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Abstract

We study the trade-offs between convergence rate and robustness to gradient errors in de-
signing a first-order algorithm. We focus on gradient descent (GD) and accelerated gradient
(AG) methods for minimizing strongly convex functions when the gradient has random errors
in the form of additive white noise. With gradient errors, the function values of the iterates
need not converge to the optimal value; hence, we define the robustness of an algorithm to
noise as the asymptotic expected suboptimality of the iterate sequence to input noise power.
For this robustness measure, we provide exact expressions for the quadratic case using tools
from robust control theory and tight upper bounds for the smooth strongly convex case us-
ing Lyapunov functions certified through matrix inequalities. We use these characterizations
within an optimization problem which selects parameters of each algorithm to achieve a partic-
ular trade-off between rate and robustness. Our results show that AG can achieve acceleration
while being more robust to random gradient errors. This behavior is quite different than previ-
ously reported in the deterministic gradient noise setting. We also establish some connections
between the robustness of an algorithm and how quickly it can converge back to the optimal
solution if it is perturbed from the optimal point with deterministic noise. Our framework
also leads to practical algorithms that can perform better than other state-of-the-art methods
in the presence of random gradient noise.

1 Introduction
For many large-scale convex optimization and machine learning problems, first-order methods have
been the leading computational approach for computing low-to-medium accuracy solutions because
of their cheap iterations and mild dependence on the problem dimension and data size. The typical
analysis of first-order methods assumes the availability of exact gradient information and provides
statements on the rate of convergence to the optimal solution as the main performance criterion.
However, in many applications, the gradient contains deterministic or stochastic errors either
because the gradient is computed by inexactly solving an auxiliary problem [10, 12], or the method
itself involves errors with respect to the full gradient as in standard incremental gradient, stochastic
gradient, and stochastic approximation methods [39, 41, 4, 5]. When there are persistent errors in
gradients, the iterates do not converge and could oscillate in a neighborhood of the optimal solution
or may even diverge [4, 5, 12, 19]. This makes robustness of the algorithms to gradient errors (in
terms of solution accuracy) another important performance objective [12, 27]. In particular, even
though accelerated gradient method proposed by Nesterov converges faster than gradient descent
(GD) in the absence of noise for convex problems [36], it was shown that they are less robust to
errors, i.e., accelerated methods require higher precision gradient information than GD to achieve
the same solution accuracy [12, 10, 19, 43].
∗Authors are arranged in alphabetical order.
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In this paper, we study the trade-offs between convergence rate and robustness to gradient
errors in designing a first-order algorithm. We focus on GD and Nesterov’s accelerated gradient
(AG) method for minimizing strongly convex smooth functions when the gradient has stochastic
errors and investigate how the parameters of each algorithm should be set to achieve a particular
trade-off between these two performance objectives. To study this question systematically, we
employ tools from control theory whereby we represent each of the algorithms as a dynamical
system. This approach has attracted recent attention and has already led to a number of insights
for the design and analysis of optimization algorithms [33, 29, 9, 18, 45, 28]. The novelty of our
work is to use this approach to provide explicit characterizations of robustness, which can then be
placed in a computationally tractable optimization problem for selecting the algorithm parameters
to systematically achieve a desired trade-off.

We first focus on problems with a strongly convex quadratic objective function. For this case,
the rate of convergence of any of the two algorithms we study is given by the spectral radius of the
“state-transition" matrix in the dynamical system representation. To characterize robustness, we
consider the asymptotic expected suboptimality for the centered iterate sequence (output vector of
the dynamical system) per unit noise which is a measure of the asymptotic accuracy of the iterates.
For the quadratic case we show that this limit exists and can be characterized using the H2 norm
of a transformed linear dynamical system. The H2 norm is a fundamental measure for quantifying
robustness of a linear system to noise [46] and admits various definitions and characterizations.
We focus on a particular representation of the H2 norm that requires the solution of a discrete
Lyapunov equation. This representation leads to explicit expressions for robustness of GD and
AG.

Using this result, we study the rate and robustness trade-off of the GD method for minimizing
quadratic strongly convex functions. The spectral radius of the state-transition matrix corre-
sponding to GD dynamics, hence, the rate of convergence for GD, can be expressed in terms of
the smallest and largest eigenvalues of the positive definite matrix Q defining the Hessian of the
strongly convex quadratic objective. We show that our robustness measure admits a tractable
characterization for GD in terms of the spectrum of Q. We also show a fundamental lower bound
on the robustness level of an algorithm for any achievable convergence rate.

We next consider the AG method defined by two parameters: stepsize α and momentum
parameter β. Our first step is to characterize the stability region of the method, i.e., the set
of nonnegative (α, β) for which the spectral radius of the state-transition matrix is less than or
equal to one. Similar to GD, we then provide an explicit characterization of the H2 norm of the
dynamical system representation of AG. We use these explicit expressions for both GD and AG
within an optimization problem for selecting the parameters to minimize the robustness measure
subject to a given upper bound on the convergence rate. Our results show that AG with properly
selected parameters is superior to GD in the sense that AG can achieve the same rate with GD
while being more robust to noise; similarly, AG can be tuned to be faster than GD while achieving
the same robustness level. This behavior contrasts with the comparison of GD and AG in the
deterministic gradient error setting in [12], which shows GD performance degrades gracefully while
AG may accumulate error. These results show the random and deterministic noise settings have
different behavior.

In our second set of results, we extend our analysis to handle minimization of strongly convex
smooth functions, i.e., minx∈Rd f(x). In this setting, the dynamical system representation of a
first-order algorithm will no longer be a linear system due to the nonlinear gradient map, ∇f . The
analysis in this section is not limited to GD or AG; in particular, given a first-order optimization
algorithm, we use a linear dynamic system with nonlinear feedback to model the dynamic behavior
of the algorithm. For these systems, we again use a robustness measure that can be seen as a
discrete-time version of a more general H2-norm for nonlinear systems [20] — see also [44] for
a similar definition given for linear systems with nonlinear feedback. We derive upper bounds
on the robustness measures for GD and AG using Lyapunov functions certified through matrix
inequalities and investigate the trade-off between rate and robustness.

In addition to the above cited papers, Devolder’s Ph.D. thesis [13] is closely related to our
paper. Chapters 4 and 6 of this thesis, considered smooth weakly convex functions under a de-
terministic oracle model whereas Chapter 7 focused on a stochastic oracle model; these general
oracles can model inexactness in the gradients as well as function evaluations. In the deterministic
oracle case, Devolder shows that primal gradient method (PGM) and the dual gradient method
(DGM) on smooth weakly convex objectives exhibit slow convergence with a rate O(1/k) but
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without accumulation of errors (the total effect of errors after k iterations is equal to the individ-
ual error δ of each first-order information); whereas accelerated gradient methods converge faster
with rate O( 1

k2 ) but suffers from accumulation of errors at a linear rate O(kδ). Based on these
observations, Devolder et al. [11] design a novel family of first-order methods called intermediate
gradient methods (IGM) for solving smooth weakly convex problems; these methods have an in-
termediate speed and intermediate sensitivity to gradient errors, i.e., faster than classical gradient
methods and more robust to noise than the accelerated gradient methods. In the stochastic oracle
case, Devolder developed a class of accelerated gradient methods for weakly convex functions with
decaying stepsize rules and showed that the expected suboptimality admits the convergence rate
O
(
LR2

k2 + σR√
k

)
as opposed to the O

(
LR2

k + σR√
k

)
rate of PGM and DGM, where R is the distance

of the initial point to the optimal solution, L is the Lipschitz constant for the gradient of the objec-
tive f(x) and σ is the level of the stochastic noise [13, Ch. 7]. In his thesis, Devolder studied also
smooth and strongly convex objectives under the same deterministic oracle model, showing that
both PGM and DGM converge with a rate that is proportional to exp(−k µL ) without accumulation
of errors where µ is the strong convexity constant, whereas accelerated gradient converges faster
proportional to exp(−k

√
µ
L ) while the error accumulation behaves like

√
L
µ δ up to a constant [13,

Chapter 5]. On the other hand, the smooth and strong convex objectives subject to stochastic
errors was left as future work [13, Ch. 8.1.1]; and this is the setting considered in our paper where
we focus on stochastic additive gradient errors for strongly convex objectives, which arises in a
number of problems in machine learning and large-scale optimization [27, 3, 40]. In this setting,
Ghadimi and Lan [23, 24] propose an accelerated method called AC-SA for solving strongly convex
composite optimization problems obtaining an optimal rate matching the lower complexity bounds
for stochastic optimization. Flammarion and Bach [19] considered accelerated versions of gradient
descent for quadratic optimization that attain the optimal rates for both the bias and variance
terms, respectively, in the performance bounds. Michalowsky and Ebenbauer [34] posed the design
of deterministic gradient algorithms as a state feedback problem and used robust control theory
and linear matrix inequalities to study them. Mohammadi et al. [35] examined the sensitivity
of accelerated algorithms to stochastic noise for strongly convex quadratic functions in terms of
the steady-state variance of the optimization variable. Finally, Dvurechensky et al. [15] consider
composite convex optimization problems with inexact first-order oracles having both deterministic
and stochastic errors; indeed, their inexact oracle is an extension of the one adopted in [11, 12] to
include stochastic errors. For this setting, Dvurechensky et al. [15] propose a stochastic version
of the intermediate gradient method in [11] and analyze the convergence rate in terms of expected
suboptimality and error accumulation due to inexact oracle; the proposed algorithm in [11] has
complexity bounds matching the optimal lower complexity bounds for composite convex problems
with stochastic inexact oracle as in [23, 24]. Finally, Hu et al. [28] analyze the stochastic gradient
method under deterministic noise and study the effect of the stepsize on the convergence rate and
the asymptotic neighborhood of convergence. These papers focus on convergence rate of the al-
gorithms, whereas our goal is to define robustness and design algorithms to successfully trade-off
different objectives. Furthermore, we make some connections between the robustness of a first-
order method and its behavior when perturbed from the optimal solution and show that AG is more
resilient to perturbations in the sense that it recovers the optimal point with less energy compared
to GD for sufficiently small stepsizes. We will also demonstrate in our numerical experiments that
the framework we propose is competitive in practice with the existing state-of-the-art algorithms
from the literature and can outperform them in some problems, illustrating the potential of the
proposed framework in practice. In fact, in a companion paper, we use our framework to develop a
universally optimal multi-stage stochastic gradient algorithm for stochastic optimization [1] which
achieves the lower bounds without assuming a known bound for suboptimality or the variance of
the gradient noise.

1.1 Preliminaries and Notation
For two functions g, h defined over positive integers, we say f = Θ(g) if there exist constants Cl, Cu
and n0 such that Clg(n) ≤ f(n) ≤ Cug(n) for every positive integer n ≥ n0. For a set I, |I| denotes
the cardinality of the set I. Let δ[k] denote the Kronecker delta function, i.e., δ[0] = 1 and δ[k] = 0
for any integer k ≥ 1. The d× d identity and zero matrices are denoted by Id and 0d, respectively.
We define diag(a1, ..., ad) or diag([ai]

d
i=1) as the diagonal matrix with diagonal entries a1, ..., ad;

similarly, diag([Ai]
d
i=1) denotes a block diagonal matrix with i-th block equal to Ai ∈ Rni×ni for
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i = 1, . . . , d. For matrix A ∈ Rd×d, Tr(A) denotes the trace of A. We use the superscript > to
denote the transpose of a vector or a matrix depending on the context. The spectral radius of A
is defined as the largest absolute value of its eigenvalues and is denoted by ρ(A). We say that a
square matrix A is discrete-time stable, if all of its eigenvalues lie strictly inside the unit disc in
the complex plane, i.e., if ρ(A) < 1. Throughout this paper, all vectors are represented as column
vectors. Let Sm be the set of all symmetric m × m matrices. Similarly, Sm++ (Sm+ ) denote the
set of all symmetric and positive (semi)-definite m × m matrices. For two matrices A ∈ Rm×n
and B ∈ Rp×q, their Kronecker product is denoted by A ⊗ B. For scalars 0 < µ ≤ L, we define
Sµ,L(Rd) as the set of continuously differentiable functions f : Rd → R that are strongly convex
with modulus µ and have Lipschitz-continuous gradients with constant L, i.e.,

L

2
‖x− y‖2 ≥ f(x)− f(y)−∇f(y)>(x− y) ≥ µ

2
‖x− y‖2, ∀ x, y ∈ Rd, (1)

(see e.g. [37]) where the gradient ∇f is represented as a column vector. The ratio κ , L
µ is called

the condition number of f . In many places, we also use the following relation for strongly convex
smooth functions.

Lemma 1.1 (Theorem 2.1.12 in [37]). If f ∈ Sµ,L(Rd), then for every x, y ∈ Rd,

(∇f(x)−∇f(y))>(x− y) ≥ µL

µ+ L
‖x− y‖2 +

1

µ+ L
‖∇f(x)−∇f(y)‖2.

For our subsequent analysis, we represent the preceding relation in matrix form:[
x− y

∇f(x)−∇f(y)

]> [
2µLId −(µ+ L)Id

−(µ+ L)Id 2Id

] [
x− y

∇f(x)−∇f(y)

]
≤ 0, ∀ x, y ∈ Rd. (2)

2 Optimization Algorithms as Dynamical Systems
Our goal is to design first-order algorithms with certain rate-robustness balance to solve

f∗ , min
x∈Rd

f(x), where f ∈ Sµ,L(Rd), (3)

when the gradient ∇f is corrupted by random errors in the form of additive white noise. We
denote the unique optimal solution of problem (3) by x∗. We will focus on Gradient Descent (GD)
and Accelerated Gradient Descent (AG) and show how the parameters of these algorithms can be
tuned to optimize various performance metrics.

Our analysis builds on a dynamical system representation of these algorithms. A discrete-time
dynamical system with a feedback rule φ can be expressed as

ξk+1 = Aξk +Buk, yk = Cξk +Duk, uk = φ(yk), (4)

for k ≥ 0, where ξk ∈ Rm is the state, uk ∈ Rd is the input, and yk ∈ Rd is the output. The
matrices A,B,C and D are called the system matrices; they are fixed matrices with appropriate
dimensions. The function φ : Rd → Rd defines the feedback rule that relates the output of this
system to its input.

Consider the GD method for solving problem (3). Given x0 ∈ Rd, the GD iterations with a
constant stepsize α > 0 take the following form for k ≥ 0:

xk+1 = xk − α∇f(xk), (5)

which can be cast as (4) by setting ξk = xk, φ(·) = ∇f(·) and letting

A = Id, B = −αId, C = Id, D = 0d. (6)

On the other hand, when implemented on (3), the AG method with constant stepsize α > 0 and
momentum parameter β > 0 generates the iterates as follows for k ≥ 0:

yk = (1 + β)xk − βxk−1, xk+1 = yk − α∇f(yk). (7)
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Setting φ(·) = ∇f(·) and defining the state vector ξk =
[
x>k x>k−1

]>, AG iterations can be
rewritten as in (4) for

A =

[
(1 + β)Id −βId

Id 0d

]
, B =

[
−αId

0d

]
, C =

[
(1 + β)Id −βId

]
, D = 0d. (8)

For both algorithms, the iterates xk are captured by the state ξk of the dynamical system repre-
sentation.

In this work, we assume that at each iteration k ≥ 0, instead of the actual gradient ∇f(yk),
we have access to a noisy version ∇f(yk) + wk where wk ∈ Rd represents the additive noise. In
the dynamical system representation, the noisy iterations of the GD and AG algorithms could be
written as

ξk+1 = Aξk +B(uk + wk), yk = Cξk, uk = ∇f(yk), (9)

where A, B, C, and D are selected according to (6) for GD or (8) for AG.1 Except for Section 5
where we study deterministic perturbations, we assume throughout this paper that the sequence
{wk}k of random variables satisfies the following assumption.

Assumption 2.1. For any k ≥ 0, the random variable wk in (9) is zero mean and independent
from {ξi}ki=1 and {yi}ki=1. In addition, there exists a scalar σ > 0 such that E(wkw

>
k ) = σ2Id for

any k ≥ 0.

This noise structure arises naturally in stochastic optimization where the full gradient is ap-
proximated from finitely many samples (see e.g. [39]), in regression problems [19, 14, 2] as well as
in optimization algorithms where the full gradient is subject to an isotropic noise or uncertainty
(see e.g. [30, 31]). The special case when wk is Gaussian also appears in algorithms where random
noise is intentionally injected to the gradient to guarantee privacy (e.g. [3]) or to ensure global con-
vergence, as in the Euler-Mariyama discretization of the overdamped and underdamped Langevin
dynamics [8, 16, 21, 22]. It will be clear from our discussion that our results can be extended to
the structured noise case, i.e., when the covariance matrix E(wkw

>
k ) = S for some positive definite

matrix S.
Consider a first-order algorithm (e.g., GD or AG) subject to additive noise satisfying Assump-

tion 2.1. For this scenario, where the noise is persistent, i.e., it does not decay over time, it is
possible that limk→∞ E[f(xk)] may not exist; therefore, one natural way of defining robustness
of an algorithm to noise is to consider the worst-case limiting suboptimality along all possible
subsequences, i.e.,

J , lim sup
k→∞

1

σ2
E[f(xk)− f∗]. (10)

Clearly, J depends on the choice of algorithm parameters. Moreover, since the limit limk→∞ f(xk)
may not exist when the gradients are perturbed by persistent additive noise, both notions of
“convergence” and “convergence rate” are vague. To make these terms more precise in our context,
consider the line segment [f∗, f∗ + σ2J ]. In the subsequent sections of the paper, we show that
{f(xk)}k≥0 sequence converges to this line segment linearly with a rate depending on the algorithm
parameters. Thus, the aim of this paper is to investigate this trade-off between the robustness and
rate associated with a given first-order algorithm and to understand the dependence of these key
notions of convergence on the choice of algorithm parameters. We believe that achieving this goal
would provide an important leverage to decision makers to set the parameters in such a way that
fits the purpose of the application. We focus on the expected suboptimality {E[f(xk) − f∗]}k in
the text since this is typically the object of study in the literature for quantifying the performance
of similar algorithms.

It is worth emphasizing that robustness can also be studied in the solution space. Indeed,
let {xk}k≥0 be a random iterate sequence corresponding to (9) where {wk}k models the additive
noise sequence and satisfies Assumption 2.1. Due to the noise injected at each step, the sequence
{xk} will oscillate around the optimal solution with a non-zero variance; therefore, another natural

1Although our focus in this paper will be primarily on GD and AG dynamics under noise, it will be clear
from our discussion that our ideas naturally extend to many other algorithms that admit such a dynamical system
representation including the heavy-ball and the robust momentum methods [9, 33, 29].
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metric to measure robustness is the worst-case limiting distance to the optimal solution x∗ along
all possible iterate subsequences, i.e.,

J ′ , lim sup
k→∞

1

σ2
E[‖xk − x∗‖2]. (11)

Similarly, the convergence rate could be defined to be the linear rate that {xk}k≥0 converges to
the ball {x ∈ Rd : ‖x− x∗‖2 ≤ σ2J ′}. The quantity J ′ can be viewed as the robustness to noise
in terms of iterates because it is equal to the ratio of the power of the iterates to the power of the
input noise, measuring how much a system amplifies input noise. In particular, the smaller this
measure is, the more robust a system is under additive random noise.2 In Section 3, we remark
that J ′ is indeed the H2 norm of the dynamical system in (9) with C = I, a notion being applicable
to both linear and non-linear systems [44, 20]. Later in Section 5, we will use J ′ to make some
connections between the robustness of a first-order method with its behavior when perturbed from
the optimal solution.

3 Quadratic Functions
In order to understand the effect of noise on the dynamics, we find it insightful to first focus on
the case where the objective function is quadratic. Let f ∈ Sµ,L(Rd) be a quadratic function given
by f(x) = 1

2x
>Qx− p>x+ r where Q is symmetric and positive definite with eigenvalues {λi}di=1

listed in increasing order satisfying 0 < µ = λ1 ≤ λ2 ≤ · · · ≤ λd = L. The gradient of f is given by

∇f(x) = Qx− p = Q(x− x∗), (12)

where x∗ = Q−1p is the optimal solution to problem (3). Plugging the formula for the gradient
∇f(yk) from (12) into (9), we obtain

ξk+1 = (A+BQC)ξk −BQx∗ +Bwk, yk = Cξk. (13)

With ξ∗ equal to x∗ for GD and [x∗
>
x∗
>

]> for AG, in both cases we have ξ∗ = Aξ∗ and x∗ = Cξ∗

where A and C are given in (6) and (8) for GD and AG, respectively. Therefore, defining ỹk ,
yk − x∗ and ξ̃k , ξk − ξ∗, (13) yields

ξ̃k+1 = AQξ̃k +Bwk, ỹk = Cξ̃k, (14)

where AQ is the state-transition matrix given by AQ = A+BQC.
In the absence of noise (when wk = 0 for all k), if ρ(AQ) is less than one, then we clearly have

ξ̃k → 0 and ỹk → 0 linearly. As a consequence, the suboptimality, f(xk)− f∗, goes to zero linearly
as well. On the other hand, when the gradients are perturbed by random additive noise, as we
shall discuss in the next section, E[f(xk)− f∗] does not go to zero.

3.1 Performance metrics under gradient noise: Rate and robustness
In this section, we use the dynamical system representation of the algorithms given in (14) to study
the limiting behavior of the expected suboptimality E[f(xk) − f∗]. We show that this sequence
converges, i.e., the limit of the expected suboptimality exists and it is equal to the limit superior in
(10). We also provide the associated convergence rate, and present an explicit characterization of
the limiting value using insights from robust control theory. More specifically, consider the shifted
state sequence {ξ̃k}k generated according to (14). Since wk is zero mean for all k ≥ 0 (Assumption
2.1), by taking the expectation of (14), we obtain

E[ξ̃k] = AkQ ξ̃0, ∀ k ≥ 0. (15)

Therefore, under the assumption that ρ(AQ) < 1, the sequence {E[ξ̃k]}k converges to zero with an
asymptotic linear rate ρ(AQ). Note that the state sequence {ξk}k and the iterates {xk}k can be
related by defining T = Id for GD and T = [Id 0d] for AG so that xk = Tξk for all k ≥ 0.

2See Appendix E, provided as a supplementary material, where we derive robustness results based on J ′ for
both GD and AG.
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Recall the robustness definition given in (10). In the next lemma, we focus on the suboptimality
sequence, {f(xk)− f∗}k for quadratic f and we show that the limit,

J =
1

σ2
lim
k→∞

E[f(xk)− f∗], (16)

exists; moreover, for some {εk}k ⊂ [0,∞) such that limk→∞ εk = 0, we have∣∣E[f(xk)− f∗]− σ2J
∣∣ ≤ ψ0

(
ρ(AQ) + εk

)2k
, ∀ k ≥ 0, (17)

where ρ(AQ) is the spectral radius of AQ, and ψ0 is a constant that may depend on the initialization
x0. This shows that the sequence {E[f(xk)− f∗]}k converges to an interval around the origin with
radius σ2J , and the convergence is linear with an asymptotical rate that is arbitrarily close to
ρ(AQ)2. It is therefore natural to define the normalized radius, J , as robustness of the system to
gradient noise, i.e., if this radius is bigger, it means that the asymptotic error of the algorithm in
terms of the function value is larger; hence, the algorithm is less robust to the injected noise.

The limit in (16) can be evaluated by using the tools from standard H2 theory arising in robust
control of dynamical systems (see e.g. [26]) as we shall explain below. The H2-norm is a well-
known fundamental metric for quantifying the robustness of a linear dynamical system to noise
in control engineering and has been widely used in designing the parameters of control systems
subject to noise. Given arbitrary matrices (A,B,C) and D = 0d, consider a linear system as in
(4) but without feedback φ. Suppose there exists ξ∗ and y∗ such that ξ∗ = Aξ∗ and y∗ = Cξ∗.
The H2-norm of this linear system, denoted by H2(A,B,C), measures the stationary variance of
the output response {yk} to unit white noise input [46], i.e.,

H2
2 (A,B,C) , lim

k→∞

1

σ2
E‖yk − y∗‖2. (18)

The H2 norm admits alternative definitions, which are all equivalent for linear systems (see e.g.
[46, 44]). When it is clear from the context, we will remove the dependency of the H2 norm to the
system matrices (A,B,C). The H2-norm can be computed as

H2
2 (A,B,C) = Tr(CX0C

>) (19)

where X0 solves the discrete Lyapunov equation3:

AX0A
> −X0 +BB> = 0 (20)

(see e.g. [26, 46]). Moreover, if BB> is positive definite and A is discrete-time stable (i.e., ρ(A) <
1), the solution admits the following formula:

X0 =

∞∑
k=0

(A>)kB>BAk (21)

(see e.g. [46]). We will show in the following lemma that the limit J in (16) exists for quadratic
objectives. Our proof technique is based on relating J to the H2 norm of a transformed linear
system as follows: We first rewrite the suboptimality f(xk)− f∗ in terms of the iterates xk:

f(xk)− f∗ = 1
2 (xk − x∗)>Q(xk − x∗) = 1

2 (T ξ̃k)>Q(T ξ̃k) = (RT ξ̃k)>(RT ξ̃k), (22)

where we used the fact that xk = Tξk, and 1
2Q = R>R is the Cholesky decomposition of 1

2Q. If
we consider the system defined by matrices (AQ, B,RT ), it follows from the definition of the H2

norm (18) and (22) that
J = H2

2 (AQ, B, R̃) where R̃ , RT. (23)

By (19) and (20), we have J = Tr(R̃XR̃>), where X is the solution to

AQXA
>
Q −X +BB> = 0. (24)

3The value of H2
2 can also be computed as Tr(B>X̃0B) where X̃0 solves A>X̃0A− X̃0 + C>C = 0.
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Lemma 3.1. Consider the linear dynamical system (14) defined by the matrices (AQ, B, C). If
ρ(AQ) < 1, then the limit in (16) exists, i.e., σ2J = limk→∞ E[f(xk) − f∗], and there exists a
non-negative sequence {εk}k such that limk εk = 0 and∣∣E[f(xk)− f∗]− σ2J

∣∣ ≤ ψ0 (ρ(AQ) + εk)
2k
, ∀ k ≥ 0,

holds for some explicitly given positive constant ψ0 that depends on the initialization x0. Further-
more, when AQ is symmetric, εk = 0 for every k ≥ 0.

Proof. Using (22) and J = Tr(R̃XR̃>), we obtain

E[f(xk)− f∗]−σ2H2
2 (AQ, B, R̃) = E[(R̃ξ̃k)>(R̃ξ̃k)]− σ2 Tr(R̃XR̃>)

= Tr(R̃E[ξ̃k ξ̃
>
k ]R̃>)− σ2 Tr(R̃XR̃>) = Tr(R̃(Vk − σ2X)R̃>)

(25)

where Vk , E[ξkξ
>
k ] for k ≥ 0. It follows from (14) that

Vk = E[ξ̃k ξ̃
>
k ] = E[(AQξ̃k−1 +Bwk−1)(AQξ̃k−1 +Bwk−1)>]

= AQVk−1A
>
Q + σ2BB>

(26)

holds for all k ≥ 1, where in the last equality we used the fact that the random vector wk−1 is
zero-mean, independent of ξk−1, and has covariance matrix E[wk−1w

T
k−1] = σ2Id. Moreover, by

(24) we have X = AQXA
T
Q +BBT ; hence, subtracting σ2X from both sides of (26), we obtain

Vk − σ2X = AQ(Vk−1 − σ2X)A>Q = AkQ(V0 − σ2X)(A>Q)k (27)

where the last equality comes from recursively using the first equality. This implies

|Tr(R̃(Vk − σ2X)R̃>)| = |Tr(R̃AkQ(V0 − σ2X)(A>Q)kR̃>)|
= |Tr((V0 − σ2X)(R̃AkQ)>(R̃AkQ))|
≤ m‖V0 − σ2X‖‖R̃AkQ‖2 ≤ m‖V0 − σ2X‖‖R̃‖2‖AkQ‖2, (28)

where ‖.‖ is the spectral norm, and the first inequality in (28) follows from the Von Neumann’s
trace inequality which states that for any two m × m matrices U and V with singular values
||U‖2 = u1 ≥ ... ≥ um and ||V ‖2 = v1 ≥ ... ≥ vm, respectively, we have|Tr(UV )| ≤

∑m
i=1 uivi.

Finally, it follows from the Gelfand’s formula that there exists a sequence of non-negative numbers
{εk}k such that for every k ≥ 0, ‖AkQ‖2 ≤ (ρ(AQ) + εk)

k and limk εk = 0. Note that when AQ
is symmetric, we have ‖AkQ‖2 = ρ(AQ)k so that we can choose εk = 0. Inserting this bound into
(28), we obtain the desired result.

It is worth noting that for a strongly convex quadratic function in the form of f(x) = 1
2x
>Qx−

p>x + r, a similar line of argument as in Lemma 3.1 shows that J ′ in (11) is in fact equal
to limk→∞

1
σ2E[‖xk − x∗‖2] = H2

2 (AQ, B, T ). Next we focus on the GD and AG algorithms,
discuss the dependence of their convergence rate and robustness on the parameters (stepsize α and
momentum β) and show how to formulate an optimization problem that systematically trades off
convergence rate and robustness.

3.2 Gradient descent (GD) method
The dynamical system representation of GD, choosing the A,B,C as in (6) yields

E[ξk+1] = AQE[ξk], with AQ = Id − αQ.

As shown in Lemma 3.1, the convergence rate of GD is given by ρ(AQ)2. For GD, we will suppress
the dependence of ρ(AQ) on AQ and use the notation ρ(α) to highlight the effect of the stepsize
α. Since AQ is symmetric, ρ(α) can be computed as

ρ(α) = ρ(AQ) = ‖AQ‖ = max{|1− αµ|, |1− αL|}. (29)

α ∈ (0, 2/L) is a necessary condition for global linear convergence; otherwise, ρ(α) ≥ 1. In
particular, it is well-known that the fastest rate is achieved for the stepsize

ᾱ , arg min
α≥0

ρ(AQ) =
2

µ+ L
, (30)
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which leads to a convergence rate of ρ̄ = 1 − 2
κ+1 . The choice of the stepsize not only affects

the rate (see (29)) but also the robustness of the GD algorithm to gradient noise. The following
proposition provides an analytical characterization of the robustness J of the GD method as a
function of the stepsize, which we denote by J (α) to highlight its dependence on α.

Proposition 3.2. Let f be a quadratic function of the form f(x) = 1
2x
>Qx− p>x+ r. Consider

the GD iterations given by (5) with constant stepsize α ∈ (0, 2/L). Then the robustness of the GD
method is given by

J (α) =

d∑
i=1

α2λi
2(1− (1− αλi)2)

= α

d∑
i=1

1

2(2− αλi)
, (31)

where 0 < µ = λ1 ≤ λ2 ≤ ...λd = L are the eigenvalues of Q.

Proof. We first show that without loss of generality we can assume Q is a diagonal matrix. Let Q =
UΛU> be the eigenvalue decomposition of Q where U is a unitary matrix and Λ = diag(λ1, ..., λd)
is a diagonal matrix containing the eigenvalues of Q. Multiplying AQ by U> and U from left and
right leads to

U>AQU = U>(Id − αQ)U = Id − αΛ = AΛ, (32)

where AΛ , Id − αΛ is a diagonal matrix. Similarly, we multiply the Lyapunov equation (24)
from left and right by U> and U , which yields U>AQXA>QU − U>XU + α2Id = 0, where we
have used the fact that B = −αId for the dynamical system representation of the GD method
(see (6)). It follows from (32) that AQ = U(Id − αΛ)U>, which when plugged into the Lyapunov
equation above, yields (Id−αΛ)U>XU(Id−αΛ)−U>XU+α2Id = 0. This means that the matrix
U>XU solves the Lyapunov equation obtained by replacing AQ by AΛ in (24). Furthermore, the

Cholesky decomposition of 1
2Λ is equal to

√
1
2Λ1/2; thus, the robustness J , corresponding to

H2
2 (AΛ, B,

√
1
2Λ1/2T ), is equal to

1

2
Tr(Λ1/2TU>XU(Λ1/2T )>) =

1

2
Tr(Λ1/2U>XUΛ1/2) = Tr(R̃XR̃>),

where we used T = Id for GD for the first equality and the fact that the Cholesky decomposition of
1
2Q is (

√
1
2Λ1/2U>)>(

√
1
2Λ1/2U>) to obtain the second equality. Therefore, robustness J would

be invariant if we were to replace Q by Λ and solve the Lyapunov equation (24) for (AΛ, B) instead
of (AQ, B). With this replacement, it is easy to verify that the solution of the Lyapunov equation
is XΛ = diag

(
α2

1−(1−αλ1)2 , ...,
α2

1−(1−αλd)2 )
)
as AΛ and B are both diagonal. Plugging this solution

into 1
2 Tr(Λ1/2XΛΛ1/2) implies J (α) =

∑d
i=1

α2λi
2(1−(1−αλi)2) = α

∑d
i=1

1
2(2−αλi) which completes the

proof.

Remark 3.3. Proposition 3.2 also shows that the robustness J (α) for the GD method is an
increasing function of α. This means choosing a smaller stepsize leads to GD being more robust
which has been previously observed in the literature for both additive and multiplicative deterministic
noise [33, 18].

Having explicit expressions for both convergence rate and robustness for GD (see (29) and
(31)), given an allowable deviation ε > 0 from the optimal convergence rate ρ̄ = 1− 2

κ+1 , a natural
approach to account for the trade-off between these two measures is to choose the stepsize α that
results in the most robust algorithm satisfying the rate constraints, i.e., optimizing

min
α∈(0,2/L)

J (α) subject to ρ(α) ≤ (1 + ε)ρ̄. (33)

This problem is equivalent to the following convex problem for ε ∈ [0, 2
κ−1 ) (which ensures that the

upper bound on the rate is less than one and the optimization problem (33) admits a solution):

min
α∈(0,2/L)

J (α) subject to
1

1− ρ2(α)
≤ 1

1− (1 + ε)2ρ̄2
. (34)

Indeed, 1/(1 − ρ2) is a nondecreasing convex function for ρ ∈ (0, 1) and ρ(α) is convex in α;
therefore, both 1/(1 − ρ(α)2) and J (α) in (31) are convex for α ∈ (0, 2

L ) and is increasing in
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α. Moreover, (34) satisfies the Slater condition. Thus, strong duality implies that there exists τ
(which is a function of ε) such that the above minimization problem is equivalent to the following
unconstrained problem:

α∗(τ) , arg min
α∈(0,2/L)

Fτ (α) , J (α) + τ
1

1− ρ2(α)
. (35)

The parameter τ > 0 determines the trade-off between rate and robustness. For small τ , the
dominant term in the cost would be J (α) so that we expect the optimal stepsize to be small since
J (α) is an increasing function of α. On the other hand, for large enough τ , the convergence rate
is the dominant term in the cost; therefore, one would expect the optimal stepsize (that solves
the problem (35)) to be close to ᾱ which corresponds to the fastest achievable rate ρ̄ (see (30)).
In order to get more intuition about the effect of the choice of the stepsize parameter, we next
give an illustrative example in dimension d = 2 to show the behavior of the optimal α∗(τ) as the
tradeoff parameter τ is varied from zero to infinity. For computational tractability, we consider
the unconstrained version of the problem given in (35).4

Example 3.4. In dimension d = 2, let τ = 2 and consider the parameters

µ = λ1 = 0.1 and L = λ2 = 1 with κ =
L

µ
= 10. (36)

The first-order optimality conditions for (35) is derived in Proposition A.1 which is equivalent to a
polynomial root finding problem in α for a polynomial of degree 4. The roots of polynomials can be
found up to arbitrary accuracy by calculating the eigenvalues of the corresponding companion matrix
[17], for instance using the roots function in Matlab. After a careful examination of all the roots,
we conclude that the optimal stepsize α∗ that minimizes the cost Fτ (α) is α∗ ≈ 1.5055 which gives
the rate ρ(α∗) ≈ 0.8494 and robustness J (α∗) ≈ 1.9294. This point is marked on Figure 1 below
which shows the robustness level as a function of the optimal convergence rate ρ when we change τ
from zero (corresponds to the rightmost point in the curve) to infinity (corresponds to the uppermost
point in the curve) for the parameters in (36).

Figure 1: Left and Middle: The behaviors of the convergence rate ρ and robustness J computed at the
optimal stepsize α∗, as a function of the trade-off parameter τ . Right: The robustness level as a function
of convergence rate again as τ varies from zero to infinity.

The left and the middle panels of Figure 1 show the convergence rate and robustness corre-
sponding to the optimal stepsize α∗ as a function of the trade-off parameter τ . As τ goes to 0,
the robustness term is more dominant which requires a smaller stepsize; therefore, α∗ goes to 0
and ρ(α∗) thus goes to 1. As τ becomes larger, convergence rate becomes more important, and the
stepsize also becomes larger to ensure faster convergence. In particular, as τ goes to infinity, α∗
goes to ᾱ given in (30)leading to the fastest rate, ρ̄ = κ−1

κ+1 ≈ 0.8182.
Finally, the rightmost panel of Figure 1 illustrates the trade-off between the rate and robustness.

We se that for small τ , the optimal stepsize α∗ is smaller which implies improved robustness but
slower convergence. As τ grows, we achieve faster rate at the expense of being less robust to the
additive gradient noise. In addition, the points corresponding to the fastest rate, i.e., α = 2/(µ+L),
and standard parameter choice α = 1/L for GD has been marked on this trade-off curve.

We see from Figure 1 that smaller values of ρ (or equivalently smaller values of 1
1−ρ2 ) are

accompanied by larger values of J . This suggests that the product J 1
1−ρ2 cannot be too small for

4In Proposition A.1 of the appendix, we derive the first-order conditions for α∗(τ) that allows it to be computed
up to an arbitrary accuracy.
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any choice of the stepsize α. The next lemma shows that there are some fundamental limits (lower
bounds) on how robust the GD can be.

Proposition 3.5. Let ρ(α) and J (α) be given by (29) and (31), respectively. Then, the following
inequality holds J (α) ≥

(
1− ρ2(α)

)∑d
i=1

1
8λi

for any choice of the stepsize α > 0.

Proof. It follows from (29) that for every i ∈ {1, ..., d}, we have ρ(α) ≥ |1 − αλi|. This implies
that 1

1−ρ(α)2 ≥
1

1−(1−αλi)2 . Multiplying both sides by α2λi
2(1−(1−αλi)2) and summing over all i yields

1
1−ρ2

∑d
i=1

α2λi
2(1−(1−αλi)2) ≥

∑d
i=1

α2λi
2(1−(1−αλi)2)2 . Given the explicit characterization of J (α) in

Proposition 3.2 (see (31)) we obtain

1

1− ρ2
J (α) ≥ 1

2

d∑
i=1

α2λi
(1− (1− αλi)2)2

. (37)

The right hand side of (37) admits a lower bound as follows:

1

2

d∑
i=1

α2λi
(1− (1− αλi)2)2

=
1

2

d∑
i=1

α2λi
(αλi(2− αλi))2

=
1

2

d∑
i=1

1

λi(2− αλi)2
≥

d∑
i=1

1

8λi
, (38)

where the last inequality follows from the fact that |2 − αλi| ≤ 2. Using the lower bound (38)
along with (37) completes the proof.

3.3 Accelerated gradient (AG) method
The dynamical system representation of AG, given A,B,C in (8) leads to

AQ =

[
(1 + β)(Id − αQ) −β(Id − αQ)

Id 0d

]
. (39)

We will first formulate an analogous problem to (35) for the AG method to design the parameters
(α, β) in a way to find a trade-off between the rate and the robustness. Because AG has the pair
(α, β) as design parameters, the analogue of (35) is

(α∗, β∗) , arg min
(α,β)∈S

Fτ (α, β) , J (α, β) + τ
1

1− ρ(α, β)2
(40)

where J (α, β) is the robustness to the noise for the system (14), ρ(α, β) is the convergence rate of
AG with parameters (α, β) and S is the set of all possible choices of the tuple (α, β) so that the
AG iterations are globally convergent, i.e.,

S = {(α, β) : ρ(AQ) < 1, α ≥ 0, β ≥ 0} ⊂ R2. (41)

We call S, the stability region of AG, in analogy with the stability region of numerical methods
that arise in the discretization of continuous-time differential equations.

We next provide an explicit characterization for the convergence rate and robustness of AG for
any given parameters (α, β) ∈ S. The convergence rate ρ of the AG method as a function of α and
β is well-known. Diagonalizing the AQ matrix using the eigenvalue decomposition of Q, it can be
shown after some computations that the rate ρ = ρ(α, β) admits the following formula

ρ(α, β) = ρ(AQ) = max{ρµ(α, β), ρL(α, β)} (42)

where AQ is defined by (39) and ρλ is defined for λ ∈ {µ,L} as follows:

ρλ(α, β) =

{
1
2 |(1 + β)(1− αλ)|+ 1

2

√
∆λ if ∆λ ≥ 0√

β(1− αλ) otherwise
, ∆λ = (1+β)2(1−αλ)2−4β(1−αλ) (43)

(see e.g. [33, Appendix A], [38, Section 4.3]). The explicit expression (42) for the rate allows us
to characterize the set S in the next proposition whose proof can be found in the appendix. We
illustrate the set S in Figure 2 for different choices of the parameters µ and L.5

5We note that the stability region of a second-order difference equation that arises in accelerated algorithms that
are sublinearly convergent for weakly convex quadratic functions has been studied in [19], however these results do
not apply to the set S as we do not require the rate to be accelerated (we consider not only accelerated rates but
also any rate ρ less than one) and we consider strongly convex functions instead of weakly convex functions.
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Figure 2: Left: The stability region S = S1 ∪ S2 ∪ S3 with parameters µ = 0.7 and L = 1. Right: The
stability region S = S1 ∪ S2 with parameters µ = 0.1 and L = 1.

Proposition 3.6. Let S be the stability set of Nesterov’s accelerated method defined by (41). Then
its closure is given by the union of the following three sets:

S1 :=

{
(α, β) : 0 ≤ α ≤ 1

L
, 0 ≤ β(1− αµ) ≤ 1

}
,

S2 :=

{
(α, β) :

1

L
< α ≤ min

{
2

L
,

1

µ

}
, αL− 1 ≤ 1

2β + 1
, β(1− αµ) ≤ 1

}
,

S3 :=

{
(α, β) :

1

µ
≤ α ≤ 2

L
,αL− 1 ≤ 1

2β + 1

}
,

(44)

with the convention that S3 is the empty set if µ < L
2 .

The next proposition gives a characterization of the robustness J (α, β) of AG whose proof can
be found in the Appendix C.

Proposition 3.7. Let f be a quadratic function of the form f(x) = 1
2x
>Qx− p>x+ r. Consider

the AG iterations given by (7) with parameters (α, β) ∈ S . Then the robustness of the AG method
is given by

J (α, β) =

d∑
i=1

uα,β(λi) (45)

where µ = λ1 ≤ λ2 ≤ · · · ≤ λd = L are the eigenvalues of Q and

uα,β(λ) , α
1 + β(1− αλ)

2(1− β(1− αλ))(2 + 2β − αλ(1 + 2β))
. (46)

In the special case, choosing β = 0 reduces to the formula (31) derived for GD.

Since we have an exact characterization of J (α, β), we can derive the optimality conditions
for the problem (40) by an approach similar to Proposition A.1, where the optimizer can be
characterized as a root of some polynomial. In dimension d = 2, given parameters µ and L, the
optimizer is easy to compute. However, in high dimensions, this is computationally expensive as
it would require determining all the eigenvalues of Q which can be as expensive as optimizing the
objective function f . Nevertheless, exploiting the convexity properties of the function uα,β(λ),
we develop a tractable upper bound for J (α, β) that only depends on µ and L, hence tractable.
Moreover, in the numerical experiments section, we present experiments illustrating that this
approach can lead to good performance in terms of trading the speed and the robustness of an
algorithm.

To develop this upper bound, first, we show in Lemma D.1 that the function uα,β(λ) defined
in (46) is convex in λ ∈ [µ,L] for fixed (α, β) ∈ S. Therefore, its maximum is attained at one of
the endpoints of this interval, i.e.,

uα,β(λ) ≤ ūα,β , max [uα,β(µ), uα,β(L)] for λ ∈ [µ,L].

Substituting this upper bound in (45) and (40) leads to

J (α, β) ≤ J̄ (α, β) , dūα,β (47)
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and the relaxed optimization problem is

(α∗, β∗) , arg min
(α,β)∈S

F̄τ (α, β) , J̄ (α, β) + τ
1

1− ρ(α, β)2
. (48)

This objective only depends on µ and L and is differentiable everywhere in the interior of the
stability region S except when the first term is not differentiable, i.e., when uα,β(µ) = uα,β(L),
or the second term is not differentiable, i.e., when ρµ = ρL or ∆µ = 0 or ∆L = 0. Furthermore,
following a similar approach as in Example 3.4, the first order optimality conditions with respect to
α and β results in low-order polynomials (that are independent of the dimension d) which can be
solved efficiently up to any accuracy. Thus, other than checking the non-differentiable points of F̄τ ,
the bottleneck in computational complexity is determined by computing the roots of a polynomial
with a small degree (whose degree is independent from the dimension d), which is easy to compute
even in high dimensions.

4 Strongly Convex Functions
In this section, we generalize our analysis to smooth strongly convex functions f ∈ Sµ,L(Rd). Note
that we can rewrite (9) as

ξk+1 = Aξk +B(∇f(yk) + wk), yk = Cξk, (49)

where wk ∈ Rd models the additive noise and satisfies Assumption 2.1. Similar to the previous
section, we define ỹk , yk − x∗ and ξ̃k , ξk − ξ∗ where ξ∗ is equal to x∗ for GD and [x∗

>
x∗
>

]> for
AG, and in both cases we have ξ∗ = Aξ∗ and x∗ = Cξ∗ where A and C are given in (6) and (8)
for GD and AG, respectively. We use the equation xk = Tξk to relate xk and ξk for any k ≥ 0,
where T = Id for GD and T = [Id 0d] for AG. To simplify the notation, we define f̄ : Rm → R
such that f̄(ξ) = f(Tξ) for all ξ ∈ Rm which means f̄(ξk) = f(xk) for all k ≥ 0.

4.1 Rate and robustness
The goal is to extend the definitions of rate and robustness from the quadratic case to general
strongly convex functions. We will use

J = lim sup
k→∞

1

σ2
E[f(xk)− f∗] (50)

(provided also in (10)) to define the robustness of an algorithm and study the convergence rate of
the expected suboptimality to an interval around zero with radius σ2J . For both GD and AG,
our main results provide upper bounds of the form:

E[f(xk)− f∗] ≤ ρ2kψ0 + σ2R, ∀ k ≥ 0, (51)

where ψ0, R, and 0 < ρ < 1 are non-negative numbers all of which depend on algorithm parameters
and the initial point x0. Clearly, R is an upper bound on J ; we will show in this section that
our bounds are tight. Moreover, we also recover the fastest known rates in the literature in the
absence of noise (σ=0). Our upper bounds only depend on µ and L, and are computationally
tractable and explicit in some cases. With these upper bounds, one can formulate an optimization
problem similar to that of the previous section to find the algorithm parameters that can achieve
a particular trade-off between rate and robustness.

4.2 Rate and robustness trade-off analysis using Lyapunov functions
We use a Lyapunov function approach to provide a bound as in (51) for both GD and AG methods.
In particular, we consider a family of Lyapunov functions parameterized by a non-negative constant
c and a positive semidefinite matrix P as

VP,c(ξ) , VP (ξ) + c(f̄(ξ)− f∗), (52)

where VP (ξ) , (ξ − ξ∗)>P (ξ − ξ∗), and study the change in the Lyapunov function VP,c(ξ) along
{ξk}k generated by the dynamical system representation (49).
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Our first result shows how for some positive semidefinite matrix P and c = 0, Vp(ξ) ,
VP,0(ξ) evolves along the iterations and provide a characterization of the difference E[VP (ξk+1)]−
ρ2E[VP (ξk)] for any k ≥ 0 and ρ ≥ 0.

Lemma 4.1. Consider the Lyapunov function VP (ξ) = (ξ − ξ∗)>P (ξ − ξ∗) where P � 0. Then,
we have

E[VP (ξk+1)] = E

[[
ξk − ξ∗
∇f(yk)

]> [
A>PA A>PB
B>PA B>PB

] [
ξk − ξ∗
∇f(yk)

]]
+ σ2 Tr(B>PB). (53)

Proof. Since ξ∗ = Aξ∗, (49) implies ξ̃k+1 = Aξ̃k +B(∇f(yk) + wk) for k ≥ 0. Therefore,

E[VP (ξk+1)] = E[ξ̃>k+1P ξ̃k+1] = E[(Aξ̃k +B(∇f(yk) + wk))>P (Aξ̃k +B(∇f(yk) + wk))]

= E

[[
ξ̃k

∇f(yk)

]> [
A>PA A>PB
B>PA B>PB

] [
ξ̃k

∇f(yk)

]]
+ σ2 Tr(B>PB). (54)

where we use the fact that wk is zero mean and independent from ξ̃k and yk and the assumption
that E(wkw

T
k ) = σ2Id to derive (54).

Corollary 4.2. For any ρ ∈ (0, 1) and P ∈ Sm+ , VP (ξ) satisfies

E[VP (ξk+1)]− ρ2E[VP (ξk)] = E

[[
ξk − ξ∗
∇f(yk)

]>
Φ(A,B, P, ρ)

[
ξk − ξ∗
∇f(yk)

]]
+ σ2 Tr(B>PB) (55)

where
Φ(A,B, P, ρ) ,

[
A>PA− ρ2P A>PB

B>PA B>PB

]
. (56)

We next show how to provide upper bounds on the improvement in E[VP,c(ξk)] by imposing
Matrix Inequalities (MIs). In particular, given A, B, and C defining the first-order algorithm, we
assume there exists a symmetric matrix X ∈ Sm+d such that

X � Φ(A,B, P, ρ) (57)

for some P ∈ Sm+ and ρ ∈ (0, 1). Moreover, we assume that for some non-negative constants Γ and
c, the same ρ and X satisfy

E

[[
ξk − ξ∗
∇f(yk)

]>
X

[
ξk − ξ∗
∇f(yk)

]]
≤ c(ρ2E[f̄(ξk)− f∗]− E[f̄(ξk+1)− f∗] + σ2Γ) (58)

for every k ≥ 0; hence, it follows from (57) and (58) along with (55) that

ρ2E[VP,c(ξk)] + σ2(Tr(B>PB) + cΓ) ≥ E[VP,c(ξk+1)], ∀ k ≥ 0.

Thus, for all k ≥ 0, we have

E[VP,c(ξk)] ≤ ρ2kVP,c(ξ0) +
1− ρ2k

1− ρ2
σ2RP , RP , Tr(B>PB) + cΓ. (59)

This MI based approach has been used in the literature to study the convergence rate of first-order
methods, e.g., [33, 29]. Here we use it to characterize their rate and robustness under additive
gradient noise.

4.3 Gradient descent (GD) method for strongly convex functions
Recall the GD update rule

xk+1 = xk − α(∇f(xk) + wk), (60)

which admits the dynamical system representation in (49) with A,B,C as in (6). The next theorem
extends the result of Proposition 3.2 to general strongly convex functions and characterize the
behavior of {xk}k under additive gradient error.
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Proposition 4.3. Let f ∈ Sµ,L(Rd), and consider the GD iterations given by (60). Assume there
exist ρ ∈ (0, 1) and p > 0 such that

X0 � Φ(A,B, P, ρ) (61)

holds where X0 =

[
2µLId −(µ+ L)Id

−(µ+ L)Id 2Id

]
and P = pId. Then for all k ≥ 0:

E[‖xk − x∗‖2] ≤ ρ2k ‖x0 − x∗‖2 +
1− ρ2k

1− ρ2
σ2α2d. (62)

Proof. Noting that ξk = yk for GD, it follows from (2) with x = ξk and y = x∗ that (58) holds for
X = X0 and c = 0. Moreover, (61) implies that (57) holds for X = X0 and P = p⊗ Id; therefore,
(59) yields

pE[‖xk − x∗‖2] ≤ ρ2kp ‖x0 − x∗‖2 +
1− ρ2k

1− ρ2
σ2 Tr(B>PB), ∀ k ≥ 0. (63)

With B = −αId for GD, we have Tr(B>PB) = α2pd and this completes the proof.

Note that for a fixed α, a smaller ρ makes both terms of (62) smaller as 1−ρ2k
1−ρ2 is an increasing

function of ρ. If α ∈ (0, 2/L), it was shown in [33] that there exist (p, ρ) such that the MI in (61)
holds; moreover, for a given α fixed, the smallest ρ ∈ (0, 1) for which such a positive p exists is
equal to

ρGD(α) = max{|1− αµ|, |1− αL|}, (64)

as in (29) given for quadratic functions. Using ρ = ρGD(α) in (62) leads to the following upper
bound for GD.6

Corollary 4.4. Let f ∈ Sµ,L(Rd). Consider the GD iterations given by (60) with constant stepsize
α ∈ (0, 2/L). Then, for all k ≥ 0,

E[f(xk)− f∗] ≤ ρGD(α)2k ψ0 +
(

1− ρGD(α)2k
)
σ2RGD(α),

where ψ0 = L
2 ‖x0 − x∗‖2 and ρGD(α) is given in (64). As a consequence,

J ≤ RGD(α), where RGD(α) ,
Lα2d

2(1− ρ2
GD(α))

. (65)

Proof. Using the fact that f(xk) − f(x∗) ≤ L
2 ‖xk − x

∗‖2 for k ≥ 0 together with Proposition 4.3
yields the desired result.

Note that by substituting ρGD in (65), we obtain RGD = O(αd). This bound is tight, as
Proposition 3.2 implies that for quadratic functions J = Θ(αd).

4.4 Accelerated Gradient (AG) method for strongly convex functions
We next consider the AG algorithm with gradient noise given by

xk+1 = yk − α(∇f(yk) + wk) (66a)
yk = (1 + β)xk − βxk−1. (66b)

As before, these iterations admit the dynamical system representation in (49) with A,B,C as in
(8). We use the following result which extends Lemma 3 in [29] to the case with noisy gradient.

Lemma 4.5. Let f ∈ Sµ,L(Rd), and consider the dynamical system representation of AG with
ξk = [x>k , x

>
k−1]>. Then, for any ρ ∈ (0, 1),[

ξk − ξ∗
∇f(yk)

]> (
ρ2X1 + (1− ρ2)X2

) [ξk − ξ∗
∇f(yk)

]
≤ρ2(f(xk)− f∗)− (f(xk+1)− f∗)

+
Lα2

2
‖wk‖2 − α(1− Lα)∇f(yk)>wk

6 Trivially, J ′ ≤ α2d
1−ρGD(α)2

. More details are provided in Appendix E as a supplementary material.
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holds for all k ≥ 0, where X1 = X̃1 ⊗ Id and X2 = X̃2 ⊗ Id with

X̃1 =
1

2

 β2µ −β2µ −β
−β2µ β2µ β
−β β α(2− Lα)

 , X̃2 =
1

2

 (1 + β)2µ −β(1 + β)µ −(1 + β)
−β(1 + β)µ β2µ β
−(1 + β) β α(2− Lα)

 .
Proof. Setting x = xk and y = yk in the second inequality in (1) leads to

f(xk)− f(yk) ≥ ∇f(yk)>(xk − yk) +
µ

2
‖xk − yk‖2. (67)

Similarly, setting x = xk+1 = yk − α∇f(yk)− αwk and y = yk in (1) yields to

f(yk)− f(xk+1) ≥ ∇f(yk)>(α∇f(yk) + αwk)− Lα2

2
‖∇f(yk) + wk‖2

=
α

2
(2− Lα)‖∇f(yk)‖2 − Lα2

2
‖wk‖2 + α(1− Lα)∇f(yk)>wk.

(68)

Summing up (67) and (68) implies

f(xk)− f(xk+1) ≥1

2

[
xk − yk
∇f(yk)

]> [
µId Id
Id α(2− Lα)Id

] [
xk − yk
∇f(yk)

]
− Lα2

2
‖wk‖2 + α(1− Lα)∇f(yk)>wk.

(69)

Note that xk − yk = xk − ((1 + β)xk − βxk−1) = β(xk−1 − xk); hence, (69) implies

f(xk)− f(xk+1) +
Lα2

2
‖wk‖2 − α(1− Lα)∇f(yk)>wk ≥

xk−1 − x∗
xk − x∗
∇f(yk)

>X1

xk−1 − x∗
xk − x∗
∇f(yk)

. (70)

Next, in a similar way, setting x = x∗ and y = yk in (1), and summing the second inequality with
(68) leads to

f(x∗)− f(xk+1) +
Lα2

2
‖wk‖2 − α(1− Lα)∇f(yk)>wk ≥

xk−1 − x∗
xk − x∗
∇f(yk)

>X2

xk−1 − x∗
xk − x∗
∇f(yk)

. (71)

Multiplying (70) by ρ2 and (71) by 1− ρ2, and summing them will lead to the desired result.

Proposition 4.6. Let f ∈ Sµ,L(Rd), and consider the AG iterations given by (66). Assume there
exist ρ ∈ (0, 1), P ∈ S2d

+ , and c0, c ≥ 0 such that

c0X0 + cX(ρ) � Φ(A,B, P, ρ), where (72)

X0 =

[
2µL C>C −(µ+ L)C>

−(µ+ L)C 2Id

]
, X(ρ) = ρ2X1 + (1− ρ2)X2

for X1 and X2 defined in Lemma 4.5. Then the following bounds hold for all k ≥ 0:

E[VP,c(ξk)] ≤ ρ2kVP,c(ξ0) +
1− ρ2k

1− ρ2
σ2α2

( c
2
Ld+ Tr(P11)

)
, (73)

where P11 ∈ Sd+ is the submatrix of P formed by its first d rows and d columns.

Proof. Using (2) for x = yk and y = x∗ along with the fact yk = Cξk yields[
ξk − ξ∗
∇f(yk)

]>
X0

[
ξk − ξ∗
∇f(yk)

]
≤ 0. (74)

This inequality along with Lemma 4.5 implies that (58) holds for X = c0X0 + cX(ρ) and Γ =
1
2Lα

2d. Moreover, (72) implies that (57) holds for this X. Therefore, (59) holds and Tr(B>PB) =
α2 Tr(P11) completes the proof.
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As stated in the previous proposition, the MI in (72) provides us with (P, ρ) pairs and through
(73) we obtain an upper bound on supk E[VP,c(ξk)], which leads to a bound R on J . However,
solving this 2d × 2d MI becomes intractable as d increases. To keep this MI invariant of the
dimension, we restrict our attention to the case that P is in the form of P̃ ⊗ Id, where P̃ is a 2× 2
symmetric positive semidefinite matrix; hence, (72) becomes a 3 × 3 MI. The following corollary
shows the robustness bound when P = P̃ ⊗ Id for some P̃ ∈ S2

+.

Corollary 4.7. Let f ∈ Sµ,L(Rd), and consider the AG iterations given by (66) with parameters
α and β. Assume there exist ρ ∈ (0, 1), P̃ ∈ S2

+, c0 ≥ 0, and c > 0 such that c0X0 + cX(ρ) �
Φ(A,B, P, ρ) with X0 defined in Theorem 4.6, X1, X2 defined in Lemma 4.5, and P = P̃ ⊗ Id.
Then for all k ≥ 0,

E[f(xk)− f∗] ≤ ρ2k ψ0 +
(

1− ρ2k
)
σ2RAG(α, β), (75)

RAG(α, β) ,


Lα2d

2(1− ρ2)

cL+ 2P̃11

cL+ 2(P̃11 − P̃ 2
12/P̃22)

, P̃22 > 0,

Lα2d

2(1− ρ2)
, P̃22 = 0.

(76)

where ψ0 = 1
cVP,c(ξ0). As a consequence, J ≤ RAG(α, β).

Proof. Note that since P̃ ∈ S2
+, we have P̃22 ≥ 0. If P̃22 > 0, then using Schur complements, P̃

can be written as sum of two positive semidefinite matrices:

P̃ =

[
P̃11 − P̃ 2

12/P̃22 0
0 0

]
+

[
P̃ 2

12/P̃22 P̃12

P̃12 P̃22

]
.

Hence, VP (ξk) ≥ (P̃11 − P̃ 2
12/P̃22)‖xk − x∗‖2. On the other hand, if P̃22 = 0, then P̃ ∈ S2

+

implies that P̃12 = 0 as well and we get VP (ξk) ≥ P̃11‖xk − x∗‖2. In either case, substituting the
derived lower bounds on VP (ξk) in (73) and using the facts that 2

L (f(xk)− f∗) ≤ ‖xk − x∗‖2 and
Tr(B>PB) = Tr(BB>P ) = α2P̃11d completes the proof.

Remark 4.8. Note that for α ∈ (0, 2
L ), setting β = 0 in AG yields GD algorithm with stepsize

α. Selecting c0 = 1, c = 0 and P̃ =

[
p̃ 0
0 0

]
, we observe that p̃ = L2 satisfies (72); therefore,

Corollary 4.7 implies that J ≤ Lα2d
2(1−ρGD(α)2) for GD; hence, the result in (65) can be derived as a

special case of Corollary 4.7

Using this result, the next corollary characterizes the rate and robustness of the AG method
with a particular parameterization.

Corollary 4.9. Let f ∈ Sµ,L(Rd), consider the AG iterations given by (66) with constant stepsize
α ∈ (0, 1/L] and β(α) =

1−√αµ
1+
√
αµ . Then, for all k ≥ 0,

E[f(xk)− f∗] ≤ ρAG(α)2k ψ0 +
(

1− ρAG(α)2k
)
σ2RAG(α)

where ψ0 = VP,1(ξ0), ρAG(α) ,
√

1−√αµ and RAG(α) , αd
2(1−ρAG(α)2) (1 + αL); hence, J ≤

RAG(α)=
√
αd

2
√
µ (1 + αL).

Proof. [1, Theorem 2.3] guarantees that for any α ∈ (0, 1/L], the matrix inequality X(ρAG(α)) �
Φ(A,B, P (α), ρAG(α)) holds for A and B as in (8) corresponding to given α and β(α) =

1−√αµ
1+
√
αµ ,

where P (α) = P̃ (α)⊗ Id for

P̃ (α) ,

 √
1

2α√
µ
2 −

√
1

2α

[√ 1
2α

√
µ
2 −

√
1

2α

]
. (77)

Therefore, the desired result follows from Corollary 4.7.
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It is worth noting that although solving c0X0 + cX(ρ) � Φ(A,B, P, ρ) considering only lower-
dimensional P = P̃ ⊗ Id is more restrictive, this small-dimensional MI can still recover the well-

known rate ρ̄AG =

√
1−

√
1
κ for the deterministic case, i.e., σ = 0, in the literature [37] by setting

the stepsize α = 1
L and momentum parameter β(α) =

√
κ−1√
κ+1

. As shown in [29], this claim can be
verified by setting P = P̃ (α)⊗ Id with α = 1/L. In addition, for the case L = µ, substituting β(α)

in the explicit expression of J in (45) for quadratic functions, we obtain J (α, β(α)) = Θ(
√
αd√
µ )

which implies that RAG is a tight bound for J in terms of α dependency.
It is worth noting that the best rate known in the literature for general f ∈ Sµ,L(Rd) is

ρ∗ =
√

1−
√

2κ− 1/κ provided in [42, Theorem 7]. However, this rate differs from ρ̄AG just by a

constant factor, i.e., 1−ρ2∗
1−ρ̄2AG

≤
√

2. Moreover, for the special case of f ∈ Sµ,L(Rd) being a quadratic

function, the best linear rate for AG is 1− 2/
√

3κ+ 1 (see [33, Prop 1] for an asymptotic analysis
and [6] for a non-asymptotic analysis). Therefore, we can conclude that ρ = O(

√
1− 1/

√
κ)

and ρ = O(1 − 1/
√
κ) denote the best known κ dependency of the rate coefficient for general

and quadratic f ∈ Sµ,L(Rd), respectively. That said, since the focus of Section 4 is on general
strongly convex functions f ∈ Sµ,L(Rd), in the following subsection in order to approximate the
rate-robustness trade-off curves for AG, we consider ρ̄AG =

√
1− 1/

√
κ as the reference rate as it

exhibits the optimal κ dependency.

4.5 Approximating the rate and robustness trade-off curve
Similar to (33), (34), and (35) in Section 3, there are several ways of forming an optimization
problem to trade-off the rate and robustness. In this section we focus on strongly convex objectives
f ∈ Sµ,L(Rd), where unlike the quadratic objectives, we have access to upper bounds for the
robustness measure rather than exact expressions. Therefore, we adopt a formulation similar to
(33) and vary ε to characterize the rate-robustness trade-off. In fact, the parameter ε shows how
much we desire to lose in terms of convergence rate to gain robustness.

In the rest, let ρ̄GD , 1− 2
κ+1 and ρ̄AG ,

√
1−

√
1/κ denote the linear convergence rates for

GD and AG from the literature for f ∈ Sµ,L(Rd)[37]. In this section, we assume κ 6= 1, as the
κ = 1 case is trivial. We also let JGD,ε and JAG,ε be the best robustness value of GD and AG can
achieve corresponding to rate ρGD,ε , (1 + ε)ρ̄GD and ρAG,ε , (1 + ε)ρ̄AG, respectively. In the rest
of this section, we discuss methodologies to derive tractable upper bounds on JGD,ε and JAG,ε.

In particular, for GD, the best robustness level while asking for linear convergence with rate
ρGD,ε or faster is obtained by solving

arg min
α∈(0,2/L)

RGD(α) subject to ρGD(α) ≤ ρGD,ε, (78)

where ρGD(α) is given in (64). The function ρGD(α) is convex and piecewise linear in α over the
interval [0, 2/L] with a unique minimum at ρ̄GD and it satisfies ρGD(0) = ρGD(2/L) = 1 on the
boundary points. Therefore, it follows from this property that, given ε ∈ (0, 2

κ−1 ), there are exactly
two αε > 0 values such that ρGD(αε) = ρGD,ε which we can explicitly compute as αε = 2−ε(κ−1)

L+µ or

αε = 2+ε(κ−1)/κ
L+µ . The former value is strictly smaller as ε > 0 and κ > 1 here. From the formula

(65), we have RGD(αε) =
Lα2

εd

2(1−ρ2GD,ε)
. Clearly one should select the smaller αε value to minimize

the robustness bound, i.e., a choice of αε = 2−ε(κ−1)
L+µ leads to ρGD,ε rate with a robustness bound

RGD(αε), i.e., JGD,ε ≤ RGD(αε).
For AG, we can also write an analogous optimization problem in order to trade rate with

robustness:

arg min
α,β≥0,P̃∈S2+
ρ,c0,c≥0

{RAG(α, β) : ρ ≤ ρAG,ε, c0X0 + cX(ρ) � Φ(A,B, P̃ ⊗ Id, ρ)} (79)

with X0, X(ρ), RAG defined in Corollary 4.7 – since we can scale P̃ with c > 0, without loss of
generality, we restrict our attention to the case c = 1 for treating the c > 0 case. This problem
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is in general non-convex and not easy to solve. Here, we consider two different ways to generate
rate-robustness trade-off curves.

The first approach is similar to the one we used for GD. In particular, consider Corollary 4.9,
for α ∈ (0, 1/L], choosing β =

1−√αµ
1+
√
αµ implies that ρAG(α) =

√
1−√αµ. We get ρAG(αε) = ρAG,ε

for

αε = [1− ρ2
AG,ε]

2/µ = [1− (1 + ε)2(1− 1√
κ

)]2/µ, (80)

with ε ∈
[
0,
√ √

κ√
κ−1
− 1
)
to make sure the rate is smaller than 1. Thus, choosing (α, β) = (αε, βε)

with βε , 1−√αεµ
1+
√
αεµ

guarantees the rate ρAG,ε. In addition, Corollary 4.9 implies the robustness

bound RAG(αε) = O(
√
αεd√
µ ) for this case.

For the second approach, we first grid the (α, β) ∈ (0, 2
L ] × [0, 1] parameter space, and use a

numerical approach to find the best parameters for each ε, i.e., we solve a low-dimensional (in
R4) convex semi-definite programming (SDP) problem for each possible (α, β) value from the grid,
and we will pick the best one to determine the robustness bound. The SDPs arise from a convex
approximation to the problem (79) as we now elaborate further. First, we note that RAG(α, β)
defined in (76) is not convex in P̃ ; therefore, to obtain a tractable problem, we replace RAG(α, β)
with a convex upper bound. In particular, using Proposition 4.6, it is straightforward to see

RAG(α, β) ≤ R̄AG(α, β) ,
α2d

2(1− ρ2)
(L+ 2P̃11)

whenever there exists ρ ∈ (0, 1), P̃ ∈ S2
+ and c̄ ≥ 0 such that7

c̄X0 +X(ρ) � Φ(A,B, P̃ ⊗ Id, ρ). (81)

Note given ε ∈ [0,
√ √

κ√
κ−1
− 1), setting ρ = ρAG,ε within the matrix inequality in (81), we get a

linear matrix inequality in c̄ ≥ 0 and P̃ ∈ S2
+ for fixed (α, β). Moreover, R̄AG(α, β) is linear in P̃ .

Hence, given the trade-off parameter ε > 0, we will approximately solve

R̄(ε) , min
α,β,c̄≥0,P̃∈S2+

{R̄AG(α, β) : c̄X0 +X(ρAG,ε) � Φ(A,B, P̃ ⊗ Id, ρAG,ε)} (82)

with X0 and X(ρ) defined in Corollary 4.7, and R̄AG as given above. In fact, for a fixed (α, β),
this is a small dimensional convex SDP problem and can be solved easily.

Thus, we first grid the AG parameter space, i.e., {(αi1 , βi2)}i1∈I1,i2∈I2 and for given trade-off
parameter ε, we solve |I1||I2| many 4-dimensional SDPs, i.e., for each (i1, i2) ∈ I1 × I2,

R̄i1,i2(ε) , min
c̄≥0,P̃∈S2+

R̄AG(αi1 , βi2) =
α2
i1
d

2(1− ρ2
AG,ε)

(L+ 2P̃11) (83)

s.t. c̄X0 +X(ρAG,ε) � Φ(A,B, P̃ ⊗ Id, ρAG,ε).

Clearly, JAG,ε ≤ R̄(ε) ≤ mini1∈I1,i2∈I2 R̄i1,i2(ε) where R̄(ε) is as in (82). Note (α, β) = (αε, βε),
c̄ = 0 and P̃ = P̃ (αε) satisfies (81) where αε is given in (80), βε =

1−√αεµ
1+
√
αεµ

and P̃ (α) is defined in
(77). Therefore, for any grid that contains (αε, βε) as one of the grid points, we have

R̄(ε) ≤ α2
εd

2
(

1− ρ2
AG,ε

) (L+
1

αε

)
≤ αεd(

1− ρ2
AG,ε

) =

√
αεd√
µ
, (84)

where the first inequality follows from P̃11 = 1
2αε

for P̃ = P̃ (αε) and the second inequality follows
from αε ∈ (0, 1/L]. The equality above is a direct consequence of the identity (80). Finally,
according to the discussion at the end of the previous section, for ε > 0 sufficiently close to√ √

κ√
κ−1
− 1, there exists a quadratic f ∈ Sµ,L such that J (αε, βε) = Θ(

√
αεd√
µ ) while (84) implies

that JAG,ε ≤ R̄(ε) ≤
√
αεd√
µ .

7Recall that we put c = 1 in this section.
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In Figure 3, we consider the rate-robustness trade-off for a strongly convex function with µ = 1
and L = 20 using the upper bounds we derived in this section for both GD and AG (that are
applicable to any dimension d), where we report the normalized robustness level J /d in the y-axis
versus the convergence rate in the x-axis – for AG we plotted two curves associated with the two
approaches detailed above: the first one (marked in red color) uses the explicit bound and the
second one (marked in yellow color) is based on a grid search. We use the solver CVX [25] to solve
the 4-dimensional SDPs given in (83). We select a grid of size |I1| = |I2| = 30 on the parameter
space for (α, β) determined by Proposition 3.6. We observe that the grid search and the explicit
upper bound approach give similar results on this numerical example for AG, especially when the
rate is close to 1. We also see that the robustness upper bound for GD obtained from our approach
(marked in blue color) is worse than the upper bound we developed for AG. To see how the AG
bounds are comparable with the exact expressions we developed for quadratics, first we note that
by Lemma D.1, any quadratic function f ∈ Sµ,L(Rd) admits the robustness upper bound8

Jmax(α, β) := (d− 1) max [uα,β(µ), uα,β(L)] + min [uα,β(µ), uα,β(L)]

and this bound can be achieved for some choices of f . For large d, we have clearly Jmax(α, β)/d ≈
max [uα,β(µ), uα,β(L)]. In Figure 3, we plot the latter quantity versus the convergence rate (marked
in purple color) to demonstrate the rate-robustness curve for AG in the case of quadratic objective
functions. We observe from Figure 3 that our bounds for the quadratic case are tighter than those
for general strongly convex functions as expected.

Figure 3: Rate-robustness trade-off for GD and AG algorithms using derived upper bounds and comparing
it with the quadratic result.

5 Asymptotic stability of the optimum with respect to per-
turbations

Our discussion so far has focused on the robustness of first-order methods with respect to random
noise in the gradients, which we quantify by J defined in (10). Our robustness measure J is based
on the H2 norm of an associated linear dynamical system. It is well known that the H2 norm
of a dynamical system is closely related to the asymptotic stability of the equilibrium (which is
characterized by the optimal solution x∗ to (3) in our setup) in the sense that it quantifies how
quickly the system can converge back to the equilibrium if it is unsettled from its equilibrium in
the direction of a coordinate [46]. More specifically, for each i ∈ {1, . . . , d}, let {xik}k≥0 be the
iterate sequence corresponding to (49) whenever {wk}k = δ[k]ei for k ≥ 0 where ei is the i-th basis
vector, i.e., we perturb the system from its equilibrium with an impulse input in the direction of
ei. Let

J∗ :=

d∑
i=1

‖xi − x∗‖22 (85)

where ‖xi − x∗‖2 is the l2 norm of the sequence {xik − x∗}k. It is worth noting that {xik}k is the
same as the iterate sequence of the noiseless system (4) with initial state ξ∗ + Bei, D = 0d and
φ(·) = ∇f(·).

8This is a worst-case bound for a quadratic f ∈ Sµ,L(Rd), tighter bounds are available if all the eigenvalues of
its Hessian matrix were known or estimated beyond the eigenvalues µ and L, see Proposition 3.7.
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We next motivate this definition from another perspective. Recall the alternative robustness
measure J ′ = lim supk E[‖xk − x∗‖2] we briefly discussed in Section 2; for a linear system it is
known that J ′ = J∗ [46]. In other words, our explicit formulas and bounds for J ′, given in
Appendix E of the Supplementary Material, translate immediately to J∗ for optimizing quadratic
functions. The definition in (85) also extends to the case when f is not necessarily quadratic or
equivalently when the system (49) is nonlinear; however, for non-linear systems there is no known
explicit formula that relates J ′ to J∗ [44]. We refer to the quantity J∗ as perturbation stability
of the first-order algorithm in consideration; indeed, it measures how sensitive the underlying
optimization algorithm is to the initialization around the optimal solution — it also quantifies how
strongly the iterate sequence is attracted to the optimal solution once they are close.

In particular, given A, B, and C defining the first-order optimization algorithm, we assume
there exists X ∈ Sm+d such that the MI in (57) holds for some P ∈ Sm+ and ρ ∈ (0, 1). Moreover,
we assume that when Γ = 0 and σ = 0, there exists a constant c ≥ 0 independent of ξ0 such that
the same ρ and X satisfy the dissipation inequality in (58) for every k ≥ 0; hence, it follows from
(57) and (58) along with (55) that

VP,c(ξk) ≤ ρ2kVP,c(ξ0), ∀ k ≥ 0. (86)

Since f ∈ Sµ,L(Rd), whenever P ∈ Sm+ and/or c > 0, (86) implies that the error signal {‖xik−x∗‖2}k
decays geometrically and is therefore summable; and as a consequence, J∗ in (85) well-defined.

Lemma 5.1. For GD, the following bound holds for all α ∈ (0, 2/L)

J∗(α) ≤ α2d

1− ρ2
GD(α)

, (87)

where ρGD(·) is defined in (64). Moreover, for AG, given α ∈ (0, 1/L], setting β(α) =
1−√αµ
1+
√
αµ , the

perturbation stability can be bounded as J∗(α) ≤ α2d√
αµ (1 + κ).

Proof. Recall that {xik}k is the same as the iterate sequence of the noiseless system (4) with initial
state ξ∗ +Bei. Hence, Proposition 4.3 with σ = 0 implies that∥∥xik − x∗∥∥2 ≤ ρ2k

∥∥xi0 − x∗∥∥2
, ∀ k ≥ 0. (88)

for some ρ ∈ (0, 1) and for any 1 ≤ i ≤ d and stepsize α ∈ (0, 2/L). Thus,
∑∞
k=0

∥∥xik − x∗∥∥2 ≤
1

1−ρ2
∥∥xi0 − x∗∥∥2, which implies

∥∥xi − x∗∥∥2 ≤ α2

1−ρ2 for all i = 1, . . . , d since B = −αId for GD.

Therefore, we have J∗(α) ≤ α2d
1−ρ2 . Moreover, given any stepsize α ∈ (0, 2/L) for GD, using

(64), which is the smallest ρ value for which (88) holds, we obtain (87). On the other hand,
for AG, using Corollary 4.9 with σ = 0 and the fact that µ

2 ‖xk − x
∗‖2 ≤ f(xk) − f∗, we get∥∥xik − x∗∥∥2 ≤ ρ2k

AG(
∥∥xi0 − x∗∥∥2

+ 2
µ (f(xi0) − f∗)) for k ≥ 0 and i = 1, . . . , d, where we used

xi0 = xi−1 = x∗ +Bei for i = 1, . . . , d. Thus,

J∗(α) ≤ 1

1− ρ2
AG(α)

(
Tr(B>B) +

d∑
i=1

2
µ (f(xi0)− f∗))

)
≤ α2d
√
αµ

(1 + κ), ∀ α ∈ (0, 1/L].

For α ∈ (0, 1/L] since ρGD(α) = 1 − αµ, (87) implies that J∗(α) ≤ α2d
αµ(2−αµ) = O(α) for GD.

For quadratic f ∈ Sµ,L(Rd) such that µ = L, as we discussed in Footnote 6, J ′(α) = αd
µ(2−αµ) .

Since J∗(α) = J ′(α) for quadratics, O(α) dependence of (87) for α ∈ (0, 1/L] is tight. We also note
that, O(α3/2) bound on J∗(α) for AG implies that for sufficiently small stepsize α, AG possesses
better perturbation stability than GD.

6 Numerical Experiments
Our first set of experiments concern a further study of Example 3.4 for comparing AG and GD in
terms of performance. In the leftmost plot of Figure 4, we vary the trade-off parameter from τ = 0
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to τ = ∞ for AG and plot the robustness level J (α∗(τ), β∗(τ)) versus the rate ρ(α∗(τ), β∗(τ))
corresponding to the optimal parameters (α∗(τ), β∗(τ)), we also plot the analogous curve for GD
(the same curve from Figure 1) to compare. We observe that for the same achievable convergence
rate, the optimized AG parameters lead to more robust algorithms compared to the optimized GD
algorithms as AG has an additional parameter β to optimize robustness over. This shows that
AG can improve GD in terms of both convergence rate and robustness at the same time when
gradients are subject to white noise. This result is in contrast with the deterministic gradient error
setting in [12], which shows that GD performance degrades gracefully while AG may accumulate
error. Therefore, our results suggest that AG algorithms can tolerate random noise better than
deterministic noise to preserve their accelerated rates, which is also inline with the theoretical
findings of [7]. Also it is interesting to note that the popular choice of parameters (blue and red
dots), as well as the parameters that lead to the optimal (fastest) rate (green and purple dots) lie
on curves that trade robustness with rate in an optimal fashion.

Figure 4: Left: Robustness J as a function of the convergence rate for GD and AG. Middle: Comparison
of the convergence rate and robustness obtained by solving (40) versus its approximation (48) for d = 100.
Right: Tuned AG can be both faster and more robust than GD.

Next, we illustrate the tightness of our upper bound J̄ (α, β) provided in (47) to the (true)
robustness level J (α, β). This upper bound results in a small scale optimization problem (48) that
allows trading-off robustness and the convergence rate in a way that computationally tractable,
even in high dimensions. The middle plot of Figure 4 shows the convergence rate and robust-
ness obtained by solving (40) versus solving (48). The objective is a random quadratic function
in dimension d = 100 with parameters µ = 0.1, L = 1. Our results show that for any trade-off
parameter τ our upper bound is within a factor of 1.2 of true parameters, illustrating the accuracy
of this approximation to the optimal parameters for different levels of robustness, especially the
approximation is more accurate when the trade-off parameter is larger (in which case the conver-
gence rate is closer to 1). We obtain quantitatively similar results repeating this experiment with
other randomly generated quadratic functions.

Next, we illustrate our framework to trade-off robustness and convergence rate on a quadratic
optimization problem, similar to the one considered in [27] where it is shown that AG algorithms
with standard choice of parameters have difficulty to handle random gradient noise. We consider
the quadratic function f(x) = 1

2x
>Qx+bTx+δ‖x‖2 in dimension d = 100 where Q is the Laplacian

of a cyclic graph, δ = 0.1 is a regularization parameter to make the problem strongly convex and
b is a random vector. As it can be seen in the rightmost plot of Figure 4, we show that when
properly modified, AG can be both faster and more robust in comparison with GD.

In the leftmost plot of Figure 5, we compare the tuned AG with other algorithms such as AC-SA
[32] and the Flammarion-Bach algorithm [19]. For this purpose, we consider the same quadratic
test problem from [19] in dimension d = 20, where the eigenvalues of its Hessian Q are set equal
to λi = i2 for i = 1, 2, ..., 20. Our results show that modified AG can trade robustness with the
convergence rate successfully and can improve upon AC-SA and Flammarion-Bach algorithm on
this example.

Finally, we validate our results for strongly convex and smooth functions by choosing function
f to be a regularized logistic loss. We synthesize a random matrix M ∈ R2000×100 and a random
vector w ∈ R100 and compute y = sign(Mw) as the output of the classifier. The goal is to recover w
using regularized logistic regression when the gradient of the logistic loss is corrupted with additive
Gaussian noise. The plot on the right panel of Figure 5 shows the behavior of tuned AG after
solving the optimization problem (79) with three different ε values 0 < ε1 < ε2 < ε3 in comparison
with standard AG and GD. As predicted by our theory, AG performs better than GD and the
asymptotic suboptimality decreases as ε gets larger.
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Figure 5: Left: Comparison of the other algorithms with Modified AG. Right: Tuned AG for the regularized
logistic regression problem.

7 Conclusion
We consider the gradient descent (GD) and accelerated gradient (AG) methods for optimizing
strongly convex functions. We developed a computationally tractable framework to design their
parameters in a way to trade between two conflicting performance measures: the convergence rate
and the robustness to additive white noise in the gradient computations measured in terms of final
asymptotic variance of the algorithm output. For strongly convex quadratics, we show that this
robustness measure is equal to the H2 norm of a dynamical system associated to the optimization
algorithm and give an explicit characterization of this quantity. Our results show that for the same
achievable rate, AG can always be tuned to be more robust. Similarly, for the same robustness
level, we show that AG can be tuned to be always faster than GD. We also give fundamental lower
bounds on the achievable robustness level for gradient descent for a given achievable rate. We
show how our analysis can be extended to smooth strongly convex functions and we derive upper
bounds on the robustness measures for GD and AG.
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A First-order optimality conditions for the objective Fτ(α)
Proposition A.1. There exists an optimizer α∗(τ) to the minimization problem (35). Further-
more, any optimizer is either α∗(τ) = 2/(µ+L) or it satisfies one of the following two conditions:

α2

2

d∑
i=1

1

(2− αλi)2
+

τ(αµ− 1)

µ(2− αµ)2
= 0 and |1− αµ| > |1− αL|. (89)

α2

2

d∑
i=1

1

(2− αλi)2
+

τ(αL− 1)

L(2− αL)2
= 0 and |1− αµ| < |1− αL|. (90)

Therefore, by examining the values of F at the points that satisfy this equality and inequality
constraints, we can determine the optimal stepsize α∗(τ).

Proof. To solve (35) explicitly, note that

1

1− ρ2
=

{
1

1−(1−αµ)2 if |1− αµ| > |1− αL|,
1

1−(1−αL)2 if |1− αµ| ≤ |1− αL|.

The optimal α∗ cannot be attained on the boundary points of the interval [0, 2/L] as F is not finite
at these points. Therefore, it suffices to solve the optimization problem over the open interval
(0, 2/L) where F is differentiable with respect to α except when |1 − αµ| = |1 − αL|, i.e. when
α = 2/(µ + L). For α∗ 6= 2/(µ + L), we can write-down the first-order conditions of optimality
∂F
∂α = 0 which leads to (89) and (90).

B Proof of Proposition 3.6
In the light of the formula (42) that characterizes ρ(AQ), the closure of the stability set S admits
the representation S = Sµ ∩ SL where for λ ∈ {µ,L} we define

Sλ = {(α, β) : ρλ(α, β) ≤ 1, α ≥ 0, β ≥ 0} ⊂ R2. (91)

We first write Sλ as a union of two disjoint sets depending on the signature of ∆λ: Sλ = Sλ,1∪Sλ,2
where

Sλ,1 = Sλ ∩ {(α, β) : ∆λ ≤ 0}, Sλ,2 = Sλ ∩ {(α, β) : ∆λ > 0}. (92)

It follows from the definition of ∆λ in (43) that ∆λ ≤ 0 if and only if 0 ≤ 1 − αλ ≤ 4β
(1+β)2 ; and

when this condition holds, ρλ =
√
β(1− αλ) ≤ 1 if and only if 0 ≤ 1− αλ ≤ 1

β . Therefore,

Sλ,1 = {(α, β) : 0 ≤ 1− αλ ≤ min{ 1

β
,

4β

(1 + β)2
}}. (93)

We next focus on Sλ,2. Note that ∆λ ≥ 0 if and only if

1− αλ ≤ 0 or 1− αλ ≥ 4β

(1 + β)2
. (94)

If (94) is satisfied, then ρλ ≤ 1 if and only if 1
2 (1 + β)(1 − αλ)sign(1 − αλ) + 1

2

√
∆λ ≤ 1. There

are two cases:
1) ∆λ > 0 and 1 − αλ < 0: In this case, ρλ ≤ 1 if and only if

√
∆λ ≤ 2 − (1 + β)cλ, where

cλ = −(1−αλ) > 0. By squaring both sides, this is if and only if, ∆λ ≤ (2−(1+β)cλ)2 and 2−
(1 + β)cλ ≥ 0 The first inequality holds if cλ = −(1 − αλ) ≤ 1

2β+1 whereas the second inequality
holds if cλ = −(1−αλ) ≤ 2

β+1 . The first inequality is more binding, if it holds the second inequality
holds too. Therefore,

{(α, β) : 0 ≤ −(1− αλ) ≤ 1

2β + 1
} ⊂ Sλ,2. (95)

2) ∆λ > 0 and 1 − αλ > 0: In this case, ρλ ≤ 1 if and only if
√

∆λ ≤ 2 − (1 + β)dλ where
dλ := −cλ = (1− αλ) > 0. After squaring both sides, this is if and only if

∆λ ≤ (2− (1 + β)dλ)2 and 2− (1 + β)dλ ≥ 0 (96)
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where the first inequality simplifies to 1 ≥ dλ. (96) along with (94) means 4β
(1+β)2 ≤ 1 − αλ ≤

min{1, 2
1+β } which implies β ≤ 1; therefore,

{(α, β) :
4β

(1 + β)2
≤ 1− αλ ≤ 2

1 + β
} ⊂ Sλ,2. (97)

Merging (93), (95), and (97) yields

Sλ =

{
(α, β) : 1− αλ ∈

[
− 1

1 + 2β
,min{ 1

β
,

2

1 + β
}
]}

. (98)

To complete the proof, due to the representation (91), it suffices to compute the intersection
Sµ ∩ SL. There are several cases to consider depending on the value of α:

1) First, consider α ∈ [0, 1
L ]. In this case 1 − αµ ≥ 1 − αL ≥ 0, and hence (98) implies

1− αµ ≤ 2
1+β if β ≤ 1 whereas 1− αµ ≤ 1

β if β ≥ 1. Nevertheless, if β ≤ 1 then 2
1+β ≥ 1, so the

first case always holds; hence, (1− αµ)β ≤ 1.
2) Now, assume α ∈ [ 1

L ,min{ 2
L ,

1
µ}]. Then 1−αµ ≥ 0 ≥ 1−αL, and thus (98) yields 1−αL ≥

− 1
1+2β , 1− αµ ≤ min{ 1

β ,
2

1+β } where the second inequality again simplifies to (1− αµ)β ≤ 1.
3) The last possible case happens when µ ≥ L

2 , and so α ∈ [ 1
µ ,

2
L ] is possible. In this case

1 − αL ≤ 1 − αµ ≤ 0, and so using (98), we just need to check 1 − αL ≥ − 1
1+2β Considering all

these cases along with the fact that (98) shows α cannot be greater than 2
L completes the proof.

C Proof of Proposition 3.7
Similar to the analysis for GD, we can assume without loss of generality that Q is diagonal. The
proof is also similar. Consider UΛU> be the eigenvalue decomposition of Q. Then AQ in (39) can
be written as

AQ = ŨAΛŨ
>, where (99)

Ũ =

[
U 0d
0d U

]
, AΛ =

[
(1 + β)(Id − αΛ) −β(Id − αΛ)

Id 0d

]
. (100)

Replacing AQ from (99) in Lyapunov equation (20) implies

ŨAΛŨ
>XŨA>Λ Ũ

> −X +BB> = 0. (101)

Multiplying by Ũ and Ũ> from right and left respectively yields

AΛŨ
>XŨA>Λ − Ũ>XŨ +BB> = 0 (102)

where we used the fact that B in (8) has the property that Ũ>BB>Ũ = BB>.
Equation (102) shows that Ũ>XŨ satisfies the Lyapunov equation when AQ is replaced by

AΛ. Next, we show that after after substituting Q by Λ, the robustness J (α, β) would stay the

same; i.e., H2
2 (AΛ, B,

√
1
2Λ1/2T ) = H2

2 (AQ, B,RT ), where R =
√

1
2Λ1/2U>. To show this, note

that from (19), we have

H2
2 (AΛ, B,

√
1

2
Λ1/2T ) =

1

2
Tr((Λ1/2T )Ũ>XŨ(Λ1/2T )>)

=
1

2
Tr((Λ1/2T Ũ>)X(Λ1/2T Ũ>)>) = Tr((RT )X(RT )>),

where the last equality is true as T Ũ> = U>T for T and U given in (22) and (100). This result
completes the proof of our claim that we can assume Q is diagonal. For simplicity we will continue
our analysis with AQ, assuming its a diagonal matrix.

Let Pπ be the permutation matrix associated with the permutation π over the set {1, 2, ..., 2d}
that satisfies π(i) = 2i − 1 for 1 ≤ i ≤ d and π(i) = 2(i − d) for d + 1 ≤ i ≤ 2d. It is well-known
that permutation matrices satisfy P−1

π = P>π = Pπ−1 ; therefore, multiplying Lyapunov equation
(20) by Pπ and P>π from left and right, respectively, leads to

(PπAQP
>
π )Y (PπA

>
QP
>
π )− Y + PπBB

>P>π = 0, (103)
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where Y = PπXP
>
π . It follows from (39) that

PπAQP
>
π = diag([Ti]

d
i=1), and Ti =

[
(1 + β)(1− αλi) −β(1− αλi)

1 0

]
, i = 1, . . . , d

and 0 < µ = λ1 ≤ λ2 ≤ ... ≤ λd = L are the eigenvalues ofQ. SinceBBT =

[
α2Id 0d
0d 0d

]
,PπBB>P>π

is a 2d by 2d diagonal matrix with α2 on entries (1, 1), (3, 3), ..., (2d−1, 2d−1) and zero elsewhere.
Hence, Y that solves (103) is a block diagonal matrix in the form: Y = diag([Yi]

d
i=1), where

Yi =

[
yui yoi
yoi ydi

]
satisfies the equality[

(1 + β)(1− αλi) −β(1− αλi)
1 0

]
Yi

[
(1 + β)(1− αλi) 1
−β(1− αλi) 0

]
− Yi +

[
α2 0
0 0

]
= 0

for all i = 1, . . . , d. This is equivalent to the linear system:(1 + β)2(1− αλi)2 − 1 −2β(1 + β)(1− αλi)2 β2(1− αλi)2

(1 + β)(1− αλi) −1− β(1− αλi) 0
1 0 −1

yuiyoi
ydi

 =

−α2

0
0

 .
Solving this system of equations, we obtain:

yui = ydi = α
1 + β(1− αλi)

λi(1− β(1− αλi))(2 + 2β − αλi(1 + 2β))
,

yoi =
α2(1 + β)(1− αλi)

αλi(1− β(1− αλi))(2 + 2β − αλi(1 + 2β))
.

(104)

The J (α, β) can be computed using

Tr((

√
1

2
Q1/2T )X(

√
1

2
Q1/2T )>) =

1

2
Tr(PπT

>QTP>π Y ). (105)

The matrix PπT>QTP>π is block diagonal with 2× 2 matrices
[
λi 0
0 0

]
on its diagonal. Therefore,

using (104), the robustness measure J (α, β) is equal to

1

2

d∑
i=1

α
1 + β(1− αλi)

(1− β(1− αλi))(2 + 2β − αλi(1 + 2β))
. (106)

D Convexity of uα,β(λ)
We next show that uα,β(λ) appearing in the definition of the J (α, β) for the AG algorithm is
convex with respect to λ.

Lemma D.1. Let (α, β) ∈ S where S is the stability region of the dynamical system representation
of AG given by (41). The function uα,β(λ) defined by (46) is convex on the interval [µ,L].

Proof. The function uα,β(λ) can be written in terms of λ̃ := β(1− αλ) as follows

qλ(λ̃) =
α

2

1 + λ̃

(1− λ̃)(1 + λ̃γ)
(107)

where γ := 2 + 1
β . It follows from (41) that for (α, β) ∈ S, 1 ≥ λ̃ ≥ −1

γ , and thus both terms in
denominator of (107) are positive. Note that λ̃ is linear, and since the composition of a convex
functions with a linear function is convex, it suffices to show qλ(λ̃) is a convex function of λ̃ over
domain [−1

γ , 1]. To show this, we simply compute the second derivative of (107) with respect to λ̃.
After doing some algebra,

d

dλ̃2
qλ(λ̃) =

α

2

(
2(γ3 − γ2)

(γ + 1)(γλ̃+ 1)3
+

4

(γ + 1)(1− λ̃)3

)
(108)

which is non-negative as γ ≥ 2 and λ̃ ∈ [−1
γ , 1]. This completes the proof.
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E Defining rate and robustness based on iterates
In this supplementary file, we first recall how an alternative robustness measure can be defined
based on the distance of the iterates to the optimal solution instead of the robustness measure J
we introduced in the main text based on the asymptotic expected suboptimality in function values.
Here, we focus on the iterate sequence {xk}k to characterize the notions of rate and robustness.
First we consider the case that f is a quadratic function in the form of f(x) = 1

2x
>Qx− p>x+ r.

Using (15) along with the relation xk = Tξk with T defined in Section 3.1, for both GD and AG
the sequence {E[xk]}k goes to zero with rate ρ(AQ).

However, due to the noise injected at each step, the limit of the sequence {xk} will oscil-
late around the optimal solution with a non-zero variance. Thus, a natural metric to mea-
sure robustness is then to study the asymptotic normalized variance by considering the limit
J ′ = limk→∞

1
σ2E[‖xk − x∗‖2]. Similar line of argument as Lemma 3.1 shows that this limit exists

and is in fact equal to H2
2 (AQ, B, T ). This quantity can be viewed as the robustness to noise in

terms of iterates because it is equal to the ratio of the power of the iterates to the power of the
input noise, measuring how much a system amplifies input noise. In particular, the smaller this
measure is, the more robust the system is under additive random noise.

The robustness J ′ can be evaluated precisely for GD and AG method same as what we did
in Section 3 for J . For GD method with constant stepsize α ∈ (0, 2/L), the robustness to noise
in terms of iterates is denoted as J ′(α) to show the dependence to α. The following proposition,
which can be proved similar to Proposition 3.2, shows the explicit characterization of J ′(α).

Proposition E.1. Let f be a quadratic function of the form f(x) = 1
2x
>Qx− p>x+ r. Consider

the GD iterations given by (5) with constant stepsize α ∈ (0, 2/L) . Then the robustness of the GD
method in terms of iterates is given by

J ′(α) = α2
d∑
i=1

1

1− (1− αλi)2
= α

d∑
i=1

1

λi(2− αλi)
, (109)

where 0 < µ = λ1 ≤ λ2 ≤ ...λd = L are the eigenvalues of Q.

For AG, with constant stepsize α and momentum parameter β, we denote the robustness to
noise in terms of iterates as J ′(α, β). The following theorem, which can be proved similar to
Proposition 3.7, provides an explicit formula forJ′(α, β) in terms of the eigenvalues of Q.

Proposition E.2. Let f be a quadratic function of the form f(x) = 1
2x
>Qx− p>x+ r. Consider

the AG iterations given by (7) with parameters (α, β) ∈ S . Then the robustness of the AG method
in terms of iterates is given by

J ′(α, β) =

d∑
i=1

u′α,β(λi) (110)

where µ = λ1 ≤ λ2 ≤ · · · ≤ λd = L are the eigenvalues of Q and

u′α,β(λ) , α
1 + β(1− αλ)

λ(1− β(1− αλ))(2 + 2β − αλ(1 + 2β))
. (111)

As discussed in Section 3, the J ′(α, β) admits a tractable upper bound in the form of J ′(α, β) ≤
dmax(u′α,β(µ), u′α,β(L)) which only depends on µ and L.

We can also extend the definitions of rate and robustness in terms of iterates to the case that
f ∈ Sµ,L(Rd). Note that in general the sequence {xk}k might not converge to the optimal solution
in expectation (see [14]). Using the family of Lyapunov functions VP,c(ξ), it can be shown that,
similar to (51), the following inequality holds for both GD and AG with properly chose parameters

E[‖xk − x∗‖2] ≤ ρ2kψ′0 + σ2R′ k ≥ 1 (112)

where 0 < ρ < 1 is the same ρ as (51) and also ψ′0 and R′ are non-negative numbers and depend on
algorithm parameters and initial point x0. For instance, Proposition 4.3 implies that (112) holds
for GD, i.e., for all k ≥ 0,

E[‖xk − x∗‖2] ≤ ρ(α)2k ‖x0 − x∗‖2 + σ2R′(α), where (113)

R′(α) ,
α2d

1− ρ(α)2
. (114)
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Similarly, we can derive (112) for AG by using Proposition 4.6.
Finally, we show that the R′(α) is a tight bound for J ′. For quadratic f ∈ Sµ,L(Rd), J ′ can

be written in closed form as in (109), Note that if λi = µ = L for i = 1, . . . , d, then this quantity
is equal to R′(α).
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