω)v = 0, then M(m,ω)v = 0 for any m ≥ n. Thus

lim
n→+∞

1

n
log ‖M(n, ω)v‖ = −∞.

We now argue that the Lyapunov exponent λ1 = 0 is always attained. For otherwise, there
exists an n ∈ N such that M(n, ω)v = 0 for all v ∈ Rk. This is impossible since M(n, ω) is
not a zero matrix.

�

In the case of countable-state RDS, for any ω ∈ Ω and any v ∈ ℓ1, define

λ(ω,v) = lim sup
n→+∞

1

n
log ‖M(n, ω)v‖1,(2.4)

which is referred to as the Lyapunov exponent of M associated with ω,v, whenever the limit
exists.

Remark 2.2. (i) Unlike Theorem 2.1, the conclusion of Proposition 2.1 holds for all ω ∈ Ω
instead of a full µ-measure set.

(ii) There have been works in infinite-dimensional multiplicative ergodic theorem [4, 7, 10,
19]. However, all these works are for cases of countably many Lyapunov exponents. In our
case, the induced linear cocycle of a countable-state RDS can admit uncountably many Lya-
punov exponents. As an example, let

A(n, ω) = fn, n ∈ N, ω ∈ Ω

where f : S = {si, i ∈ N} → S is a deterministic map such that fsi = si−1 for all i ≥ 2 and
fs1 = s1. For any given λ ∈ (0, 1), choose

v =

(
λ

1− λ
,−λ,−λ2, · · · ,−λn, · · ·

)

∈ ℓ1.

Then for the induced linear cocycle M,

λ(ω,v) = lim sup
n→+∞

1

n
log ‖M(n, ω)v‖1

= lim
n→+∞

1

n
log

(
λ

1− λ
−

λ(1− λn)

1− λ
+

λn+1

1− λ

)

= lim
n→+∞

1

n
log

(
2λn+1

1− λ

)

= log λ.

Thus, for this example, any value in (−∞, 0) is a Lyapunov exponent of M.

3. Synchronization in finite-state RDS

In this section, we study synchronization phenomenon for a finite-state RDS A with state
set S = {si : i = 1, 2, · · · , k}. Recall that the induced linear cocycle M over (Ω,F , µ, θ) acts
on the state space Rk equipped with the standard Euclidean norm.

3.1. A necessary and sufficient condition for synchronization. By Proposition 2.1, for
any ω ∈ Ω, M admits at most two Lyapunov exponents: λ1(ω) = 0, λ2(ω) = −∞. Let

(3.1) V (ω) = {v ∈ Rk : λ(ω,v) = −∞}.

It is easy to see that V (ω) is a linear subspace of Rk. The following result says that V (ω) is
actually contained in a co-dimension-1 hyperplane E0.
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Lemma 3.1. For any ω ∈ Ω,

(3.2) V (ω) ⊆ E0 =: {v = (v1, · · · , vk)
⊤ :

k∑

i=1

vi = 0}.

Proof. Let v = (v1, · · · , vk)
⊤ ∈ V (ω). Then there exists n ∈ N such that M(n, ω)v = 0. If

we denote M(n, ω)v=u= (u1, ..., uk)
⊤, then

k∑

i=1
ui =

k∑

i=1
vi. Hence v ∈ E0. �

Note that for any v ∈ Rk\V (ω), we have λ(ω,v) = 0. Denote m2(ω) = dimV (ω) and

m1(ω) = dimRk − dimV (ω) = k −m2(ω).(3.3)

As in Theorem 2.1, we call m1(ω),m2(ω) multiplicities of λ1(ω), λ2(ω) respectively. From
Proposition 2.1, we know that

m1(ω) ≥ 1, m2(ω) ≤ k − 1.(3.4)

The following result, from which Theorem A (iii) follows, shows that the synchronization
of A happens exactly when the equality in (3.4) holds true.

Theorem 3.1. A synchronizes if and only if for µ-a.e. ω ∈ Ω, M admits precisely two
Lyapunov exponents λ1(ω) = 0, λ2(ω) = −∞ with respective multiplicities

(3.5) m1(ω) = 1, m2(ω) = k − 1.

Proof. Suppose A synchronizes. Then for µ-a.e. ω ∈ Ω, there are integers n(ω) ∈ N such
that for every m ≥ n(ω), we can find an integer 1 ≤ ℓ(ω,m) ≤ k such that

A(m,ω)si = sℓ(ω,m), i = 1, · · · , k.

For given ω and m ≥ n(ω), it follows from (1.1) that the matrix M(m,ω) has every entries on
the ℓ(ω,m)-th row being 1 and all other being 0. Let v ∈ E0, where E0 is the co-dimension-1
hyperplane defined in (3.2). We then have M(m,ω)v = 0, i.e., v ∈ V (ω), where V (ω) is the
spectral subspace defined in (3.1). Hence E0 ⊆ V (ω), and by Lemma 3.1, we actually have

V (ω) = E0.(3.6)

It follows that m2(ω) = dim V (ω) = dim E0 = k − 1 and λ2 = −∞ is attained. By
Proposition 2.1, the Lyapunov exponent λ1 = 0 is always attained with m1(ω) = k−m2(ω) =
1.

Now suppose (3.5) holds. Then dim V (ω) = k−1, µ-a.e. ω ∈ Ω. It follows from Lemma 3.1
that (3.6) holds for µ-a.e. ω ∈ Ω. Let si, sj be any two distinct elements of S and denote by ei,

respectively ej , the i-th, respectively the j-th, standard unit vector in Rk. Since ei− ej ∈ E0,
we have by (3.6) that ei − ej ∈ V (ω) for µ-a.e. ω ∈ Ω. It follows from (3.1) that, for a fixed
such ω, there exists n(ω) sufficiently large such that for all n ≥ n(ω),

M(n, ω)(ei − ej) = 0,

i.e.,
M(n, ω)ei = M(n, ω)ej ,

or equivalently,
A(n, ω)si = A(n, ω)sj.

This show that any pair of elements in S synchronizes, hence A synchronizes. �



SYNCHRONIZATION IN DTDS-RDS 9

3.2. Synchronization along synchronized subsets. It can be seen from the definition
of synchronization that if the cocycle A is invertible, then none pair of elements in S can
synchronize. Thus, for a dtds-RDS, total non-synchronization and total synchronization are
two extreme situations, and partial synchronization is to be expected in general. Below, we
give a characterization of the mechanism of partial synchronization for a finite-state RDS A.

We call ξ = {W1, · · · ,Wp} a partition of S if each Wi, referred to as a component of ξ, is

a subset of S, Wi ∩Wj = ∅ for all i 6= j, and
p⋃

i=1
Wi = S. Let PS be the set of all partitions

of S. For ξ, η ∈ PS , we say

ξ 4 η ⇐⇒ each component of ξ is the union of some components of η.

It is clear that the binary relation “4" defines a partial ordering on PS . A partition family
Q ⊆ PS is called a chain if for any ξ, η ∈ Q, either ξ 4 η or η 4 ξ. We call η ∈ Q a minimal
partition of Q if ξ 4 η and ξ ∈ Q imply that ξ = η. It is a well-known fact that any finite
chain admits a unique minimal partition.

For the sake of analyzing partial synchronization occurred in the dtds-RDS, we would like
to consider partitions of S that are connected to the random cocycle A. For any ω ∈ Ω, it is
easy to see that ξn(ω) =: {A−1(n, ω)si : i = 1, ..., k} is a partition of S for each n ∈ N.

Lemma 3.2. For each ω ∈ Ω, {ξn(ω) : n ∈ N} form a nonincreasing chain of PS , i.e.,

ξ0(ω) < ξ1(ω) < · · · < ξn(ω) < · · · ,

which is in fact a finite chain.

Proof. For fixed n ∈ N, let W be a component of ξn+1(ω) and denote

Sn = A−1(1, θnω)(A(n + 1, ω)W ).

It follows from the the cocycle property of A that

W = A−1(n, ω)
(
A−1(1, θnω)(A(n+ 1, ω)W )

)
=

⋃

s∈Sn

A−1(n, ω)s.

Since W is arbitrary and each A−1(n, ω)s, s ∈ Sn, is a component of ξn(ω), we have ξn(ω) <
ξn+1(ω).

Since the chain {ξn(ω) : n ∈ N} is nonincreasing and S is finite, their number of components
is a constant for n sufficiently large. Hence {ξn(ω) : n ∈ N} is a finite chain. �

Given ω ∈ Ω, let η(ω) be the minimal partition of the chain {ξn(ω) : n ∈ N}, which
we refer to as the ω-synchronized partition. Components of η(ω) are called ω-synchronized
subsets of A.

Proposition 3.1. Consider the finite-state RDS A. Then for any ω ∈ Ω, a pair {si, sj} in
S ω-synchronizes if and only if si, sj lie in a same ω-synchronized subset of A.

Proof. By definition of synchronization, if {si, sj} ω-synchronizes, then A(n, ω)si = A(n, ω)sj
for n sufficiently large. It follows that si and sj lie in a same component of ξn(ω) for n
sufficiently large. Consequently, si and sj lie in a same ω-synchronized subset of A. The
converse is also clear. �

Remark 3.1. (i) Actually, by Proposition 3.1, we can define the partition η(ω) in a more
straightforward way through the equivalence relation that si, sj ∈ S lie in the same component
of η(ω) if and only if {si, sj} ω-synchronizes. We derive it through a chain of decreasing
partitions as in Lemma 3.2 to give a more intuitive sense of how partial synchronization
happens in a finite-state RDS.
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(ii) We note that the concept of ω-synchronization for a dtds-RDS A is defined in a pairwise
way. In fact, for the finite-state case, this concept is global, i.e., for a given ω ∈ Ω, if W (ω) is
a ω-synchronized subset, then there exists n(ω) ∈ N such that A(n, ω)W (ω) is a single state
for all n ≥ n(ω).

The following proposition relates the cardinality of the ω-synchronized partition η(ω) and
the multiplicity of Lyapunov exponent λ1(ω) = 0.

Proposition 3.2. For each ω ∈ Ω,

#η(ω) = m1(ω),(3.7)

where m1(ω) is the multiplicity of the Lyapunov exponent λ1(ω) = 0.

Proof. For each ω ∈ Ω, since for all n sufficiently large, the number of components of ξn(ω) is
a constant, it must equal to #η(ω). For a such n sufficiently large, we note that #ξn(ω) equals
to (k −m2(ω)), where m2(ω) is the multiplicity of the Lyapunov exponent λ2(ω) = −∞. In
fact, by definition of Lyapunov exponents, a vector v ∈ Rk such that λ2(ω,v) = −∞ if and
only if v satisfies a homogeneous system of linear equations with coefficient matrix being
M(n, ω). By (1.1), the i-th row of M(n, ω) is non-zero if and only if there exists some j such
that A(n, ω)sj = si, i.e., A(n, ω)−1si is non-empty, which, by the construction of ξn(ω), is a
component of ξn(ω). Thus, the number of non-zero rows equals #ξn(ω). Note that for each
column of M(n, ω), there is only one entry being non-zero, which means that the number of
non-zero rows is exactly the rank of M(n, ω). Let V (ω) be as in (3.1). Then its dimension
equals (k −#ξn(ω)), i.e., m2(ω) = k −#η(ω). (3.7) now follows from (3.3). �

Remark 3.2. We note that Theorem 3.1 is a special case of Propositions 3.1, 3.2 when
#η(ω) = 1 for µ-a.e. ω ∈ Ω.

Theorem A (ii) follows from Proposition 3.1 and 3.2.

4. synchronization in countable-state RDS

In this section, we study the synchronization phenomenon for a countable-state RDS A
with state set S = {si : i ∈ N}. Recall that the induced linear cocycle M over (Ω,F , µ, θ)
acts on the state space ℓ1 equipped with the ℓ1-norm which we denote by ‖ · ‖1.

4.1. A necessary and sufficient condition for synchronization. Let

(4.1) E0 =

{

v ∈ ℓ1 :
+∞∑

i=1

vi = 0

}

,

and
F0 =

{

v ∈ E0 : v has at most finitely many components being non-zero
}

.

We have the following basic facts.

Lemma 4.1. The following holds.

(1) E0 is a closed subspace of ℓ1.
(2) F0 = E0.

Proof. (1) It is obvious that E0 is a subspace of ℓ1. To show the closeness, we take any sequence

{vn} in E0 such that vn = (v
(n)
i )+∞

i=1 → v = (vi)
+∞
i=1 . Since

0 = lim
n→+∞

+∞∑

i=1

v
(n)
i =

+∞∑

i=1

lim
n→+∞

v
(n)
i =

+∞∑

i=1

vi,

we have v ∈ E0.
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(2) For any v = (vi)
+∞
i=1 ∈ E0, let u

(n) = (u
(n)
i )+∞

i=1 be such that

u
(n)
i =







vi, 1 ≤ i < n,
+∞∑

j=n

vj, i = n,

0, i > n.

Then u
(n) ∈ F0 and it is easy to check that ‖u(n) − v‖1 → 0 as n → +∞. �

We directly obtain Theorem B (ii) from the following result by the definition of synchro-
nization for a countable-state RDS A.

Theorem 4.1. Consider the countable-state RDS A and ω ∈ Ω. Then any pair {si, sj} ⊂ S
ω-synchronizes if and only if

{v ∈ ℓ1 : λ(ω,v) = −∞} = E0,(4.2)

where λ(ω, v) is defined in (2.4).

Proof. Suppose (4.2) holds but there exist si0 , sj0 ∈ S with si0 6= sj0 satisfying

(4.3) A(n, ω)si0 6= A(n, ω)sj0 , ∀n ≥ 0.

Since ei0 − ej0 ∈ E0 and (4.2) holds, there exists v = (vi)
+∞
i=1 ∈ ℓ1 such that

‖v − (ei0 − ej0)‖1 <
1

8
,(4.4)

λ(ω,v) = lim
n→+∞

1

n
log ‖M(n, ω)v‖1 = −∞.(4.5)

We note by (4.4) that

vi0 ∈ (
7

8
,
9

8
), vj0 ∈ (−

9

8
,−

7

8
),

∑

i 6=i0,j0

|vi| <
1

8
.

It then follows from (4.3) that

‖M(n, ω)v‖1 =
+∞∑

i=1

|
∑

j:A(n,ω)sj=si

vj| ≥ |vi0 |+ |vj0 | −
∑

i 6=i0,j0

|vi| >
13

8
,

which leads to a contradiction to (4.5).
Conversely, suppose any pair {si, sj} ⊂ S ω-synchronizes. We first show that

{v ∈ ℓ1 : λ(ω,v) = −∞} ⊆ E0.(4.6)

If not, then there exists v = (vi)
+∞
i=1 ∈ ℓ1\E0 such that λ(ω,v) = −∞. Since |

+∞∑

i=1
vi| =:

a > 0, and any pair {si, sj} synchronizes, there exists m > 0 such that

‖M(n, ω)v‖1 ≥ |
m∑

i=1

vi| −
∞∑

i=m+1

|vi+1| >
1

2
a,

for all n sufficiently large, which is a contradiction to the fact that λ(ω,v) = −∞. Thus

{v ∈ ℓ1 : λ(ω,v) = −∞} ⊆ E0.

(4.6) then follows from Lemma 4.1 (1).
Next, we show that

E0 ⊆ {v ∈ ℓ1 : λ(ω,v) = −∞}.(4.7)
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Since any pair (si, sj) ω-synchronizes, for any v ∈ F0, we have

‖M(n, ω)v‖1 = |
∑

i:vi 6=0

vi| = 0,

when n sufficiently large. Thus F0 ⊆ {v ∈ ℓ1 : λ(ω,v) = −∞} and hence

F0 ⊆ {v ∈ ℓ1 : λ(ω,v) = −∞}.

Now (4.7) follows from Lemma 4.1 (2).
�

Remark 4.1. For a finite-state RDS A, it follows from the proof of Theorem 3.1 that if A
synchronizes, then

E0 = {v ∈ Rk : λ(ω,v) = −∞}, µ− a.e. ω ∈ Ω,

where E0 is the co-dimension-1 hyperplane defined in (3.2). However, for a countable-state
RDS that synchronize, a similar identity is no longer true, i.e., it is necessary to take closure
in the identity (4.2). To see this, consider the example in Remark 2.2. It is easy to see that
the cocycle A in this example synchronizes but for any ω ∈ Ω,

{v ∈ ℓ1 : λ(ω,v) = −∞}

is not of co-dimension-1 because there are more than two other Lyapunov exponents. Hence
it cannot equal to the hyperplane E0 defined in (4.1).

4.2. Synchronization along synchronized subsets. In the case of countable-state RDS
A, for each ω ∈ Ω, the ω-synchronized partition η(ω) := {Wi(ω) : i ∈ Iω} of S can be defined
through the equivalence relation as mentioned in Remak 3.2 (ii), i.e., a pair (si, sj) belongs to
a same component of η(ω) if and only if (si, sj) ω-synchronizes. We still call each component
of η(ω) as a ω-synchronized subset of A. Differing from the finite-state case, the number of
synchronized subsets Iω can be infinite. Also, when restricted to each ω-synchronized subset
W (ω), A(n, ω)W (ω) need not be a single state for any finite n.

Now by restricting Theorem 4.1 to a same Wi(ω) of η(ω), we have the following result
which gives Theorem B (i).

Theorem 4.2. Let A be a countable-state RDS. Then for each ω ∈ Ω,

{v ∈ ℓ1 : λ(ω,v) = −∞} = {v ∈ ℓ1 :
∑

j:sj∈Wi(ω)

vj = 0, ∀i ∈ Iω},

where {Wi(ω) : i ∈ Iω} are the synchronized subsets of A and λ(ω, v) is defined in (2.4).

Remark 4.2. Theorem 4.1 is a special case of Theorem 4.2 when #Iω = 1.

5. Applications to i.i.d random networks

In this section, we demonstrate some applications of our theoretical findings to certain
biological, i.i.d random networks in describing their synchronization behaviors, in particular
in determining their number of synchronized subsets. In fact, as the example below will show,
our results can be applied to networks with more general external randomness, e.g., those
modeled by Poisson noises if the intensity is very small. Let S denote a discrete state set and
Γ collect all maps on S, together with a probability measure Q on Γ. We recall that an i.i.d
dtds-RDS is that each time a map from Γ is randomly chosen to act on S according to Q. The
metric dynamical system (Ω,F , µ, θ) modeling the noise is simply defined by the probability
space (Ω,F , µ) =

∏∞
0 (Γ, 2Γ, Q) together with the left-shift operator θ.
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SIAH-1 p53
Mdm-2

β -catenin p19/14ARF

12

3 4

5

Figure 1. The negative feedback loop of p53. Each gene is denoted as node
1-5. The solid arrows denote stimulatory interactions, whereas the dashed
arrows denote inhibitory influences.

We shall consider a particular i.i.d random network - the probabilistic Boolean network
model for the biochemical dynamics of regulating protein p53 in biological cells, followed by
some discussions in treating i.i.d networks with more complexity.

5.1. The random p53 network. It has been shown that the tumor suppressor, p53, is a
crucial protein in multicellular organism that prevents cancer develoment [26]. The working
mechanism of p53, proposed by Harris and Levine [13], is described by a negative feedback
loop as shown in Figure 1. In response to an external stress signal, the cell cycle enters arrest,
apoptosis, cellular senescence, and DNA repair [13, 26]. These events were modeled in [9] by a
Boolean network. Without the external stress, p53 is in the low steady state and the network
is determined by another set of Boolean functions [11]. We assume an entire population of
cells simultaneously experience a same external stress signal that is fluctuating. The dynamics
of p53 in different cells then can be modeled by a dtds-RDS.

To describe the p53 dynamics using dtds-RDS, we consider the external stress of the cell as
the extrinsic noise, which comes from, for instance, the DNA damage due to environmental
radiation. It can be properly modeled as a discrete-time Poisson process with small intensity λ
as follows. Initially, all cells start from different initial conditions and without external stress,
the p53 dynamics of all cells follow a map B. Once the external stress appears after time
random T with exponential distribution Exp(λ), p53 dynamics of all cells follow a different
map A (Figure 2(A)) and cells will engage in the DNA repair process for a constant period
of time Tr, where Tr is much smaller than the expected waiting time 1/λ. Denote the map C
as the Tr-th iteration of the map A. Afterwards all cells return back to normal and follow the
map B (Figure 2(B)) again until another external stress appears. It is possible that another
external stress appears during the repair cycle, but the probability of this happening is usually
very small, and even this happens, the cell may enter the cycle of apoptosis. The discrete-time
counterpart of Poisson process for small λ is a Bernoulli process, e.g., a Bernoulli shift in the
language of dynamical systems. More precisely, the noise probability space is simply

(Ω,F , µ) =
∞∏

0

({C,B}, 2{C,B} , {p, 1− p}),

where Q := {p, 1 − p} denotes the probability measure on {C,B} with C and B taking
the measure p and 1 − p, respectively. Note that p ≈ λ if we discretize the time of the
Poisson process by the unit time. Let θ be the left-shift map on Ω. Then the product measure
µ = {p, 1−p}N0 is an ergodic θ-invariant probability measure on (Ω,F) ([29, Theorem 1.12]),
and consequently (Ω,F , σ, µ) is a metric dynamical system.

In the p53 network as shown in Figure 1, there are five nodes in total and each node only
admits two values, 1 or 0, representing the active and inactive state respectively. So the state
set S is the binary expansion from 0 to 31 and in total, there are 32 states. In the state
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Figure 2. (A) The state transition map for the Boolean network correspond-
ing to p53 dynamics in response to an external stress. (B) The state transition
map corresponding to p53 dynamics in the absence of the external stress.

transition maps A and B, we use decimal numbers 0-31 to indicate the gene expression. Note
that we do not plot the map C which is just ATr .

For each ω ∈ Ω, define A : S → S as follows

A(n, ω) = A(1, θn−1ω) ◦ · · · ◦ A(1, ω), n ∈ N,

where

A(1, ω) =

{

C, if the 0−th position of ω is C;

B, if the 0−th position of ω is B.

It is easy to see that A satisfies the cocycle property and hence it is an i.i.d dtds-RDS over
(Ω,F , µ, θ).

Figure 2(A) shows that the map A admits two attractors which are in fact two limit cycles:

1 → 5 → 7 → 6 → 22 → 30 → 26 → 24 → 25 → 9 → 1,(5.1)

0 → 20 → 31 → 11 → 0,(5.2)

respectively. Note that the map C has the same attractors as the map A. However, under the
map B, the limit cycle (5.1) collapses into a fixed point {6}, which indicates the homeostasis
of the cell, whereas the limit cycle (5.2) remains the same.

The dtds-RDS A does not synchronize, because two nodes from two different basins of
attractions, like 7 and 0, will never synchronize. However, according to Theorem A(ii), A is
always partially synchronized, i.e., for any ω ∈ Ω, there exists a partition η(ω) of S such that
a pair of states belonging to the same component of η is ω-synchronized, and moreover, the
cardinality of η(ω) equals the multiplicity m1(ω) of the Lyapunov exponent λ1(ω) = 0.

Using Theorem A(ii), we have the following result.

Proposition 5.1. For µ-a.e. ω ∈ Ω, m1(ω) = 5, i.e., η(ω) consists of 5 ω-synchronized
subsets.

Proof. Let

Ω∗ = {ω ∈ Ω : the 0-th position of θnω is B for n = 0, · · · , 14}.

By the definition of µ, we have

µ(Ω∗) = (1− p)15 > 0.

It is easy to see that for any ω ∈ Ω, there are at least five components of η(ω), and
four of them constitutes the attracting basin of the limits cycle (5.2), which are W1 =
{31, 29, 21, 23},W2 = {0, 2, 8, 10},W3 = {11, 15} and W4 = {20, 16}, respectively. If ω ∈ Ω∗,
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then the map B is applied repeatedly for 14 times to all the 20 states in the basin W5 of the
limit cycle (5.1), driving all these states into the state 6. Consequently, any two points in W5

is ω-synchronized. It follows from Theorem A(ii) that

m1(ω) = 5, ω ∈ Ω∗.

Since µ(Ω∗) > 0 and µ is ergodic, it follows from Theorem 2.1 that m1(ω) = 5 for µ-a.e.
ω ∈ Ω.

�

We note that, for some other ω, if, as n increases, switchings between maps A and B at
the 0-th position of θnω is rather frequent, then it may happen that certain two different
states in the limit cycle (5.1) never collapse, i.e., W5 can be further decomposed into different
synchronized subsets and m1(ω) > 5. But Proposition 5.1 says that such ω’s are of zero
µ-measure.

Proposition 5.1 allows one to define, up to a µ-null set of ω’s, the equivalence relation of
these gene expressions that si ∼ sj, if and only if they are in the same component of η(ω).
To our knowledge, such concepts are new to the community of Boolean networks. The ex-
trinsic noise-induced synchronization behaviour described above is in principle different from
synchronization in mechanical systems (e.g. coupled-oscillators), because no direct interac-
tions between cells in our model is required. It would be interesting to conduct a biological
experiment to verify the partial synchronization phenomenon of multiple cells with different
gene expressions exposed by the same radiation source.

In many realistic models of gene regulations, random perturbations are incorporated by
making the network never “get stuck” in any state set. Generally speaking, a random gene
perturbation means that any given gene has a small probability of being randomly flipped
to a different state, e.g., a gene admitting value 0 can be flipped to value 1, although this
only happens with very small probability [27]. Under random gene perturbations, a partially
synchronized random network usually becomes a synchronized one since states from different
attracting basins may collapse together due to the random flipping effect. In fact, this can
be understood from Theorem A that the number of synchronized subsets is equal to the
multiplicity of 0 Lyapunov exponent, which, if being bigger than 1, is easily reduced to 1
under certain generic perturbations.

5.2. More general i.i.d networks. In the example of p53 random network, the number
of state set is only 32. However, a general i.i.d random network in reality can have tens of
thousands state variables. In general, to determine the multiplicity of 0 Lyapunov exponent
and the synchronized partition for a complex random network with a huge number of state
variables along certain infinite sequence of maps are very difficult tasks. Nevertheless, we show
below that the cardinality of the synchronized partitions, i.e. the multiplicity of λ1 = 0 by
Theorem A(ii), for a general i.i.d dtds-RDS can be estimated, at least numerically, by using the
Markov chain it induces. We recall from [31] that an i.i.d dtds-RDS uniquely induces a Markov
chain on S with transition probability P = (pij)1≤i,j≤k, where pij = Q{f ∈ Γ : fsi = sj} and
S = {s1, · · · , sk}.

An upper bound of the multiplicity of λ1 can be estimated by the number of recurrent
states of the induced Markov chain as follows. Given a transit state, say si, of the Markov
chain, almost all sample trajectories of the Markov chain visit si only finite times. Then
by our construction of the synchronized subsets of {η(ω)} in section 3.2, along almost every
sequence of maps determined by the element ω in Ω, the component of η(ω) corresponding
to the pre-image of si, A

−1(n, ω)si, is an empty set for n sufficiently large. Consequently,
the number of non-trivial components of each η(ω) is no more than the number of recurrent
states of the induced Markov chain.
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As to the lower bound, we will show that the multiplicity of λ1 = 0 is no less than the
number of recurrent classes of the induced Markov chain. In fact, algorithms has been devel-
oped to figure out the latter ones, e.g., if we treat this induced Markov chain as the digraph
G = (V,E), then an efficient algorithm of depth-first search of the digraph could be used to
identify the recurrent communicating classes in O(|V |+ |E|) time [15]. Recall that a recurrent
class of a Markov chain is the set of all recurrent states that can go to each other with positive
possibilities. In other words, any two initial states belonging to different recurrent classes will
not collapse together along almost every sample trajectories of the Markov chain, i.e, they
belong to different synchronized subsets. Then Theorem A(ii) implies that the multiplicity
of λ1 is no less than the number of recurrent classes of the induced Markov chain. Inside
each recurrent class, however, it is a more delicate issue to determine whether two different
states belong to a same synchronized subset, for which, the two-point motion techniques (e.g.
[31]) can be used. More precisely, by applying the same sequence of maps determined by an
element ω in Ω, we construct two infinite trajectories on S starting from two different initial
states. For the i.i.d dtds-RDS, this two-point motion induces a Markov chain on S × S with
transition probability W being

W(si,sj)→(sm,sℓ) = Q{f ∈ Γ : fsi = sm, fsj = sℓ}, ∀i, j,m, ℓ ∈ {1, · · · , k}.

Note that when si = sj, sm = sℓ, the transition probability is the same as that of the
Markov chain induced by the i.i.d dtds-RDS, and when si = sj, sm 6= sℓ, the transition
probability is 0. Therefore, {(s1, s1), (s2, s2), . . . , (sk, sk)} is a recurrent class the Markov
chain induced by W. Furthermore, one can show that the i.i.d dtds-RDS synchronizes if and
only if {(s1, s1), (s2, s2), . . . , (sk, sk)} is the only recurrent class of the Markov chain induced
by the two-point motion. If there exists any other recurrent class, then for almost every ω
in Ω, the first state of any pair inside the class cannot be in the same component of the
synchronized partition η(ω) as the second state. By Theorem A(ii), the multiplicity of λ1 = 0
within such a recurrent class for almost every ω is at least 2. Indeed, we may better estimates
the lower bound from this restriction. For instance, if (si, sj), (sj, sℓ) and (si, sℓ) are in the
same recurrent class other than the trivial one {(s1, s1), (s2, s2), . . . , (sk, sk)}, then for almost
every ω, si, sj and sℓ should be in three different components of η(ω), i.e., the multiplicity of
λ1(ω) = 0 in this case is at least 3. In this way, we give a lower bound for the multiplicity of
the 0 Lyapunov exponent.

We illustrate the estimation by the following example. This example of 4 states comes from
[31]. The deterministic maps to choose in the i.i.d dtds-RDS are

Γ =













1 → 2
2 → 1
3 → 4
4 → 3







︸ ︷︷ ︸

α1

,







1 → 1
2 → 2
3 → 3
4 → 4







︸ ︷︷ ︸

α2

,







1 → 4
2 → 3
3 → 2
4 → 1







︸ ︷︷ ︸

α3

,







1 → 3
2 → 4
3 → 1
4 → 2







︸ ︷︷ ︸

α4

,







1 → 1
2 → 2
3 → 3
4 → 3







︸ ︷︷ ︸

α5







.

Note that the maps α1, α2, α3, α4 are permutations, while α5 is not. One can assign non-
zero probability mass on each map such that the induced Markov chain is always aperiodic and
irreducible. If we consider the two-point motion, then there exists a recurrent communicating
class, {(1, 3), (3, 1), (2, 4), (4, 2), (2, 3), (3, 2), (4, 1), (1, 4)}, other than the trivial one. That is,
if we start from any pair of these states, for some ω, these two infinite long sequences will
never synchronize under this i.i.d dtds-RDS. From our previous arguments, the first state
cannot be in the same component as the second one in the partition η(ω), e.g., 1 cannot be
in the same component as 3. With this restriction, a possible minimal partition could be
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η(ω) = {{1, 2}, {3, 4}} , which indicates that the multiplicity of λ1 = 0 for some ω is at least
2. So we give an estimation of the lower bound of the multiplicity.
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