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Abstract

This paper is devoted to the study of generalized subdifferentials of spectral functions over Euclidean
Jordan algebras. Spectral functions appear often in optimization problems playing the role of “regular-
izer”, “barrier”, “penalty function” and many others. We provide formulae for the regular, approximate
and horizon subdifferentials of spectral functions. In addition, under local lower semicontinuity, we also
furnish a formula for the Clarke subdifferential, thus extending an earlier result by Baes. As application,
we compute the generalized subdifferentials of the function that maps an element to its k-th largest
eigenvalue. Furthermore, in connection with recent approaches for nonsmooth optimization, we present
a study of the Kurdyka- Lojasiewicz (KL) property for spectral functions and prove a transfer principle
for the KL-exponent. In our proofs, we make extensive use of recent tools such as the commutation
principle of Ramı́rez, Seeger and Sossa and majorization principles developed by Gowda.
Keywords: spectral functions, generalized subdifferential, approximating subdifferential, Euclidean Jor-
dan algebra, Kurdyka- Lojasiewicz inequality.

1 Introduction

Let f : Rr → R be a function that is symmetric, i.e., f(u) does not change if we permute the coordinates
of u ∈ R

r. Here, R denotes the extended line [−∞,+∞]. Now, let us consider a Euclidean Jordan algebra
E of rank r, for example, the r × r symmetric matrices. Then, f can be extended in a natural fashion to a
function F over E by defining for all x ∈ E

F (x) := f(λ(x)),

where λ(x) ∈ R
r is the vector containing the eigenvalues of x in nonincreasing order, i.e.,

λ1(x) ≥ · · · ≥ λr(x).

We call F the spectral function induced by f . Because f is symmetric, it is known from the works of Baes
[3], Sun and Sun [26], Jeong and Gowda [15] and others that several properties of f are transferred to F .
For example, f is convex if and only if F is convex. The same goes for differentiability. Results of this type
are sometimes called transfer results or transfer principles, e.g., [15].

Spectral functions are ubiquitous throughout optimization and recognizing that F is a spectral function
can make computing derivatives/subdifferentials of F significantly simpler than if one tries to do so by scratch.
This is because transfer principles usually come with formulae that relate the derivatives/subdifferentials of
F and f .
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Motivated by the needs of nonsmooth optimization, our goal in this paper is to obtain formulae for
the regular, approximate and horizon subdifferentials of spectral functions without any extra assumptions
such as local Lipschitzness. In nonsmooth optimization, the regular and approximate subdifferential are
often used to express optimality conditions and in the analysis of algorithms. Also, conditions involving the
horizon subdifferential are quite common to ensure that the function satisfies some desirable property. We
will also obtain a formula for the Clarke subgradient with the assumption of local lower semicontinuity, which
extends an earlier result by Baes [2]. We will use these formulae to compute the generalized subdifferentials
of the eigenvalue functions in the context of Euclidean Jordan algebras, see Section 4.6.

Another motivation comes from the so-called composite optimization, where we wish to solve the problem

min
x∈E

Φ(x) = ψ(x) + F (x), (OPT)

and only ψ : E → R is assumed to be smooth. It is common for the function F to play the role of
a “regularizer”, “penalty” or “barrier”. In those cases, F is often a spectral function. Here are a few
examples. In what follows, for u ∈ R

r, we denote its p-norm by ‖u‖p and the sum of the ℓ components with
largest absolute value by |‖u‖|ℓ.

F1(x) = µ ‖λ(x)‖p , F2(x) = −µ log det(x),

F3(x) = µ(‖λ(x)‖1 − |‖λ(x)‖|ℓ), F4(x) = µ rank (x),

where µ is a positive parameter. When p = 1, F1 is the l1 regularizer. F2 is a multiple of the classical
self-concordant barrier for the symmetric cone associated to E . The function F3 maps x to the sum of the
r − ℓ eigenvalues of x with smallest absolute value, which is an important function for dealing with rank
constrained problems, see [9] and Section 4 in [10]. Here, we are expressing F3 as a DC (difference of convex)
function. We observe that F1, F2, F3, F4 are all spectral functions, while F3 and F4 are nonsmooth and
nonconvex. In any case, under appropriate regularity conditions, a necessary condition for x∗ to be a local
optimal solution to (OPT) is that

−∇ψ(x∗) ∈ ∂F (x∗),

where ∂F (x∗) is the approximate subdifferential of F at x∗, see Exercise 8.8 and Theorem 8.15 in [24].
Yet another motivation for this work is that the approximate subdifferential is necessary in order to

compute the so-called Kurdyka- Lojasiewicz (KL) exponent, which has been shown to control the convergence
properties of many first-order methods as can be seen, for instance, in the classical work by Attouch, Bolte,
Redont and Soubeyran [1]. For a recent discussion on this topic, see the work by Li and Pong [21].

While there are many criteria that can be used to show that a function satisfies the so-called KL-property,
it is often highly nontrivial to compute the KL-exponent [21]. For instance, if we wish to compute the KL-
exponent of Φ, we have to analyze the approximate subdifferentials of F , because ∂Φ(x) = ∇ψ(x)+∂F (x), as
can be seen in Exercise 8.8 of [24]. In this paper, although we will not compute the KL-exponent of Φ itself,
as an application of our results, we will show that if f is a symmetric function and F is the corresponding
spectral function, then f and F share the same KL-exponent. Admittedly, this is not a very powerful result,
but it seems to be beyond what can be proved directly with the results of [21] (see Remark 29) and we
believe it is a first step towards a more comprehensive study of the KL-exponent of composite functions
where one of the functions is spectral.

1.1 Previous works

Lewis [17, 18, 19] has discussed extensively the case of spectral functions over symmetric real matrices and
Hermitian complex matrices. In particular, in [19], Lewis gave expressions for the regular, approximate and
horizon subdifferentials of spectral functions over symmetric real matrices. A formula for Clarke subdiffer-
entials was also given for the locally Lipschitz case.

Spectral functions over the algebra associated to the second order cone were initially studied by Fukushima,
Luo and Tseng [8] and by Chen, Chen and Tseng [5]. In [5], there is a discussion of the Clarke subdifferential
of locally Lipschitz spectral functions and Sendov [25] gave formulae for regular, approximate and horizon
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subdifferentials. Sendov also proved a formula for the Clarke subdifferential under the hypothesis of local
lower semicontinuity.

In the general framework of Euclidean Jordan algebras, Baes [2, 3], Sun and Sun [26] and Jeong and
Gowda [14, 15] proved several key results regarding spectral functions and the related notion of spectral
sets. However, as far as we know, until now there were no results for the regular, approximate and horizon
subdifferentials of spectral functions. Furthermore, results for the Clarke subgradient were only known in
the locally Lipschitz case. Related to Clarke subgradients, we mention in passing that Kong, Tunçel and
Xiu proved an expression for the Clarke subgradient of the orthogonal projection of the symmetric cone
associated to a Euclidean Jordan algebra [16].

1.2 Contributions of this work

In this work, we have three contributions. The first is a meta-formula for the generalized subdifferentials of
a spectral function. We will show that if F : E → R is a spectral function induced by f : Rr → R, then there
is a formula that relate the generalized subdifferentials of F and f , see Theorems 17, 19 and 21.

A feature of our results is that we will never assume that the algebra E is simple, which makes some results
more general, but a bit harder to prove. Every Jordan algebra can be decomposed as a direct sum of simple
algebras and simplicity is, in many cases, a harmless hypothesis. Previous work by Lewis [19] and Sendov [25]
can be seen as containing results for specific cases of simple Euclidean Jordan algebras. However, because
the generalized subdifferentials do not behave nicely with respect to partial subdifferentiation, there are
cases where we cannot extend results from simple to general Euclidean Jordan algebras in a straightforward
way. We emphasize that our results are directly applicable to a situation where, for example, E is a direct
product Sr1 × · · · × Srℓ , where Sr denotes the space of r × r real symmetric matrices.

Our second contribution is providing formulae for the generalized subdifferentials of the function λk :
E → R, which maps an element x ∈ E to its k-th largest eigenvalue, see Theorem 25. We believe this is the
first time such formulae are given in the context of Euclidean Jordan algebras.

Last, we will show a transfer principle of the KL-property for spectral functions and show that F and f
must share the same KL-exponent, see Theorem 28.

This work is divided as follows. In Section 2, we review generalized subdifferentials. In Section 3, we
overview the necessary concepts from the theory of Euclidean Jordan algebras. In Section 4, we develop and
present our main results regarding generalized subdifferentials of spectral functions. Finally, in Section 5 we
discuss the KL-property and KL-exponent of spectral functions.

2 Preliminaries

2.1 Notation

Given an element u ∈ R
r, we will denote its i-th component by ui. We write R

r
≥ for the cone of elements

u satisfying u1 ≥ · · · ≥ ur. We write R
r
+ for the nonnegative orthant, i.e., the elements u ∈ R

r such that
ui ≥ 0 for every i. We will write Pr for the group of r × r permutation matrices. Given u ∈ R

r, we write
Pr(u) for the stabilizer subgroup of u, i.e.,

Pr(u) := {P ∈ Pr | P (u) = u}.

The convex hull, the interior and the closure of a set C will be denoted by convC, intC and clC, respectively.
If f : Rr → R is a function, the domain of f (i.e., the elements for which f is finite) will be denoted by
dom f . We assume that Rr is furnished with the usual Euclidean inner product 〈·, ·〉 and the usual Euclidean
norm ‖·‖.

2.2 Generalized subdifferentials

In this subsection, we recall a few notions of generalized subdifferentials. However, the discussion on the
Clarke subdifferential will be postponed until Section 4.5. Let f : Rr → R be a function and u ∈ dom f . We
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say that d is a regular subgradient of f at u if

lim inf
v→0
v 6=0

f(u+ v) − f(u) − 〈d, v〉

‖v‖
≥ 0. (1)

The set of regular subgradients of f at u is denoted by ∂̂f(u) and is called the regular subdifferential of f at

u. From (1) it follows that d ∈ ∂̂f(u) if and only if for every ǫ > 0 there exists some δ > 0 such that ‖v‖ ≤ δ

implies
f(u+ v) − f(u) − 〈d, v〉 ≥ −ǫ ‖v‖ (2)

We say that d is an approximate subgradient (also called limiting subgradient) of f at u if there are sequences

{uk}, {dk} such that every k satisfies dk ∈ ∂̂f(uk) and the following limits hold:

uk → u, f(uk) → f(u), dk → d.

The set of approximate subgradients of f at u is denoted by ∂f(u) and is called the approximate subdifferential
of f at u.

We say that d is an horizon subgradient of f at u if there are sequences {uk}, {dk}, {tk} such that every

k satisfies dk ∈ ∂̂f(uk) and the following limits hold:

uk → u, f(uk) → f(u), tkdk → d, tk ↓ 0.

Here, tk ↓ 0 indicates that all the tk are nonzero and that tk is a monotone nonincreasing sequence converging
to zero. The set of horizon subgradients, called the horizon subdifferential, will be denoted by ∂∞f(u). In
variational analysis, conditions involving the horizon subdifferential are quite common, e.g., see Corollary
10.9 in [24]. See also Section 8.B in [24] for examples of the subdifferentials discussed so far.

We will also make use of the following characterization of regular subgradients.

Proposition 1 (Rockafellar and Wets, Proposition 8.5 in [24]). Let d ∈ R
r. Then, d ∈ ∂̂f(u) if and only

if, on some neighborhood U of u there exists a C1 function h : U → R such that

h(u) = f(u), ∇h(u) = d

h(v) ≤ f(v), ∀v ∈ U.

In this paper, sometimes we will prove results that are valid for several different notions of subdifferential.
In that case, we use the symbol ♦ as a placeholder for some unspecified subdifferential, e.g., see Theorem 17.

3 Euclidean Jordan algebras

Here, we give a brief overview of Jordan algebras and review the necessary tools to prove our results. More
details can be found in Faraut and Korányi’s book [6] or in the survey by Faybusovich [7]. First of all, a
Euclidean Jordan algebra (E , ◦) is a finite dimensional real vector space E equipped with a bilinear product
◦ : E × E → E and an inner product 〈·, ·〉 satisfying the following properties:

(1) x ◦ y = y ◦ x,

(2) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x,

(3) 〈x ◦ y, z〉 = 〈x, y ◦ z〉,

for all x, y, z ∈ E . We can always assume that a Euclidean Jordan algebra has an element e that satisfies
e ◦ x = x, for all x ∈ E . Such an element e is called the identity element. An element c ∈ E satisfying
c2 = c is called an idempotent. A nonzero idempotent c that cannot be written as the sum of two nonzero
idempotents ĉ, c̃ satisfying ĉ ◦ c̃ = 0 is called a primitive idempotent.

In a Euclidean Jordan algebra the following spectral theorem holds.
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Theorem 2 (Spectral Theorem, see Theorem III.1.2 in [6]). Let (E , ◦) be a Euclidean Jordan algebra and
let x ∈ E. Then there are primitive idempotents [c1, . . . , cr] satisfying c1 + · · · + cr = e and

ci ◦ cj = 0 for i 6= j,

and unique real numbers α1, . . . , αr satisfying

x =

r∑

i=1

αici. (3)

The r that appears in Theorem 2 only depends on the algebra E and is called the rank of E . The αi in
Theorem 2 are called the eigenvalues of x. Although unique, the eigenvalues of x might be repeated and
they are not necessarily in nonincreasing/nondecreasing order. We define the rank of x as the number of
nonzero αi’s appearing in (3). The ordered set [c1, . . . , cr] in Theorem 2 is called a Jordan frame for x.

Here, we are using the notation [c1, . . . , cr] instead of {c1, . . . , cr} to emphasize that the order of the
elements is taken into account, so, for example, [c1, c2] and [c2, c1] are different ordered sets. Although x

might have many different Jordan frames, the sum of primitive idempotents associated to some eigenvalue
must be unique.

Proposition 3 (Unique sum of primitive idempotents, see Theorems III.1.1 and III.1.2 in [6]). Let x ∈ E
and [c1, · · · , cr], [c′1, · · · , c

′
r] be two Jordan frames for x. Suppose that

x =

r∑

i=1

αici =

r∑

i=1

α′
ic

′
i.

Then, for every α ∈ R, we have ∑

i with αi=α

ci =
∑

i with α′

i
=α

c′i.

We define the eigenvalue map λ : E → R
r
≥ as the map satisfying

λ(x) := (λ1(x), . . . , λr(x)),

where λ1(x) ≥ · · · ≥ λr(x). Here, λi(x) denotes the i-th largest eigenvalue of x.
The trace map tr : E → R is defined as

tr (x) := λ1(x) + · · · + λr(x).

In fact, the trace map is a linear function. Furthermore, it can be shown that the function that maps
x, y ∈ E to tr (x ◦ y) is an inner product satisfying Property (3) of the definition Euclidean Jordan algebras.
Henceforth, we shall assume that the inner product 〈·, ·〉 is given by

〈x, y〉 = tr (x ◦ y), ∀x, y ∈ E . (4)

Under this inner product, tr (x) = 〈e, x〉 for all x ∈ E and elements of any Jordan frame are mutually
orthogonal. That is, if J = [c1, . . . , cr] is Jordan frame, then 〈ci, cj〉 = 0 if i 6= j.

The norm induced by 〈·, ·〉 is given by

‖x‖ =
√

tr (x2).

With that, any primitive idempotent c satisfies ‖c‖ = 1. Furthermore, the map λ becomes a Lipschitz
continuous function with Lipschitz constant 1, when R

r is equipped with the usual Euclidean norm. We
now summarize some important properties of λ.

Lemma 4 (Properties of the eigenvalue map). Let E be a Euclidean Jordan algebra of rank r and let
λ : E → R

r
≥ be the eigenvalue map. The following properties hold.

5



(i) ‖λ(x) − λ(y)‖ ≤ ‖x− y‖ holds, for all x, y ∈ E.

(ii) For every x ∈ E, λ has directional derivatives along all directions. Furthermore, letting λ′(x; z) denote
the directional derivative of λ at x along z, the following limit holds

lim
z→0

λ(x + z) − λ(x) − λ′(x; z)

‖z‖
= 0,

where λ′(x; z) := limt→0
λ(x+tz)−λ(x)

t
.

Proof. (i) This was proved by Baes, see Corollary 24 in [3].

(ii) Baes showed that for every i, the function λi : E → R that maps x ∈ E to its i-th largest eigenvalue
is directionally differentiable, see Theorem 36 in [3]. Therefore, all components of λ are directionally
differentiable, so λ must also be directionally differentiable. Then, it is a general fact that a Lipschitz
continuous function that is directionally differentiable everywhere must also satisfy the limit above,
see Lemma 2.1.1 and Remark 2.1.2 in [13].

3.1 Simultaneous diagonalization

Let E be a Euclidean Jordan algebra of rank r. Given x ∈ E , we denote by Lx : E → E the Lyapunov
operator associated to x, which is the linear map satisfying

Lx(z) = x ◦ z, ∀z ∈ E .

Given another element y ∈ E , we say that x and y operator commute if

LxLy = LyLx

holds. It is known that x and y operator commute if and only if they share a common Jordan frame J , see
Lemma X.2.2 in [6]. This means that there are r mutually orthogonal primitive idempotents J = [c1, · · · , cr]
such that c1 + · · · + cr = e and

x =

r∑

i=1

aici, y =

r∑

i=1

bici,

where the ai and bi are the eigenvalues of x and y, respectively. More generally if J is a Jordan frame for
which x ∈ E can be expressed as linear combination of the ci, we say that J diagonalizes x. Therefore, the
existence of a common Jordan frame for x and y means that x and y are simultaneously diagonalizable.

Here, the ai and bi that appear in the decomposition of x and y are not necessarily sorted in nonde-
creasing/nonincreasing order. However, reordering the ci, we may suppose that the ai are sorted in an
nonincreasing order, i.e., ai = λi(x), for all i. With respect to this new ordering, we can write

x =

r∑

i=1

λi(x)ci, y =

r∑

i=1

b̃ici,

where [b̃1, . . . , b̃r] is some permutation of [b1, . . . , br]. Because the idempotents in J are orthogonal amongst
themselves, we have for every i

〈ci, x〉 = λi(x), 〈ci, y〉 = b̃i.

With that in mind, we are going to introduce the function diag (·,J ) : E → R
r, which maps an element

z ∈ E to its “diagonal” with respect the Jordan frame J . That is, we have

diag (z,J ) = (〈c1, z〉, . . . , 〈cr, z〉), ∀z ∈ E .
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If J is a frame that diagonalizes z, then diag (z,J ) is, in fact, the eigenvalue vector of z. Of course,
diag (z,J ) might not be sorted in any particular way. However, for the specific x and y we have discussed
so far, we have

diag (x,J ) = λ(x), diag (y,J ) = (b̃1, . . . , b̃r).

We are now going to introduce two more extra notations. We will denote by J (x, y) the set of common
Jordan frames J for x, y for which diag (x,J ) = λ(x). In other words, not only J must be a common
Jordan for x and y, but it must also be such that the eigenvalues of x appear in nonincreasing order. Here,
we emphasize that the eigenvalues of y might appear in no particular order. By convention, if x and y do
not operator commute, we will define J (x, y) = ∅. We observe that since Lαy+βz = αLy + βLz, we have

J (x, y) 6= ∅ and J (x, z) 6= ∅ ⇒ J (x, αy + βz) 6= ∅, ∀α, β ∈ R. (5)

Furthermore, we will define J (x) := J (x, x). That is, J (x) is the set of Jordan frames of x for which
the eigenvalues of x appear in nonincreasing order. We have J (x, y) ⊆ J (x) for every x, y ∈ E .

We also need a map that plays the opposite role of diag (·,J ). Let Diag (·,J ) : Rr → E be the map that
takes a vector in R

r and constructs a “diagonal element” in E according to J , i.e.,

Diag (u,J ) :=

r∑

i=1

uici.

We have diag (Diag (u,J ),J ) = u, for every u ∈ R
r. We observe that, since [c1, . . . , cr] is a Jordan frame,

the eigenvalues of Diag (u,J ) are precisely the ui.

3.2 The directional derivative of the i-th largest eigenvalue

In this section, we will describe an expression proved by Baes [3] to compute the directional derivative of
the i-th largest eigenvalue. For that, we need to review the Peirce decomposition, the properties of quadratic
maps in Euclidean Jordan algebras and, most regrettably, introduce more notation.

Let c be an idempotent and α ∈ R. We define

V (c, α) := {x ∈ E | c ◦ x = αx}.

Now, let x ∈ E be an arbitrary element (not necessarily an idempotent), the quadratic map of x is the linear
map Qx : E → E such that

Qx(y) = 2x ◦ (x ◦ y) − (x ◦ x) ◦ y.

Qx is always self-adjoint. With that, we have the following result.

Theorem 5 (Peirce Decomposition, see Proposition IV.1.1 and page 64 in [6]). Let (E , ◦) be an Euclidean
Jordan algebra of rank r and let c ∈ E be an idempotent of rank ℓ. Then E is decomposed as the orthogonal
direct sum

E = V (c, 1)
⊕

V

(
c,

1

2

)⊕
V (c, 0).

In addition, (V (c, 1), ◦) and (V (c, 0), ◦) are Euclidean Jordan algebras of rank ℓ and r− ℓ, respectively. The
orthogonal projections on V (c, 1) and V (c, 0) are given by Qc and Qe−c, respectively.

Next, we move on to the necessary notation. The eigenvalues of x might be repeated so, for instance,
it could be the case that λ3(x) = λ4(x) = λ5(x). The next notation corresponds to a way of assigning the
indices 3, 4, 5 to 1, 2, 3. That is, we need to map an index i to its “relative position” with respect to the
eigenvalues of x that are equal to λi(x). Here, we will mostly follow the notation proposed by Baes in [3]
and define for every p ∈ {1, . . . , r}, the integer lp(x) ≥ 1 which is such that

λ1(x) ≥ · · · ≥ λp−lp(x)(x) > λp−lp(x)+1(x) = · · · = λp(x) ≥ · · · ≥ λr(x).
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Furthermore, if x =
∑

i=1 λi(x)ci ∈ E we will denote by ep(x) the sum of the ci satisfying λi(x) = λp(x),
i.e.,

ep(x) =
∑

i with λi(x)=λp(x)

ci.

We remark that f
′
p(x) was used instead of ep(x) in [3].

Example 6. Suppose that the rank of E is r = 7 and the eigenvalues of x ∈ E are as follows.

λ1 > λ2 = λ3 = λ4 > λ5 = λ6 > λ7.

Then l1 = l7 = 1, because λ1 and λ7 are unique eigenvalues. We have l2 = 1, l3 = 2 and l4 = 3, since
λ2, λ3, λ4 are, respectively, the “first”, “second” and “third” eigenvalues of a group of three equal eigenvalues.
Similarly, we have l5 = 1 and l6 = 2.

We have e1(x) = c1, e7(x) = c7,

e2(x) = e3(x) = e4(x) = c2 + c3 + c4, e5(x) = e6(x) = c5 + c6.

Finally, let E ′ ⊆ E be an Euclidean Jordan algebra and let x ∈ E ′. Then, the eigenvalues of x as an
element of E ′ might be different from the eigenvalues of x seen as an element of E . When it is necessary to
make this distinction, we will denote the i-th eigenvalue of x seen as element of E ′ by

λi(x, E
′).

The eigenvalue map of the algebra E ′ will be similarly denoted by λ(·, E ′). We have now all pieces in place
to state the following theorem.

Theorem 7 (Baes, Theorem 36 in [3]). Let x, z ∈ E and consider the spectral decomposition of x:

x =

r∑

i=1

λi(x)ci.

Then the directional derivative of the i-th largest eigenvalue of x along the direction z is given by

λ′i(x; z) = λli(x)(Qcz, V (c, 1)),

where c = ei(x).

From Theorem 5, Qcz is the projection of z in the algebra V (c, 1). Therefore, to compute λ′i(x; z) we
need to project z on V (c, 1), and then compute the li(x)-th eigenvalue of the projection with respect the
algebra V (c, 1), where li(x) is the “relative position” of the index i with respect to the eigenvalues of x that
are equal to λi(x).

3.3 Spectral functions and sets

Let E be a Euclidean Jordan algebra of rank r and let f : Rr → R be a function. We say that f is a symmetric
function if f(Pu) = f(u) holds for every u ∈ R

r and every permutation matrix P ∈ Pr. Symmetric functions
satisfy the following key relation between subdifferentials:

♦f(Pu) = P♦f(u), ∀u ∈ R
r, ∀P ∈ Pr, (6)

whenever ♦ is ∂̂, ∂ or ∂∞, e.g., Proposition 2 in [19]. We remark that (6) will be used often in this paper.
We denote by F : E → R the spectral map induced by f , which is the function defined as

F (x) := f(λ(x)), ∀x ∈ E .
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The function F is well-defined, even if f is not symmetric. However, if f is indeed symmetric, many properties
of f are transferred to F .

There is also a notion of spectral set. We say that Q ⊆ R
r is a symmetric set if PQ = Q for every

P ∈ Pr. Then the spectral set induced by Q is defined as

Ω := {x ∈ E | λ(x) ∈ Q}.

To conclude this subsection, we now move on to the notion of weakly spectral sets/maps, which was
introduced by Gowda and Jeong in [12]. We say that a linear bijection A : E → E is a Jordan algebra
automorphism if

Ax ◦Ay = A(x ◦ y), ∀x, y ∈ E .

The group of Jordan algebra automorphisms is denoted by Aut E . Then, a function F : E → R is said to be
weakly spectral if

F (Ax) = F (x), ∀x ∈ E , ∀A ∈ Aut E .

A set Ω ⊆ E is said to be weakly spectral if AΩ = Ω holds for every A ∈ Aut E . A spectral map/set must
also be weakly spectral, but the converse is not true in general, see remarks in Section 3 of [12].

4 Transfer principles for generalized subdifferentials

We start with a description of our setting and a few conventions. Throughout Sections 4 and 5, (E , ◦) denotes
a Euclidean Jordan algebra of rank r, the inner product of two elements of E is given by (4) and the norm is
the one induced by (4). Although we are using the same symbol to denote the Euclidean inner product on
R

r and the trace inner product on E , there will be no confusion. The letters x, y, z, s will always be reserved
for elements of E and u, v, d for elements of Rr.

Let F : E → R be a spectral function induced by some symmetric function f : Rr → R. Our first goal is
to prove the following meta-formula:

♦F (x) = {s ∈ E | ∃J ∈ J (x, s) with diag (s,J ) ∈ ♦f(λ(x))}, (Transfer)

where ♦ is either ∂̂, ∂, or ∂∞.

Remark 8. For the sake of dispelling any possible confusion, ♦f(λ(x)) should be interpreted as (♦f)(λ(x)),
i.e., ♦f(λ(x)) is the generalized subdifferential of f at λ(x).

Proving (Transfer) will require several tools old and new, such as commutation principles [23, 12], ma-
jorization principles [11] and the formulae for the directional derivatives of the eigenvalue functions [3].

4.1 Commutation principles and generalized subdifferentials

The first step towards (Transfer) is proving that if F is a spectral function and s is any generalized subgradient
of x, then x and s must operator commute. For that, we will use a commuting principle proved by Ramı́rez,
Seeger and Sossa [23].

Theorem 9 (Ramı́rez, Seeger and Sossa1 [23]). Suppose that Ω ⊆ E is a spectral set and F : E → R is a
spectral function. Let Θ : E → R be Fréchet differentiable. If x∗ is a local minimizer/maximizer of

x ∈ Ω 7→ Θ(x) + F (x)

then x∗ and ∇Θ(x∗) operator commute2.

1Here, we are quoting the theorem as it appears in Gowda and Jeong’s paper [12] (Theorem 1.1 therein), since it is more
suited to our purposes.

2We recall that x∗ is a local minimum if there exists a neighbourhood V of x∗ such that Θ(x∗)+F (x∗) ≤ Θ(x)+F (x) holds
for every x ∈ Ω ∩ V .
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Recently, Gowda and Jeong showed that it is possible to weaken the hypothesis of Theorem 9 and consider
weakly spectral sets/functions instead [12].

Theorem 10 (Gowda and Jeong [12]). The conclusion of Theorem 9 holds if Ω is a weakly spectral set and
F is a weakly spectral function.

Using the variational characterization of the regular subdifferential, we can prove the following new result,
which is more general than what is strictly necessary for proving (Transfer), but we believe it is still useful.

Proposition 11 (Operator commutativity for weakly spectral functions). Let F : E → R be a weakly spectral
function. Suppose

s ∈ ♦F (x),

where ♦ is either ∂̂, ∂ or ∂∞. Then, x and s operator commute.

Proof. First, we prove the result for the case s ∈ ∂̂F (x). By Proposition 1, there exists a C1 function H

such that H(x) = F (x), ∇H(x) = s and H(y) ≤ F (y) for all y near x. We invoke Theorem 10 using F ,
Θ = −H and Ω = domF . By the properties of H , we have that x is a local minimum of Θ + F = F −H .
Therefore, x commutes with ∇Θ(x) = −s, so it must commute with s too. In reality, there are some minor
technical details we have overlooked, see the footnote3 below.

Next, suppose instead that s ∈ ∂F (x) or s ∈ ∂∞F . Then, there are sequences {xk}, {sk}, {tk} such that

every k satisfies sk ∈ ∂̂F (xk) and the following limits hold.

xk → x, F (xk) → F (x), tksk → s.

Here, there are two cases for {tk}. If s ∈ ∂F (x), then tk = 1 for every k. If s ∈ ∂∞F (x), then tk ↓ 0.

Either way, because sk ∈ ∂̂F (xk), from what we have proved so far, we have that sk and xk operator
commute for every k. That is,

LskLxk = LxkLsk , ∀k.

By taking limits, we conclude that LsLx = LxLs must also hold. Therefore, s and x operator commute
too.

4.2 The easy inclusion

Next, we prove the inclusion “⊆” in (Transfer), when ♦ = ∂̂.

Proposition 12 (The easy inclusion). Let F : E → R be the spectral function induced by a symmetric

function f : Rr → R. Let s ∈ ∂̂F (x). Then, x and s operator commute and for any J ∈ J (x, s) we have

diag (s,J ) ∈ ∂̂f(λ(x)).

Proof. Let s ∈ ∂̂F (x). By Proposition 1 there exists a neighborhood U of x and a C1 function H : U → R

such that H(y) ≤ F (y) for all y ∈ U and H(x) = F (x), ∇H(x) = s. In addition, by Proposition 11, s and
x operator commute. Therefore, J (x, s) must be nonempty, i.e., x and s have at least one common Jordan
frame.

Let J ∈ J (x, s) and consider the linear map Diag (·,J ) : R
r → E . Since Diag (·,J ) is continuous,

V = Diag (·,J )−1(U) is an open set of Rr containing λ(x). Now, let h : V → R be such that

h(v) := H(Diag (v,J )).

3The functions in Theorem 10 are finite functions defined everywhere, whereas F is an extended value function and H is
defined only in a neighbourhood of x. To sidestep this, we define F̂ such that F̂ (y) = F (y) if y ∈ domF and F̂ (y) = F (x) if

y 6∈ domF . With that, F̂ is still a weakly spectral function. Next we need to extend H to a function defined over E which
coincides with H in some neighbourhood of x. It is a classical fact that this can always be done and here we show briefly why.
Suppose that H is defined over some open set U . Let V ⊆ U be an open ball such that clV ⊆ U and over which x is a local
minimizer of F −H. Next, pick any function ψ that is smooth and such that ψ is 1 on the compact set clV and 0 outside U .
Then, we define Ĥ by letting Ĥ(y) = ψ(y)H(y) if y ∈ U and Ĥ(y) = 0 if y 6∈ U . With that, we have that ∇Ĥ(x) = s and x is

a local minimum of F̂ − Ĥ restricted to domF . Then, as before, we can invoke Theorem 10 with F̂ , Ω = domF and Θ = −Ĥ.
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Let v ∈ V . Using the symmetry of f and the properties of H , we obtain

f(v) = f(λ(Diag (v,J )))

≥ H(Diag (v,J ))

= h(v).

That is, f(v) ≥ h(v) holds for every v ∈ V . Also h(λ(x)) = H(Diag (λ(x),J )) = H(x) = f(λ(x)).
By the chain rule, we also have ∇h(λ(x)) = diag (s,J ). Therefore, by Proposition 1, we conclude that

diag (s,J ) ∈ ∂̂f(λ(x)).

4.3 The hard inclusion

The hard part of proving (Transfer) is establishing the inclusion “⊇”, when ♦ = ∂̂. From Lewis’ discussion
in [19], it seems that one of the key steps for proving (Transfer) in the case of symmetric matrices is a result
relating the diagonal of a matrix Z with the directional derivative λ′(X ;Z), see Theorem 5 in [19]. We will
prove an analogous result by following an original approach making use of a recent majorization principle
proved by Gowda in [11].

Let u ∈ R
r, we denote by u↓ the element in R

r
≥ corresponding to a reordering of the coordinates of u in

such a way that
u
↓
1 ≥ · · · ≥ u↓r .

Now, let v ∈ R
r be another element. Then, we say that u is majorized by v and write u ≺ v if

k∑

i=1

u
↓
i ≤

k∑

i=1

v
↓
i , ∀k ∈ {1, . . . , r − 1}

and the sum of components of both u and v coincide, i.e., u1 + · · · + ur = v1 + · · · + vr. It is a classical
fact following from Birkhoff’s theorem that u is majorized by v if and only if v lies in the convex hull of all
permutations of v, i.e.,

u ∈ conv {Pv | P ∈ Pr},

see Section B in Chapter 2 of [22]. If x, y ∈ E we say that x is majorized by y and write x ≺ y if λ(x) is
majorized by λ(y). Whenever majorization principles are used, it is safer to mention the standard disclaimers
that, throughout the literature, there seems to be no consensus on the direction of the inequalities appearing
in the definition of majorization. In some texts, “≥” is used instead of “≤”. Here, we are following the
convention in [11], which by its turn follows the notation in [4].

Let X be a symmetric matrix. It is known that the diagonal entries of X are majorized by the eigenvalues
of X . Gowda recently extended this fact to Euclidean Jordan algebras.

Proposition 13 (Gowda, Example 7 and Theorem 6 in [11]). Let J be a Jordan frame and let x ∈ E. Then,
diag (x,J ) is majorized by λ(x). In particular,

diag (x,J ) ∈ conv {Pλ(x) | P ∈ Pr}.

Proof. Consider the map ψ : E → E defined by

ψ(x) :=

r∑

i=1

〈ci, x〉ci, ∀x ∈ E .

In [11], the map ψ is denoted by “Diag ” and it has a different meaning from the map Diag we are using in
this paper. In any case, in Example 7 and Theorem 6 in [11], Gowda showed that ψ(x) ≺ x holds for every
x ∈ E . Accordingly, we have

λ(ψ(x)) ≺ λ(x).

Now, we observe that the components of diag (x,J ) are precisely the eigenvalues of ψ(x). Furthermore, the
fact that a vector u ∈ R

r is majorized by v ∈ R
r does not change if we permute the entries of u or v. We

conclude that diag (x,J ) ≺ λ(x) and that diag (x,J ) ∈ conv {Pλ(x) | P ∈ Pr}.
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We are now able to prove an analogous of Theorem 4 of [19] for Euclidean Jordan algebras.

Theorem 14 (The diagonal map and directional derivatives of the eigenvalue map). Let x, z ∈ E and let
J ∈ J (x). Then

diag (z,J ) ∈ conv {Pλ′(x; z) | P ∈ Pr(λ(x))}

First, we sketch the general proof strategy for Theorem 14. The idea is to separate the vector λ(x) in
blocks of equal eigenvalues and apply the formula in Theorem 7 for each block. Then, for each block, we
associate a Euclidean Jordan algebra Ej and invoke Proposition 13. Since Proposition 13 is invoked in a
blockwise fashion according to the blocks of equal eigenvalues of x, the resulting pieces can be glued together
to obtain a convex combination of matrices in Pr(λ(x)).

Proof. To start, let us consider the spectral decomposition of x,

x =
r∑

i=1

λi(x)ci,

where λ1(x) ≥ · · · ≥ λr(x) and J = [c1, . . . , cr] is a Jordan frame. Now, we use the notation described in
Section 3.2 and denote by li(x) the “relative position” of the index i with respect the eigenvalues of x that
are equal to λi(x).

Next, let r1, . . . , rℓ be such that

λ1(x) = · · · = λr1(x) > λr1+1(x) = · · · = λr2(x) >

λr2+1(x) = · · · = λr3(x) > · · ·λrℓ(x).

Here, ℓ is the number of distinct eigenvalues of x. For convenience, we define r0 = 0 and nj = rj − rj−1 for
j ∈ {1, . . . , ℓ}. Then, we divide diag (z,J ) in ℓ parts according to the blocks of equal eigenvalues of x:

diag (z,J ) = (u1, . . . , uℓ)

where
uj = (〈z, crj−1+1〉, . . . , 〈z, crj〉) ∈ R

nj .

We do the same for the map λ and divide λ in ℓ maps such that

λ(y) = (λ1(y), . . . , λℓ(y)), ∀y ∈ E .

Here, each λj is a map E → R
nj such that

λj(y) := (λrj−1+1(y), . . . , λrj (y)) ∈ R
nj .

Applying Theorem 7 to each λj , we obtain

(λj)′(x; z) = (λlrj−1+1
(Qerj

(z), Ej), . . . , λlrj (Qerj
(z), Ej)), (7)

where erj is the sum of the idempotents associated to the eigenvalues equal to λrj (x) and Ej is the Jordan
algebra V (erj , 1) of rank nj .

Let zj := Qerj
(z), for every j. From Theorem 5, zj is the orthogonal projection of z onto Ej . The indices

from rj−1 + 1 to rj all correspond to equal eigenvalues of x. Therefore, from (7) and the definition of the
relative index lrj−1+k, we conclude that

(λj)′(x; z) = (λ1(zj , Ej), . . . , λnj
(zj , Ej)) = λ(zj , Ej), (8)

where we recall that λ(·, Ej) is the eigenvalue map of the algebra Ej . Next, let J j := [crj−1+1, . . . , crj ]. Since
J is a Jordan frame and the sum of the elements of J j is erj (the identity element of Ej), we have that J j
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is a Jordan frame in the algebra Ej . We will now prove that diag (zj,J j) = uj . Let k be an integer such
that rj−1 + 1 ≤ k ≤ rj , we have

〈zj , ck〉 = 〈Qerj
z, ck〉

= 〈z,Qerj
ck〉

= 〈z, ck〉,

where the second equality follows from the fact Qerj
is self-adjoint and the third equality follows from the

fact that Qerj
(ck) = ck since erj is the identity element in Ej and ck is an idempotent contained in Ej .

Since this holds for every k satisfying rj−1 + 1 ≤ k ≤ rj , we conclude that diag (zj ,J j) = uj . From (8) and
Proposition 13 applied to zj,J j and Ej , we conclude that for every j, we have

diag (zj,J j) = uj ∈ conv {P ((λj)′(x; z)) | P ∈ Pnj}.

That is, there are nonnegative coefficients αj,k and κj permutation matrices P j,k ∈ Pnj such that

uj =

κj∑

k=1

αj,kP
j,k((λj)′(x; z))

κj∑

k=1

αj,k = 1. (9)

We are now almost done. First, we define Aj as the following nj × nj matrix

Aj :=

κj∑

k=1

αj,kP
j,k. (10)

Next, we define A as the matrix satisfying

A =

κ1∑

j1=1

κ2∑

j2=1

· · ·
κℓ∑

jℓ=1

α1,j1 · · ·αℓ,jℓ



P 1,j1

. . .

P ℓ,jℓ


 . (11)

Because of (10), we have

A =



A1

. . .

Aℓ


 ,

which together with (9) implies that

diag (z,J ) = (u1, . . . , uℓ) = Aλ′(x; z). (12)

Now, we consider an arbitrary matrix P appearing in (11) which is of the form

P =



P 1,j1

. . .

P ℓ,jℓ


 .

P is a block diagonal matrix and since each block is a permutation matrix, P is a permutation matrix too.
Furthermore, by construction, the block structure of P follows the pattern of equal eigenvalues of x. So, for
instance, P 1,j1 has size n1 = r1, which corresponds to the first block of r1 equal eigenvalues of x. For this
reason, we obtain

Pλ(x) = (P 1,j1λ1(x), . . . , P ℓ,jℓλℓ(x)) = λ(x).

Accordingly, P belongs to Pr(λ(x)) and from (11) and (12), we conclude that

diag (z,J ) ∈ conv {Pλ′(x; z) | P ∈ Pr(λ(x))}.
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Next, we will prove the inclusion “⊇” in (Transfer), when ♦ = ∂̂. With all the preliminary results in
place, we can proceed analogously to Theorem 5 of [19].

Proposition 15 (The hard inclusion). Let F : E → R be the spectral function induced by a symmetric
function f : Rr → R. Then

∂̂F (x) ⊇ {s ∈ E | ∃J ∈ J (x, s) with diag (s,J ) ∈ ∂̂f(λ(x))}.

Proof. Let s ∈ E and J ∈ J (x, s) be such that diag (s,J ) ∈ ∂̂f(λ(x)). Our goal is to show that s ∈ ∂̂F (x).

In view of (2), s ∈ ∂̂F (x) will be established if we show that for every ǫ > 0, there exists δ such that ‖z‖ ≤ δ

implies
f(λ(x + z)) ≥ f(λ(x)) + 〈s, z〉 − ǫ ‖z‖ .

However, since J diagonalizes s, we have

〈s, z〉 = 〈
r∑

i=1

〈s, ci〉ci, z〉 =

r∑

i=1

〈s, ci〉〈ci, z〉 = 〈diag (s,J ), diag (z,J )〉.

Therefore, our goal is to show that for every ǫ > 0, there exists δ such that ‖z‖ ≤ δ implies

f(λ(x + z)) ≥ f(λ(x)) + 〈diag (s,J ), diag (z,J )〉 − ǫ ‖z‖ . (Goal)

Now, we will set up a few objects that will help us towards proving (Goal). First, we observe that diag (s,J ) ∈

∂̂f(λ(x)) and (6) implies that

Pdiag (s,J ) ∈ ∂̂f(λ(x)), ∀P ∈ Pr(λ(x)).

Next, we define Λ to be the convex hull of the Pdiag (s,J ) with P ∈ Pr(λ(x)) and denote by δ∗Λ the
corresponding support function. Since Λ is generated by a finite number of elements, we have

δ∗Λ(v) = sup{〈v, v̂〉 | v̂ ∈ Λ} = max{〈Pdiag (s,J ), v〉 | P ∈ Pr(λ(x))}.

Now that the pieces are in place, we move on to proving (Goal). Let ǫ > 0. From the definition of regular
subgradients (see (1)) and from (2), for every P ∈ Pr(λ(x)), there exists δP such that ‖v‖ ≤ δP implies

f(λ(x) + v) ≥ f(λ(x)) + 〈Pdiag (s,J ), v〉 − ǫ ‖v‖ .

In particular, if we let δ̂ = minP∈Pr(λ(x)) δP , we conclude that

f(λ(x) + v) ≥ max{f(λ(x)) + 〈Pdiag (s,J ), v〉 − ǫ ‖v‖ | P ∈ Pr(λ(x))}

= f(λ(x)) + δ∗Λ(v) − ǫ ‖v‖ , (13)

whenever ‖v‖ ≤ δ̂. From item (ii) of Lemma 4 and decreasing δ̂ if necessary, we have that if z ∈ E satisfies

‖z‖ ≤ δ̂, it holds that
‖λ(x + z) − λ(x) − λ′(x; z)‖ ≤ ǫ‖z‖. (14)

By item (i) of Lemma 4, ‖λ(x + z) − λ(x)‖ ≤ ‖z‖. Therefore, if z satisfies ‖z‖ ≤ δ̂, we obtain from (13) that

f(λ(x + z)) = f(λ(x) + (λ(x + z) − λ(x)))

≥ f(λ(x)) − ǫ ‖z‖ + δ∗Λ(λ(x + z) − λ(x)). (15)

Since δ∗Λ is the pointwise maximum of linear functions, δ∗Λ is a Lipschitz continuous sublinear function with
Lipschitz constant κ given by

κ = max
P∈Pr(λ(x))

‖Pdiag (s,J )‖ = ‖diag (s,J )‖ .
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Therefore, for every u, v ∈ R
r, we have

δ∗Λ(u+ v) ≥ δ∗Λ(u) − δ∗Λ(−v)

≥ δ∗Λ(u) − κ ‖v‖ . (16)

Now, we let u = λ′(x; z) and v = λ(x + z) − λ(x) − λ′(x; z) in (16) and use the resulting inequality back in
(15), to obtain

f(λ(x+ z)) ≥ f(λ(x)) + δ∗Λ(λ′(x; z)) − ǫ ‖z‖ − κ ‖λ(x+ z) − λ(x) − λ′(x; z)‖

≥ f(λ(x)) + δ∗Λ(λ′(x; z)) − (1 + κ)ǫ ‖z‖ , (17)

where the last inequality follows from (14).
By Theorem 14, we have

diag (z,J ) ∈ conv {Pλ′(x; z) | P ∈ Pr(λ(x))}.

Therefore, there are nonnegative numbers α1, . . . , αℓ such that their sum is 1 and

diag (z,J ) =

ℓ∑

i=1

αiPiλ
′(x; z),

where each Pi belongs to Pr(λ(x)). We recall that, by definition, δ∗Λ(Pu) = δ∗Λ(u) for every P ∈ Pr(λ(x))
and u ∈ R

r. Using the convexity of δ∗Λ, we obtain

δ∗Λ(diag (z,J )) ≤
ℓ∑

i=1

αiδ
∗
Λ(Piλ

′(x; z))

=

ℓ∑

i=1

αiδ
∗
Λ(λ′(x; z))

= δ∗Λ(λ′(x; z)), (18)

Using inequality (18) in (17), we obtain that for every z ∈ E with ‖z‖ ≤ δ̂, we have

f(λ(x + z)) ≥ f(λ(x)) + δ∗Λ(λ′(x; z)) − (1 + κ)ǫ ‖z‖

≥ f(λ(x)) + δ∗Λ(diag (z,J )) − (1 + κ)ǫ ‖z‖

≥ f(λ(x)) + 〈diag (s,J ), diag (z,J )〉 − (1 + κ)ǫ ‖z‖ .

Since ǫ was arbitrary, this shows that (Goal) holds.

4.4 Main results

From Propositions 12 and 15, we conclude that (Transfer) holds for the case ♦ = ∂̂. Next, will prove transfer
results for the approximate and horizon subdifferentials which will conclude the proof of (Transfer).

Proposition 16 (The approximate and horizon subdifferentials of spectral functions). Let F : E → R be
the spectral function induced by a symmetric function f : Rr → R. Then, for x ∈ E, we have

∂F (x) = {s ∈ E | ∃J ∈ J (x, s) with diag (s,J ) ∈ ∂f(λ(x))}. (19)

∂∞F (x) = {s ∈ E | ∃J ∈ J (x, s) with diag (s,J ) ∈ ∂∞f(λ(x))}. (20)

Proof. First, we prove the inclusion “⊆” in (19) and (20). Let s ∈ ∂F (x) or s ∈ ∂∞F (x). By definition,

there are sequences {xk}, {sk}, {tk} such that sk ∈ ∂̂F (xk) holds for every k and

xk → x, f(λ(xk)) → f(λ(x)), tksk → s.
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Here, there are two cases for {tk}. If s ∈ ∂F (x), then tk = 1 for every k. If s ∈ ∂∞F (x), then tk ↓ 0. Since

sk ∈ ∂̂F (xk) holds for every k, Proposition 12 implies the existence of J k ∈ J (xk, sk) such that

diag (sk,J k) ∈ ∂̂f(λ(xk)), ∀k.

Let J k = [c1,k, . . . , cr,k]. Since ‖ci,k‖ = 1 for every i and k, passing to a subsequence if necessary, we may
assume that for every i, ci,k converges to some ci. Elementary properties of limits show that ci ◦ cj = 0 if
i 6= j and ci ◦ ci = ci. Therefore J = [c1, . . . , cr] is a Jordan frame in E .

Now, we need to examine whether J ∈ J (x, s). We have

xk =

r∑

i=1

λi(x
k)ci,k.

Since each λi(·) is a continuous function and xk → x, we conclude that

x =
r∑

i=1

λi(x)ci.

An analogous argument shows that J diagonalizes s. Gathering all we have shown, we obtain that
diag (sk,J k) ∈ ∂̂f(λ(xk)) holds for every k and

λ(xk) → λ(x), f(λ(xk)) → f(λ(x)), tkdiag (sk,J k) → diag (s,J ).

That is, J ∈ J (x, s) together with either diag (s,J ) ∈ ∂f(λ(x)) (if s ∈ ∂F (x)) or diag (s,J ) ∈ ∂∞f(λ(x))
(if s ∈ ∂∞F (x)).

We will now prove the inclusion “⊇”. Let s ∈ E be such that there are sequences {uk}, {dk}, {tk}

satisfying dk ∈ ∂̂f(uk) for every k and

uk → λ(x), f(uk) → f(λ(x)), tkdk → diag (s,J ),

where J ∈ J (x, s). Here, either tk = 1 for every k or tk ↓ 0. Let J = [c1, . . . , cr].

For every k, let P k ∈ Pr be a permutation matrix such that P kuk = (uk)
↓
. Since dk ∈ ∂̂f(uk) holds for

every k and f is a symmetric function, we have from (6) that

P kdk ∈ ∂̂f((uk)
↓
), ∀k. (21)

Let
xk := Diag (uk,J ), sk := Diag (dk,J ), ∀k.

Let σ be the permutation on the set {1, . . . , r} induced by P k, i.e., σ(i) = j, if and only if, P k permutes the

i-th and the j-th entries of a vector. We have λ(xk) = (uk)
↓

and P kJ ∈ J (xk, sk), where P kJ is defined as

P kJ := [cσ−1(1), . . . , cσ−1(r)].

Therefore, from (21) we have

diag (sk, P kJ ) = P kdk ∈ ∂̂f(λ(xk)),

which combined with Proposition 15 shows that

sk ∈ ∂̂F (xk), ∀k.

Next, since uk → λ(x), it follows that xk → x. Again, recalling that f is a symmetric function and that

F (xk) = f(λ(xk)) = f((uk)
↓
) = f(uk),

we have F (xk) → F (x), since f(uk) → f(λ(x)). Similarly, we have tksk → s, since tkdk → diag (s,J ). This
shows that s ∈ ∂F (x) (if diag (s,J ) ∈ ∂f(λ(x))) or s ∈ ∂∞F (x) (if diag (s,J ) ∈ ∂∞f(λ(x))).
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We can now state our main result.

Theorem 17 (Generalized subdifferentials of spectral functions). Let (E , ◦) be a Euclidean Jordan algebra
of rank r and let F : E → R be the spectral function induced by a symmetric function f : Rr → R. Then, for
x ∈ E, we have

♦F (x) = {s ∈ E | ∃J ∈ J (x, s) with diag (s,J ) ∈ ♦f(λ(x))}, (Transfer)

whenever ♦ is ∂̂, ∂ or ∂∞.

Proof. Follows from Propositions 12, 15, 16.

4.5 Convex hull of generalized subdifferentials and the Clarke subdifferential

In this subsection, we will prove the following meta-formula

conv♦F (x) = {s ∈ E | ∃J ∈ J (x, s) with diag (s,J ) ∈ conv♦f(λ(x))},

whenever ♦ is a subdifferential which behaves nicely with respect to permutations and for which (Transfer)
holds. One of the motivations for this formula is, of course, the study of the Clarke subdifferential, which we
will discuss next. First, we recall that f is locally Lipschitz continuous at û if there exists some neighbourhood
U of û and a constant κ such that

|f(v) − f(u)| ≤ κ ‖v − u‖ , ∀u, v ∈ U ∩ dom f.

Using the construction of the Clarke subdifferential through the Bouligand derivative, Baes proved in
his PhD thesis that, if f is locally Lipschitz, then the meta-formula (Transfer) holds when ♦ is either the
Bouligand or the Clarke subdifferential, see Proposition 4.5.1 and Theorems 4.5.4 and 4.5.5 in [2]. However,
denoting by ∂C the Clarke subdifferential, it turns out that, under local Lipschitzness, we have

∂Cf(u) = conv ∂f(u), ∀u ∈ int (dom f),

see Theorem 9.61 in [24]. Therefore, with some effort, Theorem 17 can be used to give another proof that
(Transfer) holds when ♦ is ∂C and f is locally Lipschitz continuous. The first step towards this idea is the
following result, which is a variant of Theorem 14.

Proposition 18. Let x, s ∈ E be such that x and s operator commute. Then, for every J ∈ J (x) and every
Ĵ ∈ J (x, s) we have

diag (s,J ) ∈ conv {Pdiag (s, Ĵ ) | P ∈ Pr(λ(x))}.

Proof. By Theorem 14, we already have

diag (s,J ) ∈ conv {Pλ′(x, s) | P ∈ Pr(λ(x))}. (22)

All we need to do now is to relate λ′(x, s) and diag (s, Ĵ ). For that, we will proceed as in the proof of
Theorem 14.

Let us consider the spectral decomposition of x according to Ĵ = [ĉ1, . . . , ĉr],

x =
r∑

i=1

λi(x)ĉi.

Then, we use the notation described in Section 3.2 and denote by li(x) the “relative position” of the index
i with respect the eigenvalues of x that are equal to λi(x). Furthermore, we let ei be the sum of the
idempotents ĉi associated to the eigenvalues equal to λi(x). We also let r1, . . . , rℓ be such that

λ1(x) = · · · = λr1(x) > λr1+1(x) = · · · = λr2(x) >

λr2+1(x) = · · · = λr3(x) > · · ·λrℓ(x).
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Here, ℓ is the number of distinct eigenvalues of x. For convenience, we define r0 = 0 and nj = rj − rj−1 for

j ∈ {1, . . . , ℓ}. Then, we divide diag (s, Ĵ ) and λ′(x; s) in ℓ parts according to the blocks of equal eigenvalues
of x:

diag (s, Ĵ ) = (u1, . . . , uℓ)

λ′(x; s) = (v1, . . . , vℓ).

First, we observe that if λi(x) = λj(x), then we have ei = ej. Then, from the formula for the directional

derivatives (Theorem 7) and the fact that Ĵ diagonalizes s, we obtain

uj = (〈s, ĉrj−1+1〉, . . . , 〈s, ĉrj 〉) ∈ R
nj

vj = (λlrj−1+1
(Qerj

(s); Ej), . . . , λlrj (Qerj
(s); Ej)) ∈ R

nj ,

where Ej = V (erj , 1). We recall that Qerj
(s) is the orthogonal projection of s onto V (erj , 1). And, again,

because Ĵ diagonalizes s, we obtain

Qerj
(s) =

rj∑

i=rj−1+1

〈s, ĉi〉ĉi,

which is the spectral decomposition of Qerj
(s) in the algebra Ej . In particular, the eigenvalues of Qerj

(s)

in the algebra Ej are precisely the components of uj . We also need to recall that λlrj−1+k
(Qerj

(s); Ej) is, in

fact, the k-th largest eigenvalue of Qerj
(s) in the algebra Ej .

Piecing everything together, we conclude that vj is just the result of sorting uj in nonincreasing order.
Therefore, there exists a permutation matrix P j ∈ Pnj such that vj = P juj, for every j ∈ {1, . . . , ℓ}. Then,
if we let

P̂ =



P 1

. . .

P ℓ


 ,

we have λ′(x, s) = P̂diag (s, Ĵ ) and since the block structure of P follows the blocks of equal eigenvalues of
λ(x), we have P ∈ Pr(λ(x)). From (22), we have

diag (s,J ) ∈ conv {PP̂diag (s, Ĵ ) | P ∈ Pr(λ(x))} =

conv {Pdiag (s, Ĵ ) | P ∈ Pr(λ(x))},

since Pr(λ(x)) is a group.

For what follows, we say that a subdifferential ♦ is permutation compatible if

♦f(Pu) = P♦f(u), ∀u ∈ R
r

whenever f : Rr → R is a symmetric function and P ∈ Pr. We note that all subdifferentials ∂̂, ∂, ∂∞, ∂C
that have appeared so far in this paper are permutation compatible. With that, we are ready to prove the
following meta-theorem which might be applicable to other subdifferentials not discussed in this paper.

Theorem 19 (Convex hull of generalized subdifferentials). Let F : E → R be the spectral function induced
by a symmetric function f : Rr → R. Then, for x ∈ E, we have

conv♦F (x) = {s ∈ E | ∃J ∈ J (x, s) with diag (s,J ) ∈ conv♦f(λ(x))}, (Transfer-Hull)

where ♦ is any permutation compatible subdifferential for which (Transfer) holds. In particular, if λ(x) ∈
int (dom f) and f is locally Lipschitz continuous at λ(x), then (Transfer) holds when ♦ = ∂C.
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Proof. First we prove the “⊇” inclusion. Suppose s and J are such that J ∈ J (x, s) and diag (s,J ) is the
convex combination of d1, . . . , dℓ ∈ ♦f(λ(x)). Then, since (Transfer) holds, we have

Diag (di,J ) ∈ ♦F (x), ∀i ∈ {1, . . . , ℓ}.

Because s is a convex combination of the Diag (di,J ), we obtain s ∈ conv♦F (x).
Next, we prove the “⊆” inclusion. Let s1, s2 ∈ ♦F (x). Since (Transfer) holds, there are J1 ∈ J (x, s1)

and J2 ∈ J2(x, s2) such that

diag (s1,J1) ∈ ♦f(λ(x)), diag (s2,J2) ∈ ♦f(λ(x)). (23)

Let s3 be a convex combination of s1, s2, so that

s3 = αs1 + (1 − α)s2,

for some α ∈ [0, 1]. Since x, s1 and x, s2 are pairs of simultaneously diagonalizable elements, the same must
be true of the pair x, s3, see (5). We conclude that there exists J3 ∈ J (x, s3). Now, we invoke Proposition 18
with J = J3 and Ĵ = J1, to conclude that

diag (s1,J3) ∈ conv {Pdiag (s1,J1) | P ∈ Pr(λ(x))}.

Because ♦ is permutation compatible, (23) implies that Pdiag (s1,J1) belongs to ♦f(λ(x)) for every P ∈
Pr(λ(x)). Therefore, diag (s1,J3) ∈ conv♦f(λ(x)). A completely analogous argument for s2 shows that

diag (s1,J3) ∈ conv♦f(λ(x)), diag (s2,J3) ∈ conv♦f(λ(x)).

Since diag (s3,J3) is a convex combination of diag (s1,J3) and diag (s2,J3), we conclude that, indeed,

diag (s3,J3) ∈ conv♦f(λ(x)),

which proves the inclusion “⊆”.
Finally, if f is locally Lipschitz continuous at λ(x) ∈ int (dom f), the fact that the eigenvalue map is

Lipschitz continuous (Lemma 4) shows that F must be locally Lipschitz continuous at x. Therefore,

∂CF (x) = conv ∂F (x), ∂Cf(λ(x)) = conv ∂f(λ(x)).

This shows that (Transfer) holds with ♦ = ∂C .

Next, we will take a look at the Clarke subdifferential of spectral functions without assuming local
Lipschitzness, in order to extend Baes’ results. First, we will briefly explain some technical issues related to
this task. In Theorem 8.9 of [24], we see that each of the generalized subdifferentials ∂̂, ∂, ∂∞ is associated
to a corresponding notion of normal cone. In this context, the Clarke subdifferential is defined using the
convexified version of the normal cone associated to ∂, see Section J in chapter 8 of [24]. The problem is that,
by doing so, the Clarke subdifferential can be larger than the convex hull of the approximate subdifferential.
Therefore, in general, we have ∂CF (x) 6= conv ∂F (x).

Nevertheless, under local lower semicontinuity, we have the following, see Lemma 4.1 in [20]. We recall
that f : Rr → R is said to be locally lower semicontinuous at u, if f(u) is finite and there exists ǫ > 0 such
that {v ∈ R

r | ‖u− v‖ ≤ ǫ, f(v) ≤ α} is closed for every α satisfying α ≤ f(u) + ǫ, see Definition 1.33 in
[24].

Lemma 20 (Lemma 4.1 in [20]). Suppose f : Rr → R is locally lower semicontinuous at u. Then,

∂Cf(u) = cl (conv ∂f(u) + conv ∂∞f(u)).

With the aid of Lemma 20, we are now in position to extend Baes’ results on the Clarke subdifferential.
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Theorem 21 (Clarke subgradients of spectral functions under local lower semicontinuity). Let F : E → R

be the spectral function induced by a symmetric function f : Rr → R. The following hold:

(i) F is locally lower semicontinuous at x ∈ E if and only if f is locally lower semicontinuous at λ(x).

(ii) If F is locally lower semicontinuous at x, then (Transfer) is valid when ♦ = ∂C .

Proof. Item (i) follows from the continuity of the eigenvalue map λ and elementary properties of the maps
diag (·,J ) and Diag (·,J ) when J ∈ J (x). We will omit its proof.

Now, we move on to item (ii). Under Lemma 20, we have

∂Cf(λ(x)) = cl (conv ∂f(λ(x)) + conv ∂∞f(λ(x))) (24)

∂CF (x) = cl (conv ∂F (x) + conv ∂∞F (x)). (25)

First, suppose that s ∈ ∂CF (x), so there is a sequence {sk} ⊆ E such that sk → s and for each k we have

sk = sk + sk∞,

where sk ∈ conv ∂F (x) and sk∞ ∈ conv ∂∞F (x). By Theorem 19, there are J
k
∈ J (x, sk) and J k

∞ ∈
J (x, sk∞) such that

diag (sk,J
k
) ∈ conv ∂f(λ(x)), diag (sk∞,J

k
∞) ∈ conv ∂∞f(λ(x)). (26)

Because sk and sk∞ both operator commute with x, we conclude that sk operator commutes with x as well,
see (5). Therefore, there exists a Jordan frame J k such that J k ∈ J (x, sk). Next, we apply Proposition 18

two times. First with sk, J k, J
k

and then with sk∞, J k, J k
∞ in order to obtain that

diag (sk,J k) ∈ conv {Pdiag (sk,J
k
) | P ∈ Pr(λ(x))} (27)

diag (sk∞,J
k) ∈ conv {Pdiag (sk∞,J

k
∞) | P ∈ Pr(λ(x))}. (28)

Since (6) holds for the approximate and horizon subdifferentials, we have

P conv♦f(λ(x)) = convP♦f(λ(x)) = conv♦f(λ(x)),

for every P ∈ Pr(λ(x)) when ♦ is ∂ or ∂∞. Therefore, (26) together with (27) and (28) implies that

diag (sk,J k) ∈ conv ∂f(λ(x)), diag (sk∞,J
k) ∈ conv ∂∞f(λ(x))

and
diag (sk,J k) + diag (sk∞,J

k) ∈ conv ∂f(λ(x)) + conv ∂∞f(λ(x)). (29)

We now proceed as in the proof of Proposition 16. Since the idempotents in J k have norm 1, passing to a
converging subsequence if necessary, the Jordan frame J k converges to some Jordan frame J ∈ J (x, s) and
we have

diag (sk,J k) + diag (sk∞,J
k) → diag (s,J ).

Together with (24) and (29), we conclude that the inclusion “⊆” holds in (Transfer) when ♦ is ∂C .
Now, for the “⊇” inclusion, suppose that s is such that diag (s,J ) ∈ ∂Cf(λ(x)) with J ∈ J (x, s). By

(24), there is a sequence {uk} ⊆ R
r with uk → diag (s,J ) such that

uk = uk + uk∞,

where uk ∈ conv ∂f(λ(x)) and uk∞ ∈ conv ∂∞f(λ(x)). Therefore, Diag (uk,J ) + Diag (uk∞,J ) → s. In
addition, by Theorem 19, we have

Diag (uk,J ) ∈ conv ∂F (x), Diag (uk∞,J ) ∈ conv ∂∞F (x).

Using (25), we conclude that s ∈ ∂CF (x).
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4.6 Subdifferentials of the k-th largest eigenvalue function

In this subsection, as an application of Theorems 17, 19 and 21, we will compute the generalized subd-
ifferentials of the function λk(·) : E → R that maps an element x ∈ E to its k-th largest eigenvalue, for
k ∈ {1, . . . , r}.

Let fk : Rr → R be the function that maps u ∈ R
r to its k-th largest component. Then, fk is a symmetric

function and λk is the spectral function generated by fk. We note that, since the eigenvalue map is Lipschitz
continuous, each λk must be Lipschitz continuous as well. In what follows, ai ∈ R

r denotes the i-th unit
vector and we recall that ui denotes the i-th component of u ∈ R

r. We also define

suppu := {i | ui 6= 0}.

For a finite set C, we denote its cardinality by |C|. The generalized subdifferentials of fk are described by
the following proposition, see Proposition 6 and Theorem 9 in [19].

Proposition 22. The following hold.

∂Cfk(u) = conv {ai | fk(u) = ui},

∂̂fk(u) =

{
conv {ai | fk(u) = ui}, if k = 1 or fk−1(u) > fk(u)

∅, otherwise

∂∞fk(u) = {0},

∂fk(u) = {u ∈ ∂Cfk(u) | |suppu| ≤ α},

where α = 1 − k + |{i | ui ≥ fk(u)}|.

Let I denote the set of primitive idempotents of E . We recall that c ∈ I if and only if c is nonzero,
c ◦ c = c and c cannot be written as the sum of two nonzero orthogonal idempotents.

Lemma 23 (Frame extension lemma). Let x ∈ E and c ∈ I. If x ◦ c = σc for some σ ∈ R, then σ is an
eigenvalue of x and there is a Jordan frame J ∈ J (x) such that c ∈ J . In particular, J (x, c) 6= ∅.

Proof. By the Peirce decomposition (Theorem 5), we have

E = V (c, 1)
⊕

V

(
c,

1

2

)⊕
V (c, 0).

Then, since x ◦ c = σc, we have c ◦ (x− σc) = 0. Therefore, x− σc ∈ V (c, 0)
V (c, 0) is a Euclidean Jordan algebra (see Theorem 5). Furthermore, since c has rank 1, the algebra

V (c, 0) has rank r− 1. Therefore, we can find a Jordan frame Ĵ = [c1, . . . , cr−1] that diagonalizes x− σc in
V (c, 0). It follows that

x = σc+
r−1∑

i=1

σici, (30)

where σi ∈ R for every i. We now need to check that J = [c, c1, . . . , cr−1] is a Jordan frame. All elements
of J are primitive idempotents. Furthermore, ci ◦ cj = 0 if i 6= j. Since Ĵ ⊆ V (c, 0), we also have c ◦ ci = 0

for every i. Since the identity element of V (c, 0) is e− c and Ĵ is a Jordan frame in V (c, 0), we have

c1 + · · · + cr−1 = e− c.

This shows that c + c1 + · · · + cr−1 = e. Therefore, J is indeed a Jordan frame of the algebra E and (30)
shows that J diagonalizes x. Since eigenvalues are unique, σ must be one of the eigenvalues of x. Reordering
J if necessary, we obtain J ∈ J (x, c).
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Lemma 24 (Convex hull of primitive idempotents). Let x ∈ E and σ ∈ R be an eigenvalue of x. Let

I(x, σ) := {c ∈ I | x ◦ c = σc}.

Let s ∈ conv I(x, σ).

(i) The eigenvalues of s are nonnegative and sum to 1.

(ii) There is J ∈ J (x, s) such that 〈s, c〉 = 0 for every c ∈ J not belonging to I(x, σ).

Proof. Primitive idempotents have trace equal to 1 and the trace function is linear, so elements in conv I(x, σ)
must have trace 1 too. Then, we recall that any idempotent c must be belong to K := {x ◦ x | x ∈ E}, which
is a symmetric cone (see Theorem III.2.1 in [6]). In particular, K is a convex cone and, since s is a convex
combination of elements of K, s belongs to K which implies that its eigenvalues are nonnegative.

Next, we move on to item (ii). Pick any Jordan frame for x and let ĉ denote the sum of the primitive
idempotents associated to the eigenvalue σ. By Proposition 3, ĉ does not depend on the choice of Jordan
frame. Since s ∈ conv I(x, σ), we have

s =
ℓ∑

i=1

αici,

where ci ∈ I(x, σ) for every i and the αi are nonnegative and sum to 1. First, we will show that s ∈ V (ĉ, 1).
By Lemma 23, each ci can be extended to a Jordan frame Ji ∈ J (x, ci) with ci ∈ Ji. Then, the

idempotents in Ji associated to the eigenvalue σ must sum to ĉ by Proposition 3 and, at the same time,
c′ ◦ ci = 0 holds whenever c′ ∈ Ji and c′ 6= ci. We conclude that

ci = ci ◦ ci = ci ◦
∑

c′∈Ji∩I(x,σ)

c′ = ci ◦ ĉ.

Therefore, each ci belongs to V (ĉ, 1), which shows that s ∈ V (ĉ, 1). Since V (ĉ, 1) and V (ĉ, 0) are Euclidean

Jordan algebras, there is a Jordan Frame Ĵ ⊆ V (ĉ, 1) that diagonalizes s. Next, since x−σĉ ∈ V (ĉ, 0), there

is a Jordan frame J̃ ⊆ V (ĉ, 0) that diagonalizes x− σĉ.

Let J := Ĵ ∪J̃ . First, because Ĵ ⊆ V (ĉ, 1) and J̃ ⊆ V (ĉ, 0) are Jordan frames, we have (the well-known
fact) that J is a Jordan frame in the algebra E .

Then, since J̃ diagonalizes x − σĉ, Ĵ diagonalizes s and the sum of the elements of Ĵ is ĉ (the unit

element of V (ĉ, 1)), we conclude that J diagonalizes x and s. We also observe that Ĵ ⊆ I(x, σ), which can
be seen by expressing x as a linear combination of the elements in J and recalling that the idempotents of
Ĵ sum to ĉ.

Finally, if c ∈ J but c 6∈ I(x, σ) , then c ∈ J̃ and 〈s, c〉 = 0, because V (ĉ, 1) and V (ĉ, 0) are orthogonal
spaces. Reordering J if necessary, we obtain J ∈ J (x, s) with the required properties.

We are now equipped to prove the following result.

Theorem 25 (Generalized subdifferentials of λk). Let E be a Euclidean Jordan algebra of rank r and let
λk(·) denote the function that maps an element to its k-largest eigenvalue. The following hold.

∂Cλk(x) = conv I(x, λk(x)) = conv {c ∈ I | x ◦ c = λk(x)c}, (31)

∂̂λk(x) =

{
∂Cλk(x) if k = 1 or λk−1(x) > λk(x)

∅, otherwise
(32)

∂∞λk(x) = {0}, (33)

∂λk(x) = {s ∈ ∂Cλk(x) | rankx ≤ α}, (34)

where α = 1 − k + |{i | λi(x) ≥ λk(x)}|.
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Proof. The equality ∂∞λk(x) = {0} follows from Theorem 17 and Proposition 22.
We will now prove the formula for ∂Cλk. Let s ∈ ∂Cλk(x). By Theorem 19 and Proposition 22, there

exists J ∈ J (x, s) such that
diag (s,J ) ∈ conv {ai | λk(x) = λi(x)}. (35)

Because s is written as a linear combination of elements of J , (35) implies that s is a convex combination
of the idempotents of J associated to λk(x). Observing that those idempotents satisfy x ◦ c = λk(x)c, we
obtain

s ∈ conv {c ∈ I | x ◦ c = λk(x)c},

which shows that “⊆” holds in (31).
Conversely, suppose that s ∈ conv I(x, λk(x)). By item (i) of Lemma 24 applied to x, s and λk(x),

the eigenvalues of s are nonnegative and sum to 1. Furthermore, by item (ii) of Lemma 24, there exists
J ∈ J (x, s) such that 〈s, c〉 = 0, whenever c ∈ J and c is not associated to λk(x). This, together with
Proposition 22, shows that

diag (s,J ) ∈ ∂Cfk(λ(x))

because the nonzero components of diag (s,J ) are nonnegative, sum to 1 and are located only at indices
associated to idempotents in I(x, λk(x)). By Theorem 19, we have s ∈ ∂Cλk(x), which shows that (31)
holds.

The expressions for ∂̂λk(x), ∂λk(x) are consequences of Theorem 17, Proposition 22, the formula for
∂Cλk(x) and the fact that |supp (λ(x))| = rank (x).

5 The KL-exponent of spectral functions

We recall the definitions of the KL property and KL-exponent, see Definitions 2.2 and 2.3 in [21]. In
what follows, we define dom ∂f := {u ∈ R

r | ∂f(u) 6= ∅}. If C is a subset of R
r, we define dist (u,C) =

inf{‖v − u‖ | v ∈ C}. If C is a subset of E , we define dist (x, C) analogously using the norm induced by (4).

Definition 26 (KL-property and KL-exponent). A lower semicontinuous function f is said to satisfy the
KL property at u ∈ dom∂f if there exists a neighbourhood U of u, ν ∈ (0,∞] and a continuous concave
function ψ : [0, ν) → R+ with ψ(0) = 0 such that

(i) ψ is continuously differentiable on (0, ν) with (its derivative) ψ′ positive over (0, ν);

(ii) for all v ∈ U with f(u) < f(v) < f(u) + ν, we have

ψ′(f(v) − f(u))dist (0, ∂f(v)) ≥ 1.

In particular, f is said to satisfy the KL property with exponent α at u ∈ dom∂f , if ψ can be taken to be
ψ(t) = ct1−α for some positive constant c.

First, we need the following lemma.

Lemma 27. Let f : R
r → R be a symmetric function and let F : E → R be the corresponding spectral

function. Then, for every y ∈ E and for every Jordan frame Ĵ which diagonalizes y (see Section 3.1) we
have

dist (0, ∂F (y)) = dist (0, ∂f(diag (y, Ĵ ))).

Proof. Let y ∈ E and let Ĵ be a Jordan frame which diagonalizes y. From (6) and since permutation matrices
are orthogonal matrices, we obtain

dist (0, ∂f(u)) = dist (0, ∂f(Pu)), ∀u ∈ R
r, ∀P ∈ Pr.

In particular,
dist (0, ∂f(λ(y))) = dist (0, ∂f(diag (y, Ĵ ))). (36)
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Therefore, it suffices to show that dist (0, ∂F (y)) = dist (0, ∂f(λ(y))). From Theorem 17, we have

dist (0, ∂F (y)) = min{‖s‖ | ∃J ∈ J (y, s) with diag (s,J ) ∈ ∂f(λ(y))}

= min{‖λ(s)‖ | ∃J ∈ J (y, s) with diag (s,J ) ∈ ∂f(λ(y))}

≥ dist (0, ∂f(λ(y))).

Therefore, dist (0, ∂F (y)) ≥ dist (0, ∂f(λ(y))). To show the opposite inequality, let d ∈ ∂f(λ(y)),J ∈ J (y).
By Theorem 17, s := Diag (d,J ) is such that s ∈ ∂F (y). Furthermore, we have ‖s‖ = ‖d‖. This shows that
dist (0, ∂F (y)) ≤ dist (0, ∂f(λ(y))).

Theorem 28 (Transfer principle for the KL property and KL exponent). Let f : Rr → R be a symmetric
function and let F : E → R be the corresponding spectral function. Then,

(i) F satisfies the KL property x if and only if f satisfies the KL property at λ(x). In addition, the ψ and
ν in Definition 26 can be taken to be the same for both f and F .

(ii) F satisfies the KL property with exponent α at x if and only if f satisfies the KL property with exponent
α at λ(x).

Proof. First we prove item (i). By Theorem 17 we have x ∈ dom ∂F if and only if λ(x) ∈ dom∂f . Next,
suppose that f satisfies the KL property at λ(x) and let U, ν and ψ be as in Definition 26.

Since λ is continuous, U := λ−1(U) is a neighbourhood of x. Therefore, if y ∈ U is such that F (x) <
F (y) < F (x) + ν, we have

λ(y) ∈ U and f(λ(x)) < f(λ(y)) < f(λ(x)) + ν.

By Lemma 27 and item (ii) of Definition 26 applied to f and ψ, we have

ψ′(F (y) − F (x))dist (0, ∂F (y)) = ψ′(F (y) − F (x))dist (0, ∂f(λ(y))) ≥ 1.

This shows that F satisfies the KL property at x with the same ψ and ν.
Now, we prove the converse. Suppose that F satisfies the KL property at x and let U be a neighbourhood

of x together with ψ and ν such that Definition 26 is satisfied.
Let J ∈ J (x) and U := Diag (·,J )−1(U). Then, whenever v ∈ U is such that f(λ(x)) < f(v) <

f(λ(x)) + ν, we have
Diag (v,J ) ∈ U and F (x) < F (Diag (v,J )) < F (x) + ν.

By item (ii) of Definition 26, we have

ψ′(f(v) − f(λ(x)))dist (0, ∂F (Diag (v,J ))) ≥ 1.

By Lemma 27, we have
ψ′(f(v) − f(λ(x)))dist (0, ∂f(v)) ≥ 1.

This shows that f satisfies the KL property at λ(x) with the same ψ and ν, which concludes the proof of
item (i).

Next, we observe that item (ii) is a particular case of the previous item, when ψ can be taken to be
ψ(t) = ct1−α.

Remark 29. In Theorem 3.2 of [21] there is a result about the KL-exponent of function compositions of
the form g1(g2(·)). However, the result requires that g2 be continuously differentiable, so it cannot be used to
prove Theorem 28.
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