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Abstract

This paper provides the first proof that Anderson acceleration (AA) improves the convergence
rate of general fixed point iterations. AA has been used for decades to speed up nonlinear
solvers in many applications, however a rigorous mathematical justification of the improved
convergence rate has remained lacking. The key ideas of the analysis presented here are relating
the difference of consecutive iterates to residuals based on performing the inner-optimization in
a Hilbert space setting, and explicitly defining the gain in the optimization stage to be the ratio
of improvement over a step of the unaccelerated fixed point iteration. The main result we prove
is that AA improves the convergence rate of a fixed point iteration to first order by a factor
of the gain at each step. In addition to improving the convergence rate, our results indicate
that AA increases the radius of convergence. Lastly, our estimate shows that while the linear
convergence rate is improved, additional quadratic terms arise in the estimate, which shows why
AA does not typically improve convergence in quadratically converging fixed point iterations.
Results of several numerical tests are given which illustrate the theory.

1 Introduction

We study an acceleration technique for fixed point problems called Anderson acceleration, in which
a history of search-directions is used to improve the rate of convergence of fixed-point iterations.
The method was originally introduced by D.G. Anderson in 1965 in the context of integral equations
[2]. It has recently been used in many applications, including multisecant methods for fixed-point
iterations in electronic structure computations [5], geometry optimization problems [12], various
types of flow problems [11, 13], radiation diffusion and nuclear physics [1, 16], molecular interaction
[14], machine learning [6], improving the alternating projections method for computing nearest
correlation matrices [7], and on a wide range of nonlinear problems in the context of generalized
minimal residual (GMRES) methods in [17]. We further refer readers to [8, 10, 11, 17] and references
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therein for detailed discussions on both practical implementation and a history of the method and
its applications.

Despite a long history of use and a strong recent interest, the first mathematical convergence
results for Anderson acceleration (for both linear and nonlinear problems) appear in 2015 in [15],
under the usual local assumptions for convergence of Newton iterations. However, this theory does
not prove that Anderson acceleration improves the convergence of a fixed point iteration, or in
other words accelerates convergence in the sense of [4]. Rather, it proves that Anderson accelerated
fixed point iterations will converge in the neighborhood of a fixed point; and, an upper bound
on the convergence rate is shown to approach from above the convergence rate of the underlying
fixed point iteration. While an important stage in the developing theory, this does not explain
the efficacy of the method, which has gained popularity as practitioners have continued to observe
a dramatic speedup and increase in robustness from Anderson acceleration over a wide range of
problems.

The purpose of this paper is to address this gap in the theory by proving a rigorous estimate for
Anderson acceleration that shows a guaranteed improvement in the convergence rate for fixed point
iterations (for general C2 functions) that converge linearly (with rate κ). By explicitly defining
the gain of the optimization stage at iteration k to be the ratio θk of the optimized objective
function compared to that of the usual fixed point method, we prove the new convergence rate
is θk((1 − βk−1) + βk−1κ) at step k, where 0 < βk−1 ≤ 1 is a damping parameter and βk−1 = 1
produces the undamped iteration. The key ideas to the proof are an expansion of the residual
errors, developing expressions relating the difference of consecutive iterates and residuals, and
explicitly factoring in the gain from the optimization stage. A somewhat similar approach is used
by the authors to prove that Anderson acceleration speeds up Picard iteration convergence for finite
element discretizations of the steady Navier-Stokes equations in [13] (without the C2 assumption
on the fixed-point operator), and herein we extend these ideas to general fixed point iterations.

In addition to the improved linear convergence rate, our analysis also indicates that Anderson
acceleration introduces quadratic error terms, which is consistent with known results that Anderson
acceleration does not accelerate quadratically converging fixed point methods (see the numerical
experiments section below), establishing a barrier which theoretically prevents establishing an im-
proved convergence rate for general fixed-point iterations. A third important result we show is
that both Anderson acceleration and the use of damping can extend the radius of convergence for
the method, i.e. Anderson acceleration can allow the iteration to converge even when outside the
domain where the fixed point function is contractive. An illustrative example of this is shown in
§5.2.

This paper is arranged as follows. In §2, we review Anderson acceleration, describe the problem
setting, and give some basic definitions and notation. §3 gives several important technical results to
make the later analysis cleaner and simpler. §4 gives the main result of the paper, proving that the
linear convergence rate is improved by Anderson acceleration, but additional quadratic error terms
arise. §5 gives results from numerical tests, with the intent of illustrating the current contributions
to the theory. Conclusions are given in the final section.

2 Anderson acceleration

In what follows, we will consider a fixed-point operator g : X → X where X is a Hilbert space with
norm ‖ · ‖ and inner-product ( · , · ). The Anderson acceleration algorithm with depth m applied to
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the fixed-point problem g(x) = x reads as follows.

Algorithm 2.1 (Anderson iteration). The Anderson-acceleration with depth m ≥ 0 and damping
factors 0 < βk ≤ 1 reads:
Step 0: Choose x0 ∈ X.
Step 1: Find x̃1 ∈ X such that x̃1 = g(x0). Set x1 = x̃1.
Step k: For k = 1, 2, 3, . . . Set mk = min{k,m}.

[a.] Find x̃k+1 = g(xk).
[b.] Solve the minimization problem for {αk+1

j }kk−mk

min∑k
j=k−mk

αk+1
j =1

∥∥∥∥∥∥
k∑

j=k−mk

αk+1
j (x̃j+1 − xj)

∥∥∥∥∥∥ . (2.1)

[c.] For damping factor 0 < βk ≤ 1, set

xk+1 = (1− βk)
k∑

j=k−mk

αk+1
j xj + βk

k∑
j=k−mk

αk+1
j x̃j+1. (2.2)

We will use throughout this work the stage-k residual and error terms

ek := xk − xk−1, ẽk := x̃k − x̃k−1, wk := x̃k − xk−1. (2.3)

Define the following averages given by the solution αk+1 = {αk+1
k }kj=k−mk

to the optimization
problem (2.1) by

xαk =
k∑

j=k−mk

αk+1
j xj , x̃αk+1 =

k∑
j=k−mk

αk+1
j x̃j+1, wαk+1 =

k∑
j=k−mk

αk+1
j (g(xj)− xj). (2.4)

Then the update (2.2) can be written in terms of the averages xα and x̃α,

xk+1 = (1− βk)xαk + βkx̃
α
k+1, (2.5)

and the stage-k gain θk can be defined by∥∥wαk+1

∥∥ = θk ‖wk+1‖ . (2.6)

The key to showing the acceleration of this technique defined by taking a linear combination of a
history of steps corresponding to the coefficients of the optimization problem (2.1) is connecting
the gain θk given by (2.6) to the differences of consecutive iterates and residual terms in (2.4).
As such, the success (or failure) of the algorithm to reduce the residual is coupled to the success
of the optimization problem at each stage of the algorithm. As αk+1

k = 1, αk+1
j = 0, j 6= k is an

admissible solution to (2.1), it follows immediately that 0 ≤ θk ≤ 1. As discussed in the remainder,
the improvement in the contraction rate of the fixed-point iteration is characterized by θk.

The two main components of the proof of residual convergence at an accelerated rate are the
expansion of the residual wk+1 into wαk and error terms ek−mk−1

, . . . , ek; and, control of the ej ’s in
terms of the corresponding wj ’s. In the next section, the first of these is established for general m,
and the second for the particular cases of depth m = 1 and m = 2, with the result then extrapolated
for general m.
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3 Technical preliminaries

There are two main technical results used in our theory. The first is an expansion of the residual,
and the second is a set of estimates relating the difference of consecutive iterates to residuals. These
are shown in §3.1 and §3.2, respectively. The main results which depend on these estimates are
then presented in §4.

For the bounds in §3.2 relating the difference of consecutive iterates to residuals, the operator
g : X → X is assumed Lipschitz continuous and contractive, as in [13]; see Assumption 3.2, below.
The results of §3.1 do not require the contractive property, but require the assumption that g is
twice continuously differentiable to allow for Taylor expansions of the error terms. We denote the
derivatives of g by g′(·; ·) and g′′(·; ·, ·), and employ the standard notation that forms g′(·; ·) and
g′′(·; ·, ·) are linear with respect to the arguments to the right of the semicolon.

Assumption 3.1. Let X be a Hilbert space and g : X → X. Assume g has a fixed point x∗ ∈ X,
and there are positive constants κ and κ̂ with

1. g ∈ C2(X).

2. ‖g′(y;u)‖ ≤ κ ‖u‖ for each y and all u ∈ X.

3. ‖g′′(y;u, v)‖ ≤ κ̂ ‖u‖ ‖v‖ for each y and all u, v ∈ X.

Assumption 3.2. Let X be a Hilbert space and g : X → X. Assume ‖g(y)− g(x)‖ ≤ κ ‖x− y‖
for every x, y ∈ X, with κ < 1.

By standard fixed-point theory, Assumption 3.2 implies the existence of a unique fixed-point
x∗ of g in X. In a slight abuse of notation, the difference of consecutive iterates, ek = xk − xk−1 is
loosely referred to in this manuscript as an error term. As shown carefully in [13], the true error
xk − x∗ is controlled in norm by ej , j = k −mk, . . . , k, for the depth m algorithm so long as the
coefficients from the optimization remain bounded. In the results of §4, the residual wk is shown
to converge to zero under Assumption 3.2. This is sufficient to establish convergence of the error
xk − x∗ to zero as

‖xk − x∗‖ ≤ ‖xk − g(xk)‖+ ‖g(xk)− g(x∗)‖ ≤ ‖wk+1‖+ κ ‖xk − x∗‖ ,

by which ‖xk − x∗‖ ≤ (1− κ)−1 ‖wk+1‖.

3.1 Expansion of the residual

Based on Assumption 3.1 the error term ẽk of (2.4) has a Taylor expansion

ẽk+1 := g(xk)− g(xk−1) =

∫ 1

0
g′(zk(t); ek) d t, (3.1)

where zk(t) = xk−1 + tek. For each t ∈ [0, 1] a second application of Taylor’s Theorem provides

g′(zk−1(t); ·) = g′(zk(t); ·) +

∫ 1

0
g′′(ẑk,t(s); zk−1(t)− zk(t), ·) d s, (3.2)
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where ẑk,t(s) = zk−1(t) + s(zk(t) − zk−1(t)). Using (3.1)-(3.2) we next derive an expansion of the
residual wk+1 in terms of the differences of consecutive iterates ek, . . . , ek−mk−1

. We start with the
definition of the residual by (2.4) and the expansion of iterate xk by the update (2.5).

wk+1 = g(xk)− xk = (1− βk−1)(g(xk)− xαk−1) + βk−1(g(xk)− x̃αk ). (3.3)

Expanding the first term on the right hand side of (3.3) yields

g(xk)− xαk−1 =
k−1∑

j=k−mk−1−1
αkj (g(xk)− xj)

=

k−1∑
j=k−mk−1−1

αkj (g(xj)− xj) +

k∑
j=k−mk−1

 j−1∑
n=k−mk−1−1

αkn

 (g(xj)− g(xj−1))

= wαk +
k∑

j=k−mk−1

γj ẽj+1, (3.4)

where

γj :=

j−1∑
n=k−mk−1−1

αkn. (3.5)

It is worth noting that γk = 1. Expanding the second term on the right hand side of (3.3), we get

g(xk)− x̃αk =
k−1∑

j=k−mk−1−1
αkj (g(xk)− g(xj)) =

k∑
j=k−mk−1

γj ẽj+1. (3.6)

Reassembling (3.3) with (3.4) and (3.6) followed by (3.1), we have

wk+1 = (1− βk−1)wαk +

k∑
j=k−mk−1

γj ẽj+1 = (1− βk−1)wαk +

k∑
j=k−mk−1

γj

∫ 1

0
g′(zj(t); ej) d t. (3.7)

We now take a closer look at the last term of (3.7). For each j = k −mk−1, . . . , k − 1, adding and
subtracting intermediate averages allows∫ 1

0
g′(zj(t); ej) d t =

∫ 1

0
g′(zk(t); ej) d t+

k−1∑
n=j

∫ 1

0
g′(zn(t); ej)− g′(zn+1(t); ej) d t. (3.8)

Applying now (3.2) to each summand of (3.8) then yields∫ 1

0
g′(zj(t); ej) d t =

∫ 1

0
g′(zk(t); ej) d t+

k−1∑
n=j

∫ 1

0

∫ 1

0
g′′(ẑn+1,t(s)); zn(t)− zn+1(t), ej) d s d t.

(3.9)
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Summing over the j’s after (3.9) is applied to each term, the sum on the right hand side of (3.7)
may be expressed as

k∑
j=k−mk−1

γj

∫ 1

0
g′(zj(t); ej) d t =

∫ 1

0
g′(zk(t);

k∑
j=k−mk−1

γjej) d t

+

k−1∑
j=k−mk−1

∫ 1

0

∫ 1

0

k−1∑
n=j

g′′(ẑn+1,t(s); zn(t)− zn+1(t), γjej)

 d s d t.

(3.10)

The next calculation shows that
∑k

j=k−mk−1
γjej is equal to βk−1w

α
k . First observe that γj−γj−1 =

αkj−1 and γk−mk−1
= αkk−mk−1−1. Separating the first term of the sum and using γk = 1,

k∑
j=k−mk−1

γjej = xk − xk−1 +

k−1∑
j=k−mk−1

γj(xj − xj−1)

= xk − xk−1 + γk−1xk−1 −
k−2∑

j=k−mk−1−1
αkjxj

= xk − αkk−1xk−1 −
k−2∑

j=k−mk−1−1
αkjxj = xk − xαk−1. (3.11)

From (3.11) and the decomposition of xk in terms of update (2.2), we have that

k∑
j=k−mk−1

γjej = xk − xαk−1 = (1− βk−1)xαk−1 + βk−1x̃
α
k − xαk−1 = βk−1(x̃

α
k − xαk−1) = βk−1w

α
k .

(3.12)

Putting (3.12) together with (3.10) and (3.7) then yields

wk+1 =

∫ 1

0
(1− βk−1)wαk + βk−1g

′(zk(t);w
α
k ) d t

+

k−1∑
j=k−mk−1

∫ 1

0

∫ 1

0

k−1∑
n=j

g′′(ẑn+1,t(s); zn(t)− zn+1(t), γjej)

 d s d t. (3.13)

Based on the expansion of wk+1 by (3.13) we now proceed to bound the higher order terms in the
particular cases m = 1 and m = 2 to establish convergence of Algorithm 2.1 at an accelerated rate.

3.2 Relating the difference of consecutive iterates to residuals

We now derive estimates to bound (in norm) the ej ’s from the right hand side of (3.13) by the
corresponding wj ’s. The bounds in this subsection hold under Assumption 3.2, namely g is a
contractive operator.
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Under Assumption 3.2 we have the inequality

(1− κ) ‖en‖ ≤ ‖en‖ − ‖ẽn+1‖ ≤ ‖ẽn+1 − en‖ = ‖wn+1 − wn‖ . (3.14)

The next lemma establishes a bound for ej−1 in terms of wj and wj−1 in the case of depth
m = 1. The subsequent lemma generalizes the same idea for general m.

Lemma 3.1. Under the conditions of Assumption 3.2, the following bounds hold true:

|αjj−1| ‖ej−1‖ ≤
1

1− κ
‖wj−1‖ , (3.15)

|αjj−2| ‖ej−1‖ ≤
1

1− κ
‖wj‖ . (3.16)

Proof. Begin by rewriting the optimization problem (2.1) in the equivalent form

η = argmin ‖wj−1 + η(wj − wj−1)‖2 ,

where αjj−1 = η and αjj−2 = 1− η. The critical point η then satisfies η ‖wj − wj−1‖2 = (wj−1, wj −
wj−1). Applying Cauchy-Schwarz and triangular inequalities yields |η| ‖wj − wj−1‖ ≤ ‖wj−1‖ . Ap-
plying (3.14) with n = j − 1 yields the result (3.15).

Next, rewrite the optimization problem (2.1) in another equivalent form,

γ = argmin ‖wj − γ(wj − wj−1)‖2 , (3.17)

where the equivalence follows with αjj−2 = γ and αjj−1 = 1 − γ. Following the same procedure as
above yields |γ| ‖wj − wj−1‖ ≤ ‖wj‖. Applying (3.14) at level n − 1 then yields the second result
(3.16).

The use of γ as the second parameter of in the proof above is not purely coincidental, as this
γ agrees with the γjj−1 used in §3.1. The same essential technique yields the necessary bounds for
m ≥ 2. The estimate for general m is given in the lemma below, with the particular estimate for
m = 2 given as a proposition.

As in the m = 1 case above, two forms of the optimization problem are used. The γ-formulation
is used to bound the terms γj ‖ej‖ that appear from the expansion (3.13); whereas, the η-formulation
is used to bound the terms ‖ej‖ that appear in the numerator without leading optimization co-
efficients. It is then of particular importance that estimates of the form c ‖ej‖ ≤ Σkn ‖wn‖ have
the property that c is bounded away from zero. This is a reasonable assumption on the leading
coefficient c = αkk−1 for each k, as some nonvanishing component in the latest search direction is

necessary for progress. It is also a reasonable assumption on c = 1 − αkk−mk−1−1, meaning the
coefficient of the earliest search direction considered is bounded away from unity. Presumably,
|αkk−mk−1−1| < 1 is a reasonable assumption to make, although this is not explicitly required (cf.,

[13]).
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Lemma 3.2. Under the conditions of Assumption 3.2, the following bounds hold true:

|αjj−1 ‖ej−1‖ ≤
1

1− κ

|ηj−1| ‖wj−1‖+

j−2∑
n=j−mj−1−1

|αjn−1| ‖wn‖

 (3.18)

|1− αjj−mj−1−1|
∥∥ej−mj−1

∥∥ ≤ 1

1− κ

 j∑
n=j−m+2

|αjn−1| ‖wn‖+ |ηj−m+2| ‖wj−m+1‖+ ‖wj−m‖


(3.19)

|γp−1| ‖ep−1‖ ≤
1

1− κ

 p−2∑
n=j−mj−1

|αjn−1| ‖wn‖+ |γp−2| ‖wp−1‖+ |γp| ‖wp‖

+

j∑
n=p+1

|αjn−1| ‖wn‖

 . (3.20)

with ηj−1 = αjj−1 + αjj−2 as in (3.21), and γp,γp−1,γp−2, given below by (3.22).

Proof. The optimization problem (2.1) at level j is to minimize∥∥∥∥∥∥
j−1∑

n=j−mj−1−1
αjnwn+1

∥∥∥∥∥∥ subject to

j−1∑
n=j−mj−1−1

αjn = 1.

Differencing from the left and right respectively, this can be posed as the following unconstrained
optimization problems:

minimize

∥∥∥∥∥∥wj−mj−1 +

j∑
n=j−mj−1+1

ηn(wn − wn−1)

∥∥∥∥∥∥
2

, ηn =

j−1∑
i=n−1

αji . (3.21)

minimize

∥∥∥∥∥∥wj −
j∑

n=j−mj−1+1

γn−1(wn − wn−1)

∥∥∥∥∥∥
2

, γn =

n−1∑
i=j−mj−1−1

αji . (3.22)

Note that (3.22) coincides with (3.5) which agrees with the unconstrained form of the optimization
problem in for instance [5]. To help reduce notation, denote m = mj−1 for the remainder of the
proof.

Starting with estimate (3.18) we are concerned with bounding in norm the leading term dif-
ference term wj − wj−1. Expanding the norm squared (3.21) as an inner-product and seeking the
critical point for ηj yields

ηj ‖wj − wj−1‖2 + (wj − wj−1, wj−m) +

j−1∑
n=j−m+1

ηn(wj − wj−1, wn − wn−1) = 0.

Recombining the terms inside the sum, noting ηn−1 − ηn = αjn−2, and ηj = αjj−1 obtain

αjj−1 ‖wj − wj−1‖
2 = −(αjj−1 + αjj−2)(wj − wj−1, wj−1)−

j−2∑
n=j−m

αjn−1(wj − wj−1, wn).
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Applying Cauchy-Schwarz and triangle inequalities then yields

|αjj−1| ‖wj − wj−1‖ ≤ |α
j
j−1 + αjj−2| ‖wj−1‖+

j−2∑
n=j−m

αjn−1 ‖wn‖ .

Applying (3.14), the result (3.18) follows.
Following the same idea for estimate (3.19), we are now concerned with bounding in norm the

final difference term wj−m+1−wj−m. Again expanding (3.21) as an inner-product and seeking the
critical point this time for ηj−m+1 yields

ηj−m+1 ‖wj−m+1 − wj−m‖2+(wj−m+1−wj−m, wj−m)+

j∑
n=j−m+2

ηn(wj−m+1−wj−m, wn−wn−1) = 0.

Recombining terms noting ηj−m+1 = 1− αjj−m−1

(1− αjj−m−1) ‖wj−m+1 − wj−m‖2 =

j∑
n=j−m+2

αjn−1(wj−m+1 − wj−m, wn)

− (wj−m+1 − wj−m, ηj−m+2wj−m+1 + wj−m).

Applying Cauchy-Schwarz and triangle inequalities then yields

|1− αjj−m−1| ‖wj−m+1 − wj−m‖ ≤

 j∑
n=j−m+2

|αjn−1| ‖wn‖

+ |ηj−m+2| ‖wj−m+1‖+ ‖wj−m‖ .

The result (3.19) follows by (3.14).
Similarly for (3.20), expanding the norm of (3.22) as an inner product and seeking the critical

point for each γp yields

γp−1 ‖wp − wp−1‖2 = (wp − wp−1, wj)−
j∑

n=j−m+1,n6=p
γn−1(wp − wp−1, wn − wn−1).

Recombining the terms inside the sum using γn − γn−1 = αjn−1, and γj−m = αjj−m−1, we obtain

γp−1 ‖wp − wp−1‖2 =

p−2∑
n=j−m

αjn−1(wp − wp−1, wn)− γp−2(wp − wp−1, wp−1) + γp(wp − wp−1, wp)

+

j∑
n=p+1

αjn−1(wp − wp−1, wn).

Applying now Cauchy-Schwarz and triangle inequalities,

|γp−1| ‖wp − wp−1‖ ≤
p−2∑

n=j−m
|αjn−1| ‖wn‖+ |γp−2| ‖wp−1‖+ |γp| ‖wp‖+

j∑
n=p+1

|αjn−1| ‖wn‖ .

Applying (3.14), the result (3.20) follows.
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For the convenience of subsequent calculations, the bounds (3.21) and (3.22) used to bound
‖wk+1‖ for the case of depth m = 2 are summarized in the following proposition.

Proposition 3.3 (Depth m = 2). With depth m = 2 the estimates (3.18) and (3.20) reduce to

|αjj−1| ‖ej−1‖ ≤
1

1− κ

(
|αjj−1 + αjj−2| ‖wj−1‖+ |αjj−3| ‖wj−2‖

)
(3.23)

|1− αjj−2| ‖ej−2‖ ≤
1

1− κ

(
|αjj−1| ‖wj‖+ |αjj−1| ‖wj−1‖+ ‖wj−2‖

)
(3.24)

|γj−1| ‖ej−1‖ ≤
1

1− κ

(
‖wj‖+ |αjj−3| ‖wj−1‖+ |αjj−3| ‖wj−2‖

)
(3.25)

|γj−2| ‖ej−2‖ ≤
1

1− κ

(
|αjj−1 ‖wj‖+ |1− αjj−1| ‖wj−1‖

)
. (3.26)

The second two bounds (3.25) and (3.26) follow from (3.20) noting from (3.22), that for m = 2
we have γj−2 = αjj−3, γj−1 = 1 − αjj−1 and γj = 1. The approach taken in [13] is to reduce the
right hand side of (3.24) and (3.25) to two terms each by relating their expansion to that of (3.23)
and (3.26), respectively. Here the terms are left as they are to emphasize the direct generality to
greater depth m.

3.3 Explicit computation of the optimization gain

The stage-k gain θk has a simple description assuming the optimization is performed over a norm
‖ · ‖ induced by an inner product ( · , · ), in other words in a Hilbert space setting.

Consider the unconstrained γ-form of the optimization problem (3.22) at iteration k with depth
m: Find γk−m+1, . . . , γk that minimize∥∥∥∥∥wk+1 −

k∑
n=k−m+1

γn(wn+1 − wn)

∥∥∥∥∥
2

=
∥∥∥wk+1 − F kγk

∥∥∥2 , (3.27)

Where F is the matrix with columns wn+1 −wn, n = k−m+ 1, . . . , k and γk is the corresponding
vector of coefficients γk−m+1, . . . , γk. Indeed, (3.27) (or equivalently reindexed) is the preferred way
to state the optimization problem [17], particularly in the case where ‖ · ‖ is the l2 norm and a fast
QR algorithm can be used.

This is also the preferred statement of the problem to understand the gain θk from (2.6),
which satisfies

∥∥wαk+1

∥∥ = θk ‖wk+1‖ Define the unique decomposition wk+1 = wR + wN with

wR ∈ Range (F k) and wN ∈ Null ((Fk)
T ). Then wN is the least-squares residual satisfying ‖wN‖ =∥∥wk+1 − F kδk

∥∥ =
∥∥wαk+1

∥∥ = θk ‖wk+1‖ meaning

θk =

√
1− ‖wR‖2

‖wk+1‖2
, (3.28)

and, θk has the interpretation of the direction-sine between wk+1 and the subspace spanned by
{wn+1−wn}kn=k−m+1. This is particularly clear in the case m = 1 where by solving for the critical
point γ of (3.17) yields

γ =
(wk+1, wk+1 − wk)
‖wk+1 − wk‖2

.
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Expanding θ2k ‖wk+1‖2 = ‖wk+1 − γ(wk+1 − wk)‖2 and using the particular value of γ above yields

1− θ2k =
(wk+1, wk+1 − wk)2

‖wk+1 − wk‖2 ‖wk+1‖2
,

with the clear interpretation that (1− θ2k)1/2 is the direction cosine between wk+1 and wk+1 − wk,
hence θk is the direction-sine.

If indeed an (economy) QR algorithm F k = Q1R1 is used to solve the optimization problem then

θk =
√

1− (
∥∥QT1 wk+1

∥∥ / ‖wk+1‖)2, which can be used to predict whether an accelerated step would

be (sufficiently) beneficial. This explicit computation of θk is used in §5.3 to propose an adaptive
damping strategy based on the gain at each step. Finally, it is noted that the improvement in
the gain θk as m is increased depends on sufficient linear independence or small direction cosines
between the columns of F k, as information from earlier in the history is added. This is discussed
in some greater depth in [17].

4 Convergence rates for depths m = 1 and m = 2

First we put the expansion (3.13) together with the bounds (3.15)-(3.16) for a convergence proof
for the simplest case of m = 1.

Theorem 4.1 (Convergence of the residual with depth m = 1). On satisfaction of Assumptions 3.1
and 3.2, if the coefficients αk+1

k , αkk−1 remain bounded and bounded away from zero, the following
bound holds for the residual wk+1 from Algorithm 2.1 with depth m = 1:

‖wk+1‖ ≤ θk((1− βk−1) + κβk−1) ‖wk‖+O
(
‖wk‖2

)
+O

(
‖wk−1‖2

)
.

Remark 4.1. The assumptions on the coefficients αkj arising from the optimization problem are
similar to those of [15]. These assumptions could be eliminated by solving instead a constrained
optimization problem that enforces boundedness of the parameters, resulting in a modified gain θ̂k
which satisfies θk ≤ θ̂k ≤ 1.

Proof. In this case the expansion found for wk+1 in (3.13) reduces to

wk+1 =

∫ 1

0
(1− βk−1)wαk + βk−1g

′(zk(t);w
α
k ) d t

+

∫ 1

0

∫ 1

0
g′′(ẑk,t(s); zk−1(t)− zk(t), γk−1ek−1) d s d t. (4.1)

Taking norms of both sides and applying Assumption 3.1, (2.6) and the triangle inequality,

‖wk+1‖ ≤ θk((1− βk−1) + κβk−1) ‖wk‖+ κ̂(‖ek‖+ ‖ek−1‖)γk−1 ‖ek−1‖ . (4.2)

The preceding bound (4.2) holds regardless of whether g is globally contractive (Assumption 3.2),
hence for error terms ‖ek‖ and ‖ek−1‖ small enough, contraction of the error may be observed
depending on the search direction, particularly if a damping factor 0 < β < 1 is applied, and if the
gain θk is sufficiently less than one. This justifies the observation that Anderson acceleration can
enlarge the effective domain of convergence of a fixed point iteration.
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For the remainder of the calculation, we consider the case of a contractive operator, meaning
Assumption 3.2 is satisfied. Applying (3.16) with j = k to the γk−1 ‖ek−1‖, recalling by (3.5) we
have γk−1 = αkk−2; and, applying (3.15) with j = k + 1 and j = k respectively to the remaining
‖ek‖ and ‖ek−1‖ allows

‖wk+1‖ ≤ θk((1− βk−1) + κβk−1) ‖wk‖+
κ̂

(1− κ)2

(
‖wk‖
αk+1
k

+
‖wk−1‖
αkk−1

)
‖wk‖

= θk((1− βk−1) + κβk−1) ‖wk‖+O
(
‖wk‖2

)
+O

(
‖wk−1‖2

)
. (4.3)

As discussed in §3.2, αk+1
k and αkk−1 are each the leading coefficients in their respective optimiza-

tion problems, multiplying the most recent iterate. As such, these coefficients may be reasonably
considered bounded away from zero.

The case of m = 2 follows similarly, combining (3.13) with (3.23)-(3.26).

Theorem 4.2 (Convergence of the residual with depth m = 2). On satisfaction of Assumptions
3.1 and 3.2, if the coefficients αkk−3, . . . , α

k
k−1 remain bounded, and αkk−1 and 1 − αkk−3 remain

bounded away from zero, the following bound holds for the residual wk+1 from Algorithm 2.1 with
depth m = 2.

‖wk+1‖ ≤ θk((1− βk−1) + κβk−1) ‖wk‖+O
(
‖wk‖2

)
+O

(
‖wk−1‖2

)
+O

(
‖wk−2‖2

)
.

Proof. For depth m = 2 the residual expansion (3.13) reduces to

wk+1 =

∫ 1

0
(1− βk−1)wαk + βk−1g

′(zk(t);w
α
k ) d t

+

∫ 1

0

∫ 1

0
g′′(ẑk,t(s); zk−1(t)− zk(t), γk−1ek−1) d s d t.

+

∫ 1

0

∫ 1

0
g′′(ẑk−1,t(s); zk−2(t)− zk−1(t), γk−2ek−2) d s d t.

+

∫ 1

0

∫ 1

0
g′′(ẑk,t(s); zk−1(t)− zk(t), γk−2ek−2) d s d t.

Taking norms of both sides and applying (2.6) and the triangle inequality,

‖wk+1‖ ≤ θk((1− βk−1) + κβk−1) ‖wk‖+ κ̂(‖ek‖+ ‖ek−1‖)|γk−1| ‖ek−1‖ .
+ κ̂(‖ek−2‖+ 2 ‖ek−1‖+ ‖ek‖)|γk−2| ‖ek−2‖ . (4.4)

Applying (3.25) and (3.26) to (4.4) yields

‖wk+1‖ ≤ θk((1− βk−1) + κβk−1) ‖wk‖

+
κ̂

1− κ
(‖ek‖+ ‖ek−1‖)

(
‖wk‖+ |αkk−3| ‖wk−1‖+ |αkk−3| ‖wk−2‖

)
+

κ̂

1− κ
(‖ek‖+ 2 ‖ek−1‖+ ‖ek−2‖)

(
|αkk−1 ‖wk‖+ |1− αkk−1| ‖wk−1‖

)
. (4.5)
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Applying (3.23) with j = k + 1 and j = k together with (3.24) to (4.5) then yields

‖wk+1‖ ≤ θk((1− βk−1) + κβk−1) ‖wk‖

+
κ̂

(1− κ)2

(
1

αk+1
k

(
|αk+1
k + αk+1

k−1| ‖wk‖+ |αk+1
k−2| ‖wk−1‖

)
+

1

αkk−1

(
|αkk−1 + αkk−2| ‖wk−1‖+ |αkk−3| ‖wk−2‖

))
×
(
‖wk‖+ |αkk−3| ‖wk−1‖+ |αkk−3| ‖wk−2‖

)
+

κ̂

(1− κ)2

(
1

αk+1
k

(
|αk+1
k + αk+1

k−1| ‖wk‖+ |αk+1
k−2| ‖wk−1‖

)
+

1

αkk−1

(
|αkk−1 + αkk−2| ‖wk−1‖+ |αkk−3| ‖wk−2‖

)
+

1

1− αkk−3

(
|αkk−1| ‖wk‖+ |αkk−1| ‖wk−1‖+ ‖wk−2‖

))
×
(
|αkk−1 ‖wk‖+ |1− αkk−1| ‖wk−1‖

)
. (4.6)

And, (4.6) satisfies

‖wk+1‖ ≤ θk((1− βk−1) + κβk−1) ‖wk‖+O
(
‖wk‖2

)
+O

(
‖wk−1‖2

)
+O

(
‖wk−2‖2

)
, (4.7)

where the higher order terms have bounded coefficients.

Remark 4.2. To avoid the extra assumption that |1−αkk−3| remains bounded away from zero, the
term ‖ek−2‖ of (4.4) could be bounded instead by (3.20) with j = k − 1, by which (4.7) is replaced
by

‖wk+1‖ ≤ θk((1− βk−1) + κβk−1) ‖wk‖

+O
(
‖wk‖2

)
+O

(
‖wk−1‖2

)
+O

(
‖wk−2‖2

)
+O

(
‖wk−3‖2

)
.

Moreover this generalizes to higher order.

Finally, we state without proof the general result which can be extrapolated from (3.13) and
(3.18)-(3.20) as was done explicitly for depth m = 2, above.

Proposition 4.3. On satisfaction of Assumptions 3.1 and 3.2, if the coefficients αkk−m−1, . . . , α
k
k−1

remain bounded, and αkk−1 and 1 − αkk−m−1 remain bounded away from zero, the following bound
holds for the residual wk+1 from Algorithm 2.1 with depth m.

‖wk+1‖ ≤ θk((1− βk−1) + κβk−1) ‖wk‖+
m∑
j=0

O
(
‖wk−j‖2

)
.

As discussed in §3.3, even as the higher order terms accumulate, there is still an advantage
to some extent to considering greater depth m, due to the improved gain from the optimization
problem. However, in practice this must be weighed against the computational cost of raising m
(which can become significant) and the accuracy of one’s optimization solver. In our tests, little
improvement is found past m = 3.
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5 Numerical tests

We now give results of several numerical tests that illustrate the theory above. In particular,
we illustrate that Anderson speeds up linear convergence, slows down quadratic convergence, and
increases the radius of convergence in agreement with the presented theory. It is not our purpose
in this section to show how well Anderson acceleration works on a wide variety of problems; for
this, see the references in the introduction.

5.1 Simple illustrative tests for the scalar case

We start with results of some simple tests for scalar problems, which illustrate the theory above.
For scalar fixed point iterations, it only makes sense to consider Anderson for m = 1, since one
can solve explicitly for the optimization parameter that makes the objective function zero, hence
θk = 0 at each step. We take βk = 1 in each of these 1D tests. We remark that for the 1D case
with m = 1, Anderson acceleration of the fixed point problem with g(x) is equivalent to the secant
method applied to f(x) = g(x)− x (this follows from [5] but could also be easily shown by writing
out the methods), but still feel it is instructive to show these simple tests.

The fixed point iterations we consider are:

FPP1 : xk+1 = g1(xk) = 1 +
2

xk
, x0 = 2.1,

FPP2 : xk+1 = g2(xk) = xk −
cos(xk)− sin(xk)

− sin(xk)− cos(xk)
, x0 = 1,

FPP3 : xk+1 = g3(xk) = x2k − 2, x0 = 4.

Results from these iterations, with (m = 1) and without (m = 0) Anderson acceleration are
shown in Figure 1. For FPP1 with m = 0 we expect and observe linear convergence with a rate
of |g′(2)| = 0.5 to x∗ = 2, but with m = 1 the convergence becomes superlinear. Since θk = 0,
our theory shows that error then depends only on quadratic terms, which is consistent with these
results.

FPP2 is the Newton iteration for finding the zero of f(x) = cos(x)− sin(x), and the fixed point
the method converges to is x∗ = π

4 . Since here the m = 0 test is Newton’s method with a smooth
g and good initial guess, the convergence is expected and observed to be quadratic. With m = 1,
we see convergence is slightly worse, which agrees with the theory above: Anderson acceleration
adds additional quadratic terms to the residual, which are significant in a quadratically converging
iteration.

Lastly in 1D, we consider FPP3, which for m = 0 is not expected to converge to x∗ = 2 when
x0 > 2 since g3 is not contractive near the fixed point (g′(2) = 4). As expected, with m = 0, the
iteration grows exponentially and by iteration 4 has reached a value of 1010. However, with m = 1
the convergence radius is increased (from 0) to be large enough that the iteration converges even
with x0 = 4.

5.2 Numerical tests for steady incompressible Navier-Stokes equation

Here we present numerical experiments to show the improved convergence provided by Anderson
acceleration for solving the steady incompressible Navier-Stokes equations (NSE), which are given
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Figure 1: Shown above are the residuals for three scalar fixed point iterations, with and without
Anderson acceleration.

in a domain Ω by

u · ∇u+∇p− ν∆u = f, (5.1)

∇ · u = 0, (5.2)

where ν is the kinematic viscosity, f is a forcing, u and p represent velocity and pressure, and
the system must be equipped with appropriate boundary conditions. The L2(Ω) norm and inner
product will be denoted by ‖ · ‖ and ( · , · ) in this subsection.

The tests we consider are for the 2D lid-driven cavity problem, which uses a domain Ω = (0, 1)2,
no slip (u = 0) boundary conditions on the sides and bottom, and a ‘moving lid’ on top which is
implemented by the Dirichlet boundary condition u(x, 1) = 〈1, 0〉T . There is no forcing (f = 0),
and the kinematic viscosity is set to be ν := Re−1, where Re is the Reynolds number, and in our
tests we use Re varying between 1000 and 10, 000. Plots of the velocity streamlines for the steady
NSE at Re = 2500 and 6000 are shown Figure 2.
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Re=2500 Re=6000Streamlines Streamlines

Figure 2: Streamline plots of the steady NSE driven cavity solutions with varying Re.

We discretize with (Xh, Qh) = ((P2)
2, P1) Taylor-Hood finite elements on a 1

256 uniform trian-
gular mesh that provides 592,387 total degrees of freedom, and for the initial guess we used u0h = 0
but satisfying the boundary conditions. Define the trilinear form b∗ by

b∗(u, v, w) := (u · ∇v, w) +
1

2
((∇ · u)v, w).

The discrete steady incompressible NSE problem (with skew-symmetrized nonlinear term) reads
as follows: Find (u, p) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

−(p,∇ · v) + ν(∇u,∇v) + b∗(u, u, v) = (f, v), (5.3)

(∇ · u, q) = 0. (5.4)

Since this problem is nonlinear, we need a nonlinear solver. We consider two common nonlinear
iterations, Picard and Newton, which are defined as follows.

Algorithm 5.1 (Picard iteration for steady NSE).
Step 1: Choose u0 ∈ Xh.
Step k: Find (uk, pk) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

b∗(uk−1, uk, v)− (pk,∇ · v) + ν(∇uk,∇v) = (f, v), (5.5)

(∇ · uk, q) = 0. (5.6)

Algorithm 5.2 (Newton iteration for steady NSE).
Step 1: Choose u0 ∈ Xh.
Step k: Find (uk, pk) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

b∗(uk−1, uk, v) + b∗(uk, uk−1, v)− b∗(uk−1, uk−1, v)− (pk,∇ · v) + ν(∇uk,∇v) = (f, v), (5.7)

(∇ · uk, q) = 0. (5.8)

For sufficiently small data, the steady NSE and these iterations are well-posed [9]. Hence we
can consider both the Picard and Newton iterations as fixed point iterations uk+1 = g(uk), where g
is a solution operator of (5.5)-(5.6) for Picard or (5.7)-(5.8) for Newton. In this way, we can apply
Anderson acceleration to both methods. Below, we test both the Picard and Newton iterations
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with Anderson acceleration (but note that we apply only the basic Picard and Newton methods,
i.e. without relaxation or other variation that can aid in convergence). The linear systems are
solved with a sparse direct solver.

For Picard iterations, we observe in Figure 3 (left side) that Picard without acceleration is
converging linearly, although slowly; after 40 iterations, the residual is still O(10−4). Anderson
acceleration makes a very significant improvement in the Picard convergence, with big improvement
offered by m = 1 and m = 2, and even more by m = 3. With m = 3 the residual after 40 iterations
is about O(10−9), and it would take usual Picard about another 50 iterations to reach this level for
its residual.

On the right side of Figure 3, we display the convergence behavior of the Newton iterations. We
observe the usual Newton iteration diverges, but with Anderson acceleration it converges for each
of m = 1, 2, 3. This is an example of Anderson acceleration increasing the radius of convergence
of a fixed point iteration. The m = 1 Anderson accelerated Newton iteration with m = 1 achieves
a residual of 10−14 after just 13 iterations. It is important to note that such an improvement with
small m is also observed in [11].
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Figure 3: Convergence of the Anderson accelerated Picard and Newton iterations with Re = 2500.

Results for Re = 6000 are shown in Figure 4. The usual Picard iteration fails here, as the
residual over the last 20 iterations grows (although slightly), so κ > 1 in this case. Anderson
acceleration helps Picard significantly, and will allow for convergence. Usual Newton and m = 1, 2
Anderson-accelerated Newton iterations all failed (diverged), and we do not show these results in
the plot. The Anderson-accelerated Newton iteration with m = 3 converged, and quite rapidly,
reaching a residual of O(10−14) in just 23 iterations.
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Figure 4: Convergence of the Anderson accelerated Picard and Newton iterations with Re = 6000.

Box-plots of the θk’s from the Picard iterations are shown in figure 5. For Re = 2500 (left
side), there is a clear decreasing trend in distribution of θ’s as m increases, while for Re = 6000 the
boxplots look rather similar but with m = 1 seemingly a little lower overall compared to m = 2.
However, the lower values and outliers in these plots are critical, since one multiplication of a small
factor takes many multiplications of larger factors to achieve the same residual decrease.
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Figure 5: Box-plots of θ values for the Picard iterations with Re = 2500 (left) and Re = 6000
(right).

As a final part of this test, we compare the number of iterations needed to converge the residual
for the Picard iteration in theH1 norm to a tolerance of 10−8, for varying Re and varyingm. Results
are shown in Table 1, and again we observe a dramatic improvement from Anderson acceleration.
Even m = 1 is enough to provide convergence up to Re = 10000, although additional gain is made
by increasing to m = 2 and to m = 3. It is interesting that convergence of the steady NSE is
achieved for Re = 9000 and 10000 since the bifurcation point transition to transient flow is around
8000 [3], and thus the solutions found are seemingly unstable steady NSE solutions. F denotes
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failure in the table, which we define as not converging within 500 iterations (but we note that
inspection of the last few iterations of each of these that failed indicates the iterations are nowhere
near, or even approaching, convergence).

Re / m 0 1 2 3

1000 36 32 29 26

2000 48 41 40 34

3000 86 49 45 37

4000 158 59 46 40

5000 363 55 48 44

6000 F 62 55 49

7000 F 65 61 53

8000 F 78 70 58

9000 F 94 83 68

10000 F 105 97 71

Table 1: Shown above are the number of Picard iterations needed to converge the nonlinear
residual for the steady NSE up to 10−8 in the H1 norm, for varying Re and m. F denotes a failure
to reach convergence by 500 iterations.

5.3 Damping tests with a quasilinear equation

The damping parameter β of Algorithm 2.1 may become important for convergence in the case
of a fixed-point operator g that is not contractive. A simple example of this type of problem is
the quasilinear equation −div (a(u)∇u) = f in a domain Ω with homogeneous Dirichlet boundary
conditions. In weak form

(a(u)∇u,∇v) = (f, v), (5.9)

where ( · , · ) denotes the L2 inner product as in the above example. This can be thought of as a
simple model of the effective nonlinearity in a steady Richards’ type equation modeling the pressure
u in partially saturated media, where a(u) is the hydraulic conductivity which depends nonlinearly
on the pressure head via the saturation. In this example we take Ω = (0, 1) and

a(u) = k + tanh((u− u0)/ε), with u0 = 0.5, k = 1.01, and ε = 0.1.

The function f is chosen so the exact solution is u∗ = 10 sin(πx). For the results below, the
1D problem is discretized with piecewise linear (P1) finite elements with a uniform meshsize of
h = 1/16384. For this example mk = 0 for k < m and m otherwise. The optimization problem is
solved with an economy QR decomposition and θk is computed as described in §3.3. The fixed-point
operator ũk+1 = g(uk) solves (a(uk)∇g(uk),∇v) = (f, v), as in a basic Picard iteration.

As seen by the expansion (3.13), the results of Theorems 4.1 and 4.2 as well as Proposition 4.3,
the damping factor βk−1 affects the first order term θk(1− βk−1 + κβk−1) ‖wk‖, but not the higher
order terms. If the operator g : X → X is not assumed contractive, then Assumption 3.2 does not
hold, and (3.13) then provides a blueprint for bounding ‖wk+1‖ by ‖wk‖ and higher-order terms
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involving differences of consecutive iterates

‖wk+1‖ ≤ θk(1− βk−1 + κβk−1) ‖wk‖+O
(
‖ek‖2

)
+ . . .+O

(
‖ek−m‖2

)
,

as the bounds of §3.2 controlling the difference between consecutive iterates by the residuals do not
hold in the noncontractive setting. It is remarked however that in the contractive setting of §3.2,
the control of the error terms ‖ej‖ in terms of residuals ‖wn‖ is independent of the damping.

This first order effect of the damping agrees with that seen for the error in the fixed-point
iteration alone. If the update step of the damped fixed-point iteration for operator g with fixed-
point x∗ is given by uk+1 = (1− β)uk + βg(uk) then

uk+1 − u∗ = (1− β)(uk − u∗) + β(g(uk)− g(u∗)) = (1− β)(uk − u∗) + βg′(z∗k(t);uk − u∗),

with z∗k(t) = u∗ + t(uk − u∗). As this example is easily seen to satisfy Assumption 3.1, this
immediately yields the norm-bound ‖uk+1 − u∗‖ ≤ ((1− β) + κβ) ‖uk − u∗‖.

If g is contractive then β = 1 (no damping) gives the best convergence rate. In this example
however, Assumption 3.2 does not hold globally. For instance near the boundary u approaches zero
and k + (tanh(u − u0)/ε) is close to k − 1 = 10−2, and the locally small ellipticity coefficient can
cause failure of the method to converge. This is demonstrated in the first plot of Figure 6 where
on the left the fixed-point iteration fails to converge to a tolerance of 10−5 with β = {1, 0.8, 0.6},
although more accuracy is attained with the damped iterations. It is also clear from this first plot
that in the regime where the the operator g is contractive (the beginning of the calculation), the
damping has the predicted linear effect on the convergence rate.

The second and third plots of Figure 6 show the effect of damping factors β = {1.0, 0.8, 0.6}
as well as an adaptive strategy for the cases of Anderson depths m = 1 and m = 2. The adaptive
strategy is based on the convergence rates found in Theorems 4.1 - 4.2 and Proposition 4.3, meaning
β plays an active role in decreasing the coefficient of the first order term particularly when θ is not
small enough. So βadapt = 1− θk/2 is chosen as a simple heuristic to set a factor between 0.5 and
1.0 that is close to unity when θk is small and approaches 0.5 as θ approaches one.
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Figure 6: Left: Damped iterations for (5.9) with m = 0. Center: Damped iterations with m = 1.
Right: Damped iteration with m = 2.

The three plots of Figure 7 illustrate the behavior of the same damping factors for greater
Anderson depths, m = {4, 6, 8}. While the three examples in Figure 6 failed to converge without
damping, the three examples for greater depth m in Figure 7 converged both with and without, but
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generally better with some damping. The adaptive strategy, while not optimal, demonstrates proof
of concept that with the gain θk taken into account, damping can be designed without extensive
experimentation or additional computation to stabilize the convergence for difficult problems.
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Figure 7: Left: Damped iterations for (5.9) with m = 4. Center: Damped iterations with m = 6.
Right: Damped iteration with m = 8.

6 Conclusion

We have proven that Anderson acceleration improves the first-order convergence rate for fixed
point iterations, in agreement with decades of experimental results. We show that the increase
in the linear convergence rate at each step depends on the gain from the optimization step, but
that additional quadratic error terms arise. Hence as long as the gain from the optimization stage
dominates these quadratic error terms, the convergence rate will be increased. In particular for
linearly convergent fixed point methods, an improved convergence rate from Anderson acceleration
is expected; however, for methods converging quadratically, the convergence will typically be slightly
slowed. Additionally, our results provide justification that both increasing the depth m and using
damping increases the radius of convergence. Results of numerical tests have been provided to
illustrate our theory.
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