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Abstract

Sparse regression and variable selection for large-scale data have been rapidly developed in
the past decades. This work focuses on sparse ridge regression, which enforces the sparsity by
use of the L0 norm. We first prove that the continuous relaxation of the mixed integer second
order conic (MISOC) reformulation using perspective formulation is equivalent to that of the
convex integer formulation proposed in recent work. We also show that the convex hull of the
constraint system of MISOC formulation is equal to its continuous relaxation. Based upon these
two formulations (i.e., the MISOC formulation and convex integer formulation), we analyze two
scalable algorithms, the greedy and randomized algorithms, for sparse ridge regression with
desirable theoretical properties. The proposed algorithms are proved to yield near-optimal
solutions under mild conditions. We further propose to integrate the greedy algorithm with the
randomized algorithm, which can greedily search the features from the nonzero subset identified
by the continuous relaxation of the MISOC formulation. The merits of the proposed methods
are illustrated through numerical examples in comparison with several existing ones.

Approximation Algorithm, Chance Constraint, Conic Program, Mixed Integer, Ridge Regression

1 Introduction

This paper considers the following optimization problem:

v∗ = min
β

{
1

n
‖y −Xβ‖22 + λ‖β‖22 : ‖β‖0 ≤ k

}
. (F0)

We refer such an optimization problem as the sparse ridge regression, which is also studied by
[5, 29, 38, 45]. In (F0), y ∈ R

n denotes the response vector, X = [x1, · · · ,xp] ∈ R
n×p represents

the model matrix, β ∈ R
p is the vector of regression coefficients (i.e., estimand), and λ > 0 is a

positive tuning parameter for the ridge penalty (i.e., squared L2 penalty). Besides, ‖β‖0 is the
L0 norm, which counts the number of nonzero entries of vector β. The value of k represents
the number of features to be chosen. In (F0), we aim to find the best k-sparse estimator, which
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minimizes the least squares error with a squared L2 penalty. Without loss of generality, let us
assume that k ≤ min(n, p).

Note that formulation (F0) is quite general and can be shown to equivalent to the following
convex quadratic program with L0 constraint:

min
β

{
β⊤Qβ − 2a⊤β + b : ‖β‖0 ≤ k

}
, (QP)

where Q is a symmetric and positive definite matrix. Formulation (QP) is equivalent to (F0)
by choosing λ to be a positive number that is less than the smallest eigenvalue of Q and X =√
n(Q− λI)1/2,y =

√
n(Q− λI)−1/2a, b = a⊤(Q− λI)−1a.

Sparse ridge regression (F0) can be reformulated as a chance constrained program (CCP) with
finite support [1, 34]. That is, we consider p scenarios with equal probability 1

p , where the ith

scenario set is Si := {β : βi = 0} for i ∈ [p]. The constraint ‖β‖0 ≤ k means that at most k out of
the p scenarios can be violated. Hence, we can reformulate (F0) as a CCP below

v∗ = min
β





1

n
‖y −Xβ‖22 + λ‖β‖22 :

1

p

∑

i∈[p]
I(|βi| ≤ 0) ≥ 1− k

p



 , (F0-CCP)

where I(·) denotes the indicator function. In Section 2, we will investigate the extent of the recent
progress on CCP (e.g., [1, 34, 43]) which can be used to solve (F0-CCP). It appears that many
existing approaches may not work well due to the scalability issue or may result in trivial solutions.
In Section 4, we conduct and analyze two scalable algorithms as well as an integration of these two
algorithms to solve the sparse ridge regression with theoretical guarantees.

Relevant Literature. The ridge regression has been extensively studied in statistics [19, 36, 55].
It has been shown from existing literature [19, 36, 55] that the additional ridge penalty λ‖β‖22 in
(F0) has several desirable advantages including stable solution, estimator variance reduction, and
efficient computation. Some recent progress in [7, 24] shows that under a certain distributional
ambiguity set, the optimal regression coefficients found in (F0) are more robust than those from
the conventional sparse regression model, if the data (X,y) are insufficient or are subject to some
noises. However, although it has many desirable properties, the ridge estimator is often not sparse.
Enabling sparsity in regression has been the focus of a significant amount of work, including the L1

penalty [52], the Bridge estimator using the Lq (q > 0) penalty [30], the non-convex SCAD penalty
[58], the minimax concave penalty [59], among many others. Several excellent and comprehensive
reviews of sparse regression can be found in [8], [27], and [20]. In particular, it is worth mentioning
that in [61], the authors proposed a well-known “elastic net” approach, which integrates the ridge
penalty (i.e., squared L2 penalty) and L1 penalty into the ordinary least squares objective to
obtain a sparse estimator. However, similar to the L1 penalty method, the elastic net might not
consistently find exactly k-sparse estimator. On the contrary, instead, we introduce a constraint
‖β‖0 ≤ k in (F0), which strictly enforces the sparsity on β, and therefore, can obtain the best
k-sparse estimator.

It has been proven that exact sparse linear regression (F0) with λ = 0 is NP-hard (cf., [42]), so
is the sparse ridge regression (F0). Various effective approximation algorithms or heuristics have
been introduced to solve sparse regression [17, 18, 23, 32, 33, 39]. For example, in [14], the authors
studied the greedy approach (or forward stepwise selection method) and proved its approximation
guarantee when the covariance matrix is nearly identity and has a constant bandwidth. In [15], the
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authors relaxed this assumption and showed that to maximize the R2 statistic for linear regression,
the greedy approach yields a constant approximation ratio under appropriate conditions. However,
the greedy approach has been found prohibitively expensive when the number of features (i.e., p)
becomes large [48]. Recently, [29] integrated coordinate descent with local combinatorial search,
and reported that the proposed method can numerically outperform existing ones. However, this
method does not provide any provable guarantee on the global optimality. Many researchers have
also attempted to solve sparse regression by developing exact algorithms (e.g., branch and cut), or
using mixed integer program (MIP) solvers. It has been shown that for certain large-sized instances
with large signal-to-noise ratios, MIP approaches with warm start (a good initial solution) work
quite well and can yield very high-quality solutions [2, 4, 5, 37, 38, 40, 41]. In particular, in [5], the
authors also studied sparse ridge regression and developed a branch and cut algorithm. However,
through our numerical study, these exact approaches can only solve medium-sized instances to
near-optimality, and their performances highly rely on the speed of commercial solvers and can
vary significantly from one dataset to another. In this work, our emphasis is to develop fast
approximation algorithms with attractive scalability and theoretical performance guarantees.

Our Approaches and Contributions. In this work, we will focus on studying sparse ridge regres-
sion (F0) and deriving scalable algorithms. We will first investigate various existing approaches of
CCP to solve (F0-CCP). One particular approach, which has been used to solve sparse regressions
[4], is to introduce one binary variable for each indicator function in (F0-CCP) and linearize it
with the big-M coefficient. However, such a method can be very slow in computation, in partic-
ular for large-scale datasets. To overcome the aforementioned challenge, we develop a big-M free
mixed integer second order conic (MISOC) reformulation for (F0-CCP). We further show that its
continuous relaxation is equivalent to that of a mixed integer convex (MIC) formulation in [5, 17].
Moreover, these two formulations motivate us to construct a greedy approach (i.e., forward selec-
tion) in a much more efficient way than previously proposed in the literature. The performance
guarantee of our greedy approach is also established. A randomized algorithm is studied by in-
vestigating the continuous relaxations of the proposed MISOC formulation. The numerical study
shows that the proposed methods work quite well. In particular, the greedy approach outperforms
the other methods both in running time and accuracy of variable selection. The contributions are
summarized below:

(i) We investigate theoretical properties of three existing approaches of CCP to solve (F0-CCP),
i.e., the big-M method, the conditional-value-at-risk (i.e., CVaR) approach [43], and the
heuristic algorithm from [1], and shed some lights on why those methods may not be amenable
to solve the sparse ridge regression (F0).

(ii) We establish a mixed integer second order conic (MISOC) reformulation for (F0-CCP) from
perspective formulation [26] and prove its continuous relaxation is equivalent to that of a
mixed integer convex formulation in the work of [5, 17]. We prove that the convex hull of
MISOC formulation is equivalent to its continuous relaxation. We also show that the proposed
MISOC formulation can be stronger than the naive big-M formulation.

(iii) Based on the reformulations, we develop an efficient greedy approach to solve (F0-CCP), and
prove its performance guarantee under a mild condition. The proposed greedy approach is
theoretically sound and computationally efficient.

(iv) By establishing a relationship between the continuous relaxation value of the MISOC for-
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mulation and the optimal value of (F0-CCP) (i.e., v∗), we analyze a randomized algorithm
based on the optimal continuous relaxation solution of the MISOC formulation, and derive
its theoretical properties. Such a continuous relaxation solution can help reduce the number
of potential features and thus can be integrated with the greedy approach.

(v) Our numerical study shows that the proposed methods work quite well, in particular, for
the large-scale instances, the proposed greedy approach can outperforms the others both in
running time and accuracy.

The remainder of the paper is organized as follows. Section 2 investigates the applicability of
several existing approaches of CCP to solve the sparse ridge regression (F0). Section 3 develops
two big-M free mixed integer convex program formulations and proves their equivalence. Section 4
proposes and analyzes two scalable algorithms and proves their performance guarantees. Section 5
introduces the generalized cross validation to select a proper tuning parameter and a generaliza-
tion of the proposed formulations to the sparse matrix estimation. The numerical experiments
of the proposed scalable algorithms are presented in Section 6. We conclude this work with some
discussion in Section 7.

The following notation is used throughout the paper. We use bold-letters (e.g., x,A) to denote
vectors or matrices, and use corresponding non-bold letters to denote their components. Given a
positive integer number t, we let [t]= {1, . . . , t} and let It denote the t× t identity matrix. Given
a subset S ⊆ [p], we let βS denote the subvector of β with entries from a subset S, and XS be a
submatrix of X with columns from a subset S. For a matrix Y , we let σmin(Y ) and σmax(Y ) denote
its smallest and largest singular values, respectively. Given a vector x, we let diag(x) be a diagonal
matrix with diagonal entries from x. For a matrix W , we let W•i denotes its ith column. Given a
set T , we let conv(T ) denote its convex hull. Given a finite set S, we let |S| denote its cardinality.
Given two sets S, T , we let S \T denote the set of elements in S but not in T , let S ∪T denote the
union of S and T and let S∆T be their symmetric difference, i.e., S∆T = (S \ T ) ∪ (T \ S).

2 Investigating Existing Solution Approaches on Solving CCP

In this section, we investigate three
commonly-used approaches to solve (F0-CCP).

2.1 Big-M Method

One typical method for a CCP is to formulate it as a mixed integer program (MIP) by introducing
a binary variable zi for each scenario i ∈ [p], i.e., I(βi 6= 0) ≤ zi, and then using big-M method to
linearize it, i.e., suppose that |βi| ≤ Mi with a large positive number Mi, then zi ≥ I(βi 6= 0) is
equivalent to |βi| ≤Mizi. Therefore, (F0-CCP) can be reformulated as the following MIP:

v∗ = min
β,z





1

n
‖y −Xβ‖22 + λ‖β‖22 :

∑

i∈[p]
zi ≤ k, |βi| ≤Mizi,z ∈ {0, 1}n



 . (F0-big-M)

The above formulation (F0-big-M) has been used widely in recent works on sparse regression (see,
e.g., [4, 5, 37, 38, 40, 41]). The advantage of (F0-big-M) is that it can be directly solved by the off-
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the-shelf solvers (e.g., CPLEX, Gurobi). However, one has to choose the vectorM = (M1, . . . ,Mp)
⊤

properly.
It is known that (F0-big-M) with big-M coefficients typically has a very weak continuous relax-

ation value. Consequently, there has been significant research on improving the big-M coefficients
of (F0-big-M), for example, [1, 4, 44, 46, 51]. However, the tightening procedures tend to be time-
consuming in particular for large-scale datasets. In Section 3, we will introduce two big-M free MIP
formulations, whose continuous relaxation can be proven to be stronger than that of (F0-big-M).

2.2 CVaR Approximation

Another well-known approximation of CCP is the so-called conditional value at risk (CVaR) ap-
proximation (see [43] for details), which is to replace the nonconvex probabilistic constraint by a
convex CVaR constraint. For the sparse ridge regression in (F0-CCP), the resulting formulation
is

vCVaR = min
β





1

n
‖y −Xβ‖22 + λ‖β‖22 : inf

t


−k

p
t+

1

p

∑

i∈[p]
(|βi|+ t)+


 ≤ 0



 , (1)

where (w)+ = max(w, 0). It is seen that (1) is a convex optimization problem and provides a
feasible solution to (F0-CCP). Thus vCVaR ≥ v∗. However, we observe that the only feasible
solution to (1) is β = 0.

Proposition 1 The only feasible solution to (1) is β = 0, i.e., vCVaR = 1
n‖y‖22.

Proof. We first observe that the infimum in (1) must be achievable. Indeed, h(t) := −k
p t +

1
p

∑
i∈[p](|βi| + t)+ is continuous and convex in t, and limt→∞ h(t) = ∞ and limt→−∞ h(t) = ∞.

Therefore, the infimum in (1) must exist. Hence, in (1), we can replace the infimum by the existence
operator:

vCVaR = min
β





1

n
‖y −Xβ‖22 + λ‖β‖22 : ∃t,−k

p
t+

1

p

∑

i∈[p]
(|βi|+ t)+ ≤ 0



 .

Since 1
p

∑
i∈[p] (|βi|+ t)+ ≥ 0 and k

p > 0, therefore, t ≥ 0, i.e.

vCVaR = min
β





1

n
‖y −Xβ‖22 + λ‖β‖22 : ∃t ≥ 0,

p− k

p
t+

1

p

∑

i∈[p]
|βi| ≤ 0



 ,

which implies that t = 0 and βi = 0 for each i ∈ [p]. �

Therefore, the CVaR approach yields a trivial solution for (F0-CCP). Hence, it is not a
desirable approach, and other alternatives are more preferred.

2.3 Heuristic Algorithm in [1]

In the recent work of [1], the authors proposed a heuristic algorithm for a CCP with a discrete
distribution. It was reported that such a method could solve most of their numerical instances to
near-optimality (i.e., within 4% optimality gap). The key idea of the heuristic algorithm in [1] is
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to minimize the sum of infeasibilities for all scenarios when the objective value is upper bounded
by vU . Specifically, they considered the following optimization problem

min
β




∑

i∈[p]
|βi| :

1

n
‖y −Xβ‖22 + λ‖β‖22 ≤ vU



 . (2)

Let β∗
U be an optimal solution to (2) given an upper bound vU of v∗. The heuristic algorithm is

to decrease the value of vU if ‖β∗
U‖0 ≤ k, and increase it, otherwise. This bisection procedure will

terminate after a finite number of iterations. The detailed procedure is described in Algorithm 1.
Let vheur denote the output solution from Algorithm 1. Then clearly,

Proposition 2 For Algorithm 1, the following two properties hold:

(i) It terminates with at most ⌊log2(‖y‖
2
2

nδ̂
)⌋+ 1 iterations; and

(ii) It generates a feasible solution to (F0-CCP), i.e., v∗ ≤ vheur.

Proof.

(i) To prove the first part, Algorithm 1 will terminate if and only if U − L ≤ δ̂. And after
one iteration, the difference between U and L is halved. Suppose Algorithm 1 will terminate
within at most T steps. Then we must have

‖y‖22
n2T−1

> δ̂,

i.e., T < 1 + log2

(
‖y‖22
nδ̂

)
.

(ii) We start with a feasible solution β = 0 to (F0-CCP). In Algorithm 1, we keep track of the
feasible solutions from iteration to iteration. Thus, the output of Algorithm 1 is feasible to
(F0-CCP), i.e., v∗ ≤ vheur.

�

It is worth mentioning that for any given upper bound vU , the formulation (2) is similar to
the elastic net proposed by [61], which can be interpreted as a Lagrangian relaxation of (2). The
difference between Algorithm 1 and elastic net is that this iterative procedure simultaneously guar-
antees the sparsity and reduces the regression error while elastic net seeks a trade-off among the
regression error, squared L2 penalty, and L1 penalty of β. We also note that Algorithm 1 might
not be computationally efficient since it requires solving (2) multiple times but a warm start from
the solution of the previous iteration might help speed up the algorithm. Although there have been
much development of statistical properties of the elastic net method [16, 61], to the best of our
knowledge, there is not a known performance guarantee (i.e., approximation ratio) for Algorithm 1.

3 Investigating Two Big-M Free Reformulations and their Formu-
lation Comparisons

Note that the Big-M formulation in (F0-big-M) is quite compact since it only involves 2p variables
(i.e., β,z). However, it is usually a weak formulation in the sense that the continuous relaxation
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Algorithm 1 Heuristic Algorithm in [1]

1: Let L = 0 and U =
‖y‖22
n be known lower and upper bounds for (F0-CCP), let δ̂ > 0 be the

stopping tolerance parameter.
2: while U − L > δ̂ do

3: q ← (L+ U)/2.
4: Let β̂ be an optimal solution of (2) and set ẑi = I(β̂i = 0) for all i ∈ [p].
5: if

∑
i∈[p] ẑi ≥ p− k then

6: U ← q.
7: else

8: L← q.
9: end if

10: end while

11: Output vheur ← U .

value of (F0-big-M) can be quite far from the optimal value v∗. In this section, we propose two
big-M free reformulations of (F0-CCP) that arise from two distinct perspectives and prove their
equivalence.

3.1 Mixed Integer Second Order Conic (MISOC) Formulation

In this subsection, we will present a MISOC formulation and its analytical properties. To begin
with, we first make an observation from the perspective formulation in [12, 18, 21, 26], where in [18],
the authors introduced perspective relaxation for sparse regression with L0 penalty term, where
they convexified a quadratic term using perspective formulation. Let us consider a nonconvex set

Wi :=
{
(βi, µi, zi) : β

2
i ≤ µi, zi ≥ I(βi 6= 0), zi ∈ {0, 1}

}
, (3)

for each i ∈ [p]. The results in [26] shows that the convex hull of Wi, denoted as conv(Wi), can be
characterized as below.

Lemma 1 (Lemma 3.1. in [26]) For each i ∈ [p], the convex hull of the set Wi is

conv(Wi) =
{
(βi, µi, zi) : β

2
i ≤ µizi, zi ∈ [0, 1]

}
. (4)

Lemma 1 suggests an extended formulation for (F0-CCP) without big-M coefficients. To achieve
this goal, we first introduce a variable µi to be the upper bound of β2

i for each i ∈ [p], and a binary
variable zi ≥ I(βi 6= 0). Thus, (F0-CCP) is equal to

v∗ = min
β,µ,z





1

n
‖y −Xβ‖22 + λ‖µ‖1 :

∑

i∈[p]
zi ≤ k, (βi, µi, zi) ∈Wi,∀i ∈ [p]



 ,

which can be equivalently reformulated as

v∗ = min
β,µ,z

{
1

n
‖y −Xβ‖22 + λ‖µ‖1 :(βi, µi, zi) ∈ conv(Wi), zi ∈ {0, 1},∀i ∈ [p],
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∑

i∈[p]
zi ≤ k

}
. (5)

Note that (i) in (5), we replace Wi by conv(Wi) and enforce zi to be binary for each i ∈ [p]; and
(ii) from Lemma 1, conv(Wi) can be described by (4).

The above result is summarized in the following theorem.

Theorem 1 The formulation (F0-CCP) is equivalent to

v∗ = min
β,µ,z





1

n
‖y −Xβ‖22 + λ‖µ‖1 :

∑

i∈[p]
zi ≤ k, β2

i ≤ µizi, zi ∈ {0, 1},∀i ∈ [p]



 . (F0-MISOC)

This formulation (F0-MISOC) introduces p more variables {µi}i∈[p] than (F0-big-M), but it does
not require any big-M coefficients.

Next, we show that the convex hull of the feasible region of (F0-MISOC) is equal to that of its
continuous relaxation. Therefore, it suggests that we might not be able to improve the formulation
by simply exploring the constraint system of (F0-MISOC). For notational convenience, let T denote
the feasible region of (F0-MISOC), i.e.,

T =



(β,µ,z) :

∑

i∈[p]
zi ≤ k, β2

i ≤ µizi, zi ∈ {0, 1},∀i ∈ [p]



 . (6)

The following result indicates that the continuous relaxation of the set T is equivalent to conv(T ),

Proposition 3 Let T denote the feasible region of (F0-MISOC). Then

conv(T ) =



(β,µ,z) :

∑

i∈[p]
zi ≤ k, β2

i ≤ µizi, zi ∈ [0, 1],∀i ∈ [p]



 .

Proof. Let T̂ be the continuous relaxation set of T , i.e.,

T̂ =



(β,µ,z) :

∑

i∈[p]
zi ≤ k, β2

i ≤ µizi, zi ∈ [0, 1],∀i ∈ [p]



 .

We would like to show that conv(T ) = T̂ . We separate the proof into two steps, i.e., prove
conv(T ) ⊆ T̂ and T̂ ⊆ conv(T ).

(i) It is clear that conv(T ) ⊆ T̂ .

(ii) To prove T̂ ⊆ conv(T ), we only need to show that for any given point (β̂, µ̂, ẑ) ∈ T̂ , we
have (β̂, µ̂, ẑ) ∈ conv(T ). Since ẑ ∈ {z :

∑
i∈[p] zi ≤ k,z ∈ [0, 1]p}, which is an integral

polytope, there exists K integral extreme points {z̄t}t∈[K] ⊆ Z
p
+ such that ẑ =

∑
t∈[K] λtz̄

t

with λt ∈ (0, 1) for all t and
∑

t∈[K] λt = 1. Now we construct (β̄t, µ̄t) for each t ∈ [K] as
follows:

µ̄t
i =

{
µ̂i

ẑi
if z̄ti = 1

0 otherwise
, β̄t

i =

{
β̂i

ẑi
if z̄ti = 1

0 otherwise
,∀i ∈ [p].
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First of all, we claim that (β̄t, µ̄t, z̄t) ∈ T for all t ∈ [K]. Indeed, for any t ∈ [K],

(β̄t
i )

2 =

{
(β̂i)

2

ẑ2i
if z̄ti = 1

0 otherwise
≤ µ̄t

iz̄
t
i =

{
µ̂i
ẑi

if z̄ti = 1

0 otherwise
,∀i ∈ [p]

∑

i∈[p]
z̄ti ≤ k

z̄t ∈ {0, 1}p.

As ẑ =
∑

t∈[K] λtz̄
t, thus, for each i ∈ [p], we have

∑

t∈[K]

λtµ̄
t
i =

∑

t∈[K]

λt
µ̂i

ẑi
z̄ti = µ̂i

∑

t∈[K]

λtβ̄
k
i =

∑

t∈[K]

λt
β̂i
ẑi
z̄ti = β̂i.

Thus, (β̂, µ̂, ẑ) ∈ conv(T ).

�

Finally, we remark that if an upper bound M of β is known, then (F0-MISOC) can be further
strengthened by adding the constraints |βi| ≤Mizi for each i ∈ [p]. This result is summarized in
the following corollary.

Proposition 4 The formulation (F0-CCP) is equivalent to

v∗ = min
(β,µ,z)∈T

{
1

n
‖y −Xβ‖22 + λ‖µ‖1 : |βi| ≤Mizi,∀i ∈ [p]

}
(F0-MISOC-M)

where the vector M = (M1, . . . ,Mp)
⊤ are big-M coefficients and the set T is defined in (6).

Please note that the results in Proposition 3 and Proposition 4 can be generalized to convex
quadratic program with side constraints and L0 constraint [6] such as the portfolio optimization
problem.

3.2 Mixed Integer Convex (MIC) Formulation

In this subsection, we will introduce an equivalent MIC formulation to (F0-CCP). The main idea
is to separate the optimization in (F0-CCP) into two steps: (i) we optimize over β by fixing its
nonzero entries with at most k, and (ii) we select the best subset of nonzero entries with size at
most k. After the first step, it turns out that we can arrive at a convex integer program, which is
big-M free. This result has been observed in recent work of [5] and [17].

Proposition 5 ([5] and [17]) The formulation (F0-CCP) is equivalent to

v∗ = min
z



f(z) := λy⊤


nλIn +

∑

i∈[p]
zixix

⊤
i



−1

y :
∑

i∈[p]
zi ≤ k,z ∈ {0, 1}p



 . (F0-MIC)
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Note that in [5], the authors proposed a branch and cut algorithm to solve (F0-MIC), which
was shown to be effective in solving some large-sized instances. In the next subsection, we will
show that the continuous relaxation of (F0-MIC) is equivalent to that of (F0-MISOC). Therefore,
it can be more appealing to solve (F0-MISOC) directly by MISOC solvers (e.g., CPLEX, Gurobi).
Indeed, we numerically compare the branch and cut algorithm with directly solving (F0-MISOC)
in Section 6.

Finally, we remark that given the set of selected features S ⊆ [p], its corresponding estimator
β̂ can be computed by the following formula:

{
β̂S =

(
X⊤

S XS + nλI|S|
)−1

X⊤
S y

β̂i = 0 if i ∈ [p] \ S
, (7)

where β̂S denotes a sub-vector of β̂ with entries from subset S.

3.3 Formulation Comparisons

In this subsection, we will focus on comparing (F0-big-M), (F0-MISOC), (F0-MISOC-M) and
(F0-MIC) according to their continuous relaxation bounds. First, let v1, v2, v3, v4 denote the con-
tinuous relaxation of (F0-big-M), (F0-MISOC), (F0-MISOC-M) and (F0-MIC), respectively, i.e.,

v1 =min
β,z





1

n
‖y −Xβ‖22 + λ‖β‖22 :

∑

i∈[p]
zi ≤ k, |βi| ≤Mizi,z ∈ [0, 1]p



 , (8a)

v2 = min
β,µ,z





1

n
‖y −Xβ‖22 + λ‖µ‖1 : β2

i ≤ µizi,∀i ∈ [p],
∑

i∈[p]
zi ≤ k,z ∈ [0, 1]p



 , (8b)

v3 = min
β,µ,z

{
1

n
‖y −Xβ‖22 + λ‖µ‖1 : β2

i ≤ µizi, |βi| ≤Mizi,∀i ∈ [p], (8c)

∑

i∈[p]
zi ≤ k,z ∈ [0, 1]p

}
,

v4 =min
z



f(z) = λy⊤


nλIn +

∑

i∈[p]
zixix

⊤
i



−1

y :
∑

i∈[p]
zi ≤ k,z ∈ [0, 1]p



 . (8d)

Next, in the following theorem, we will show a comparison of proposed formulations, i.e.,
(F0-big-M), (F0-MISOC), (F0-MISOC-M) and (F0-MIC). In particular, we prove that v2 = v4,
i.e., the continuous relaxation bounds of (F0-MISOC) and (F0-MIC) coincide. In addition, we
show that by adding big-M constraints |βi| ≤Mizi for each i ∈ [p] into (F0-MISOC), we arrive at
a tighter relaxation bound than that of (F0-big-M), i.e., v3 ≥ v1.

Theorem 2 Let v1, v2, v3, v4 denote optimal values of (8a), (8b), (8c) and (8d), respectively. Then

(i) v2 = v4 ≤ v3; and

(ii) v1 ≤ v3.

10



Proof. We separate the proof into three steps.

(1) We will prove v2 = v4 first. By Lemma A.1. [47], we note that (8d) is equivalent to

v4 = min
γ0,γ,z

λ


‖γ0‖22 +

∑

i∈[p]

γ2i
zi


 ,

s.t.
√
λnγ0 +

∑

i∈[p]
xiγi = y,

∑

i∈[p]
zi ≤ k,

z ∈ [0, 1]p,γ0 ∈ R
n, γi ∈ R,∀i ∈ [p],

where by default, we let 0
0 = 0. Now let βi = γi and introduce a new variable µi to denote

µi ≥ β2
i
zi

for each i ∈ [p]. Then the above formulation is equivalent to

v4 = min
γ0,β,µ,z

λ
(
‖γ0‖22 + ‖µ‖1

)
,

s.t.
√
λnγ0 +

∑

i∈[p]
xiβi = y,

β2
i ≤ µizi,∀i ∈ [p],
∑

i∈[p]
zi ≤ k,

z ∈ [0, 1]p,γ0 ∈ R
n, µi ∈ R+,∀i ∈ [p].

Finally, in the above formulation, replace

γ0 =
1√
λn


y −

∑

i∈[p]
xiβi


 =

1√
λn

(y −Xβ) .

Then we arrive at (8b).

(2) Next, we will prove v2 ≤ v3. Note that the set of the constraints in (8b) is a subset of those in
(8c). Thus, v2 ≤ v3.

(3) Third, we will prove v1 ≤ v3. We first note that v1 is equivalent to

v1 = min
β,µ,z

{
1

n
‖y −Xβ‖22 + λ‖µ‖1 : β2

i ≤ µi, |βi| ≤Mizi,∀i ∈ [p],

∑

i∈[p]
zi ≤ k,z ∈ [0, 1]p

}

The result v1 ≥ v3 follows directly by observing that the constraints β2
i ≤ µizi for each i ∈ [p]

imply that β2
i ≤ µi for each i ∈ [p]. �
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Based on the results established in Theorem 2, we could directly solve the second order conic
program (8b) to obtain the continuous relaxation of MIC (F0-MIC), which can be solved quite effi-
ciently by existing solvers (e.g., CPLEX, Gurobi). In addition, adding big-M constraints |βi| ≤Mizi
for each i ∈ [p] into (8b), the relaxation bound can be further improved.

Finally, we would like to elaborate that by choosing the vector M differently, the continuous re-
laxation bound v2 of (F0-MISOC) can dominate v1, the continuous relaxation bound of (F0-big-M),
and vice versa.

Example 1 Consider the following instance of (F0-CCP) with n = 2, p = 2, k = 1 and y =
(1, 1)⊤,X = I2. Thus, in this case, we have v∗ = λ

1+2λ + 1
2 , v2 = 4λ

1+4λ . There are two different

choices about M = (M1,M2)
⊤:

(i) If we choose M loosely, i.e., M1 = M2 =

√
‖y‖22
nλ =

√
1
λ , then

v1 =
2λ

1 + 2λ
< v2 < v∗,

given that λ > 0.

(ii) If we choose M to be the tightest bound of the optimal solutions of (F0-CCP), i.e., M1 =
M2 =

1
1+2λ , then

v2 < v1 =
8λ+ 1

8λ+ 4
< v∗,

given that λ ∈ (0, 1/4).

4 Two Scalable Algorithms and their Performance Guarantees

In this section, we will study two scalable algorithms based upon two equivalent formulations
(F0-MISOC) and (F0-MIC), i.e., the greedy approach based on (F0-MIC), and the randomized
algorithm based on (F0-MISOC).

4.1 The Greedy Approach based on MIC Formulation

The greedy approach (i.e., forward selection) has been commonly used as a heuristic to conduct
the best subset selection [15, 50, 60]. The idea of the greedy approach is to select the feature that
minimizes the marginal decrement of the objective value in (F0-MIC) at each iteration until the
number of selected features reaches k. Note that given a selected subset S ⊆ [p] and an index
j /∈ S, the marginal objective value difference by adding j to S can be computed explicitly via the
Sherman-Morrison formula [49] as below:

λy⊤
[
AS + xjx

⊤
j

]−1
y − λy⊤A−1

S y = −λ
(
y⊤A−1

S xj

)2

1 + x⊤
j A

−1
S xj

,

[
AS + xjx

⊤
j

]−1
= A−1

S −
A−1

S xjx
⊤
j A

−1
S

1 + x⊤
j A

−1
S xj

,

12



where AS = nλIn +
∑

i∈S xix
⊤
i .

This motivates us an efficient implementation of the greedy approach, which is described in Al-
gorithm 2. Note that in Algorithm 2, at each iteration, we only need to keep track of {A−1

S xj}j∈[p],
{xjA

−1
S xj}j∈[p] and {yA−1

S xj}j∈[p], which has space complexity O(np) and update them from one
iteration to another iteration, which costs O(np) operations per iteration. Therefore, the space and
time complexity of Algorithm 2 are O(np) and O(npk), respectively.

Algorithm 2 Proposed Greedy Approach for Solving (F0-MIC)

1: Initialize S = ∅ and AS = nλIn
2: for i = 1, . . . , k do

3: Let j∗ ∈ argminj∈[p]\S

{
−λ(y⊤A−1

S xj)
2

1+x⊤
j A−1

S xj

}

4: Let S = S ∪ {j∗} and AS = AS + xj∗x
⊤
j∗ ,A

−1
S = A−1

S −
A−1

S xj∗x
⊤
j∗

A−1
S

1+x⊤
j∗

A−1
S xj∗

5: end for

6: Output vG ← λy⊤A−1
S y.

From our empirical study, the greedy approach work quite well. Indeed, we will investigate the
greedy solution and prove that it can be very close to the true optimal, in particular when λ is not
too small. To begin with, let us define θs to be the largest singular value of all the matrices XSX

⊤
S

with |S| = s, i.e.,
θs := max

|S|=s
σ2
max(XS) = max

|S|=s
σmax(XSX

⊤
S ), (9)

for each s ∈ [p]. By definition (9), we have θ1 ≤ θ2 ≤ . . . ≤ θp, and by default, we let θ0 = 0.
Our main results of near-optimality of the greedy approach are stated as below. That is, if

p ≥ k, then the solution of greedy approach will be quite close to any optimal estimator from
(F0-CCP) as λ grows.

Theorem 3 Suppose p ≥ k. Then the output (i.e., vG) of the greedy approach (i.e., Algorithm 2)
is bounded by

v∗ ≤ vG ≤ nλ+ θk
nλ

(
1− n2λ2θ

(nλ+ θ1)(nλ+ θk)2
log

(
p+ 1

p+ 1− k

))
v∗, (10)

where θ defined in (9) and
θ = min

T⊆[p],|T |≥p−k+1
σmin(XTX

⊤
T ).

Proof.
First of all, suppose that z∗ is an optimal solution to (F0-MIC). According to the definition of

θk, we have nλIn +
∑

i∈[p] z
∗
i xix

⊤
i ≤ (nλ+ θk)In. Thus,

v∗ = λy⊤


nλIn +

∑

i∈[p]
z∗i xix

⊤
i


y ≥ λ

nλ+ θk
‖y‖22. (11)

13



On the other hand, according to Step 3 of Algorithm 2, for any given S such that |S| = s < k,
and AS = nλIn +

∑
i∈S xix

⊤
i and j ∈ [p] \ S, we observe that

λy⊤
[
AS + xjx

⊤
j

]−1
y − λy⊤A−1

S y = −λ
(
y⊤A−1

S xj

)2

1 + x⊤j A
−1
S xj

. (12)

Thus, using the identity (12), we can prove by induction that the greedy value is upper bounded
by

vG ≤


1− n2λ2θ

(nλ+ θ1)(nλ+ θk)2

∑

i∈[k]

1

p+ 1− i


 1

n
‖y‖22. (13)

Indeed, if k = 0, then (13) holds. Suppose that k = t ≥ 0, (13) holds. Now let k = t+ 1 and let S
be the selected subset at iteration t. By induction, we have

λy⊤A−1
S y ≤


1− n2λ2θ

(nλ+ θ1)(nλ+ θk)2

∑

i∈[t]

1

p+ 1− i


 1

n
‖y‖22.

And by the greedy selection procedure, we further have

vG = λy⊤A−1
S y + min

j∈[p]\S
λy⊤

[
AS + xjx

⊤
j

]−1
y − λy⊤A−1

S y

≤ λy⊤A−1
S y +

1

p− t

∑

j∈[p]\S

[
−λ

(
y⊤A−1

S xj

)2

1 + x⊤j A
−1
S xj

]

≤ λy⊤A−1
S y − nλ2

(p− t)(nλ+ θ1)
y⊤A−1

S (X[p]\SX
⊤
[p]\S)A

−1
S y

≤


1− n2λ2θ

(nλ+ θ1)(nλ+ θk)2

∑

i∈[t+1]

1

p+ 1− i


 1

n
‖y‖22,

where the first equality is due to (12), the first inequality is because the minimum is no larger than
the average, the second inequality is because AS � nλIn and ‖xj‖22 ≤ θ1, and the third inequality
is due to the induction and the facts that p ≥ k,AS � (nλ+ θk)In, θ ≤ σmin(X[p]\SX

⊤
[p]\S).

Combining (11) and (12) and using the fact that
∑

i∈[k]
1

p+1−i ≥
∫ k
0

1
p+1−tdt = log

(
p+1

p+1−k

)
, the

conclusion follows. �

We make the following remarks about Theorem 3.

(i) If p < n+ k, then according to the definition, θ = 0.

(ii) If we normalize ‖xi‖22 = n for each i ∈ [p], we must have θk ≤ kn, thus nλ
nλ+θk

≤ λ
λ+k .

Therefore, we can see that the objective value of greedy approach is closer to the true optimal
value if the tuning parameter becomes larger.

(iii) Besides, our analysis and asymptotic optimality of the greedy approach is new without any
assumption on the data and thus is quite different from the existing ones for sparse regression
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[10, 11, 14, 15, 31, 60]. For example, the results in [10, 11] require the well-known restricted
isometry property (RIP) states as below:

(1− δs)‖β‖22 ≤ ‖Xβ‖22 ≤ (1 + δs)‖β‖22,∀s ∈ [p],β : ‖β‖0 = s,

where δ ∈ (0, 1)p is a constant. This is quite a strong assumption and our Theorem 3 does
not require such an assumption. On the other hand, if the tuning parameter λ → 0+, then
our performance guarantee can be arbitrarily bad. Therefore, our analysis cannot trivially
extend to sparse regression.

In the next subsection, we will investigate a randomized algorithm and prove its approximation
guarantee under a weaker condition of λ.

In addition, we remark that the estimator βG of the greedy approach can be computed by (7),
where S denotes the set of features selected by the greedy approach. In the next theorem, we will
show that the derived estimator from the greedy approach (i.e., βG) can be also quite close to an
optimal solution β∗ of (F0-CCP).

Theorem 4 Let β∗ be an optimal solution to (F0-CCP) with set of selected features S∗ and βG be
the estimator from the greedy approach with set of selected features SG. Suppose that p ≥ k, then
we have

‖βG − β∗‖2 ≤

√
4nθ|SG\S∗|v∗

nλ+ σmin(X⊤
SUXSU )

+

√
nνv∗

nλ+ σmin(X⊤
SUXSU )

,

where SU = SG ∪ S∗, i.e., the union of set SG and set S∗, and

ν =
nλ+ θk

nλ

(
1− n2λ2θ

(nλ+ θ1)(nλ+ θk)2
log

(
p+ 1

p+ 1− k

))
− 1.

Proof. Note that the greedy estimator βG can be computed through (7) by setting S to be SG, the
set of selected features by greedy approach. Moreover, we define X̃ as follows:

{
X̃SG\S∗ = XSG\S∗

X̃•i = 0 if i ∈ [p] \ (SG \ S∗)
.

Then we have,

1

n
‖y −XβG‖22 + λ‖βG‖22 −

[
1

n
‖y −Xβ∗‖22 + λ‖β∗‖22

]
≤ νv∗

(⇔)− 2
(
β∗ − βG

)⊤
[
− 1

n
X⊤ (y −Xβ∗) + λβ∗

]

+
(
β∗ − βG

)⊤
[
1

n
X⊤X + λIp

] (
β∗ − βG

)
≤ νv∗

(⇔)− 2
(
β∗ − βG

)⊤
[
− 1

n
X̃⊤ (y −Xβ∗)

]

+
(
β∗
SU − βG

SU

)⊤
[
1

n
X⊤

SUXSU + λI|SU |

] (
β∗
SU − βG

SU

)
≤ νv∗
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(⇒)− 2

n
‖X̃‖2‖y −Xβ∗‖2‖β∗

SG\S∗ − βG
SG\S∗‖2

+

(
λ+

σmin(X
⊤
SUXSU )

n

)
∥∥β∗ − βG

∥∥2
2
≤ νv∗

(⇒)−
√

4θ|SG\S∗|v∗

n
‖β∗ − βG‖2 +

(
λ+

σmin(X
⊤
SUXSU )

n

)
∥∥β∗ − βG

∥∥2
2
≤ νv∗

(⇒)
∥∥βG − β∗∥∥

2

≤

√
4nθ|SG\S∗|v∗

nλ+ σmin(X
⊤
SUXSU )

+

√
nνv∗

nλ+ σmin(X
⊤
SUXSU )

,

where the second equivalence is due to the optimality condition of β∗, i.e.,
− 1

nX
⊤
S∗ (y −XS∗β∗

S∗) + λβ∗
S∗ = 0, and the nonzero entries of β∗−βG are only from subset SU :=

SG ∪ S∗. The first implication is due to sub-multiplicativity of matrix norm and ‖A‖2 ≥ σmin(A),
the second implication is because of ‖X̃‖2 ≤

√
θk, ‖y−Xβ∗‖2 ≤

√
nv∗, and the last implication is

because any solution of the following quadratic inequality at2 − bt− c ≤ 0 with a, b, c > 0 is upper
bounded by b

a +
√

c
a . �

Note that in Theorem 4, the first term of the error bound vanishes when SG = S∗, i.e., when
the greedy approach can exactly identify all the features.

4.2 The Randomized Algorithm based on MISOC Formulation

In this subsection, we investigate a randomized algorithm based on the continuous relaxation so-
lution of (F0-MISOC), i.e., the optimal solution to (8b), which can be efficiently solved via the
interior point method or other convex optimization approaches [3].

Suppose that ẑ is the optimal solution of the continuous relaxation model (8b). For each
i ∈ [p], the column xi will be picked by probability ẑi. The detailed implementation is illustrated
in Algorithm 3.

Algorithm 3 Proposed Randomized Algorithm

1: Let ẑ be the optimal solution to (8b)
2: Initialize set S = ∅ and vector z̃ = 0 ∈ R

p

3: for i = 1, . . . , p do

4: Sample a standard uniform random variable U
5: if U ≤ ẑi then
6: Let S = S ∪ {i} and z̃i = 1
7: end if

8: end for

9: Output S, z̃

Next, we will show that if λ is not too small, then with high probability, the output S of
Algorithm 3 yields its corresponding objective value close to the optimal value v∗. To begin with,
we present the following matrix concentration bound.
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Lemma 2 (Theorem 1.4., [53]) Consider a finite sequence {Yk} of independent, random, sym-
metric matrices with dimension d. Assume that each random matrix satisfies E[Yk] = 0 and
‖Yk‖22 ≤ R2 almost surely. Then, for all t ≥ 0, we have

P

{∥∥∥∥∥
∑

k

Yk

∥∥∥∥∥
2

≥ t

}
≤ d exp

(
− t2

2ν2 + 2/3Rt

)
, (14)

where ν2 := ‖∑k E[Y
2
k ]‖2.

Lemma 2 implies that if λ is not too small, then with high probability, λnIn +
∑

i∈S xix
⊤
i has

the similar eigenvalues as λnIn +
∑

i∈[p] ẑixix
⊤
i , where ẑ is the optimal solution to (8b) and S is

the output of Algorithm 3.

Lemma 3 Let ẑ be the optimal solution to (8b) and S be the output of Algorithm 3. Given that
α ∈ (0, 1) and

λ ≥ log(2n/α)
√
θ1

3nǫ
+

√
2θk log(2n/α)

2nǫ
,

then with probability at least 1− α
2 , we have

(1− ǫ)u⊤Σ∗u ≤ u⊤Σ̂u ≤ (1 + ǫ)u⊤Σ∗u,∀u ∈ R
n,

where Σ∗ = λnIn +
∑

i∈[p] ẑixix
⊤
i and Σ̂ = λnIn +

∑
i∈S xix

⊤
i .

Proof. Let ẑ be the optimal solution to (8b) and let {ri}i∈[p] be independent Bernoulli random
variables with P{ri = 1} = ẑi for each i ∈ [p]. Consider the random matrix defined as for each
i ∈ [p],

Ai = (ri − ẑi)xix
⊤
i

and E[Ai] = 0. On the other hand, by definition, we have ‖xi‖22 ≤ θ1 for each i ∈ [p], thus

‖Ai‖2 = |ri − ẑi|‖xi‖22 ≤ θ1 := R2.

Also,

∥∥∥∥∥∥

∑

i∈[p]
E[A2

i ]

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥

∑

i∈[p]
ẑi (1− ẑi) ‖xi‖22xix

⊤
i

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥

∑

i∈[p]
ẑi (1− ẑi)xix

⊤
i

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥

∑

i∈[p]
ẑixix

⊤
i

∥∥∥∥∥∥
2

≤ θk,

where the first inequality is due to triangle inequality and ‖xi‖22 = 1 for each i ∈ [p], the second
inequality is due to 1− ẑi ∈ [0, 1] for all i ∈ [p] and the last one is due to

max
z∈[0,1]p



σmax

(
zixix

⊤
i

)
:
∑

i∈[p]
zi = k
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= max
z∈{0,1}p



σmax

(
zixix

⊤
i

)
:
∑

i∈[p]
zi = k



 := θk.

Now by Lemma 2 with σmin(Σ∗) denoting the smallest eigenvalue of Σ∗ and t = ǫσmin(Σ∗), we
have

P





∥∥∥∥∥∥

∑

i∈[p]

(
Σ̂−Σ∗

)
∥∥∥∥∥∥
2

≥ ǫσmin(Σ∗)



 ≤ n exp

(
− ǫ2σ2

min(Σ∗)

2θk + 2/3ǫ
√
θ1σmin(Σ∗)

)
.

We would like to ensure that the right-hand side of above inequality is at most α
2 .

Thus,

P





∥∥∥∥∥∥

∑

i∈[p]

(
Σ̂−Σ∗

)
∥∥∥∥∥∥
2

≥ ǫσmin(Σ∗)



 ≤

α

2
,

(⇐) n exp

(
− ǫ2σ2

min(Σ∗)
2θk + 2/3ǫσmin(Σ∗)

)
≤ α

2
,

(⇐) σmin(Σ∗) ≥
log(2n/α)

√
θ1

3ǫ
+

√
2θk log(2n/α)

2ǫ
,

(⇐) λ ≥ log(2n/α)
√
θ1

3nǫ
+

√
2θk log(2n/α)

2nǫ
,

where the second implication is because the following quadratic inequality at2 − bt − c ≥ 0 with
a, b, c > 0 is satisfied if t ≥ b

a +
√

c
a , and the third implication is due to λn ≤ σmin(Σ∗).

Then the conclusion follows directly by Weyl’s theorem [22, 57]. �

Based on Lemma 3, we can imply the following bi-criteria approximation of (F0).

Theorem 5 Let (S, z̃) be the output of Algorithm 3. Given that α ∈ (0, 1) and

λ ≥ log(2n/α)
√
θ1

3nǫ
+

√
2θk log(2n/α)

2nǫ
,

then with probability at least 1− α, we have

vR := λy⊤


λnIn +

∑

i∈[p]
z̃ixix

⊤
i



−1

y ≤ (1 + ǫ)v∗ (15)

and

∑

i∈[p]
z̃i ≤

(
1 +

√
3 log(2/α)

k

)
k. (16)

Proof. Note that (15) follows from Lemma 3. The result in (16) holds due to the Chernoff bound
[13], i.e.,

P




∑

i∈[p]
z̃i ≤

(
1 +

√
3 log(2/α)

k

)
k



 ≥ 1− e−

(
√

3 log(2/α)
k

)2

k

3 ≥ 1− α

2
.
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Therefore, by Boole’s inequality, we arrive at the conclusion. �

When revising this paper, we realized a very interesting paper [45], which also studied the same
randomized rounding algorithms. Our results distinguish from the work in [45] through two aspects:
(i) We propose a second order conic program to obtain the continuous relaxation solution, while [45]
proposed a gradient decent method to solve it; and (ii) Our approximation ratio is multiplicative
and does not depend on p, while theorem 3 in [45] derived an additive approximation bound, which
is proportional to the square root of support of the continuous relaxation solution and thus can be
O(
√
p). That is, using our notation, our approximation ratio is

vR ≤
(
1 +

log(2n/α)
√
θ1

3nλ
+

√
2θk log(2n/α)

2nλ

)
v∗

and the approximation bound vp in [45] is

vp − v∗ ≤ c4

√
r log(min{r, n})

nλ

where r = ‖ẑ‖0 with ẑ denoting the continuous relaxation solution, and c4 is a “sufficient large
constant.” Clearly, if c4 is very large or ‖ẑ‖0 is close to p, then our bound is much tighter than
[45].

Next, let βR be the estimator from Algorithm 3, which can be computed according to (7) by
letting S be the output from Algorithm 3. Then we can show that the distance between βR and
β∗ (i.e., ‖βR − β∗‖2) can be also quite small, where β∗ is an optimal solution to (F0).

Theorem 6 Let β∗ be an optimal solution to (F0) with set of selected features S∗ and βR be the

estimator from Algorithm 3 with set of selected features SR. Given α ∈ (0, 1), if λ ≥ log(2n/α)
√
θ1

3nǫ +√
2θk log(2n/α)

2nǫ , then with probability at least 1− α, we have

‖βR − β∗‖2 ≤

√
4nθ|SR\S∗|v∗

nλ+ σmin(X
⊤
SR∪S∗XSR∪S∗)

+

√
nǫv∗

nλ+ σmin(X
⊤
SR∪S∗XSR∪S∗)

.

Proof. The proof is almost identical to that of Theorem 4, thus is omitted here. �

Finally, we remark that we can integrate the greedy approach with the randomized algorithm,
which is to apply the greedy approach based upon the support of the continuous relaxation solution
of (F0-MISOC). That is, given that ẑ is the optimal solution to (8b) and δ > 0 is a positive
constant, then we first let set C := {i ∈ [p] : ẑi ≥ δ} and apply greedy approach (Algorithm 2) to
set C rather than [p], which could save a significant amount of computational time, in particular
when continuous relaxation solution ẑ is very sparse. The detailed description can be found in
Algorithm 4.

5 Selection of Tuning Parameter and Generalization to Sparse
Matrix Estimation

In this section, we will discuss how to select the tuning parameter λ using generalized cross valida-
tion and show that our proposed approaches can be extended to sparse matrix estimation.
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Algorithm 4 Proposed Restricted Greedy Approach

1: Let ẑ be the optimal solution to (8b)
2: Initialize δ > 0 (e.g., δ = 0.01), C := {i ∈ [p] : ẑi ≥ δ}
3: Let S = ∅ and AS = nλIn
4: for i = 1, . . . , k do

5: Let j∗ ∈ argminj∈C\S

{
−λ(y⊤A−1

S xj)
2

1+x⊤
j A−1

S xj

}

6: Let S = S ∪ {j∗} and AS = AS + xj∗x
⊤
j∗ ,A

−1
S = A−1

S −
A−1

S xj∗x
⊤
j∗

A−1
S

1+x⊤
j∗

A−1
S xj∗

7: end for

8: Output vRG ← λy⊤A−1
S y.

5.1 Selection of Tuning Parameter by Generalized Cross Validation (GCV)

For a given k, we can adopt the commonly-used generalized cross-validation (GCV) [25, 54] to
choose the best λ in the ridge regression. Specifically, the GCV can be defined as

GCV (λ) =
1

n

n∑

i=1

(
yi − ŷi

1− (HS)ii

)2

, (17)

where HS = XS(X
⊤
S XS+nλI)−1X⊤

S denotes the hat matrix of the ridge regression and ŷ = HSy

is the vector of the fitted responses. With a sequence of λ values in {λ1, . . . , λm}, we can choose the
one having the smallest GCV (λ) value. It is worth mentioning that the original GCV [25, 54] was
proposed for the ridge regression without sparsity requirement, and thus GCV used in this paper
is a heuristic procedure for the sparse ridge regression problem.

5.2 Generalization to Sparse Matrix Estimation

In this subsection, we consider a sparse matrix estimation proposed by [9]. In that problem, the
authors were trying to estimate the inverse of covariance matrix Σ̂ ∈ R

t×t and choose the sparest
estimator. In their model, they optimize the L1 norm of the estimator given that the estimation
error is within a constant. Similar to (F0), instead we can directly optimize the estimation error
given that only k sparse elements can be chosen, which can be formulated as below

v∗ = min
Ω

{
‖It − Σ̂Ω‖2F + λ‖Ω‖2F : ‖Ω‖0 ≤ k

}
, (18)

To view this model as a special case of (F0), we rewrite matrix Ω as a vector β ∈ R
t2×1 and Σ̂

as X ∈ R
t×t2 , where

β(j + t(i− 1)) = Ω(i, j),∀i, j ∈ [t],

X(s, r) =

{
Σ(s, r − t(s− 1)) if 1 ≤ r − t(s− 1) ≤ t

0, otherwise
,∀s ∈ [t], r ∈ [t2],

yj+t(i−1) =

{
1, if i = j,

0, otherwise,
∀i, j ∈ [t]

Thus, (18) reduces to (F0). Then the results for sparse ridge regression in the previous sections
hold for (18).
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6 Experimental Verification

In this section, we illustrate the different algorithms proposed in this paper and how to choose the
tuning parameters. Particularly, Section 6.1. focuses on a comparison of branch and cut algorithm
in [5], MISOC Formulation (F0-MISOC), heuristic Algorithm 1 in [1], greedy Algorithm 2, random-
ized Algorithm 3 and restricted greedy Algorithm 4, Section 6.2. focuses on MISOC Formulation
(F0-MISOC) and greedy Algorithm 2 to illustrate that although fast and close to optimality, greedy
Algorithm 2 might be able to provide near-optimal solutions, and Section 6.3. demonstrates how
to choose the tuning parameter λ using GCV via a real-world application. The code of greedy
algorithm can be found in https://github.com/xwj06/Sparse_Ridge_Regression.git.

6.1 Comparison of Branch and Cut Algorithm in [5], MISOC Formulation
(F0-MISOC), Heuristic Algorithm 1 in [1], Greedy Algorithm 2, Randomized
Algorithm 3 and Restricted Greedy Algorithm 4 via Large-scale Synthetic
Datasets

In this subsection, we conduct experimental studies to evaluate the performance of the proposed
methods in comparison with several existing ones on solving sparse ridge regression problems. The
data are generated from the linear model

y = x⊤β0 + ǫ̃,

where ǫ̃ ∼ N(0, σ2). The i.i.d. samples of x are generated from a multivariate normal distribution
with

xi ∼ N(0,Σ), i = 1, . . . , n,

where Σ is the covariance matrix with σij = ρ|i−j| for each i, j ∈ [p], and ρ = 0.5. The first k
entries of β0 = (β0

1 , . . . , β
0
p)

⊤ are nonzero, and their values are drawn randomly from the uniform
distribution Unif(−3, 3). To control the signal-to-noise ratio (SNR), we choose the value of σ2

such that SNR = var(x⊤β0)/var(ǫ̃) = 9. By generating an i.i.d. sample of noise ǫ̃1, . . . , ǫ̃n with
ǫ̃i ∼ N(0, σ2) for each i ∈ [n], we simulate the response values, i.e., yi = x⊤

i β
0 + ǫ̃i for each i ∈ [n].

Recall that the goal is to find a best k-sparse estimator for a given k. The performances of the
methods in comparison are evaluated by the selection accuracy and computational time. Here we
consider different combinations of k, n, p to generate the simulation data, where p ∈ {1000, 5000},
n ∈ {500, 1000, 5000} and k ∈ {10, 20, 30}. Each simulation setting is repeated by 10 times, i.e.,
for each tuple (k, n, p), we generate 10 repetitions1. For simplicity, for all the testing instances, we
set the tuning parameter λ = 0.08.

The methods in comparison include the branch-and-cut algorithm proposed by [5] based on
(F0-MIC)2, directly solving (F0-MISOC), the heuristic Algorithm 1 in [1], the proposed greedy Al-
gorithm 2, the proposed randomized Algorithm 3 and the proposed restricted greedy Algorithm 4.
Note that the heuristic Algorithm 1 in [1] is similar to the LASSO in the use of L1 norm to
achieve the sparsity. The commercial solver Gurobi 7.5 with its default setting is used to solve
(F0-MISOC) and its continuous relaxation. We set the time limit to be an hour (3600 seconds).

1We restrict the simulation to 10 replications because certain existing methods are very slow in computation.
2Please note that [5] proposed a sophisticated warm-start procedure. However, for the sake of fair comparison, we

directly implemented branch-and-cut algorithm without any warm-start procedure.
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Due to out-of-memory and out-of-time-limit issues, in the case of p = 5000, we only compute two of
the most effective algorithms: the proposed greedy Algorithm 2 and the proposed restricted greedy
Algorithm 4. The comparison results are listed in Table 1 to Table 3, where the Avg. Obj. Value,
Avg. Gap, Avg. Comp. Time, and Avg. False Alarm Rate denotes the average objective function
value, average optimality gap (of exact methods) from Guorbi, average computational time (in sec-
onds), and average percent of falsely detected features, respectively. For most of the test instances,
the optimal value v∗ can be very difficult to obtain. Therefore, we only compare the objective
function values of different algorithms, where the smaller objective function value implies that the
output of the algorithm is more accurate. All the computations were executed on a MacBook Pro
with a 2.80 GHz processor and 16GB RAM.

Table 1: Comparison of the Branch and Cut algorithm in [5] and directly solving (F0-MISOC) with
p = 1000

p k n
Branch and Cut Algorithm Solving (F0-MISOC)

Avg. Obj.
Value

Avg. Comp.
Time(s)

Avg.
Gap

Avg. False
Alarm Rate

Avg. Obj.
Value

Avg. Comp.
Time(s)

Avg.
Gap

Avg. False
Alarm Rate

1000

10
500 9.71 3438.51 47.2% 26.0% 6.83 3505.82 7.1% 5.0%
1000 7.11 2451.47 10.4% 5.0% 7.27 3562.61 9.7% 7.0%
5000 NA* NA NA NA 6.67 387.44 0.0% 0.0%

20
500 23.02 3600.00 141.5% 45.0% 11.98 3600.00 21.4% 20.0%
1000 31.52 3600.00 131.2% 50.5% 11.55 3600.00 11.7% 18.0%
5000 NA NA NA NA 11.30 2434.64 0.3% 0.5%

30
500 39.62 3600.00 189.3% 51.3% 20.42 3600.00 31.4% 27.0%
1000 50.63 3600.00 175.9% 55.0% 19.16 3600.00 18.1% 22.3%
5000 NA NA NA NA 17.79 3600.00 1.3% 5.0%

∗ The NA represents for out of memory instances.

Table 1 reports the comparison results between directly solving (F0-MISOC) and the branch-
and-cut algorithm based upon (F0-MIC). It is seen that directly solving (F0-MISOC) outperforms
the branch-and-cut algorithm for most of the instances, in particular when k becomes large. This is
because (i) we proved in Theorem 2 that continuous relaxations of (F0-MIC) and (F0-MISOC) are
equivalent, thus directly solving (F0-MISOC) should perform at least as good as branch and cut
algorithm; and (ii) the branch-and-cut algorithm needs to compute the gradient of the objective
function in (F0-MIC), which involves a very time-consuming n× n matrix inversion. However, for
both approaches, they reach the time limit for most of the cases, and the average false alarm rates
are higher than the approximation algorithms in Table 2. Therefore, for large-scale instances, these
approaches might not be very desirable.

From Table 2 and Table 1, the proposed greedy Algorithm 2 and restricted greedy Algorithm 4
apparently perform best among all comparison methods. We see that for the instances with k = 10,
the heuristic Algorithm 1, greedy Algorithm 2 and restricted greedy Algorithm 4 find almost all the
features, while the randomized Algorithm 3 performs slightly worse. When the number of active
features, k, grows, all the methods in comparison have relatively larger false alarm rates. Their
performance of identifying right features improves as the sample size n increases, i.e., providing
more information. For the heuristic Algorithm 1 in [1], it is less accurate and takes a much longer
time. Thus, it might not be a good option for large-scale instances either. In contrast, we note that
the greedy Algorithm 2 is much more accurate. It runs very fast with the computation time, which
is proportional to n, p, k. But the randomized Algorithm 3, which depends on the solution time of
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Table 2: Comparison of Heuristic Algorithm 1 in [1], Greedy Algorithm 2, Randomized Algorithm 3
and Restricted Greedy Algorithm 4 with p = 1000

p k n
Heuristic Algorithm 1 in [1] Proposed Greedy Algorithm 2

Avg. Obj.
Value

Avg. Comp.
Time(s)

Avg. False
Alarm Rate

Avg. Obj.
Value

Avg. Comp.
Time(s)

Avg. False
Alarm Rate

1000

10
500 9.59 579.36 3.0% 6.60 0.47 0.0%
1000 7.88 45.78 0.0% 6.54 0.59 0.0%
5000 7.24 737.06 0.0% 6.67 1.41 0.0%

20
500 15.87 589.66 14.5% 10.86 0.79 9.0%
1000 13.42 47.92 11.5% 10.91 2.02 4.0%
5000 12.66 738.55 4.5% 11.30 2.37 0.0%

30
500 28.87 583.98 17.0% 16.88 1.13 10.7%
1000 23.53 43.92 12.7% 17.19 1.43 6.7%
5000 19.74 678.10 6.0% 17.74 3.28 2.0%

p k n
Proposed Randomized Algorithm 3 Proposed Restricted Greedy Algorithm 4
Avg. Obj.

Value
Avg. Comp.
Time(s)

Avg. False
Alarm Rate

Avg. Obj.
Value

Avg. Comp.
Time(s)

Avg. False
Alarm Rate

1000

10
500 7.79 4.06 14.0% 6.60 3.84 0.0%
1000 6.86 11.21 6.0% 6.54 10.58 0.0%
5000 6.67 181.77 0.0% 6.67 186.81 0.0%

20
500 12.88 4.01 23.5% 10.86 3.80 9.0%
1000 11.68 10.84 18.0% 10.91 13.81 4.0%
5000 11.40 199.31 6.5% 11.30 202.66 0.0%

30
500 20.89 4.21 26.3% 16.89 4.06 11.0%
1000 19.89 10.58 24.0% 17.19 11.94 6.7%
5000 18.11 167.95 10.0% 17.74 170.14 2.0%

solving the continuous relaxation of (F0-MISOC), is quite insensitive to k in terms of computation
time. Therefore, by integrating these two together, the restricted greedy Algorithm 4 can be
advantageous for large k, providing accurate estimation with fast computation. For the numerical
study with p = 5000 below, we choose these two most efficient algorithms for comparison.

In Table 3, we observe that the greedy Algorithm 2 and the restricted greedy Algorithm 4 have
exactly the same false alarm rates. But the greedy Algorithm 2 is much faster than the restricted
greedy Algorithm 4. This is mainly because it takes a much longer time to solve the continuous
relaxation to the optimality and for these instances, k is relatively small. In particular, for a large-
scale datasets (e.g., n = p = 5000), the computation time of the restricted greedy Algorithm 4
is much longer time than those in the case with p = 1000. But, the greedy Algorithm 2 can
still find very high-quality solutions within 30 seconds of computation time. On the other hand,
we note that the accuracy of both approaches grows when the sample size increases. Thus, we
would recommend finding a reasonable sample size that the greedy methods can work efficiently
and identify the features accurately.

We have numerically compared our implementation with the state-of-art R package posted
by [28]. Table 4 summarize the comparison in terms of computational time. It is seen that our
implementation can outperform the one in [28]. The advantage appears to be more striking as n
becomes larger. Thus, we envision that our implementation for the greedy approach (or forward
selection) is efficient and can be interesting to the readers.
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Table 3: Comparison of Greedy Algorithm 2 and Restricted Greedy Algorithm 4 with p = 5000

p k n
Proposed Greedy Algorithm 2 Proposed Restricted Greedy Algorithm 4

Avg. Obj.
Value

Avg. Comp.
Time(s)

Avg. False
Alarm Rate

Avg. Obj.
Value

Avg. Comp.
Time(s)

Avg. False
Alarm Rate

5000

10
500 4.57 2.31 0.0% 4.57 15.81 0.0%
1000 4.59 3.13 0.0% 4.59 39.06 0.0%
5000 4.68 9.04 0.0% 4.68 1451.78 0.0%

20
500 12.86 4.31 8.0% 12.86 15.69 8.0%
1000 13.35 5.41 2.5% 13.35 38.14 2.5%
5000 13.27 14.58 0.0% 13.27 1426.93 0.0%

30
500 14.02 5.98 20.7% 14.02 16.24 20.7%
1000 14.97 8.21 12.7% 14.97 39.41 12.7%
5000 15.60 20.52 3.3% 15.60 1503.48 3.3%

Table 4: A comparison with the forward selection algorithm proposed in [28]. Note that the solver
in [28] only works for sparse regression. Thus, we only compare the computational time.

p k n
Greedy Algorithm 2

Time (s)
Forward Selection in [28]

Time (s)

1000

10
500 0.47 0.79
1000 0.59 1.10
5000 1.41 11.41

20
500 0.79 1.33
1000 1.01 2.86
5000 2.37 26.49

30
500 1.13 2.17
1000 1.43 4.01
5000 3.28 38.98
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6.2 Further Investigation of MISOC Formulation (F0-MISOC) and
Greedy Algorithm 2 with Varying SNR and Tuning Parameter λ via
Medium-size Synthetic Datasets

Following the same data generating procedure in the previous subsection, we conduct a thorough
comparison of MISOC Formulation (F0-MISOC) and Greedy Algorithm 2. In particular, we gen-
erate 16 instances with n = 100, p = 40, k ∈ {5, 10, 15, 20},SNR ∈ {0.5, 1, 2, 4} and to illustrate
the effects of tuning parameter λ, we let it vary from the range {0.01, 0.1, 1, 10}. Similarly, each
simulation setting is repeated 10 times, and the average results are reported in Table 5 and Table 6.

In Table 5 and Table 6, it is seen that for these instances, formulation (F0-MISOC) can be
solved to optimality within 2 minutes, while greedy Algorithm 2 can find the very near-optimal
solutions within 0.1 second. We also see that in terms of average objective value and average false
alarm rate, greedy Algorithm 2 in this case is slightly worse than formulation (F0-MISOC), since
the latter is able to provide exact solutions. Thus, if the instances are not large, we suggest solving
exact formulation (F0-MISOC), which indeed provides the best performance. As for the SNR, we
see that the false alarm rates of both approaches decrease as SNR increases, which is consistent
with the intuition since higher SNR implies stronger signal, and thus more accurate prediction. In
terms of tuning parameter, we see that the computational time of formulation (F0-MISOC) changes
significantly as λ increases. On the other hand, if the tuning parameter λ is too big, the false alarm
rate will increase significantly. Thus, a proper choice of the tuning parameter λ will be critical for
formulation (F0-MISOC). In next subsection, we will use the generalized cross validation to choose
a proper tuning parameter λ for a real-world case.

6.3 A Real-world Case Study using the Dataset in [56]

In this subsection, we conduct a case study using the dataset in [56], which attempted to map the loci
on the third chromosome of Drosophila melanogaster that will influence an index of wing shape. The
dataset has n = 701 recombinant inbred lines (i.e., observations) and genotypes of 48 markers, where
11 markers are highly correlated with others, and are thus removed. The selected 37 markers and
their corresponding indices can be found at https://www4.stat.ncsu.edu/~boos/var.select/wing.shape.html.
Similar to [56], we also consider the interactions of the remaining 37 markers and thus, there are
p = 37 +

(37
2

)
= 703 features in total. We use generalized cross validation to choose a proper

tuning parameter λ from the list {10−5, 10−4, 10−3, 0.01, 0.1, 0.2, 0.5, 1} for each k ∈ {10, 20, 40}.
We use greedy Algorithm 2 to solve all the instances and the total running time is within 1 minutes.
Table 7 shows the feature selection results.

In Table 7 , we see that using GCV procedure in Section 5.1, the best tuning parameter λ tends
to be small in particular when k increases. In general, a proper k can be determined by biologists
or engineers, and as long as k is not very large, we are able to deliver near-optimal feature selections
efficiently. In fact, we see that if k = 40, then we can identify all the necessary markers listed in
the table 3 of [35] except x23. This demonstrates that our proposed method is indeed effective for
feature selection problems.

7 Conclusion

This paper studies the sparse ridge regression with the use of exact L0 norm for the sparsity. It is
known that imposing L0 norm for the sparsity in regression can often become an NP-hard prob-
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Table 5: Comparison of MISOC Formulation (F0-MISOC) and Greedy Algorithm 2 with n =
100, p = 40, k ∈ {5, 10}

k SNR λ
MISOC Formulation (F0-MISOC) Proposed Greedy Algorithm 2
Avg. Obj.

Value
Avg. Comp.
Time(s)

Avg. False
Alarm Rate

Avg. Obj.
Value

Avg. Comp.
Time(s)

Avg. False
Alarm Rate

5

0.5

0.01 29.75 81.72 44.0% 29.88 0.013 46.0%
0.1 31.65 4.44 38.0% 31.72 0.014 38.0%
1 39.98 0.28 36.0% 39.99 0.013 36.0%
10 49.13 0.29 44.0% 49.13 0.010 44.0%

1

0.01 15.07 54.24 38.0% 15.10 0.011 38.0%
0.1 16.56 2.11 38.0% 16.57 0.012 38.0%
1 23.90 0.29 44.0% 23.90 0.014 44.0%
10 32.73 0.28 52.0% 32.73 0.014 52.0%

2

0.01 7.11 64.68 26.0% 7.11 0.014 26.0%
0.1 8.40 2.80 26.0% 8.40 0.014 26.0%
1 14.71 0.29 32.0% 14.71 0.011 32.0%
10 21.90 0.28 44.0% 21.90 0.010 44.0%

4

0.01 3.86 20.76 20.0% 3.86 0.010 20.0%
0.1 5.13 1.17 18.0% 5.14 0.013 20.0%
1 11.17 0.28 34.0% 11.17 0.014 34.0%
10 18.15 0.28 40.0% 18.15 0.014 40.0%

10

0.5

0.01 49.00 43.43 49.0% 49.58 0.025 47.0%
0.1 53.08 3.00 48.0% 53.30 0.021 46.0%
1 68.60 0.25 50.0% 68.61 0.019 51.0%
10 85.37 0.24 55.0% 85.37 0.019 55.0%

1

0.01 24.62 12.44 46.0% 24.75 0.023 40.0%
0.1 27.81 0.68 40.0% 27.89 0.024 39.0%
1 41.93 0.23 44.0% 41.94 0.025 44.0%
10 58.06 0.27 50.0% 58.06 0.022 51.0%

2

0.01 13.02 7.70 29.0% 13.08 0.022 29.0%
0.1 15.84 0.51 28.0% 15.91 0.020 30.0%
1 28.53 0.21 34.0% 28.53 0.025 34.0%
10 42.95 0.25 42.0% 42.95 0.024 42.0%

4

0.01 6.70 2.51 27.0% 6.75 0.024 30.0%
0.1 9.22 0.40 30.0% 9.23 0.020 30.0%
1 20.67 0.21 34.0% 20.67 0.020 34.0%
10 34.09 0.25 49.0% 34.09 0.021 49.0%
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Table 6: Comparison of MISOC Formulation (F0-MISOC) and Greedy Algorithm 2 with n =
100, p = 40, k ∈ {15, 20}

k SNR λ
MISOC Formulation (F0-MISOC) Proposed Greedy Algorithm 2
Avg. Obj.

Value
Avg. Comp.
Time(s)

Avg. False
Alarm Rate

Avg. Obj.
Value

Avg. Comp.
Time(s)

Avg. False
Alarm Rate

15

0.5

0.01 66.81 110.75 46.7% 68.61 0.035 48.7%
0.1 74.92 4.54 46.7% 75.61 0.035 46.0%
1 101.07 0.27 42.0% 101.09 0.029 42.0%
10 126.31 0.27 46.7% 126.31 0.028 46.7%

1

0.01 34.42 162.55 37.3% 35.15 0.033 38.0%
0.1 39.85 5.54 36.7% 40.13 0.035 36.7%
1 60.56 0.33 41.3% 60.64 0.035 42.0%
10 83.68 0.29 49.3% 83.68 0.032 49.3%

2

0.01 18.85 34.03 25.3% 19.09 0.025 27.3%
0.1 23.72 1.66 25.3% 23.88 0.028 26.0%
1 42.64 0.27 32.7% 42.69 0.036 34.0%
10 61.73 0.25 41.3% 61.73 0.040 40.7%

4

0.01 9.50 11.84 22.7% 9.61 0.026 23.3%
0.1 14.01 0.53 24.0% 14.10 0.028 22.7%
1 32.67 0.26 30.0% 32.67 0.033 30.7%
10 52.66 0.28 39.3% 52.66 0.037 39.3%

20

0.5

0.01 66.04 81.72 43.0% 66.60 0.040 43.5%
0.1 74.61 4.44 41.5% 74.72 0.037 41.0%
1 103.88 0.28 38.0% 103.90 0.048 38.5%
10 136.87 0.29 41.5% 136.87 0.044 41.5%

1

0.01 28.59 54.24 34.5% 28.88 0.035 34.5%
0.1 33.63 2.11 33.5% 33.80 0.037 32.5%
1 52.82 0.29 34.0% 52.84 0.045 35.5%
10 76.04 0.28 38.5% 76.04 0.046 38.5%

2

0.01 15.95 64.68 29.0% 16.22 0.034 27.5%
0.1 20.16 2.80 27.5% 20.27 0.039 28.0%
1 36.68 0.29 27.0% 36.68 0.051 27.5%
10 58.11 0.28 35.0% 58.11 0.052 35.5%

4

0.01 8.24 20.76 27.0% 8.32 0.058 24.5%
0.1 11.78 1.17 24.0% 11.79 0.052 23.5%
1 27.25 0.28 32.0% 27.25 0.055 32.0%
10 48.07 0.28 38.0% 48.07 0.061 38.0%
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Table 7: Feature Selection Results using the Dataset in [56] and GCV in Section 5.1. Here, xi
denotes ith marker and xi.xj represents the interaction of markers i and j.

λ k Selected Features
10−4 10 x1, x18, x48, x1.x18, x1.x48, x5.x15, x11.x42, x16.x33, x17.x48, x42.x45

10−5 20
x1, x18, x37, x48, x1.x4, x1.x18, x1.x48, x5.x15, x11.x42, x14.x37,
x16.x33, x16.x45, x17.x27, x17.x48, x34.x40, x34.x48, x36.x40, x36.x48,
x40.x45, x42.x45

10−5 40

x1, x10, x18, x37, x40, x48, x1.x4, x1.x10, x1.x18, x1.x48, x3.x44, x5.x15,
x5.x48, x7.x10, x9.x10, x9.x13, x9.x18, x10.x13, x10.x18, x10.x30, x11.x40,
x11.x42, x12.x36, x13.x33, x14.x37, x16.x33, x16.x45, x17.x27, x17.x48,
x18.x36, x34.x40, x34.x45, x34.x48, x35.x45, x35.x48, x36.x40, x36.x48,
x40.x45, x42.x45, x46.x48

lem in variable selection and estimation. We present a mixed integer second order conic (MISOC)
formulation, which is big-M free and is based on perspective formulation. We prove that the con-
tinuous relaxation of this MISOC reformulation is equivalent to the convex integer program (CIP)
formulation studied by literature, and can be stronger than straightforward big-M formulation.
Based on these two formulations, we propose two scalable algorithms, the greedy and randomized
algorithms, for solving the sparse ridge regression. Under mild conditions, both algorithms can
find near-optimal solutions with performance grantees. Our numerical study demonstrates that the
proposed algorithms can indeed solve large-scale instances efficiently. In general, we recommend
solving MISOC formulation first, which might be efficient; otherwise, using the scalable algorithms
studied in this paper, which has the performance guarantees.
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