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Abstract. Optimization-based samplers such as randomize-then-optimize (RTO) [2] provide an efficient and parallel-
lizable approach to solving large-scale Bayesian inverse problems. These methods solve randomly perturbed optimization
problems to draw samples from an approximate posterior distribution. “Correcting” these samples, either by Metropoliza-
tion or importance sampling, enables characterization of the original posterior distribution. This paper focuses on the
scalability of RTO to problems with high- or infinite-dimensional parameters. We introduce a new subspace acceleration
strategy that makes the computational complexity of RTO scale linearly with the parameter dimension. This subspace per-
spective suggests a natural extension of RTO to a function space setting. We thus formalize a function space version of RTO
and establish sufficient conditions for it to produce a valid Metropolis–Hastings proposal, yielding dimension-independent
sampling performance. Numerical examples corroborate the dimension-independence of RTO and demonstrate sampling
performance that is also robust to small observational noise.
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1. Introduction. The Bayesian framework is widely used for uncertainty quantification in inverse
problems—i.e., inferring parameters of mathematical models given indirect and noisy data [27, 44]. In a
Bayesian setting, the parameters are described as random variables and endowed with prior distributions.
Conditioning on an observed data set yields the posterior distribution of these parameters, which char-
acterizes uncertainty in possible parameter values. Solving the inverse problem amounts to computing
posterior expectations, e.g., posterior means, variances, marginals, or other summary statistics.

Sampling methods—in particular, Markov chain Monte Carlo (MCMC) algorithms—provide a flexi-
ble yet provably convergent way of estimating posterior expectations [5]. The design of effective MCMC
methods, however, rests on the careful construction of proposal distributions: efficiency demands proposal
distributions that reflect the geometry of the posterior [22], e.g., anisotropy, strong correlations, and even
non-Gaussianity [36]. Another significant challenge in applying MCMC is parameter dimensionality. In
many inverse problems governed by partial differential equations, the “parameter” is in fact a function
of space and/or time that, for computational purposes, must be represented in a discretized form. Dis-
cretizations that sufficiently resolve the spatial or temporal heterogeneity of this function are often high
dimensional. Yet, as analyzed in [31, 32, 40, 41], the performance of many common MCMC algorithms
may degrade as the dimension of the discretized parameter increases, meaning that more MCMC itera-
tions are required to obtain an effectively independent sample. One can design MCMC algorithms that
do not degrade in this manner by formulating them in function space and ensuring that the proposal
distribution satisfies a certain absolute continuity condition [14, 44]. These samplers are called dimension
independent [14, 15]. Yet another core challenge is that MCMC algorithms are, in general, intrinsically
serial: sampling amounts to simulating a discrete-time Markov process. The literature has seen many
attempts at parallelizing the evaluation of proposed points [7] or sharing information across multiple
chains [13, 26], but none of these is embarrassingly parallel.

A promising approach to many of these challenges is to convert optimization methods into sam-
plers (i.e., Monte Carlo methods). This idea has been proposed in many forms: key examples include
randomize-then-optimize (RTO) [2], Metropolized randomized-maximum-likelihood (RML) [35, 46], and
implicit sampling [10, 33]. In its most basic form, RTO requires Bayesian inverse problems with Gaussian
priors and noise models, although it can extend to problems with non-Gaussian priors via a change of
variables [47]. Metropolized RML has problem requirements similar to those of RTO, but requires evalu-
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ating second-order derivatives of the forward model. Implicit sampling applies to target densities whose
contours enclose star-convex regions; each proposal sample can then be generated cheaply by solving a
line search.

In general, each of these algorithms solves randomly-perturbed realizations of an optimization prob-
lem to generate samples from a probability distribution that is “close to” the posterior. The probability
density function of this distribution is computable, and thus the distribution can be used as an inde-
pendent proposal within MCMC or as a biasing distribution in importance sampling. For non-Gaussian
targets, these proposal distributions are non-Gaussian. In general, they are adapted to the target distri-
bution. The computational complexity and dimension-scalability of the resulting sampler can be linked
to the structure of the corresponding optimization problem. In addition, these sampling methods are
embarrassingly parallel, and are easily implemented with existing optimization tools developed for solving
deterministic inverse problems.

This paper considers optimization-based sampling in high dimensions. In particular, we focus on
the scalable implementation and analysis of the RTO method. To begin, in Section 2 we present in-
terpretations of RTO that provide intuition for the method and its regime of applicability. Using these
interpretations, we next motivate and construct a subspace-accelerated version of RTO whose compu-
tational complexity scales linearly with parameter dimension (Section 3). This approach significantly
accelerates RTO in high-dimensional settings. Subspace acceleration reveals that RTO’s mapping acts
differently on different subspaces of the parameter space. In Section 4, we exploit this separation of the
parameter subspaces to cast the transport map generated by RTO in an infinite-dimensional (i.e., func-
tion space) setting [44]. We also establish sufficient conditions for the probability distribution induced
by RTO’s mapping to be absolutely continuous with respect to the posterior. This result justifies RTO’s
observed dimension-independent sampling behavior: the acceptance rate and autocorrelation time of an
MCMC chain using RTO as its proposal do not degrade as the parameter dimension increases. Simi-
larly, the performance of importance sampling using RTO as a biasing distribution will stabilize in high
dimensions. This result is analogous to the arguments in [3, 4, 15, 42, 44] showing that (generalized)
preconditioned Crank–Nicolson (pCN), dimension-independent likelihood-informed (DILI) MCMC, and
other infinite-dimensional geometric MCMC methods are dimension-independent. However, our MCMC
construction relies on non-Gaussian proposals in a Metropolis independence setting, where the Markov
chain can be run at essentially zero cost after the computationally costly step of drawing proposal sam-
ples and evaluating the proposal density. Because the latter step is embarrassingly parallel, the overall
MCMC scheme is immediately parallelizable, unlike the above-mentioned MCMC samplers that rely on
the iterative construction of Markov chains.

In Section 5, we provide a numerical illustration of our algorithm on a one-dimensional elliptic PDE
problem, exploring the factors that influence RTO’s sampling efficiency. We observe that neither the
parameter dimension nor the magnitude of the observational noise influence RTO’s performance per
MCMC step, though they both impact the computational cost of each step. Despite its more costly steps,
RTO outperforms simple pCN in this example. In Section 6, we further demonstrate the efficacy of our
algorithm on a challenging two-dimensional parabolic PDE problem. Overall, our results show that RTO
can tackle inverse problems with large parameter dimensions and arbitrarily small observational noise.

2. Background. RTO generates samples from an approximation to the target (e.g., posterior)
distribution in two steps. First, it repeatedly solves perturbed optimization problems to generate inde-
pendent proposal samples. Second, it uses this collection of samples to describe an independent proposal
for Metropolis–Hastings (MH) or a biasing distribution for self-normalized importance sampling. In this
section, we first describe the target distributions to which RTO can be applied. We then provide inter-
pretations of RTO from the geometric and transport perspectives, which lead to useful insights regarding
both the sampling efficiency of RTO and sufficient conditions for the RTO procedure to be valid. For
completeness, we conclude this section by summarizing RTO and other comparable optimization-based
sampling methods using the transport map interpretation.
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2.1. Target distribution. RTO applies to target distributions on Rn whose densities can be written
as

(1) πtar(v) ∝ exp

(
−1

2
‖H(v)‖2

)
,

where H : Rn → Rm+n is a vector-valued function of the parameters v ∈ Rn with an output dimension of
n+m, for any m ≥ 1. This structure is found in Bayesian inverse problems and other similar problems
with n parameters, m observations, a Gaussian prior, and additive Gaussian observational noise. To
illustrate, let

y = F (u) + ε, ε ∼ N(0,Γobs), u ∼ N(mpr,Γpr),

where y ∈ Rm is the data, F : Rn → Rm is the forward model, u ∈ Rn is the unknown parameter, and
ε ∈ Rm is the additive noise, assumed independent of u. Here, mpr is the prior mean, and Γobs and
Γpr are the covariance matrices of the observation noise and prior. We can simplify the problem via an
affine change of variables that transforms the covariance matrices to identity matrices. Defining matrix
factorizations of the covariances of prior and observation noise

SprS
>
pr := Γpr, SobsS

>
obs := Γobs,

we have new whitened variables,

v := S−1
pr (u−mpr), G(v) := S−1

obs

[
F
(
Sprv +mpr

)
− y
]
, e := S−1

obsε,

where v ∈ Rn is the whitened unknown parameter, G : Rn → Rm is the whitened forward model, and e
is the whitened observational noise. The inverse problem becomes

0 = G(v) + e, e ∼ N(0, I), v ∼ N(0, I).

The data is shifted to the origin after whitening. The posterior density of the whitened variable v is then

p(v|y) = πtar(v) ∝ exp

(
−1

2

∥∥∥∥
[

v
G(v)

]∥∥∥∥
2
)
,

which is in the required form (1) with H defined as

(2) H(v) :=

[
v

G(v)

]
.

Given a sample v from the target density πtar(v), we can obtain a posterior sample of the original
parameter u by applying the transformation

u = Sprv +mpr.

Notice that the form of πtar(v) in (1) is identical to the probability density function of an (n+m)–
dimensional standard normal distribution, π(w) ∝ exp

(
− 1

2‖w‖2
)
, evaluated at w = H(v). This paints

the geometric picture of the required target distribution: the target density πtar(v), up to a normalizing
constant, is the same as the density of the (n + m)–dimensional Gaussian distribution evaluated on the
n–dimensional manifold H(v) = (v,G(v)) ⊂ Rm+n parameterized by v ∈ Rn.

2.2. The RTO algorithm. The RTO algorithm requires an orthonormal basis for an n-dimensional
subspace of Rn+m. Let this basis be collected in a matrix Q ∈ R(m+n)×n with orthonormal columns.
One common choice of Q follows from first finding a linearization point vref , which is often (but not
necessarily) taken to be the maximum of the target density, i.e.,

(3) vref = arg min
v

1

2
‖H(v)‖2 .

3



Then one can compute Q from a thin QR factorization of ∇H(vref); this sets the basis to span the range
of ∇H(vref).

Using this matrix, RTO obtains proposal samples v
(i)
prop by repeatedly drawing independent (n+m)–

dimensional standard normal vectors η(i) and solving the nonlinear system of equations

(4) Q>H(v(i)
prop) = Q>η(i),

which is equivalent to solving the optimization problem

(5) v(i)
prop = arg min

v

1

2

∥∥∥Q>
(
H(v)− η(i)

)∥∥∥
2

,

if the minimum of the objective function in (5) is zero. To ensure that the system of equations (4) has
a unique solution and that the probability density of the resulting samples can be calculated explicitly,
RTO requires the following conditions [2].

Assumption 1 (Sufficient conditions for valid RTO).
1. The function H is continuously differentiable with Jacobian ∇H.
2. The Jacobian ∇H(v) has full column rank for every v.
3. The map v 7→ Q>H(v) is invertible.

-2 0 2

-2

0

2

(a) Top view

-2 0 2

0

0.5

(b) Front view

Fig. 1: Geometric interpretation of RTO, in the case n = m = 1. RTO projects the (n+m)–dimensional
Gaussian samples η (green crosses) onto the manifold {H(v)} (red line) to determine the proposal samples

vprop (green circles). The projection residual H(v
(i)
prop) − η is orthogonal to the range of Q. In the front

view, the proposal samples vprop (green circles) are shown to be distributed according to a proposal
density (green line) that is close to the target density (red line).

Proposal samples generated via RTO can be interpreted as a projection of (n + m)–dimensional
Gaussian samples onto the n–dimensional manifold {H(v) : v ∈ Rn}. The samples are projected along
the directions orthogonal to the range of Q such that the condition in (4) is satisfied. Figure 1 depicts
the steps of RTO’s proposal for the case n = m = 1. This geometric interpretation also illustrates the
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importance of the third condition for the RTO procedure to be valid: there will be a unique projected
vector on the manifold {H(v)} for any given η ∼ N(0, In+m) provided the map v 7→ Q>H(v) is invertible.

The projection defined by RTO realizes the action of a particular transport map. Since the random
vector η ∈ Rn+m is a standard Gaussian and the columns of Q are orthonormal, the projection of η,
denoted by ξ := Q>η ∈ Rn, is also a standard Gaussian. Writing the left hand side of (4) compactly as

S(·) = Q>H(·),

the nonlinear system of equations in (4) can be expressed as

(6) S(v) = ξ, where ξ ∼ N(0, In).

This equation describes a deterministic coupling between the target random variable v ∈ Rn and the
standard Gaussian “reference” random variable ξ ∈ Rn. The coupling is defined by the forward model,
the data, the observational noise, and the prior, through the function H and the matrix Q.

Under the conditions in Assumption 1, solving the nonlinear system (6) implicitly inverts the trans-
port map S; that is, it evaluates S−1 on each ξ, to obtain a proposal v = S−1(ξ). The normalized
probability density of v generated by RTO is given by the pushforward density of the n-dimensional
standard Gaussian under the mapping S−1:

πRTO(v) = |det∇S(v)|πref (S(v))

= (2π)−
n
2

∣∣det
(
Q>∇H(v)

)∣∣ exp

(
−1

2

∥∥Q>H(v)
∥∥2
)
.(7)

As shown in [2], RTO’s proposal is exact (i.e., is the target) when the forward model is linear, and
its proposal is expected to be close to the target when the forward model is close to linear. For weakly
nonlinear problems, the proposal can be a good approximation to the posterior and hence can be used in
MCMC and importance sampling. These proposal samples can be used either as an independent proposal
in Metropolis–Hastings (MH) or as a biasing distribution in importance sampling. For the former case,
the Metropolis–Hastings acceptance ratio can be written as

πtar(v
(i)
prop)πRTO(v(i−1))

πtar(v(i−1))πRTO(v
(i)
prop)

=
w(v

(i)
prop)

w(v(i−1))
,

where the weight w(v) is defined as

(8) w(v) =
∣∣det

(
Q>∇H(v)

)∣∣−1
exp

(
−1

2
‖H(v)‖2 +

1

2

∥∥Q>H(v)
∥∥2
)
.

The resulting method, called RTO–MH, is summarized in Algorithm 1.
For importance sampling, since the normalizing constant of the target density is unknown, the weights

must be normalized as

w̃(v(i)) = w(v(i))/

N∑

j=1

w(v(j)),

where N is the number of samples and the sum of weights w̃(v(i)) is thus one. The proposal samples and
weights can then be used to compute posterior expectations of some quantity of interest g(v) using the
self-normalizing importance sampling formula:

∫
g(v)πtar(v)dv =

N∑

i=1

w̃(v(i)
prop)g(v(i)

prop).

5



Algorithm 1 RTO Metropolis–Hastings (RTO-MH)

1: Find vref using (3)
2: Determine ∇H(vref)
3: Compute Q, whose columns are an orthonormal basis for the range of ∇H(vref)
4: for i = 1, . . . , nsamps do in parallel
5: Sample η(i) from an (n+m)–dimensional standard normal distribution

6: Solve for a proposal sample v
(i)
prop using (5)

7: Compute w(v
(i)
prop) from (8)

8: Set v(0) = vref

9: for i = 1, . . . , nsamps do in series
10: Sample t from a uniform distribution on [0,1]

11: if t < w(v
(i)
prop)

/
w(v(i−1)) then

12: v(i) = v
(i)
prop

13: else
14: v(i) = v(i−1)

Remark 2. For Bayesian inverse problems, the RTO formulation presented here is limited to cases
with Gaussian prior and Gaussian observation noise. By transforming non-Gaussian prior densities and/or
observation noises into Gaussian densities, this limitation may be relaxed. See [47, 9] for examples.

Similarly to RTO, other optimization-based samplers such as random-map implicit sampling [33]
and Metropolized RML [35] also use a standard normal as the reference distribution and push forward
this distribution through some deterministic transformation. Each of these samplers specifies a different
inverse transport S, as in (6), and then solves an optimization problem to evaluate S−1 on each reference
sample. For all three algorithms, the pushforward of the reference distribution can be used as a proposal
distribution in Metropolis–Hastings or as a biasing distribution in importance sampling. A summary
of each algorithm’s mapping is given in Appendix A. The subspace acceleration strategies and infinite-
dimensional formulation of RTO developed in this work may also benefit implicit sampling and RML.
In addition, interpreting optimization-based samplers as transport maps and utilizing the importance
sampling formula naturally open the door to constructing multilevel [21, 25] and multi-fidelity [37] Monte
Carlo estimators for Bayesian computation, enabling additional speedups. Further research along this
direction is in [8].

3. Scalable implementation of RTO. In high-dimensional problems, the computation cost of
operations involving the dense matrix Q in RTO poses a major computational challenge: The matrix-
vector product with Q> in each evaluation of the objective function in (5) costs O((n+m)× n) floating
point operations, where n is the number of parameters and m is the number of observed data. Assembling
the matrix Q>∇H(v) also requires n+m matrix-vector products, and an additional O(n3) floating point
operations are needed to compute the determinant in the proposal density (7). For high-dimensional
parameters, these operations are computationally prohibitive to apply. To overcome this challenge, we
introduce a new subspace acceleration strategy to make these RTO operations scale linearly with the
parameter dimension.

3.1. Subspace acceleration. Our scalable implementation avoids computing and storing the QR
factorization of the full-rank (n + m) × n matrix ∇H(vref). Instead, it opts to construct (and store) a
singular value decomposition (SVD) of the smaller m× n linearized forward model ∇G(vref). To begin,
we note from the definition (2) of H that

∇H(v) =

[
I

∇G(v)

]
.

6



Recall from RTO’s mapping (6) that the RTO proposal samples are found by

Q>H(v) = ξ, where ξ ∼ N(0, In),

where the columns of Q form an orthonormal basis for the range of ∇H(vref) and Q is computed from the
thin QR decomposition of ∇H(vref). Since the 2-norm used in the objective function (5), the determinant
in (7), and the standard Gaussian used in the RTO’s mapping (6) are all invariant up to a rotation defined
by an orthogonal matrix, any orthonormal basis for the range of ∇H(vref) plays the same role in RTO.
This offer a viable way to avoiding computing the dense (m+ n)× n matrix Q.

Instead of computing the QR factorization of ∇H, we consider the polar decomposition [23]:

∇H(vref) = Q̃
(
∇H(vref)

>∇H(vref)
)1/2

,

where the matrix Q̃ ∈ R(m+n)×n has orthonormal columns and the matrix
(
∇H(vref)

>∇H(vref)
)1/2 ∈

Rn×n is positive definite by construction. This way, the matrix Q̃ can be constructed as

Q̃ = ∇H(vref)
(
∇H(vref)

>∇H(vref)
)− 1

2 .

In the above equation, the matrix ∇H(vref)
>∇H(vref) is the Gauss-Newton approximation of the Hessian

of the log-posterior density (referred to as Gauss-Newton Hessian hereafter) defined at the reference
parameter vref .

Proposition 3. Let ∇G(vref) denote the forward model linearized at parameter vref , and consider
its reduced SVD,

∇G(vref) = ΨΛΦ>.

The nonlinear system Q̃>H(v) = ξ defining the RTO mapping can be rewritten as

(9)





(In − ΦΦ>) ξ = (In − ΦΦ>) v

ΦΦ> ξ = Φ
[
(Λ2 + Ir)

− 1
2

(
Φ>v + ΛΨ>G(v)

)]
.

The weighting function w(v) in (8) can be expressed as
(10)

w(v) =
∣∣∣det

(
Q̃>∇H(v)

)∣∣∣
−1

exp

(
−1

2
‖G(v)‖2 − 1

2

∥∥Φ>v
∥∥2

+
1

2

∥∥∥(Λ2 + Ir)
− 1

2

(
Φ>v + ΛΨ>G(v)

)∥∥∥
2
)
,

where the determinant takes the simplified form

(11)
∣∣∣det

(
Q̃>∇H(v)

)∣∣∣ =
∣∣∣det(Λ2 + Ir)

− 1
2

∣∣∣
∣∣det

(
Ir + ΛΨ>∇G(v)Φ

)∣∣ .

Proof. We will show that the matrices in the polar decomposition of ∇H(vref) can be obtained from
the reduced SVD ∇G(vref) = ΨΛΦ>. The eigendecomposition of the Gauss-Newton Hessian can be
written in terms of the reduced SVD as

(12) ∇H(vref)
>∇H(vref) = Φ(Λ2 + Ir)Φ

> + (In − ΦΦ>),

where Ir and In are the identity matrices of size r× r and n×n, respectively. Then, we have the identity

(
∇H(vref)

>∇H(vref)
)− 1

2 = Φ(Λ2 + Ir)
− 1

2 Φ> + (In − ΦΦ>).

After some algebraic manipulation, this leads to the matrix

Q̃ =

[
Φ(Λ2 + Ir)

− 1
2 Φ> + (In − ΦΦ>)

ΨΛ(Λ2 + Ir)
− 1

2 Φ>

]
,

7



and hence we have

Q̃>H(v) =
[
Φ(Λ2 + Ir)

− 1
2 Φ> + (In − ΦΦ>)

]
v + ΦΛ(Λ2 + Ir)

− 1
2 Ψ>G(v)

= Φ
[
(Λ2 + Ir)

− 1
2

(
Φ>v + ΛΨ>G(v)

)]
+ (In − ΦΦ>) v.(13)

Thus the nonlinear system Q̃>H(v) = ξ can be rewritten in the form (9). Replacing Q with Q̃ in the
weighting function w(v) (8), we have

w(v) =
∣∣∣det

(
Q̃>∇H(v)

)∣∣∣
−1

exp

(
−1

2
‖H(v)‖2 +

1

2

∥∥∥Q̃>H(v)
∥∥∥

2
)
.

Since the matrix Φ has orthonormal columns, ΦΦ> and In − ΦΦ> are orthogonal projectors. This leads
to the identities

‖H(v)‖2 = ‖v‖2 + ‖G(v)‖2 =
∥∥(In − ΦΦ>)v

∥∥2
+
∥∥Φ>v

∥∥2
+ ‖G(v)‖2 ,

∥∥∥Q̃>H(v)
∥∥∥

2

=
∥∥(In − ΦΦ>)v

∥∥2
+
∥∥∥(Λ2 + Ir)

− 1
2

(
Φ>v + ΛΨ>G(v)

)∥∥∥
2

,

by the definition of H(v) in (2) and the definition of Q̃>H(v) in (13). Substituting the above identities
into w(v), we obtain the result in (10). Using (13), we obtain the linearization

Q̃>∇H(v) = I + Φ
[
(Λ2 + Ir)

− 1
2 Φ> − Φ> + Λ(Λ2 + Ir)

− 1
2 Ψ>∇G(v)

]
.

Hence, the determinant term is given by
∣∣∣det

(
Q̃>∇H(v)

)∣∣∣ =
∣∣∣det

(
I + Φ

[
(Λ2 + Ir)

− 1
2 Φ> − Φ> + Λ(Λ2 + Ir)

− 1
2 Ψ>∇G(v)

])∣∣∣

=
∣∣∣det

(
Ir +

[
(Λ2 + Ir)

− 1
2 Φ> − Φ> + Λ(Λ2 + Ir)

− 1
2 Ψ>∇G(v)

]
Φ
)∣∣∣

=
∣∣∣det(Λ2 + Ir)

− 1
2

∣∣∣
∣∣det

(
Ir + ΛΨ>∇G(v)Φ

)∣∣ ,

where in the second line above we use Sylvester’s determinant identity. This concludes the proof.

Remark 4. For high dimensional problems, it is not feasible to explicitly construct the linearized
forward model ∇G(v). Instead, one should use matrix-free solvers such as Lanczos or randomized SVD
(see [23, 24] and references therein) to compute the SVD of ∇G(v). This only involves evaluating matrix-
vector products (MVPs) with ∇G(v) and its adjoint.

Equation (9) separates ξ into two parts: one in the column space of Φ and another in its orthogonal
complement. Defining

vr = Φ>v, and v = Φvr + v⊥,

where v⊥ is an element in the orthogonal complement of range(Φ), we can solve the nonlinear system of
equations (9) by first computing

(14) v⊥ = (In − ΦΦ>) ξ,

and then solving the r–dimensional optimization problem

(15) vr = arg min
v′r

∥∥∥(Λ2 + Ir)
− 1

2

(
v′r + ΛΨ>G (v⊥ + Φv′r)− Φ>ξ

)∥∥∥
2

.

Equations (14) and (15) replace the n–dimensional optimization problem in (5). Note that at each given
v = v⊥ + Φvr, the vector-valued function within the 2-norm in (15) has the linearization

(16) (Λ2 + Ir)
− 1

2

(
Ir + ΛΨ>∇G(v)Φ

)
,

w.r.t. the reduced-dimensional parameter vr. MVPs with the linearization (16) and its adjoint are needed
by nonlinear optimization algorithms, e.g., quasi-Newton with line search or trust region with inexact
Newton–CG [34], to solve (15). The scalable implementation of RTO is outlined in Algorithm 2.
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Algorithm 2 Scalable implementation of RTO–MH

1: Find vref using (3).
2: Determine the Jacobian matrix of the forward model, ∇G(vref).
3: Compute Ψ, Λ and Φ, which is the SVD of ∇G(vref).
4: for i = 1, . . . , nsamps do in parallel
5: Sample ξ(i) from an n–dimensional standard normal distribution.

6: Solve for a proposal sample v
(i)
prop = v⊥ + Φvr using (14) and (15).

7: Compute w(v
(i)
prop) from (10) using the determinant from (11).

8: Set v(0) = vref .
9: for i = 1, . . . , nsamps do in series

10: Sample t from a uniform distribution on [0,1].

11: if t < w(v
(i)
prop)

/
w(v(i−1)) then

12: v(i) = v
(i)
prop.

13: else
14: v(i) = v(i−1).

3.2. Computational complexity and rank truncation. The computational cost of the scalable
RTO implementation derived above has two major sources. First, producing each RTO sample requires
several optimization iterations. Each optimization iteration may evaluate the RTO objective function
in (15), and MVPs with the linearization (16) and its adjoint, several times. These operations require
evaluating the forward model, the actions of the linearized forward model and its adjoint, and the actions
of the matrices Φ and Ψ several times. Second, for each RTO sample, we need to evaluate the determinant
in (11) once to compute the weighting function. This in turn involves evaluating r MVPs with ∇G(v)
and computing the determinant of a r × r matrix.

The following proposition summarizes the computational complexity of the operations involved in
Algorithm 2.

Proposition 5. We adopt the following assumptions on the computation of each RTO sample to
establish the computational complexity of the scalable implementation of RTO.

1. On average, kopt optimization iterations are needed to obtain each RTO sample. On average,
kobj objective function evaluations and kadj MVPs with the linearization (16) and its adjoint are
needed within each optimization iteration.

2. The number of floating point operations required to evaluate the forward model G(v) is a function
of the dimension of the discretized parameters, denoted by C1(n).

3. The number of floating point operations required to compute an MVP with the linearized forward
model ∇G(v) and its adjoint is a function of the dimension of the discretized parameters, denoted
by C2(n).

4. The data dimension is less than the parameter dimension, i.e., m < n.
Then, counting the floating point operations needed to evaluate the objective function (15) and the action
of the linearization (16), the number of floating point operations needed for each optimization iteration is

O
(
(kobj + kadj)(mr + n r)

)
+ kobj C1(n) + kadj C2(n).

The number of floating point operations needed to evaluate the determinant in (11) is O(mr2 + r3) +
r C2(n). Thus, a total of

O
(
kopt (kobj + kadj)(mr + n r) +mr2 + r3

)
+ kopt kobj C1(n) + (kopt kadj + r)C2(n),

floating point operations are needed to compute one RTO sample, where the big–O term above refers to
the total linear algebra cost, and the other terms refer to the total cost of evaluating G(v) and the actions
of ∇G(v).
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Without loss of generality, the dimension n of the parameters is often proportional to the number of
degrees of freedom of the discretized forward model, and thus the functions C1(n) and C2(n) are often
linear or quasilinear for scalable forward solvers, e.g., full multigrid solvers or preconditioned Krylov
solvers. In this case, the computational complexity of each optimization iteration is dictated by the cost
of solving the forward model and evaluating actions with its linearization. Similarly, the computational
complexity of evaluating the determinant in (11) is dictated by the cost of the MVP with the linearized
forward model. In contrast, without subspace acceleration, the complexity of computing the original
objective function in (5) is quadratic in n, the complexity of computing the action of the linearization
Q>∇H(v) is also quadratic in n, and the complexity of computing the determinant in the weighting
function (8) is cubic in n, since a dense matrix Q ∈ R(m+n)×n is involved. The cost of operating with
the matrix Q will thus dominate the overall computational cost of standard RTO for high-dimensional
problems. Subspace acceleration therefore significantly reduces the computational complexity of mini-
mizing the RTO objective and calculating the determinant for each proposal. In addition, the size of the
optimization problem in (15) is also reduced to the intrinsic rank r.

Rank truncation. For many inverse problems, the singular values of ∇G(vref) decay quickly, as a
consequence of a smoothing forward operator, noisy observations, and the correlation structure of the
prior (where some smoothness is necessary to make the Bayesian inverse problem well-posed [44]). This
fact is often used to reduce the parameter dimension of inverse problems by truncating the equivalent
eigendecomposition (12) (cf. [6, 19, 43]), and hence to accelerate Markov chain Monte Carlo algorithms
[15, 16, 30] and to approximate posterior distributions [6, 19, 17, 48].

Using intuition derived from optimal posterior approximations in linear Bayesian inverse problems
[43], we can derive heuristics for truncating the SVD in scalable RTO. This can be particular useful for
cases where data is abundant, i.e., when y ∈ Rm is a large vector. Suppose we have a linear inverse prob-
lem, that is, G(v) = Gv and H(v) = Hv. Computing the reduced SVD ∇G(v) ≡ G = ΨΛΦ>, the inverse
of the posterior covariance is given by the Gauss-Newton Hessian, which has the eigendecomposition1

∇H(vref)
>∇H(vref) = Φ(Λ2 + Ir)Φ

> + (In − ΦΦ>).

The subspace spanned by Φ contains the parameter directions where the posterior differs from the prior,
since the prior (on the whitened variable v) has identity covariance matrix In. A small singular value
λi implies that, along the corresponding right singular vector φi, the variance reduction from prior to
posterior is small; in particular, the ratio of posterior to prior variance is nearly one [43]. We can thus
neglect parameter directions corresponding to small singular values by truncating the SVD of ∇G(vref).
Suppose that the truncation rank is t < r; this leads to an approximate eigendecomposition in the form
of

(17) ∇H(vref)
>∇H(vref) ≈ Φt(Λ

2
t + It)Φ

>
t + (In − Φt Φ>t ),

where Φt ∈ Rn×t and Λt ∈ Rt×t consist of the leading t right singular vectors and singular values,
respectively. In the linear case, the RTO proposal is a Gaussian distribution with the covariance matrix
given by the inverse of the truncated approximation in (17); this result directly follows from (13). As
shown in [43], the inverse of the approximation in (17) is also an optimal approximation to the posterior
covariance with respect to the natural (geodesic) distance on the manifold of symmetric positive definite
matrices. In this situation, truncating the SVD of ∇G(vref) for singular values that are smaller than one,
e.g., 10−2 or 10−3, yields negligible impact on the RTO proposal.

In nonlinear settings, we can adopt the same truncation strategy as a heuristic. The truncation
will change RTO’s map (9) and the resulting proposal distribution. Figure 2 shows the effect on RTO’s
proposal of truncating the SVD, in a toy example with a nonlinear forward model and a standard
normal prior. Truncation restricts the role of the data misfit term in the construction of the proposal
distribution. As the rank r decreases, the proposal distribution becomes broader. In the extreme case,

1The linearization ∇H(v) does not depend on v for linear inverse problems. We use this notation for consistency with
the nonlinear case.
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when r is truncated to zero, RTO’s proposal reverts to the prior. Note, however, the non-Gaussianity
of the RTO proposal for r ≥ 1 in this nonlinear example. We will evaluate the impact of truncation on
MCMC sampling efficiency in subsequent numerical examples.
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(a) Rank = 2
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(b) Rank = 1
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Fig. 2: Truncating the SVD in a two-dimensional toy example with a nonlinear forward model and
standard normal prior. Top: contours of the prior, posterior and RTO’s proposal density. Bottom:
contours of the prior and posterior densities, and samples from RTO’s proposal.

4. RTO on function space. The scalable implementation presented in Section 3 ensures that the
computational cost of generating each RTO sample is dictated by the cost of evaluating the forward
model and the adjoint model. When applying RTO as an independent proposal in the MH algorithm, or
as the biasing distribution in self-normalised importance sampling, it is also critical to understand how its
statistical performance (for instance, as measured by the acceptance rate of independence MH) depends
on the dimension of the discretized parameters. To this end, we adopt the function space framework of
[44] to analyze the RTO proposal. We will focus on the case of applying RTO within MCMC, though the
analysis can easily be adapted to importance sampling. In this section, we will first provide background
on MCMC in the function space setting, then interpret RTO’s mapping in function space, and conclude
by establishing sufficient conditions such that the statistical performance of RTO is invariant to the
dimension of discretised parameters.

4.1. Function space MCMC. To be aligned with the framework of [44], we will consider the
target distribution on the original parameter u (rather than the “whitened” parameter v), in a function
space setting. To preserve interpretability, we will use the same notation in the function space setting as
we do in the finite dimensional setting to represent the parameters, prior mean, and prior covariance. One
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exception is that we will use Γ
1/2
pr to denote the symmetric square root of the prior covariance operator,

which is equivalent to any square root of the prior covariance up to a rotation.
We suppose that the parameter u is an element of a separable Hilbert space H, endowed with a

Gaussian prior measure µpr such that the prior covariance Γpr is a self-adjoint, positive definite, and
trace-class operator on H. The inner product on H is denoted by 〈· , ·〉H, with the associated norm
denoted by ‖ · ‖H. For brevity, where misinterpretation is not possible, we will drop the subscript H.
We assume that the data y remain finite dimensional, i.e., y ∈ Rm, Γobs ∈ Rm×m, and F : H → Rm for
m <∞. This way, the target probability measure is expressed by the Radon-Nikodym derivative

dµtar

dµpr
(u) ∝ exp

(
− 1

2
(y − F (u))>Γ−1

obs(y − F (u))
)
,

with respect to the the prior measure. The Metropolis–Hastings algorithm defines a Markov chain of
random functions, asymptotically distributed according to the target measure, in the following way:
Given the current state of the Markov chain, U (k) = u, a candidate state u′ is drawn from a proposal
q(u, ·). Define the following pair of measures on H×H:

(18)
ν(du, du′) = q(u, du′)µtar(du)

ν⊥(du, du′) = q(u′, du)µtar(du
′).

Then, the next state of the Markov chain is set to U (k+1) = u′ with probability

(19) α(u, u′) = min
{

1,
dν⊥

dν
(u, u′)

}
,

and to U (k+1) = u otherwise.
For a continuously differentiable (as in Assumption 1) and sufficiently bounded (as defined in As-

sumption 2.7 of [44]) forward model F , [44] shows that the target measure is dominated by the prior
measure. As a result, refinements of the corresponding finite-dimensional target measure (induced by
refinements of the parameter discretization) will converge to an infinite-dimensional limit. To make the
acceptance probability of MH then invariant to parameter discretization, i.e., convergent to some posi-
tive infinite-dimensional limit and hence yielding a valid transition kernel [45], we require the absolute
continuity condition ν⊥ � ν. We will refer to a MH algorithm as well-defined if this absolute continuity
condition holds. Note that many Markov chain Monte Carlo methods designed for finite dimensional
problems may not be well-defined on H—they may have vanishing acceptance probability and vanishing
effective sample size with increasing parameter discretization dimension [40, 41]. For example, the accep-
tance probability of an MH algorithm using the standard random walk proposal scales as O(n−1) with
parameter dimension, and thus it is not suitable for high-dimensional problems. We aim to show that
MH with an RTO proposal is well-defined on H.

4.2. RTO mapping in function space. Recall that the Cameron–Martin space associated with

the prior measure µpr, HCM = Γ
1/2
pr H ⊂ H, is equipped with the inner product

〈a, b〉HCM
:= 〈a, b〉Γ−1

pr
=
〈

Γ
− 1

2
pr a,Γ

− 1
2

pr b
〉
,

for any a, b ∈ HCM. Here we will show that a sample generated by the RTO mapping is a modification
of a random function drawn from the prior measure along a finite dimensional subspace of the Cameron–
Martin space.

We first consider the properties of the rank-r reduced SVD of the linearized forward model∇G(vref) =
ΨΛΦ> in the function space setting. The right singular vectors φ1, φ2, . . . , φr are also eigenfunctions of
the eigenvalue problem

∇G(vref)
\∇G(vref)φi = λiφi, i = 1, . . . , r,
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where ∇G(vref)
\ denotes the adjoint of the operator ∇G(vref). Recalling the whitening transform intro-

duced in Section 2.1, we have

∇G(vref)
\∇G(vref) = Γ

1
2
pr∇F (uref)

\
Γ−1

obs∇F (uref) Γ
1
2
pr,

where ∇F : H → Rm is the Fréchet derivative of the forward model and ∇F (uref)
\

is its adjoint. Defining
a new set of functions

(20) χi = Γ1/2
pr φi,

we also have an equivalent eigenvalue problem

Γpr∇F (uref)
\
Γ−1

obs∇F (uref) χi = λ2
iχi, i = 1, . . . , r.

Since the operator ∇F (uref)
\
Γ−1

obs∇F (uref) is self-adjoint and has finite rank r ≤ m in the case of finite-
dimensional data (m <∞), we have that the eigenfunctions χi ∈ ΓprH and that the right singular vectors

φi ∈ Γ
1/2
pr H, for i = 1, . . . , r.

Remark 6. Both {χ1, χ2, . . . , χr} and {φ1, φ2, . . . , φr} span finite dimensional subspaces in the
Cameron–Martin space. The basis functions {φ1, φ2, . . . , φr} are orthogonal with respect to the inner
product 〈·, ·〉, whereas the basis functions {χ1, χ2, . . . , χr} are orthogonal with respect to the Cameron–
Martin inner product 〈·, ·〉Γ−1

pr
.

In Figure 3, we specify the relationship between four random variables: u, ζ ∈ H, and v, ξ ∈ Γ
− 1

2
pr H,

where ζ is a newly defined random variable distributed according to the prior. Here we use u and
v to denote random variables distributed according to the unwhitened and whitened RTO measures,
respectively, rather than the corresponding target measures. This way, we have the identity

〈v, φi〉 = 〈Γ−
1
2

pr (u−mpr),Γ
− 1

2
pr χi〉 = 〈u−mpr, χi〉Γ−1

pr
,

for any v ∈ Γ
− 1

2
pr H and any right singular vector φi ∈ Γ

1/2
pr H.

u v ξ ζ
v = Γ

−1/2
pr (u−mpr) Q̃>H(v) = ξ ζ = Γ

−1/2
pr ξ +mpr

∼ πRTO(u)
unwhitened proposal

∼ q(v)
whitened proposal

∼ N(0, I)
whitened reference

∼ N(mpr,Γpr)
prior

Fig. 3: Relationship between four random variables, u, ζ ∈ H, v, ξ ∈ Γ
− 1

2
pr H.

Given the basis functions {χ1, χ2, . . . , χr}, we introduce a linear map R : H → Rr whose components
are

Ri(u) = 〈u, χi〉Γ−1
pr
, i = 1, . . . , r,

and a projector P : H → span{χ1, χ2, . . . , χr} specified as

Pu =

r∑

i=1

χiRi(u).

For a random function ζ ∈ H drawn from the prior measure, we can then express the RTO mapping (9)
in the unwhitened coordinates:

(21)

{
(I− P )(ζ −mpr) = (I− P )(u−mpr)

P (ζ −mpr) = X
[
(Λ2 + I)−

1
2

(
R(u−mpr) + ΛΨ>S−1

obs(F (u)− y)
)]
,
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whereX = [χ1, χ2, . . . , χr]. Analogous to the splitting of the RTO solution in the scalable implementation,
we define

(22) ur = R(u−mpr), and u = Xur + u⊥ +mpr,

and projected random variables

(23) ζr = R(ζ −mpr), and ζ⊥ = (I− P )(ζ −mpr),

where u⊥ and ζ⊥ are elements of the complement of range(X). Then, we can solve the nonlinear system
of equations (21) by first letting u⊥ = ζ⊥ and then solving the r–dimensional system of equations

(24) Θ(ur;u⊥) = ζr,

for a given u⊥, where the function

(25) Θ(ur;u⊥) = (Λ2 + I)−
1
2

[
ur + ΛΨ>S−1

obs(F (Xur + u⊥ +mpr)− y)
]
,

is an affine transformation of the nonlinear forward model F .

Remark 7. For problems with finite dimensional data, the RTO mapping necessarily modifies a
random function drawn from the prior measure only in the finite dimensional subspace spanned by
{χ1, χ2, . . . , χr}, which is a subspace of the Cameron–Martin space. This is well aligned with the nature
of function space inverse problems, where the update from the prior to the posterior is expected to take
place in the Cameron–Martin space. Other accelerations of function space MCMC, e.g., [15, 42], adopt
similar approaches to modify their algorithms in some finite dimensional subspace of the Cameron–Martin
space. For problems with functional (infinite-dimensional) data, as long as the equivalence between the
target measure and the prior measure can be established, one can truncate the SVD and apply RTO as in
the finite data case. Such a truncation can also be the key to managing overall computational complexity.

4.3. Well-definedness of RTO on function space. We will first prove that, under certain con-
ditions, the RTO measure πRTO is equivalent to the prior µpr. Under these conditions, we can then show
that RTO is well defined on H.

Theorem 8. Let ζ be a random variable distributed according to the prior measure µpr, u be the
random variable defined through the mapping in (21), and µRTO be the measure induced by u. Denote the
subspace span(χ1, χ2, . . . , χr) and its complement by W and W⊥, respectively. Without loss of generality,
let the prior mean be zero. Suppose that for all a ∈ Rr and b ∈W⊥, the mapping

a 7→ a+ ΛΨ>S−1
obsF (Xa+ b),

is Lipschitz continuous, injective, and its inverse is Lipschitz continuous. Then, the RTO measure µRTO

is equivalent to the prior µpr.

Proof. In this proof only, we will employ the probability triplet (Ω,F ,P) and describe the random
function formally as the map u : Ω→ H. We assume that the measurable space (Ω,F) is a Radon space.
The four random variables in (22)–(24) can be defined as

ζr : Ω→ Rr, ur : Ω→ Rr, ζ⊥ : Ω→W⊥, u⊥ : Ω→W⊥.

We use B(·) to denote the Borel algebra. Let the notation Pu denote the push-forward measure of P
through the mapping u

Pu := u]P = P
(
u−1(·)

)
= P (u ∈ · ) .

Using this notation, we have µpr = Pζ and µRTO = Pu.
Since, under the mapping (21), the infinite dimensional random variables ζ⊥ and u⊥ take the same

value, we use the regular conditional probability ν : W⊥ ×F → [0, 1] of the form

ν : (b, A)→ ν(b, A) = P (u ∈ A |u⊥ = b) , ∀A ∈ F , ∀b ∈W⊥,
14



to analyze the RTO measure. For any A ∈ B(H) and b ∈W⊥, we define the set

Ar(b) := {a ∈ Rr |Xa+ b ∈ A}.

Then, for any A ∈ B(H), the RTO measure can be expressed in a conditional form

Pu(A) = P
(
{u ∈ A} ∩ {u⊥ ∈W⊥}

)
=

∫

W⊥
P (u ∈ A |u⊥ = b)Pu⊥(db).

Given a fixed b ∈W⊥, RTO solves the equation Θ(ur; b) = ζr, and thus we have

P (u ∈ A |u⊥ = b) = P (ur ∈ Ar(b) |u⊥ = b) = P (ζr ∈ Θ(Ar(b); b) | ζ⊥ = b) = ν
(
b, ζ−1

r ◦Θ(Ar(b); b)
)
.

This way, the RTO measure can be expressed in terms of the measure Pu⊥ = Pζ⊥ and the conditional
measure ν

(
b, ζ−1

r (·)
)
. This leads to

(26) Pu(A) =

∫

W⊥
ν
(
b, ζ−1

r ◦Θ(Ar(b); b)
)
Pζ⊥(db).

The conditional measure ν
(
b, ζ−1

r (·)
)

= P(ζr ∈ · | ζ⊥ = b) is the measure of a finite number of direc-
tions, ζr, of the prior conditioned on a particular value, ζ⊥ = b. Since the basis functions {χ1, χ2, . . . , χr}
are orthogonal with respect to the Cameron–Martin inner product 〈·, ·〉Γ−1

pr
, the two random variables ζr

and ζ⊥ are independent (see Proposition 1.26 of [39]). Hence, the conditional measure ν
(
b, ζ−1

r (·)
)

is
equivalent to the law of ζr. Let πζr denote its probability density function. Then, we have

ν
(
b, ζ−1

r ◦Θ(Ar(b); b)
)

=

∫

Θ(Ar(b);b)

πζr (a)da

=

∫

Ar(b)

πζr ◦Θ(a; b) |det∇Θ(a; b)|da

=

∫

Ar(b)

πζr ◦Θ(a; b)

πζr (a)
|det∇Θ(a; b)| πζr (a) da

=

∫

Ar(b)

πζr ◦Θ(a; b)

πζr (a)
|det∇Θ(a; b)| ν

(
b, ζ−1

r (da)
)
.(27)

The change of variables in the above expression uses the fact that Θ( · ; b) is Lipschitz continuous and
injective, and that its inverse is Lipschitz continuous. Note that for almost all b ∈ W⊥ and a ∈ Rr, the
expression

R(a; b) :=
πζr ◦Θ(a; b)

πζr (a)
|det∇Θ(a; b)| ,

is positive. Substituting (27) into (26) and using the change of variables b = (I− P )z and a = R(z) for
any z ∈ H, we obtain the RTO measure in the form

(28) Pu(A) =

∫

W⊥

∫

Ar(b)

R(a; b) ν
(
b, ζ−1

r (da)
)
Pζ⊥(db) =

∫

A

R
(
R(z); (I− P )z

)
Pζ(dz).

Therefore, the Radon–Nikodym derivative of the RTO measure with respect to the prior measure

dµRTO

dµpr
(u) = R

(
R(z); (I− P )z

)
,

is positive almost everywhere. This implies that µRTO is equivalent to µpr.

Theorem 8 implies that the MH algorithm using RTO as its independence proposal yields dimension-
independent performance in the function space setting. We formalize this notion in the following theorem.
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Theorem 9. Suppose that the target measure µtar is equivalent to the prior measure µpr, i.e., µtar ∼
µpr. Under the assumptions of Theorem 8, the acceptance probability of the MH algorithm using RTO as
its independence proposal is positive almost surely with respect to µpr × µpr.

Proof. Following the result of Theorem 8 and the condition µpr ∼ µtar, the Radon–Nikodym deriva-
tive of the target measure with respect to the RTO measure

ω(u) =
dµtar

dµRTO
(u),

is µpr–almost surely positive. The rest of the proof is a special case of Theorem 5.1 in [44]. Since RTO
is an independent proposal, the resulting MH proposal measure becomes q(u,du′) = µRTO(du′), and the
pair of transition measures of MH become

ν(du,du′) = µRTO(du′)µtar(du)

ν⊥(du,du′) = µRTO(du)µtar(du
′),

This way, the acceptance probability can be expressed as

α(u, u′) = min

(
1,

dµtar

dµRTO
(u′)

/ dµtar

dµRTO
(u)

)
= min

(
1,
ω(u′)

ω(u)

)
.

Because ω(u) is positive µpr–almost surely, the acceptance probability α(u, u′) is positive µpr×µpr–almost
surely.

RTO–MH is therefore well-defined in a function-space setting, under the conditions in Theorem 8.
Thus refining the parameter discretization in a discrete setting should not diminish RTO–MH’s sampling
efficiency. Note that the Radon–Nikodym derivative ω(u) is also the importance ratio used in self-
normalized importance sampling. Ensuring that ω(u) is positive (almost surely) can make the effective
sample size of the self-normalized importance sampling estimator invariant to the discretized parameter
dimension; see [1] and references therein for formal justifications.

5. Example 1: 1D elliptic PDE. The previous section provided a theoretical argument for RTO’s
dimension independence. This section numerically explores the factors that influence its sampling perfor-
mance, using a simple one-dimensional elliptic PDE inverse problem. We describe the setup of the test
case (Section 5.1) and then explore the effects of parameter dimension (Section 5.2) and observational
noise (Section 5.3). We conclude by comparing the performances of RTO and pCN (Section 5.4).

5.1. Problem setup. The diffusion equation is used to model the spatial distribution of many
physical quantities, such as temperature, electrostatic potential, or pressure in porous media. We consider
the following stationary diffusion equation,

− d

dx

(
κ(x)

dp

dx
(x)

)
= f(x), 0 < x < 1,

with boundary conditions

κ(0)
dp

dx
(0) = −1, p(1) = 1,

and source term f . The diffusion coefficient κ is endowed with a log-normal prior distribution. In
particular, log κ is a Gaussian process with a Laplace-like differential operator as its precision operator.
After discretization on a uniform grid with n nodes, κ is thus specified as

κ = 1.5 exp
(
Sprv

)
+ 0.1 S−1

pr =
√
n




√
n

√
n

−1 1
−1 1

. . .

−1 1
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where v ∈ Rn is a vector of independent standard normals and we have abused notation so that κ ∈ Rn
immediately above as well. For any realization of κ, the equation is solved numerically using finite
differences with the three point central difference stencil. Derivatives of the potential field p with respect
to κ are evaluated using the matrix-free adjoint model. In this setting, the dimension of discretized
parameters is the same as the degrees of freedom in the forward model. Computing Sprv, solving the
forward model, and solving the adjoint model (for one matrix-vector product with the Jacobian) all
require O(n) floating point operations.

For the inverse problem, we suppose that the potential field is observed, with additive Gaussian noise,
at nine equally-spaced points along the domain. Our goal is to condition the field κ on these observations.
We generate synthetic data using a mesh size of 151, which does not correspond to any mesh size used
in solving the inverse problem, avoiding an inverse crime. The “true” diffusion coefficient, source term,
potential field, and data are depicted in Figure 4.
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(a) “True” diffusion coefficient
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(b) Source term

0 0.5 1
1

1.2

1.4

1.6

(c) Potential field (line) and observational
data (x’s)

Fig. 4: Elliptic PDE problem setup.

5.2. Influence of parameter dimension. In our first experiment, we solve the Bayesian inverse
problem using RTO for a series of parameter dimensions ranging from n = 41 to n = 10241. We fix
the observational noise standard deviation to 10−5 and, at each parameter dimension, run an MCMC
chain of 5000 steps. The chains are started at the posterior mode. As shown in Figure 5, the posterior
distributions obtained for the different discretizations match quite closely. As shown in Table 1, the
acceptance rate and effective sample size (ESS) are both high and essentially constant with respect to
parameter dimension. (We report the median ESS over all components of the n-dimensional chain.)
These results provide an empirical demonstration of RTO’s dimension independence, meaning that the
number of MCMC steps required to obtain a single effectively independent sample is independent of n.

The number of optimization iterations in each MCMC step is also roughly constant in n. To solve each
optimization problem, we use the nonlinear least-squares solver in MATLAB, provided with Jacobian-
vector products. The solver uses a trust-region-reflective algorithm where each iteration approximately
solves a large linear system using preconditioned conjugate gradients. We set the starting point for each
sequence of optimization iterations to the posterior mode. The primary stopping criterion is a function
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tolerance (i.e., a lower bound on the change in the value of the objective) of 10−6, which is below the
level of discretization error.
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Fig. 5: Summary statistics of posterior distributions computed via RTO-MH with varying parameter
dimension n. 90% marginal credibility intervals (blue shaded region), true diffusivity coefficient (red
line), and MAP estimate (yellow line).

Table 1: Effective sample size (ESS), average acceptance rate, and average number of optimization
iterations per step of RTO, with varying parameter dimension. MCMC chain length is 5000 steps.

Parameter Dim. 41 81 161 321 641 1281 2561 5121 10241

ESS 4268.9 4206.7 4307.1 4343.5 4544.8 4464.5 4523.3 4484.9 4532.2
Acceptance Rate 0.928 0.926 0.932 0.936 0.948 0.950 0.954 0.950 0.953
Opt. Iterations 170.74 209.12 273.03 324.04 357.76 307.50 198.81 165.06 142.25

Figure 6 shows the CPU times needed to generate one effectively independent sample, to take gen-
erate one RTO sample, and to evaluate the forward model once. All three lines suggest that the CPU
times increases linearly with the discretized parameter dimension. This confirms our analysis of the
computational complexity of RTO in Proposition 5—in this example, the computational complexities of
both the forward model and the RTO map are linear. It also implies that it takes the same number
of MCMC steps to obtain a desired accuracy regardless of the discretized parameter dimension. This
confirms our finding in Section 4. We also report the CPU time for the standard RTO (with a dense
matrix Q ∈ R(m+n)×n) to generate one sample (red line in Figure 6). In this example, we observe that
the computational complexity of the standard RTO is quadratic with the parameter dimension.
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Fig. 6: Computational cost for elements of RTO, varying parameter dimension.

5.3. Influence of observational noise. In our second experiment, we examine the effect of obser-
vational noise magnitude on the sampling efficiency of RTO. We fix the parameter dimension to n = 641
and scan through observational noise standard deviations ranging from 10−7 to 100, which correspond
to signal-to-noise ratios ranging from 1.5× 107 to 1.5. Once again we run MCMC chains of length 5000.
Changing the observational noise magnitude changes the posterior distribution, as shown in Figure 7.
With extremely small observational noise, the probability mass of the posterior concentrates on the man-
ifold where the parameter values yield outputs that exactly match the data. Generally, this collapse
makes the posterior more difficult to simulate using most MCMC methods. In the case of RTO, it makes
the optimization problems harder to solve. As shown in Table 2, even though the ESS and acceptance
rate remain relatively constant with varying observational noise, the number of optimization iterations
required to obtain each sample increases as the observational noise becomes very small. Thus, as the
observational noise shrinks, more function evaluations are required for each MCMC step. This behavior
is also illustrated in Figure 8, where the CPU time for a single function evaluation is constant, but the
time for one MCMC step and for one independent sample increases.

Of course, the number of optimization iterations at each step depends on the choice of stopping
tolerance. In these experiments, we fix the function tolerance (see §5.2) to 10−6. However, the forward
model and the observed data enter the RTO objective function through the whitening transform (cf.
Section 2.1). This implicitly normalizes the observational noise by the standard deviation. This way,
a fixed tolerance implicitly imposes an increasingly stringent condition for smaller observational noise,
which explains the higher number of function evaluations required. Overall, though, these results suggest
that RTO can be applied to inverse problems with extremely small observational noise provided that
solving the optimization problems remains tractable.

Table 2: Effective sample size (ESS), average acceptance rate, and average number of optimization
iterations per step for RTO, for varying observational noise magnitude. Chain length of 5000.

Noise std deviation 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101

Numerical ESS 4504.8 4427.4 4349.9 4423.0 4415.1 4187.2 4317.7 4476.9 5000.0
Acceptance Rate 0.946 0.944 0.941 0.945 0.935 0.924 0.939 0.959 0.999
Opt. Iterations 567.64 495.41 363.71 296.55 89.07 8.32 5.70 4.70 3.31
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Fig. 7: Summary statistics of posterior distributions computed via RTO-MH with varying observational
noise σ. 90% marginal credibility intervals (blue shaded region), true diffusivity coefficient (red line), and
MAP estimate (yellow line).
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5.4. Comparing RTO with pCN. In our third experiment, we compare the computational effi-
ciency of RTO and pCN [14]. The two algorithms are both dimension-independent. We fix the parameter
dimension to n = 641 and compare the algorithms’ performance on inverse problems with different obser-
vational noise standard deviations, ranging from 10−6 to 100. For pCN, we use a chain length of 5× 106

and remove the first 50% of the samples as burn-in. We manually tune the step size of pCN to obtain
the largest empirical ESS. As shown in Figure 9, the posterior marginals from pCN match those obtained
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with RTO for the two larger observational noise values. For the two smaller observational noise values,
however, pCN does not converge. In particular, examination of Figure 9 and of MCMC trace plots for
the smaller noise cases shows that the pCN chain does not travel far from its starting point. Table 3
reveals that RTO requires less computational time per independent sample in all cases, even when the
observational noise is larger. (Note that this performance metric, time per ESS, normalizes away the
impact of different chain lengths.)

In this numerical example, RTO thus outperforms pCN by a large margin. Moreover, in the two
cases with smaller observational noise, RTO is the only algorithm that produces meaningful estimates of
the posterior. In summary, we find that RTO’s sampling performance is robust to parameter dimension
and observational noise, and can be more efficient than pCN.
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Fig. 9: Summary statistics of posterior distributions computed through pCN, varying observational noise
σ. 90% credibility intervals (blue shaded region), true diffusivity coefficient (red line) and CM estimate
(yellow line). The MCMC chain does not converge for σ = 10−6 and σ = 10−4.

Table 3: Comparing computational cost for RTO and pCN.

CPU time (seconds) per ESS
Observational Noise σ RTO pCN

10−6 7.772 1.193 · 103∗

10−4 4.712 1.103 · 103∗

10−2 0.139 7.739
100 0.049 0.250

∗Estimated from a non-converged MCMC chain. Actual values may be higher.
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6. Example 2: 2D parabolic PDE. To further demonstrate the efficacy of RTO, we solve the
inverse problem of identifying the coefficient of a two-dimensional parabolic PDE from point observations
of its solution. Consider the problem domain Ω = [0, 3]× [0, 1], with boundary ∂Ω. We denote the spatial
coordinate by x = (x1, x2) ∈ Ω. We model the time-varying potential (solution) field p(x, t) for a given
conductivity (coefficient) field κ(x) and forcing function f(x, t) using the heat equation

(29)
dp(x, t)

dt
= ∇ · (κ(x)∇p(x, t)) + f(x, t), x ∈ Ω, t ∈ [0, T ],

where T = 2. Parabolic PDEs of this type are widely used in modeling groundwater flow, optical
diffusion tomography, the diffusion of thermal energy, and numerous other common scenarios for inverse
problems. Let ∂Ωn = {x ∈ ∂Ω |x2 = 0} ∪ {x ∈ ∂Ω |x2 = 1} denote the top and bottom boundaries, and
∂Ωd = {x ∈ ∂Ω |x1 = 0} ∪ {x ∈ ∂Ω |x1 = 3} denote the left and right boundaries. For t ≥ 0, we impose
the mixed boundary condition:

p(x, t) = 0,∀x ∈ ∂Ωd, and (κ(x)∇p(x, t)) · ~n(x) = 0,∀x ∈ ∂Ωn,

where ~n(x) is the outward normal vector on the boundary. We also impose a zero initial condition, i.e.,
p(x, 0) = 0,∀x ∈ Ω, and let the potential field be driven by a time-invariant forcing function

f(x, t) = c
(

exp
(
− 1

2r2
‖x− a‖2

)
− exp

(
− 1

2r2
‖x− b‖2

))
,∀t ≥ 0,

with r = 0.05, which is the superposition of two Gaussian-shaped sink/source terms centered at a =
(0.5, 0.5) and b = (2.5, 0.5), scaled by a constant c = 6× 10−4.

The conductivity field κ(x) is endowed with a log-normal prior. That is, letting u(x) = log κ(x), the
prior for u(x) takes the form N(mpr,Γpr). Here we prescribe zero prior mean, mpr = 0, and model the
inverse of the prior covariance operator using the stochastic PDE approach (see [28, 44] and references
therein):

(30) −4u(x) + γu(x) =W(x), x ∈ Ω,

where 4 is the Laplace operator and W(x) is the white noise process. We impose a no-flux boundary
condition on the above SPDE and set γ = 5.

Equations (29) and (30) are solved using the finite element method with bilinear basis functions. A
mesh with 120 × 40 elements is used in this example. This leads to n = 4800 dimensional discretised
parameters. The “true” conductivity field used for generating observed data is a realization from the
prior distribution. The true conductivity field and the simulated potential field at different times are
shown in Figure 10(a)–(c). The potential field is observed at 13 discrete locations (shown as dots in
Figure 10(a)) at 20 discrete time points equally spaced between t = 0.1 and t = 2. We set the standard
derivation of the observation noise to σ = 3× 10−7, which corresponds to a signal-to-noise ratio of about
10. In the inverse problem, we use this m = 260 dimensional vector of data to estimate the conductivity
field κ(x).

The forward model is linearized at the MAP point. As shown in Figure 10(d), we observe a sharp
decay in the singular values of the linearized model, with these values dropping below machine precision
after rank 130. We truncate the singular values at thresholds τ = 1, 10−2, and 10−4 to define three
different RTO proposals. Then, using each RTO proposal, we generate 2500 samples to characterize the
posterior using a Metropolis independence sampler (i.e., RTO-MH). The rank of the truncated SVD,
statistics about the computation of each RTO sample, and effective sample size are reported in Table
4 for each truncation threshold. Note that all the truncated ranks are significantly smaller than the
parameter dimension n = 4800.

Here, we observe that with a rather large truncation threshold (τ = 1), we obtain a significantly
lower ESS than with the other two truncation thresholds. This behavior agrees with the heuristics
discussed in Section 3.2: if one truncates the SVD more aggressively, the RTO proposal gets closer to

22



 

0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

-4

-2

0

2

4

(a) “True” conductivity field. The observation locations
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Fig. 10: Setup of the parabolic inversion example.

the prior. Thus, it is expected that this RTO proposal will have lower statistical performance than an
RTO proposal obtained with smaller τ (e.g., 10−2). Once the truncation threshold is sufficiently small,
however, we do not gain additional statistical performance by allowing more modes; compare the ESS at
τ = 10−2 to that at τ = 10−4. This behavior is also in accordance with the truncation strategies and
interpretation of the singular values discussed in Section 3.2. Regarding the computational performance,
we observe that more optimization iterations and longer CPU times are needed to obtain one RTO
sample (on average) with the truncation threshold τ = 1 than with the smaller truncation thresholds.
We attribute this behavior to fact that the truncated proposal does not constrain the parameter value in
directions complementary to the range of Φ, and thus the optimization iterations may need to navigate
through the tails of the posterior. For truncation thresholds 10−2 and 10−4, the difference in the number
of optimization iterations is insignificant. Overall, the truncation threshold of τ ≈ 10−2 suggested in
Section 3.2 appears to be a reasonable choice in this example.

Table 4: Rank of the truncated SVD, average number of forward model evaluations, average number of
MVPs with the linearized forward model and its adjoint, average number of optimization iterations per
RTO sample, average CPU time per RTO sample, and ESS; all for varying SVD truncation thresholds.
Chain length of 2500.

Truncation threshold 1 10−2 10−4

Rank 15 39 57
Number of evaluations of G(v) 18.8 12 12.4
Number of MVPs with ∇G(v) 321.6 235.6 258.4
Optimization iterations per sample 17.8 11 11.4
CPU time (sec) per sample 354 257 283
Numerical ESS (out of 2500) 292 1140 1130

Two posterior samples and some summary statistics of the posterior, computed using RTO-MH with
the truncation threshold τ = 10−2, are shown in Figure 11. We observe that the posterior samples and
the posterior mean demonstrate similar structure to the “true” conductivity field used to generate the
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synthetic data set. We also observe that the posterior standard deviation of the conductivity field is low
in regions near the observation locations. In comparison, the posterior standard deviation is relatively
high in regions near the boundary and between clusters of observation locations, where the observed data
do not provide sufficient information to infer parameters.

We also attempted to compare RTO with pCN in this example. However, because of the rather
informative data, pCN fails to produce an ergodic chain in a comparable amount of CPU time. An
additional, but important, implementation note is that we generated RTO samples and evaluated the
corresponding weighting functions (10) in parallel, and then quickly postprocessed the RTO samples
using the Metropolis procedure to obtain posterior samples. Postprocessing is the only serial step of
the calculation, and is very fast since all the costly calculations (sample generation, weight evaluation)
are already completed. In this way, RTO can significantly reduce the wall clock time of Markov chain
simulation compared to common MCMC methods that use state-dependent transition kernels, since
posterior density evaluations and Markov chain simulation must be carried out sequentially in the latter
case.
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(b) Another realization of κ(x).
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(c) The posterior mean of κ(x).
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Fig. 11: Sample realizations and summary statistics of the conductivity field κ(x) distributed according
to the posterior.

7. Discussion. The main contribution of this work is a new scalable implementation of the RTO
optimization-based sampling method. By using a polar decomposition rather than a QR factorization
to build the RTO proposal, and deriving this polar decomposition from the SVD of a linearized forward
model, we can reduce the computational cost of evaluating the RTO proposal (excepting perhaps the
evaluation of the forward model itself) to linear complexity in the parameter dimension. This approach
naturally splits the parameter space into two subspaces, and allows us to sample the RTO proposal
and evaluate its density by solving smaller problems of size r, where r is an intrinsic dimension of
the problem. This splitting also relates the RTO proposal to other parameter dimension reduction
methods for Bayesian inverse problems. We formalize this RTO procedure in a function space setting,
and show that the statistical performance of RTO is invariant to the discretized parameter dimension,
under appropriate technical assumptions. Our results provide both practical algorithms and theoretical
justification for applying RTO to high-dimensional inverse problems.

We then provide an empirical exploration of factors influencing the sampling efficiency of RTO,
using various PDE-constrained Bayesian inverse problems. Our numerical results confirm that RTO has
dimension-independent sampling efficiency, and also show that the observational noise magnitude affects
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the cost of solving each optimization problem but not the mixing of the RTO Metropolis independence
sampler. Using a simple elliptic PDE example, we observe that RTO outperforms pCN for wide range of
problem settings. We also demonstrate the efficacy of RTO on a challenging two-dimensional parabolic
PDE inverse problem, evaluating the impact of rank truncation on sampling efficiency and computational
costs. These numerical results confirm our theoretical findings: RTO offers a viable way to tackle inverse
problems with high-dimensional parameters and even very small observational noise.

There are many ways to extend the work described here. For example, once might use a mixture of
several RTO proposals, defined by different linearizations, to better capture forward model nonlinearity in
some extremely challenging inverse problems. Such mixtures might also help surmount the invertibility
issues that arise when the assumptions of Theorem 8 are violated. For instance, one could employ a
defensive mixture involving the prior distribution, along with localized proposals that are managed with
trust-region strategies. The transport-map interpretation of RTO also suggests combining the RTO map
with more elaborate local MCMC proposals on the Gaussian reference space, along the lines of [36]. In
addition, since RTO’s prior-to-proposal mapping has a well-defined continuous limit, one can naturally
use RTO to generate coupled proposal samples at different discretization levels. These correlated samples
can be used as control variates in the multi-level/multi-fidelity setting [21, 25, 37] to further accelerate
the computation of posterior statistics.
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Appendix A. Other optimization-based samplers. Similar to RTO, other optimization-based
sampling algorithms such as the random-map implementation of implicit sampling [33] and Metropolized
RML [35] also yield deterministic couplings of two random variables. Here we briefly review the transport
maps defined by the random-map implementation of implicit sampling and by Metropolized RML.

Implicit sampling requires that the target density have level sets that are “star-shaped,” in that any
ray starting from the mode passes through each level set exactly once. The target density is written as

(31) πtar(v) ∝ exp (−`(v)),

where the negative log-target density ` has a minimum at the mode vMAP. In order to draw proposal
samples, we sample ξ ∈ Rn from a standard Gaussian and solve the following nonlinear system of equations
to find a proposal v∗ ∈ Rn :

(32)





L−1(v∗ − vMAP)

‖L−1(v∗ − vMAP)‖ =
ξ

‖ξ‖

`(v∗)− `(vMAP) =
1

2
‖ξ‖2

.

The direction of the sample v∗ (relative to the mode) is based on the direction of the sampled ξ. The
magnitude of v∗ is then found through a one-dimensional line search for the point where the negative log
target ` satisfies

`(v∗)− `(vMAP) =
1

2
‖ξ‖2.

In practice, L is chosen to be a square matrix such that L>L :=
[
∇2`(vMAP)

]−1
, where ∇2`(vMAP) is

the Hessian of ` evaluated at the MAP point.
Similar to RTO, Metropolized RML requires that the target distribution have a Gaussian prior and

additive Gaussian observational noise. Following the notation in Section 2.1, we present a whitened
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version of Metropolized RML where the prior and observational noise covariances are transformed to the
identity and the data is shifted to the origin. This way, the target density takes the form

(33) πtar(v) ∝ exp

(
−1

2
‖v‖2 − 1

2
‖G(v)‖2

)
.

Defining a tuning parameter γ ∈ (0, 1), Metropolized RML adds the auxiliary variables d ∈ Rm and
considers an augmented target distribution

(34) πtar(v, d) ∝ exp

(
−1

2
‖v‖2 − 1

2γ
‖G(v)− d‖2 − 1

2(1− γ)
‖d‖2

)

This defines a distribution on the joint space of parameters and data. Since the above joint distribution
can also be written as

πtar(v, d) ∝ exp

(
−1

2
‖v‖2 − 1

2
‖G(v)‖2 − 1

2γ(1− γ)
‖d− (1− γ)G(v)‖2

)

∝ πtar(v) exp

(
− 1

2γ(1− γ)
‖d− (1− γ)G(v)‖2

)
,

it can be expressed as product of the marginal distribution of v—which is the original target distribution—
and the conditional distribution of d given v. Defining another tuning parameter ρ ∈ (0, 1), Metropolized
RML generates a pair of random variables ξv ∼ N(0, In) and ξd ∼ N(0, Im) and solve the following
randomly perturbed optimization problem

(v∗, d∗) = arg min
(v,d)

(
1

2
‖v − ξv‖2 +

1

2ρ
‖G(v)− d‖2 +

1

2(1− ρ)
‖d− ξd‖2

)
,

to obtain a pair of proposal samples (v∗, d∗). Under the first order optimality condition, at the minima
of the above objective function, the following system of nonlinear equations holds:

(35)





v∗ +
1

ρ
∇G(v∗)

> (G(v∗)− d∗) = ξv

1

ρ
d∗ −

(
1− ρ
ρ

)
G(v∗) = ξd

.

Thus, one can compute the joint density of (v∗, d∗) in the augmented parameter-and-data space using
the mapping defined in (35). The samples are Metropolized in the augmented space to obtain correlated
samples distributed according the augmented target distribution πtar(v, d). The components of v are then
distributed according to the original target distribution. The parameters ρ and γ are tunable settings of
the algorithm. In practice, they are set close to one and zero respectively.

A summary of the mappings induced by RTO, implicit sampling, and RML is given in Table 5. Each
algorithm describes a different map S, as in (6), to build the deterministic coupling. The actions of the
inverse maps need to be computed using either nonlinear optimization algorithms or root finding methods
(in one dimension).
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