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Abstract

A convex optimization problem in conic form involves minimizing a linear functional over
the intersection of a convex cone and an affine subspace. In some cases, it is possible to replace
a conic formulation using a certain cone, with a ‘lifted’ conic formulation using another cone
that is higher-dimensional, but simpler, in some sense. One situation in which this can be
computationally advantageous is when the higher-dimensional cone is a Cartesian product of
many ‘low-complexity’ cones, such as second-order cones, or small positive semidefinite cones.

This paper studies obstructions to a convex cone having a lifted representation with such a
product structure. The main result says that whenever a convex cone has a certain neighborliness
property, then it does not have a lifted representation using a finite product of cones, each of
which has only short chains of faces. This is a generalization of recent work of Averkov (‘Optimal
size of linear matrix inequalities in semidefinite approaches to polynomial optimization’, SIAM J.
Appl. Alg. Geom., Vol. 3, No. 1, 128–151, 2019) which considers only lifted representations using
products of positive semidefinite cones of bounded size. Among the consequences of the main
result is that various cones related to nonnegative polynomials do not have lifted representations
using products of ‘low-complexity’ cones, such as smooth cones, the exponential cone, and cones
defined by hyperbolic polynomials of low degree.

1 Introduction

A conic optimization problem has the form

minimizex〈c, x〉 subject to A(x) = b, x ∈ K (1)

where K ⊆ Rn is a closed convex cone, A : Rn → Rm is a linear map, and c ∈ Rn and b ∈ Rm.
Different choices of convex cones in Eq. (1) lead to different classes of convex optimization problems.
For instance, if K = Rn

+ is a nonnegative orthant, we obtain a linear program; if K is a finite

Cartesian product of second-order cones Q = {(x, y, z) ∈ R3 :
√

x2 + y2 ≤ z}, we obtain a second-
order cone program; if K = Sk

+ is the cone of k × k positive semidefinite matrices, we obtain a
semidefinite program. Computationally, conic optimization problems are often easier to solve if
K = K1× · · · ×Km where each of the Ki are convex cones of ‘low-complexity’. One reason for this
is that basic algorithmic primitives related to the cone, such as computing the Euclidean projection
of a point onto the cone, are separable across the factors and so are easily parallelizable.

It is natural, then, to try to understand which families of convex optimization problems can
be expressed in conic form with respect to a finite Cartesian product of ‘low-complexity’ cones.
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The question can be phrased in geometric terms by using the notion of a lifted representation of a
convex cone.

Definition 1.1 ([GPT13]). If C ⊆ Rn and K ⊆ Rd are closed convex cones then C has a K-lift if
C = π(K ∩ L) where π : Rd → Rn is a linear map and L ⊆ Rd is a linear subspace.

If C has a K-lift, then any conic optimization problem using the cone C can be reformulated as
a conic optimization problem using K. As such we are interested in understanding when a convex
cone C has a K-lift where K is a Cartesian product of ‘low-complexity’ cones. There are many
examples where such reformulations are possible.

• If C is the set of symmetric positive semidefinite matrices that are sparse with respect to a
chordal graph, then C has a Sk1

+ ×· · ·×Skℓ
+ -lift where the ki are the sizes of the maximal cliques

in the graph [AHMR88, GJSW84]. This observation can be exploited to yield significant
computational savings for semidefinite programs with sparse data (see, e.g., [VA15]).

• The cone of scaled diagonally dominant matrices [AM19], and the cone of sums of nonnegative
circuit polynomials [IDW16], both have second-order cone lifts, or equivalently, (S2

+)
m-lifts

for some m.1 These have been used to give more tractable certificates of nonnegativity for
multivariate polynomials than those given by general sums of squares.

• Ben-Tal and Nemirovski’s book [BTN01] has many nontrivial examples of convex sets that
have second-order cone lifts.

• Cones of sums of arithmetic-mean geometric-mean functions (SAGE functions) [CS16], used
to certify nonnegativity of signomial functions, have lifted representations using a product of
three-dimensional relative entropy cones (or, equivalently, exponential cones).

This paper, on the other hand, explores limitations on the expressive power of lifts using finite
products of ‘low-complexity’ cones. Until recently, the only result in this direction was the fact
that a convex cone has an Rm

+ -lift for some finite m if and only if it is a polyhedral cone.
In a breakthrough paper, Fawzi [Faw18] studied the expressive power of second-order cone

programming. Among his results is that S3
+ has no second-order cone lift. Fawzi identified the

importance of certain neighborliness properties of the positive semidefinite cone as an obstruction
to constructing second-order cone lifts. He also introduced a combinatorial approach to establish
results of this type, via Turán’s theorem.

Averkov [Ave19] subsequently significantly extended Fawzi’s approach. He introduced the
semidefinite extension degree of a convex cone—the smallest k such that C has an (Sk

+)
m-lift

for some positive integer m. Averkov established that convex cones with a certain k-neighborliness
property (made precise in Definition 1.2) have semidefinite extension degree at least k + 1. To
prove this result, Averkov used Ramsey’s theorem for uniform hypergraphs to provide the key
combinatorial obstruction.

The present work moves beyond studying lifts using products of positive semidefinite cones of
bounded size. Instead, we consider a notion of ‘low-complexity’ that just depends on the face lattice
of a cone. In particular, we consider the expressive power of K-lifts where K is a finite product of
cones, each of which has only short chains of faces. The main result (Theorem 1.4) gives an explicit
obstruction to a cone having a lifted representation of this type. The obstruction is the same as
that considered by Averkov, and is based on the existence of arbitrarily large finite collections of
extreme rays of the cone that satisfy a certain neighborliness property (see Definition 1.2).

1The fact that sums of nonnegative circuit polynomials have (S2
+)

m-lifts was established by Averkov [Ave19].
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1.1 Chains of faces, neighborliness, and our main result

1.1.1 Chains of faces

If K is a closed convex cone, then a subset F ⊆ K is a face if x, y ∈ K and αx+ (1− α)y ∈ F for
some α ∈ (0, 1) implies that x, y ∈ F . Note that the empty set is always a face. A collection of
faces F1, F2, . . . , Fℓ ⊆ K is a chain of length ℓ if F1 ( F2 ( · · · ( Fℓ. For a convex cone K, define

ℓ(K) = maximum length of a chain of nonempty faces of K.

This is well-defined because ℓ(K) ≤ dim(K) + 1 where dim(K) is the dimension of the span of K
(see Section 2.2). Crucially, ℓ(·) is monotone, in the sense that if F is a face of K and F ( K then
ℓ(F ) < ℓ(K).

This quantity appears naturally in the study of facial reduction algorithms for conic optimization
problems (see, e.g., [Pat13, WM13]), and has been used to give an upper bound on the Carathéodory
number of a closed, pointed convex cone [IL17]. In this paper we will think of cones without any
long chains of faces as being of low complexity. Indeed ℓ(K) = 1 if and only if K is a linear
subspace, and ℓ(K) = 2 if and only if K is a closed halfspace.

1.1.2 Neighborliness properties

In Definition 1.2, to follow, we describe the cones for which we can show the non-existence of lifts.
This is the same class of convex cones that is considered by Averkov [Ave19]. In the following
definition, and throughout, we fix an inner product 〈·, ·〉 on Rn and denote the associated norm
by ‖ · ‖. If C ⊆ Rn is a set, then C∗ = {f : 〈f, x〉 ≥ 0 for all x ∈ C} is the corresponding
dual cone. A closed convex cone C ⊆ Rn is pointed if C ∩ (−C) = {0} and full-dimensional if
span(C) = Rn. A convex cone is proper if it is closed, pointed, and full-dimensional. For a convex
cone C ⊆ Rn, we denote the set of extreme rays of C by Ext(C) and the set of normalized extreme
rays by ext(C) := {v ∈ Rn : ‖v‖ = 1, R+v ∈ Ext(C)}.

Definition 1.2. Let C be a proper convex cone. If V ⊆ ext(C) is a subset of normalized extreme

rays of C, then C is k-neighborly with respect to V if for every k-element subset W ⊂ V , there is

some linear functional fW ∈ C∗ such that 〈fW , v〉 > 0 if v ∈ V \W and 〈fW , v〉 = 0 if v ∈ W .

In this paper we will be particularly interested in the case where C is k-neighborly with respect
to arbitrarily large finite subsets of normalized extreme rays of C.

Example 1.3 (Positive semidefinite cone). The cone of (k + 1) × (k + 1) positive semidefinite

symmetric matrices is k-neighborly with respect to

V = {viv
T
i /‖vi‖

2 : i ∈ N} where vi := (1, i, i2, . . . , ik).

To see why this is true, for each set W of k natural numbers, define the non-negative polynomial

pW and the vector c(W ) ∈ Rk+1 such that

pW (t) =

[

∏

i∈W

(t− i)

]2

=





k
∑

j=0

c(W )jt
j





2

= tr(c(W )c(W )T vtv
T
t ).

Observe that pW (t) vanishes if and only if t ∈ W . Consequently c(W )c(W )T ∈ (Sk+1
+ )∗ = Sk+1

+

vanishes on viv
T
i if and only if i ∈ W .
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We are now in a position to state our main result.

Theorem 1.4. Let C be a proper convex cone, let m be a positive integer, and let K1, . . . ,Km be

closed convex cones with ℓ(Ki) ≤ k+1 for each i = 1, 2, . . . ,m. Suppose that, for each N ∈ N there

exists a subset VN ⊆ ext(C) such that C is k-neighborly with respect to VN and |VN | ≥ N . Then C
does not have a K1 × · · · ×Km-lift.

We remark that if a proper convex cone C is k-neighborly with respect to an infinite set
V ⊆ ext(C), then C is k-neighborly with respect to any finite subset of V , and so the neighborliness
hypothesis of Theorem 1.4 holds.

Section 2.1 gives examples of convex cones that are k-neighborly with respect to arbitrarily
large finite sets of normalized extreme rays. Section 2.2 gives examples of convex cones with only
short chains of faces. Combining these allows us to specialize Theorem 1.4 to produce a range
of irrepresentability results. The following statements about the non-existence of lifts of certain
positive semidefinite cones are examples of the kind of results that follow from Theorem 1.4:

• S3
+ has no K-lift where K is a finite Cartesian product of smooth convex cones (such as

second-order cones);

• S4
+ has no K-lift where K is a finite Cartesian product of three-dimensional convex cones

(such as cones over the epigraphs of univariate convex functions);

• Sk+1
+ has no (Sk

+)
m-lift where m is a positive integer, a result from [Ave19];

• Sk+1
+ has no K-lift where K is a hyperbolicity cone corresponding to a hyperbolic polynomial

with all its irreducible factors having degree at most k.

Our proof of Theorem 1.4 follows Averkov’s approach to lower-bounding the semidefinite exten-
sion degree. In fact, the underlying combinatorial part of the argument is exactly the same. The
main new contribution is that all of the algebraic structure of the positive semidefinite cone used
by Averkov can be done away with, and replaced with basic properties of face lattice of convex
cones.

1.2 Notation

For a convex cone C, let relint(C) denote the relative interior of C. If S ⊆ Rn let cone(S) be the
cone generated by S, i.e., the collection of all non-negative combinations of elements of S. If n is
a positive integer let [n] := {1, 2, . . . , n}. If S is a finite set let

(

S
n

)

be the collection of n-element
subsets of S. Other notation, needed only for the proofs, will be introduced in Section 3.

1.3 Outline

The rest of the paper is structured as follows. In Section 2 we discuss the consequences of
Theorem 1.4. We state a number of examples (many from Averkov’s work) of cones that are
k-neighborly with respect to an infinite set. We then give bounds on the length of chains of faces
for a number of families of convex cones. From the discussion one can extract many irrepresentabil-
ity results. For the sake of brevity we will not exhaustively state such results. In Section 3 we briefly
introduce some of the technical tools used in the proof of the main result. In Section 4 we generalize
the key technical results of [Ave19] to our setting, prove these results, and consequently complete
the proof of Theorem 1.4.
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2 Consequences of the main result

To appreciate the consequences of our main result, this section is devoted to giving examples of
convex cones to which Theorem 1.4 can be applied. In Section 2.1 we give examples of convex
cones that are k-neighborly (for some k) with respect to arbitrarily large finite sets of normalized
extreme rays. These are the convex cones that can be used as C in Theorem 1.4. In Section 2.2
we give upper bounds on ℓ(·), for many convex cones. These are the cones that can be used as the
Ki in Theorem 1.4.

2.1 Cones k-neighborly with respect to arbitrarily large finite sets

2.1.1 Non-polyhedral cones

If C is a proper, non-polyhedral cone then it has infinitely many extreme rays. Moreover, it has
infinitely many exposed extreme rays (extreme rays that can be obtained as the intersection of
C with a hyperplane), because exposed extreme rays are dense in the set of all extreme rays by
Straszewicz’s theorem [Roc15, Theorem 18.6]. It follows that C is 1-neighborly with respect to the
(infinite) set of normalized exposed extreme rays.

2.1.2 Cones related to nonnegative polynomials and sums of squares

A number of interesting examples are special cases of the following result, which is essentially [Ave19,
Corollary 3].

Proposition 2.1. Let X ⊆ Rn have nonempty interior. Define

Pn,2d(X) := {polynomials p of degree ≤ 2d such that p(x) ≥ 0 for all x ∈ X}

Σn,2d := {polynomials of degree ≤ 2d in n variables that are sums of squares}.

Let C be a closed convex cone that satisfies Pn,2d(X)∗ ⊆ C ⊆ Σ∗
n,2d. Then for each N ∈ N there is

a set V ⊆ ext(C) with |V | ≥ N such that C is
(

(n+d
d

)

− 1
)

-neighborly with respect V .

From Proposition 2.1 we can construct many examples. Perhaps the simplest, which are also
discussed in Averkov’s paper, are the following:

• The (self-dual) cone of k×k positive semidefinite matrices Sk
+ is linearly isomorphic to Σk−1,2,

since a quadratic polynomial in k − 1 variables is nonnegative if and only if it has the form

q(x) =
[

1 xT
]

Q

[

1
x

]

where Q is positive semidefinite. It then follows from Proposition 2.1 that Sk
+ is (k − 1)-

neighborly with respect to arbitrarily large finite subsets of normalized extreme rays. We
gave a direct argument that Sk

+ is (k − 1)-neighborly with respect to an infinite subset of
extreme rays in Example 1.3.

• The dual of the cone of univariate nonnegative polynomials of degree at most 2d, i.e., P1,2d(R)
∗

is d-neighborly with respect to arbitrarily large finite subsets of normalized extreme rays.
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2.1.3 Cones over k-neighborly manifolds

If M ⊆ Rm is a smooth embedded manifold, Kalai and Widgerson [KW08] say that M is k-
neighborly if, for every subset X ⊆ M of cardinality k, there exists a linear functional f , and a real
number b, such that 〈f, x〉 = b for all x ∈ X and 〈f, x〉 > b for all x ∈ M\X. If M is a k-neighborly
manifold of positive dimension, then cone(M × {1}) ⊆ Rm+1 is k-neighborly with respect to the
infinite set {v/‖v‖ : v ∈ M× {1}} of normalized extreme rays.

2.1.4 Cones with neighborly faces and derivative relaxations of Sk
+

Suppose that C is a convex cone and F is an exposed face of C. One can show that if F is k-
neighborly with respect to V ⊆ ext(F ) ⊆ ext(C) then C is also k-neighborly with respect to V . This
simple observation gives some interesting additional examples beyond cones related to nonnegative
polynomials. We describe just one example here, which is an example of a hyperbolicity cone (a
class of convex cones we discuss more at the end of Section 2.2).

The cone of k × k positive semidefinite matrices can be described as

Sk
+ = {X ∈ Sk : E1,k(X) ≥ 0, E2,k(X) ≥ 0, . . . , Ek,k(X) ≥ 0}

where Eℓ,k(X) is the sum of the ℓ × ℓ principal minors of the k × k symmetric matrix X (see,
e.g., [Ren06]). For 0 ≤ ℓ ≤ k − 1 one can define a cone (which turns out to be convex) by keeping
only the first k − ℓ of these inequalities:

S
k,(ℓ)
+ = {X ∈ Sk : E1,k(X) ≥ 0, . . . , Ek−ℓ,k(X) ≥ 0}.

These are often called the derivative relaxations or Renegar derivatives of the positive semidefinite
cone. For the connection to derivatives, and the fact that these are convex cones, see [Ren06].

Consider the intersection of S
k,(ℓ)
+ with the subspace L of symmetric matrices of the form

[

Y 0
0 0

]

where only the top (k − ℓ)× (k − ℓ) block is nonzero. Restricted to this subspace we have that

Ep,k

([

Y 0
0 0

])

=

{

Ep,k−ℓ(Y ) if p ≤ k − ℓ

0 otherwise.

As such S
k,(ℓ)
+ ∩ L is a face of S

k,(ℓ)
+ that is linearly isomorphic to Sk−ℓ

+ . Since Sk−ℓ
+ is (k − ℓ− 1)-

neighborly with respect to an infinite set of normalized extreme rays, it follows that S
k,(ℓ)
+ has the

same property.

2.2 Cones with only short chains of faces

The innovation of Theorem 1.4 is that it rules out K-lifts where K is a finite Cartesian product
of cones, each of which has only short chains of faces. In this section we now give a number of
examples of cones K that have only short chains of faces.

2.2.1 Rays

The ray R+ has two nonempty faces: {0} and R+ itself. It follows that ℓ(R+) = 2. From
Theorem 1.4 we recover the fact that any cone that is 1-neighborly with respect to an infinite
set of normalized extreme rays (i.e., a cone with infinitely many exposed extreme rays) cannot have
a Rm

+ -lift.

6



2.2.2 Smooth cones

Following [LP18], for instance, we call a pointed closed convex cone K smooth if its only non-empty
faces are {0} or K or its extreme rays. As such, any smooth cone has ℓ(K) ≤ 3. For example, the
second-order cone

Qn+1 = {(x0, . . . , xn) ∈ Rn+1 :
√

x21 + · · · + x2n ≤ x0}

is a smooth cone. From Theorem 1.4 we can conclude that any cone 2-neighborly with respect to
arbitrarily large finite sets of normalized extreme rays does not have a lift using a finite product of
smooth cones.

2.2.3 Low-dimensional cones

Since the dimension strictly increases along chains of faces [Roc15, Corollary 18.1.3], we always
have that

ℓ(K) ≤ dim(K) + 1.

For example, the exponential cone K = cl{(x, t, y) ∈ R2 × R++ : yex/y ≤ t} satisfies ℓ(K) ≤ 3 + 1.
More generally, if K = cl{(x, t, y) ∈ R2 × R++ : y g(x/y) ≤ t} is the closure of the cone over the
epigraph of any univariate convex function g, then ℓ(K) ≤ 3+1. From Theorem 1.4 we can conclude
that any cone k-neighborly with respect to arbitrarily large finite sets of normalized extreme rays
does not have a lift using a finite product of k-dimensional cones.

2.2.4 The positive semidefinite cone

The rank of a symmetric matrix is constant on the relative interior of faces of the positive semidef-
inite cone. Moreover, the rank function strictly increases on chains of faces. As such,

ℓ(Sk
+) ≤ k + 1.

On the other hand, it is easy to construct a chain of non-empty faces of length k + 1, so we have
that ℓ(Sk

+) = k+1. Theorem 1.4, in this context, recovers Averkov’s result that if C is k-neighborly
with respect to arbitrarily large finite sets of normalized extreme rays then C has no (Sk

+)
m-lift.

2.2.5 Hyperbolicity cones

A class of convex cones that generalizes the positive semidefinite cone are hyperbolicity cones. A
homogeneous polynomial p of degree d in n variables with real coefficients is called hyperbolic with

respect to e ∈ Rn if p(e) > 0 and, for all x ∈ Rn, the univariate polynomial t 7→ p(te− x) has only
real roots. We call these real roots the hyperbolic eigenvalues of x. There is an associated closed
cone

Λ+(p, e) = {x ∈ Rn : all hyperbolic eigenvalues of x are nonnegative}

which is convex, a result of G̊arding [G̊ar59]. As an example, the determinant restricted to sym-
metric matrices is hyperbolic with respect to the identity matrix, and the associated hyperbolicity
cone is the positive semidefinite cone.

With a hyperbolic polynomial, one can associate a rank function by defining

rankp,e(x) = # non-zero hyperbolic eigenvalues of x.

7



Renegar [Ren06, Theorem 26] has showed that if F is a face of a hyperbolicity cone Λ+(p, e)
then every point in the relative interior of F has the same hyperbolic rank, and every point in
the boundary of F has strictly smaller rank. Consequently, there is a well defined notion of the
hyperbolic rank of a face, and the hyperbolic rank function is strictly increasing along chains of
faces. Since any point in the relative interior of the hyperbolicity cone has rank d = degree(p), we
have the bound

ℓ(Λ+(p, e)) ≤ d+ 1.

The following gives a natural sufficient condition under which this bound is tight.

Proposition 2.2. Suppose that p is homogeneous of degree d, hyperbolic with respect to e, and

the associated hyperbolicity cone Λ+(p, e) is pointed. If all of the extreme rays of Λ+(p, e) have

hyperbolic rank one then ℓ(Λ+(p, e)) = d+ 1.

Proof. Let x1, x2, . . . , xκ be a collection of generators of extreme rays such that x1+x2+ · · ·+xκ is
in the relative interior of Λ+(p, e). Since the Carathéodory number of Λ+(p, e) is bounded above by
ℓ(Λ+(p, e))− 1 [IL17], it follows that we can choose κ ≤ ℓ(Λ+(p, e))− 1. Since the hyperbolic rank
function is a nonnegative submodular function on the face lattice of the hyperbolicity cone [AB18],
the hyperbolic rank is subadditive. Then

ℓ(Λ+(p, e)) − 1 ≤ d = rankp,e

(

κ
∑

i=1

xi

)

≤
κ
∑

i=1

rankp,e(xi) = κ ≤ ℓ(Λ+(p, e))− 1.

Symmetric cones2 are examples of hyperbolicity cones with p being the determinant associated
with the appropriate Euclidean Jordan algebra. For these cones, all of the extreme rays have
hyperbolic rank one. As such Proposition 2.2 generalizes [IL17, Theorem 14]. It also applies to
spectrahedra with all rank one extreme rays which, in the real symmetric case, have been classified
by Blekherman, Sinn, and Velasco [BSV17].

We can obtain a more refined bound in cases where all the extreme rays have rank at least r,
and so all nonzero faces have rank at least r. Then

ℓ(Λ+(p, e)) ≤ d− r + 2

since, in that case, there are no faces of rank 1, 2, . . . , r−1. For hyperbolicity cones corresponding to
strictly hyperbolic polynomials [Nui69] (which give rise to smooth hyperbolicity cones), all extreme
rays have rank d− 1 so this bound becomes ℓ(Λ+(p, e)) ≤ 3.

A hyperbolic polynomial is irreducible if it cannot be factored as a product of polynomials of
lower degree. If p is hyperbolic with respect to e and is reducible, we can write p = pm1

1 · · · pmn

n

where the pi are the irreducible factors of p and the mi are positive integers. It is straightforward
to see that the pi are also hyperbolic with respect to e. The hyperbolicity cone corresponding to p
is the intersection of the cones corresponding to the pi. As such,

Λ+(p, e) = {x : (x, x, . . . , x) ∈ Λ+(p1, e) × · · · × Λ+(pn, e)}

gives a Λ+(p1, e)× · · · × Λ+(pn, e)-lift of Λ+(p, e).
The following corollary of Theorem 1.4 summarizes some of the discussion above, and highlights

one of very few known obstructions to the existence of lifts using hyperbolicity cones.

2Self-dual conex cones for which the automorphism group acts transitively on the interior.
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Corollary 2.3. Suppose C is a proper convex cone such that for any N ∈ N there is a subset

VN ⊆ ext(C) such that |VN | ≥ N and C is k-neighborly with respect to VN . If p is hyperbolic with

respect to e and all the irreducible components of p have degree at most k, then C does not have a

Λ+(p, e)-lift.

3 Technical preliminaries

In this section we briefly introduce the additional definitions, and basic technical results, needed
for our proof of Theorem 1.4.

3.1 Convex cones and their faces

The lineality space Lin(C) of a closed convex cone is Lin(C) := C∩(−C), and is the largest subspace
contained in C. A closed convex cone C is pointed if and only if Lin(C) = {0}. A closed convex
cone can always be expressed as C = C ′ + Lin(C) where C ′ is pointed and the sum is direct (for
instance we can take C ′ = C ∩ Lin(C)⊥).

If C ⊆ Rn is a closed convex cone and X ⊆ C, we denote by FC(X) the smallest (inclusion-
wise) face of C containing X. If x ∈ C, we write FC(x) instead of FC({x}) for the smallest
(inclusion-wise) face of C containing x. If C is clear from the context, we omit it from the notation.

The collection of faces of a proper convex cone C, partially ordered by inclusion, form a lat-
tice [Bar73]. The lattice operations are

F1 ∧ F2 = F1 ∩ F2 and F1 ∨ F2 = FC(F1 ∪ F2).

We summarize some useful properties of this operation for future reference.

Lemma 3.1. Let C be a proper convex cone.

1. If F is a face of C and F ( C then dim(F ) < dim(C).

2. If x ∈ C and F is a face of C then FC(x) = F if and only if x ∈ relint(F ).

3. If λ > 0 and x ∈ C then FC(λx) = FC(x).

4. If x, y ∈ C then FC(x+ y) = FC(x) ∨ FC(y).

5. If x1, . . . , xn ∈ C and λ1, . . . , λn > 0 then

FC

(

n
∑

i=1

λixi

)

=
n
∨

i=1

FC(λixi) =
n
∨

i=1

FC(xi) = FC

(

n
∑

i=1

xi

)

.

Proof. The first statement is [Roc15, Corollary 18.1.3]. For the second statement, suppose that
x ∈ relint(F ). Then F is a face of C that contains x, so FC(x) ⊆ F . Moreover, x ∈ FC(x)∩relint(F )
so, by [Roc15, Corollary 18.1.2], F ⊆ FC(x). Now assume that FC(x) = F . Then, by [Bar73,
Lemma 2.9], x ∈ relint(FC(x)) = relint(F ). The third statement follows from the fact that if F is
a face of C then x ∈ F if and only if λx ∈ F . The fourth statement is a special case of [BC75,
Corollary 1]. The fifth statement follows from statements 3 and 4.
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3.2 Cone lifts and the factorization theorem

We begin with the notion of a proper3 lift, a slight refinement of Definition 1.1.

Definition 3.2. If C ⊆ Rn and K ⊆ Rd are closed convex cones then C has a proper K-lift if

C = π(K ∩ L) where π : Rd → Rn is a linear map and L ⊆ Rd is a linear subspace that meets the

relative interior of K.

The factorization theorem [GPT13, Theorem 1] of Gouveia, Parrilo, and Thomas, allows us
to reformulate geometric questions about the existence of cone lifts as algebraic questions about
the existence of factorizations of certain non-negative operators. Here we state and prove (for
completeness) only the direction of the result of Gouveia, Parrilo, and Thomas that we need, and
express it in a modified form that is most convenient for our subsequent use.

Theorem 3.3 (Factorization theorem [GPT13, Theorem 1]). If a proper convex cone C has a

proper K1 × · · · ×Km-lift then, for i = 1, 2, . . . ,m, there are maps ai : C
∗ → K∗

i and bi : C → Ki

such that 〈x, y〉 =
∑m

i=1〈bi(x), ai(y)〉 for all (x, y) ∈ C × C∗.

Proof. Since C has a proper K := K1 × · · · ×Km-lift there is a subspace L that meets the relative
interior of K such that C = π(K ∩ L). For each x ∈ C define b(x) to be an arbitrary choice of
element of K ∩ L such that π(b(x)) = x.

Since C = π(K ∩ L) and L meets the relative interior of K, it follows from [Roc15, Corollary
16.4.2] that π∗(C∗) ⊆ (K ∩ L)∗ = K∗ + L⊥. So, for each y ∈ C∗, there exists a(y) ∈ K∗ and
w(y) ∈ L⊥ such that π∗(y) = a(y) + w(y). Then

〈x, y〉 = 〈π(b(x)), y〉 = 〈b(x), π∗(y)〉 = 〈b(x), a(y) + w(y)〉 = 〈b(x), a(y)〉

since b(x) ∈ L and w(y) ∈ L⊥. If we let the ai and bi be the associated coordinate functions of a
and b, the result follows.

The following result means we can replace general lifts with proper lifts when we prove Theorem 1.4,
allowing us to use the factorization theorem.

Lemma 3.4. Suppose that C is a proper convex cone and there exist a positive integer m and

closed convex cones K̃1, K̃2, . . . , K̃m such that C has a K̃1 × · · · × K̃m-lift and ℓ(K̃i) ≤ k+1 for all

i ∈ [m]. Then there exist a positive integer m and closed convex cones K1,K2, . . . ,Km such that C
has a proper K1 × · · · ×Km-lift and ℓ(Ki) ≤ k + 1 for all i ∈ [m].

Proof. By our assumption on C, there is a linear map π and a subspace L such that C = π(L ∩
(K̃1 × · · · × K̃m)). If L meets the relative interior of K̃1 × · · · × K̃m we simply take Ki = K̃i for
all i ∈ [m]. If L does not intersect the relative interior of K̃1 × · · · × K̃m then let F denote the
minimal face of K̃1 × · · · × K̃m containing (K̃1 × · · · × K̃m)∩L. Since F is a face of K̃1 × · · · × K̃m

it has the form F1×· · ·×Fm where Fi is a face of K̃i for all i ∈ [m] [Bar78, Theorem 2]. Moreover,
we have that ℓ(Fi) ≤ ℓ(K̃i) for all i ∈ [m]. As such, C has a proper F1 × F2 × · · · × Fm-lift and
ℓ(Fi) ≤ k + 1 for all i ∈ [m]. Taking Ki = Fi for all i ∈ [m] completes the proof.

3The notion of a proper lift of a closed convex cone (from Definition 3.2) is quite distinct from the notion of a
proper (i.e., closed, pointed, full-dimensional) convex cone. The distinction between these (standard) uses should be
clear from the context.
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3.3 Ramsey numbers

The key combinatorial result we use is Ramsey’s theorem for hypergraphs. We formally state it in
language more suited to our application.

Theorem 3.5 ([Ram30, Theorem B]). Let k, m, and n be positive integers. There exists a positive

integer Rk(m;n) such that whenever V is a set with |V | ≥ Rk(m;n) and f :
(V
k

)

→ [n] then there

exists W ⊆ V such that |W | = m and f(S) = f(T ) for all S, T ∈
(

W
k

)

.

In the hypergraph setting we think of f as a coloring of the k-uniform hypergraph on vertex
set V with n colors, and W as a subset of m vertices of the hypergraph for which all induced
hyperedges have the same color. Except in a few very special cases, the numbers Rk(m;n) are not
known, although explicit upper bounds are available. For our purposes, we only need the fact that
Rk(m;n) is finite for positive integers n, k, and m.

4 Generalizing Averkov’s lemmas and the proof of Theorem 1.4

In this section we establish Theorem 1.4 by generalizing the key technical arguments of [Ave19].
Crucial to Averkov’s approach is the following simple result about positive semidefinite matrices.
In the statement, if X is a positive semidefinite matrix, let col(X) denote its column space, and
interpret the empty sum as zero, i.e.,

∑

i∈∅ Xi = 0.

Lemma 4.1. Suppose X1,X2, . . . ,Xℓ � 0 and rank(
∑

i∈[n]Xi) = k. Then there exists a subset

I ⊆ [n] with |I| ≤ k such that col
(
∑

i∈I Xi

)

= col
(

∑

i∈[n]Xi

)

.

We note that Averkov states the conclusion in an equivalent form as
∑

i∈I col(Xi) =
∑

i∈[n] col(Xi).
The statement given here suggests, more clearly, the generalization we require.

Lemma 4.1 can be generalized to the setting in which the rank is replaced with the largest length
of a chain of nonempty faces (minus one), and the column space is replaced with the minimal face
containing a point of the convex cone. In the statement and proof of Lemma 4.2 we interpret the
empty sum as zero, i.e.,

∑

i∈∅ xi = 0.

Lemma 4.2. Let K be a closed convex cone and suppose that x1, x2, . . . , xn ∈ K are such that
∑n

i=1 xi ∈ relint(K). Then there exists I ⊆ [n] with |I| ≤ ℓ(K) − 1 such that F (
∑

i∈I xi) =
F (
∑

i∈[n] xi) = K.

Proof. First, we will prove the result under the assumption that K is pointed. We argue by
induction on ℓ(K). For the base case, consider a closed pointed convex cone with ℓ(K) = 1.
The only possibility is K = {0}. In this case if x1, . . . , xn ∈ K we can choose I = ∅ so that
|I| = 0 = ℓ({0}) − 1 and F (

∑

i∈I xi) = F (0) = {0} = K.
Assume the statement holds for all closed pointed convex cones K with ℓ(K) ≤ k, for some

positive integer k. Consider a closed pointed convex cone C with ℓ(C) = k+1. Let x1, . . . , xn ∈ C
be such that F (x1 + · · · + xn) = C. Let I ⊆ [n] be an inclusion-wise minimal subset of [n] such
that F (

∑

i∈I xi) = C. Choose some j ∈ I and observe that xj /∈ F (
∑

i∈I\{j} xi) (by minimality of
I) and so F (

∑

i∈I\{j} xi) is strictly contained in C. Hence,

ℓ(F (
∑

i∈I\{j} xi)) ≤ ℓ(C)− 1 = k.

Since F (
∑

i∈I\{j} xi) is closed, convex, and pointed, by the induction hypothesis, there is some

I ′ ⊆ I \ {j} such that |I ′| ≤ k − 1 and

F (
∑

i∈I′ xi) = F (
∑

i∈I\{j} xi).
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Then, by Lemma 3.1,

F (xj +
∑

i∈I′ xi) = F (xj) ∨ F (
∑

i∈I′ xi)

= F (xj) ∨ F (
∑

i∈I\{j} xi) = F (
∑

i∈I xi) = C.

Since I is minimal with this property and I ′ ∪ {j} ⊆ I we must have that I ′ ∪ {j} = I. It then
follows that |I| = |I ′|+ 1 ≤ k, as required.

If K is not pointed, then K = K ′ + Lin(K) where K ′ is pointed and the sum is direct. Fur-
thermore, F ′ is a face of K ′ if and only if F ′ + Lin(K) is a face of K. If x = x′ + z with x′ ∈ K ′

and z ∈ Lin(K) then x ∈ relint(K) if and only if x′ ∈ relint(K ′).
Now, let xi = x′i+zi be decompositions of each of the xi so that x′i ∈ K ′ and zi ∈ Lin(K) for all

i. By assumption,
∑n

i=1 xi ∈ relint(K) and so
∑n

i=1 x
′
i ∈ relint(K ′). Since the lemma holds for the

pointed case, there exists I ⊆ [n] with |I| ≤ ℓ(K ′) − 1 = ℓ(K) − 1 such that
∑

i∈I x
′
i ∈ relint(K ′).

Then
∑

i∈I xi ∈ relint(K) as required.

Averkov’s main lemma is the following result, which relies crucially on Lemma 4.1 for its proof.

Lemma 4.3. Let m be a positive integer and let S denote a finite set with cardinality at least k.
Suppose that, for each i ∈ [m], there are maps ai :

(

S
k

)

→ Sk
+ and bi : S → Sk

+ such that

m
∑

i=1

〈ai(T ), bi(s)〉 = 0 ⇐⇒ s ∈ T.

Then |S| < Rk(k + 1; (k + 1)m).

We can use essentially the same argument as Averkov to establish the following analogue of
Lemma 4.3, once we replace column spaces by minimal faces and rank with the largest length of
a chain of nonempty faces (minus one). We recover Averkov’s lemma as a special case by noting
that the cone Sk

+ is self-dual and satisfies ℓ(Sk
+) = k + 1.

Lemma 4.4. Let m be a positive integer and let K1,K2, . . . ,Km be closed convex cones. Let S
denote a finite set with cardinality at least k. Suppose that, for each i ∈ [m], there are maps

ai :
(S
k

)

→ K∗
i and bi : S → Ki such that

m
∑

i=1

〈ai(T ), bi(s)〉 = 0 ⇐⇒ s ∈ T.

If ℓ(Ki) ≤ k + 1 for i = 1, 2, . . . ,m then |S| < Rk(k + 1; (k + 1)m).

Proof. For each T ⊆ S and each i ∈ [m] define

bT,i :=
∑

t∈T

bi(t) ∈ Ki and dT,i := ℓ(F (bT,i)).

For each T ∈
(S
k

)

, we assign ‘color’ (dT,1, . . . , dT,m) to the set T . Since ℓ(Ki) ≤ k + 1, then the
same is true for any nonempty face of Ki, and so dT,i ∈ {0, 1, . . . , k} for each T and i. As such, we
are coloring with at most (k + 1)m colors.

Seeking a contradiction, let us assume that |S| ≥ Rk(k + 1; (k + 1)m). Then, by the definition
of the Ramsey number, there exists W ⊆ S with |W | = k + 1 such that all k-element subsets
of W have the same color (d1, d2, . . . , dm). More explicitly, for all T ⊂ W with |T | = k we have
(dT,1, . . . , dT,m) = (d1, . . . , dm).
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Claim For each i ∈ [m] and each T ⊂ W such that |T | = k, we have that F (bT,i) = F (bW,i). If
this were not the case, then there exists such an i ∈ [m] and T ⊂ W with |T | = k such that F (bW,i)
strictly contains F (bT,i). By Lemma 4.2, there is a subset T ′ ⊆ W with |T ′| ≤ ℓ(F (bW,i)) − 1 ≤ k
such that F (

∑

t′∈T ′ bi(t
′)) = F (bW,i). By adding elements of W (if necessary) we can form a set T ′′

such that T ′ ⊆ T ′′ ⊂ W and |T ′′| = k such that

F

(

∑

t′′∈T ′′

bi(t
′′)

)

⊇ F

(

∑

t′∈T ′

bi(t
′)

)

= F (bW,i).

One the one hand, since all k-element subsets of W have the same ‘color’, di = dT ′′,i ≥ ℓ(F (bW,i)).
On the other hand, since F (bW,i) strictly contains F (bT,i) we have that ℓ(F (bW,i)) > ℓ(F (bT,i)) = di.
This contradiction establishes the claim.

With the claim established, we write W = T ∪ {s} where |T | = k and s /∈ T . By assumption
on ai and bi, we have that

m
∑

i=1

〈ai(T ), bi(t)〉 = 0 for all t ∈ T .

Since ai(T ) ∈ K∗
i and bi(t) ∈ Ki we can conclude that

〈ai(T ), bi(t)〉 = 0 for all t ∈ T and all i ∈ [m].

But then
〈

ai(T ),
∑

t∈T

bi(t)

〉

= 0.

In particular, for each i ∈ [m] the linear functional defined by ai(T ) vanishes on the face

F (
∑

t∈T bi(t)) = F (bT,i) = F (bW,i)

where the last equality is the claim. But then, even though s /∈ T , we have that

0 =

〈

ai(T ),
∑

w∈W

bi(w)

〉

=

〈

ai(T ), bi(s) +
∑

t∈T

bi(t)

〉

= 〈ai(T ), bi(s)〉

for all i ∈ [m]. This contradicts the fact that a and b satisfy 0 =
∑m

i=1〈ai(T ), bi(s)〉 if and only if
s ∈ T . It then follows that |S| < Rk(k + 1; (k + 1)m).

Following Averkov, we combine Lemma 4.3 with the factorization theorem of Gouveia, Parrilo,
and Thomas (Theorem 3.3) to turn the statement about the structure of maps ai and bi into a
statement about lifts of convex cones. We briefly repeat the argument here, in our setting, to make
the paper more self-contained.

Proposition 4.5. Suppose that a proper convex cone C ⊆ Rn has a proper K1 × · · · × Km-lift

where ℓ(Ki) ≤ k + 1 for i ∈ [m]. If C is k-neighborly with respect to some finite set V ⊆ ext(C)
then |V | < Rk(k + 1; (k + 1)m).

Proof. Since C is k-neighborly with respect to V , for each k-element subset W ∈
(V
k

)

there is
fW ∈ C∗ such that 〈fW , w〉 vanishes if w ∈ W and is positive if w ∈ V \W . Since C has a proper
K1 × · · · × Km lift, by the factorization theorem (Theorem 3.3) we know that for i = 1, 2, . . . ,m
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there exist maps ãi : C
∗ → K∗

i and b̃i : C → Ki such that 〈f, x〉 =
∑m

i=1〈ãi(f), b̃i(x)〉 for all f ∈ C∗

and all x ∈ C. Define ai :
(V
k

)

→ K∗
i by ai(W ) = ãi(fW ) and bi : V → Ki by bi(w) = b̃i(w). Then

〈fW , w〉 =
∑m

i=1〈ai(W ), bi(w)〉 which vanishes when w ∈ W and is positive when w ∈ V \ W . It
follows from Lemma 4.4 that |V | < Rk(k + 1; (k + 1)m).

Theorem 1.4 is a straightforward consequence of Proposition 4.5.

Proof of Theorem 1.4. By assumption, there exists some finite V ⊂ ext(C) such that |V | ≥ Rk(k+
1; (k+1)m) and C is k-neighborly with respect to V . Then by the contrapositive of Proposition 4.5
it follows that C does not have a proper K1 × · · · × Km lift with ℓ(Ki) ≤ k + 1 for all i ∈ [m].
It follows from Lemma 3.4 that C does not have a (possibly improper) K̃1 × · · · × K̃m-lift with
ℓ(K̃i) ≤ k + 1 for all i ∈ [m], completing the proof.

5 Discussion

In this paper we have shown that for a convex cone C, having a certain neighborliness property is
an obstruction to having a K-lift where K is a Cartesian product of cones all of which only have
short chains of faces. Our argument is a fairly direct generalization of an argument of Averkov
showing that the same neighborliness property is an obstruction to having an (Sk

+)
m-lift.

Although we only stated qualitative results about the non-existence of lifts, the approach taken
in this paper could be made quantitative in the following sense. If C is k-neighborly with respect to
a finite set V and ℓ(Ki) ≤ k+1 for all i, then Theorem 1.4 does not rule out the possibility that C
has a K1 × · · · ×Km-lift. However one could, in principle, extract a lower bound on the number of
factors m required in any such lift in terms of k and |V |. Unfortunately, this gives very weak lower
bounds, since the Ramsey numbers Rk(k + 1; (k + 1)m) grow extremely fast (and so the implied
lower bounds on m grows extremely slowly). For convex cones that do have K1 × · · · × Km-lifts
where ℓ(Ki) ≤ k+1 for all i, it would be very interesting to develop general techniques to establish
stronger lower bounds on m, the number of factors. In the case k = 1 this reduces to the study of
lower bounds on the linear programming extension complexity of a polyhedral cone.

This paper gives some of the first results about non-existence of K-lifts where K is a hyperbol-
icity cone. Currently the only other such result is a lower bound on the size of PSD lifts of convex
semialgebraic sets, based on quantifier elimination [GPT13], that can be generalized directly to
the setting of hyperbolicity cones. Fawzi and Safey El Din [FSED18] strengthen the quantifier
elimination-based bounds in the case of PSD lifts by exploiting connections with the algebraic de-
gree of semidefinite programming [NRS10]. It would be interesting to develop a similar approach
to devise lower bounds on natural notions of complexity for lifts using hyperbolicity cones.
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