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AN ADAPTIVE STOCHASTIC GALERKIN TENSOR

TRAIN DISCRETIZATION FOR RANDOMLY

PERTURBED DOMAINS

MARTIN EIGEL, MANUEL MARSCHALL, AND MICHAEL MULTERER

Abstract. A linear PDE problem for randomly perturbed do-
mains is considered in an adaptive Galerkin framework. The per-
turbation of the domain’s boundary is described by a vector valued
random field depending on a countable number of random variables
in an affine way. The corresponding Karhunen-Loève expansion is
approximated by the pivoted Cholesky decomposition based on
a prescribed covariance function. The examined high-dimensional
Galerkin system follows from the domain mapping approach, trans-
ferring the randomness from the domain to the diffusion coefficient
and the forcing. In order to make this computationally feasible, the
representation makes use of the modern tensor train format for the
implicit compression of the problem. Moreover, an a posteriori er-
ror estimator is presented, which allows for the problem-dependent
iterative refinement of all discretization parameters and the assess-
ment of the achieved error reduction. The proposed approach is
demonstrated in numerical benchmark problems.

1. Introduction

Uncertainties in the data for mathematical models are found nat-
urally when dealing with real-world applications in science and engi-
neering. Being able to quantify such uncertainties can greatly improve
the relevance and reliability of computer simulations and moreover pro-
vide valuable insights into statistical properties of quantities of interest
(QoI). This is one of the main motivations for the thriving field of Un-
certainty Quantification (UQ).
In the application considered in this work, the computational do-

main is assumed as randomly perturbed. This e.g. can be an appro-
priate model to incorporate production tolerances into simulations and
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extract statistical information about how such uncertainties get trans-
ported through the assumed model. Random domain problems have
been examined before, see for instance [2, 20, 31]. Often, sampling ap-
proaches are used to evaluate QoI as e.g. has been investigated with
a multilevel quadrature for the the domain mapping method in [20].
As an alternative, we propose to employ a stochastic Galerkin FEM
(SGFEM) to obtain a functional representation of the stochastic solu-
tion on the reference domain, which can then be used to evaluate sta-
tistical quantities. For the discretization, a Legendre polynomial chaos
basis and first order FE are chosen. The expansion of the perturba-
tion vector field in a (finite) countable sequence of random variables
gives rise to a high-dimensional coupled algebraic system, which eas-
ily becomes intractable to numerical methods or results in very slow
convergence. A way to overcome this problem is to utilize model order
reduction techniques. In this work, we make use of the modern tensor
train (TT) format [26], which provides an efficient hierarchical tensor
representation and is able to exploit low-rank properties of the problem
at hand. Another important technique to reduce computational cost
is the use of an adaptive discretization. In our case, this is based on a
reliable a posteriori error estimator, afforded by the quasi-orthogonal
approximation obtained by the SGFEM. With the described error es-
timator, an iterative adaptive selection of optimal discretization pa-
rameters (steering mesh refinement, anisotropic polynomial chaos and
tensor ranks) is possible.
For the Karhunen-Loève expansion of the random vector field, we

employ the pivoted Cholesky decomposition derived in [18, 19]. The
random coefficient and right-hand side which arise due to the integral
transformation are tackled with a tensor reconstruction method. All
evaluations are carried out in the TT format, which in particular al-
lows for the efficient computation of the error estimator as part of the
adaptive algorithm.
The paper is structured as follows: The next section introduces the

setting and the required assumptions of the random linear model prob-
lem. In particular, a description of the perturbation vector field and
the variable transformation is given, converting the random domain
problem to a problem with random coefficient and forcing. Section 3
defines the Galerkin finite element discretization of the random coeffi-
cient problem in Legendre chaos polynomials. Moreover, the framework
for residual based a posteriori error estimation is described. The tensor
train format used for the efficient computation of the problem is intro-
duced in Section 4. Section 5 lays out the refinement strategy for the
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Galerkin method, which is based on the evaluation of a reliable a pos-
teriori error estimate in the tensor representation and an appropriate
adaptive algorithm. Numerical examples are discussed in Section 6.

2. Diffusion problems on random domains

In this section, we formulate the stationary diffusion problem on ran-
dom domains as introduced in [20]. Let (Ω,Σ,P) denote a complete and
separable probability space with σ-algebra Σ and probability measure
P. Here, complete means that Σ contains all P-null sets. Moreover,
for a given Banach space E, we introduce the Lebesgue-Bochner space
Lp(Ω,Σ,P;X ), 1 ≤ p ≤ ∞, which consists of all equivalence classes of
strongly measurable functions v : Ω→ X with bounded norm

‖v‖Lp(Ω,Σ,P;X ) :=















(
∫

Ω

‖v(·, ω)‖pX dP(ω)

)1/p

, p <∞

ess sup
ω∈Ω

‖v(·, ω)‖X , p =∞.

Note that for p = 2 and X a separable Hilbert space, Lp(Ω,Σ,P;X ) is
isomorphic to the tensor product space X ⊗L2(Ω,Σ,P). We henceforth
neglect the dependence on the σ-algebra to simplify the notation. For
an exposition of Lebesgue-Bochner spaces we refer to [21].
In this article, we are interested in computing quantities of interest

of the solution to the elliptic diffusion problem

(1)
− div

(

∇u(ω)
)

= f in D(ω),

u(ω) = 0 on ∂D(ω),

for P-almost every ω ∈ Ω. Note that, the randomness is carried by the
open and bounded Lipschitz domain D : Ω → R

d. It is also possible
to consider non-trivial diffusion coefficients or boundary data, see e.g.
[13] for the treatment of non-homogenous Dirichlet data and [25] for
random diffusion coefficients. However, we emphasize that, in order to
derive regularity results that allow for the data sparse approximation
of quantities of interest, the data have to be analytic functions, cf. [20].
In order to guarantee the well posedness of (1), we assume that all

data, i.e. the loading f and a possible non-trivial diffusion coefficient,
are defined with respect to the hold-all domain

D :=
⋃

ω∈Ω

D(ω).

For the modelling of random domains, we employ the concept of ran-
dom vector fields. To that end, we assume that there exists a reference
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domain Dref ⊂ R
d for d = 2, 3 with Lipschitz continuous boundary

∂Dref and a random vector field

V : Dref × Ω→ R
d

such that D(ω) = V (Dref , ω). In addition, we require that V is a
uniform C1-diffeomorphism, i.e. there exists a constant Cuni > 1 such
that

(2) ‖V (ω)‖C1(Dref ;Rd), ‖V −1(ω)‖C1(Dref ;Rd) ≤ Cuni for P-a.e. ω ∈ Ω.

In particular, since V ∈ L∞
(

Ω;C1(Dref)
)

⊂ L2
(

Ω;C1(Dref)
)

, the
random vector field V exhibits a Karhunen-Loève expansion of the
form

(3) V (x̂, ω) = E[V ](x̂) +

∞
∑

k=1

V k(x̂)Yk(ω).

Herein, the expectation is given in terms of the Bochner integral

E[V ](x̂) :=

∫

Ω

V (x̂, ω) dP(ω).

Note that here and henceforth, we denote x̂ ∈ Dref as material coordi-
nates, in contrast to spatial coordinates x ∈ D(ω). In particular, there
holds x = V (x̂, ω) for some x̂ ∈ Dref . The anisotropy, which is induced
by the spatial contributions {V k}k, describing the fluctuations around
the nominal value E[V ](x̂), is encoded by

(4) γk := ‖V k‖W 1,∞(Dref ;Rd).

In our model, we shall also make the following common assumptions.

Assumption 2.1.

(i) The random variables Y = {Yk}k take values in Γ1 := [−1, 1].
(ii) The random variables {Yk}k are independent and identically dis-

tributed.
(iii) The sequence γ := {γk}k is at least in ℓ1(N).

In view of this assumption, the Karhunen-Loève expansion (3) can
always be computed if the expectation E[V ] and the matrix-valued
covariance function

Cov[V ](x̂, x̂′) :=

∫

Ω

V (x̂, ω)V
⊺

(x̂′, ω) dP(ω)

are known. Herein,

V (x̂, ω) := V (x̂, ω)− E[V ](x̂)
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denotes the centered random vector field. The Karhunen-Loève expan-
sion is based on the spectral decomposition of the integral operator as-
sociated to the covariance function, which can be computed efficiently
by means of the pivoted Cholesky decomposition, if the covariance
function is sufficiently smooth, cf. [18, 19].
By an appropriate reparametrization, we can always guarantee that

E[V ](x̂) = x̂.

Moreover, if we identify the random variables {Yk}k by their image
y ∈ Γ∞ :=×m∈N

Γm = [−1, 1]N, we end up with the representation

(5) V (x̂,y) = x̂+

∞
∑

k=1

V k(x̂)yk.

For later reference, we also introduce the push-forward measure π∞ =
P#Y on Γ∞, which will be assumed as a tensor product measure π∞ =
⊗

m∈N πm, where πm is a probability measure on Γm = [−1, 1].
The Jacobian of V with respect to the material coordinate x̂ is given

by

J(x̂,y) = I +

∞
∑

k=1

V ′
k(x̂)yk.

Introducing the parametric domains D(y) := V(Dref ,y), i.e.

x = V (x̂,y),

we may now introduce the model problem transported to the reference
domain which reads for every y ∈ Γ∞:

(6)
− divx̂

(

A(y)∇x̂û(y)
)

= f̂(y) in Dref ,

û(y) = 0 on ∂Dref .

Herein, we have
(7)

A(x̂,y) := (J⊺J)−1(x̂,y) detJ(x̂,y), f̂(x̂,y) := (f◦V )(x̂,y) detJ(x̂,y)

and

û(x̂,y) := (u ◦ V )(x̂,y).

Remark 2.2. The uniformity condition in (2) implies that the func-
tional determinant detJ(x̂,y) in (7) is either uniformly positive or
negative, see [20] for the details. We shall assume without loss of gen-
erality detJ(x̂,y) > 0 and hence | detJ(x̂,y)| = detJ(x̂,y), i.e. we
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may just drop the modulus. More precisely, due to (2), we can bound
the determinant according to

0 <
1

Cd
uni

≤ detJ(x̂,y) ≤ Cd
uni <∞

for every x̂ ∈ Dref and almost every y ∈ Γ∞. In addition, all singular
values of J−1(x̂,y) are bounded from below by C−1

uni and from above by
Cuni. From this, we obtain the bound

(8) 0 < č :=
1

Cd+2
uni

≤ ‖A(x̂,y)‖2 ≤ Cd+2
uni =: ĉ <∞

for every x̂ ∈ Dref and almost every y ∈ Γ∞. Hence, the transported
model problem is uniformly elliptic.

We conclude this section by summarizing the regularity results for
A, f̂ , û, cp. (6), with respect to the parameter y ∈ Γ∞ from [20]. For
this, denote by F the set of finitely supported multi-indices

F := {µ ∈ N
∞
0 ; |suppµ| <∞} where supp µ := {m ∈ N ; µm 6= 0}.

Theorem 2.3. Let the right-hand side f from (1) satisfy

‖∂αx f‖L∞(D) ≤ cfα!ρ−|α|

for some constants cf , ρ > 0 and α ∈ F . Then, for every α ∈ F it
holds

∥

∥∂α
y
A(y)

∥

∥

L∞(Dref ;Rd×d)
≤ C|α|!c|α|γα,

∥

∥∂α
y
f̂(y)

∥

∥

L∞(Dref )
≤ C|α|!c|α|γα,

∥

∥∂α
y
û(y)

∥

∥

H1(Dref )
≤ C|α|!c|α|γα,

for some constants C > 0, which depend on cf , ρ, Cuni, d,Dref , ‖γ‖ℓ1 but
are independent of the multi-index α.

3. Adaptive Galerkin discretisation

In this section we describe the Galerkin discretization of the consid-
ered random PDE (6) in a finite dimensional subspace VN ⊂ V = X⊗Y .
Determined by the elliptic problem type with homogeneous bound-
ary condition, we assume X = H1

0 (Dref) is discretized by a first order
Lagrange FE basis on a mesh representing Dref . Moreover, the ran-
domness is modelled in a truncated version of Y = L2(Γ∞, π∞) and
represented by Legendre chaos polynomials orthonormal with respect
to the joint probability measure π∞ associated with the parameter y.
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Consequently, VN with norm ‖v‖2V = EπM
[‖v‖2X ] is spanned by the re-

spective tensor basis. Moreover, the residual based a posteriori error
estimator of [5, 6] is recalled for the problem at hand.
For efficient computations of the Galerkin projection and the er-

ror estimator, the resulting system with inhomogeneous coefficient and
right-hand side (7) is represented in the tensor train format as pre-
sented in Section 4.

3.1. Parametric and deterministic discretization. To determine
a multivariate polynomial basis of Y , we first define the full tensor
index set of order M ∈ N and maximal degree (d1, . . . , dM) ∈ N

M by

Λ := {(µ1, . . . , µM , 0, . . .) ∈ F : µm = 0, . . . , dm − 1, m = 1, . . . ,M}
For any such subset Λ ⊂ F , we define suppΛ :=

⋃

µ∈Λ supp µ ⊂ N.

Let (Pn)
∞
n=0 denote a basis of L2([−1, 1]), orthogonal with respect to

the Lebesgue measure, consisting of Legendre polynomials Pn of de-
gree n ∈ N0 on R. Moreover, to obtain a finite dimensional setting,
we define the truncated parameter domain ΓM := [−1, 1]M and prob-

ability measure πM :=
⊗M

m=1 πm. By tensorization of the univariate

polynomials, an orthogonal basis of L2(ΓM) =
⊗M

m=1 L
2([−1, 1]) is

obtained. Then, for any multi-index µ ∈ F , the tensor product poly-
nomial Pµ :=

⊗∞
m=1 Pµm

in y ∈ ΓM is expressed as the finite product

Pµ(y) =

∞
∏

m=1

Pµm
(ym) =

∏

m∈supp µ

Pµm
(ym).

Assuming that πM = U(ΓM), after suitable rescaling we can consider

(Pµ)µ∈F as an orthonormal basis of L2(ΓM , πM) =
⊗M

m=1 L
2([−1, 1], 1

2
λ),

where λ denotes the Lebesgue measure and hence 1
2
λ is the uniform

measure on [−1, 1], see [28].
A discrete subspace of X is given by the conforming finite element

space Xp(T ) := span{ϕi}Ni=1 ⊂ X of degree p ≥ 0 on some simplicial
regular mesh T of the domain Dref with the set of faces S (i.e. edges for
d = 2) and basis functions ϕi. For a convenient presentation, we de-
note the piecewise constant basis functions of X0(T ) by {ψℓ}N0

ℓ=1, where
N0 = dimX0 is the number of elements in T . In order to circumvent
complications due to an inexact approximation of boundary values, we
assume that Dref is a polytope. By denoting Pp(T ) the space of piece-
wise polynomials of degree p ≥ 0 on T , the assumed FE discretization
with Lagrange elements then satisfies Xp(T ) ⊂ Pp(T )∩C(T ). For any
element T ∈ T and face S ∈ S, we set the entity sizes hT := diamT

and hS := diamS. Let nS denote the exterior unit normal on any face
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S. The jump of some χ ∈ H1(Dref ;R
d) on S = T1 ∩ T2 in normal

direction is then defined by

(9) [[χ]]S := χ|T1
· nS − χ|T2

· nS.

By ωT and ωS we denote the element and facet patches defined by the
union of all elements which share at least a vertex with T or S, re-
spectively. Consequently, the Clément interpolation operator I : X →
Xp(T ) satisfies, respectively for T ∈ T and S ∈ S,

‖(id−I)v‖L2(T ) ≤ cT hT |v|X ,ωT
, ‖(id−I)v‖L2(S) ≤ cSh

1/2
S |v|X ,ωS

,

(10)

where the seminorms | · |X ,ωT
and | · |X ,ωS

are the restrictions of ‖ · ‖X
to ωT and ωS,
The fully discrete approximation space subject to some mesh T with

FE order p ≥ 0 and active set Λ with |Λ| <∞ is given by
(11)

VN := VN(Λ, T , p) :=
{

vN(x, y) =
∑

µ∈Λ

vN,µ(x)Pµ(y) : vN,µ ∈ Xp(T )
}

,

and it holds VN ⊂ V. We define a tensor product interpolation operator
I : L2(Γ∞, π∞;X ) → VN for v =

∑

µ∈F vµPµ ∈ V = L2(Γ∞, π∞;X ) by
setting

(12) Iv :=
∑

µ∈Λ

(Ivµ)Pµ.

For v ∈ V and all T ∈ T , S ∈ S, it holds
‖(id−I)v‖L2(Γ∞,π∞;L2(T )) ≤ cT hT |v|V ,ωT

,(13)

‖(id−I)v‖L2(Γ∞,π∞;L2(S)) ≤ cSh
1/2
S |v|V ,ωS

,(14)

where

|v|2V ,ωT
:=

∫

Γ∞

|v(y)|2X ,ωT
dπ∞(y), |v|2V ,ωS

:=

∫

Γ∞

|v(y)|2X ,ωS
dπ∞(y).

3.2. Random field discretisation. In this paragraph, we highlight
the special structure of the random field discretization. We aim at an
efficient way to discretize the transformed and parametrized random
fields (7) in terms of the piecewise constant finite element functions
{ψi}N0

i=1 ⊂ X0 ⊂ X , pointwise for every y ∈ ΓM .
In [25], it has been shown how the random vector field (5) can effi-

ciently be approximated by means of finite elements. This results in a
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truncated representation with M ∈ N terms of the form

V h(x̂,y) = x̂+

M
∑

m=1

ymV m,h(x̂) = x̂+

M
∑

m=1

ym

d
∑

i=1

N
∑

k=1

ci,k,mϕk(x̂)ei,

where e1, . . . , ed denotes the canonical basis of R
d, ϕ1, . . . , ϕN is a basis

for X1(T ) and ci,k,m ∈ R are the coefficients in the basis representa-
tion of V m,h. The length M of this expansion depends on the desired
approximation error of the random field, which can be rigorously con-
trolled in terms of operator traces, see [19, 29].
For the corresponding Jacobian, we obtain

Jh(x̂,y) = I+

M
∑

m=1

ymV
′
m,h(x̂) = I+

M
∑

m=1

ym

d
∑

i=1

N
∑

k=1

ci,k,mei

(

∇x̂ϕk(x̂)
)

⊺

.

More explicitly, the Jacobians V ′
m,h(x̂) are given by

V ′
m,h(x̂) =

N
∑

k=1





c1,k,m∂1ϕk(x̂) · · · c1,k,m∂dϕk(x̂)
...

. . .
...

cd,k,m∂1ϕk(x̂) · · · cd,k,m∂dϕk(x̂)



 .

Since ∂iϕk(x̂), i = 1, . . . , d, k = 1, . . . , N are piecewise constant func-
tions, we can represent V ′

m,h in an element based fashion according
to

V ′
m,h =

N0
∑

ℓ=1





c̃ℓ,m,1,1 · · · c̃ℓ,m,1,d
...

. . .
...

c̃ℓ,m,d,1 · · · c̃ℓ,m,d,d



ψℓ(x̂) =:
N0
∑

ℓ=1

Cℓ,mψℓ(x̂),

where ψℓ denotes the characteristic function on the element Tℓ ∈ T
and c̃ℓ,m,i,j ∈ R are the corresponding coefficients. Hence, we end up
with a piecewise constant representation of V ′

h, which reads

Jh(x̂,y) = I +

N0
∑

ℓ=1

( M
∑

m=1

Cℓ,mym

)

ψℓ(x̂).

From this representation, it is straightforward to calculate detJh(x̂,y)
for a given y ∈ ΓM , also in an element based fashion. Having V h(x̂,y),
Jh(x̂,y), detJh(x̂,y) at our disposal, it is then easy to evaluateA(x̂,y)

and f̂(x̂,y), as well.
This procedure can be extended to the general case of order p > 0

ansatz functions for the random vector field (5), resulting in an order
p− 1 approximation of the desired quantities in (7).
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3.3. Variational formulation. Using the transformation in (7), the
weak formulation of the model problem (6) reads: find u ∈ V, such
that for all v ∈ V there holds

(15)

∫

Γ∞

∫

Dref

A(x̂,y)∇x̂u(x̂,y) · ∇x̂v(x̂,y) dx̂dπ∞(y) =

〈A(u), v〉 =
∫

Γ∞

∫

Dref

f̂(x̂,y)v(x̂,y) dx̂ dπ(y).

This characterizes the operator A : L2(Γ∞, π∞;V ) → L2(Γ∞, π∞;V ∗),
which gives rise to the energy norm ‖v‖2A := 〈A(v), v〉. Employing the
finite dimensional spaces of the previous section leads to the discrete
weak problem: find u =

∑

µ∈Λ

∑N
i=1 U(i, µ)ϕiPµ ∈ VN , such that for

all i′ = 1, . . . , N and α′ ∈ Λ

∑

α∈Λ

N
∑

i=1

L(i, α, i′, α′)U(i′, α′) = F(i′, α′).

Here, we define the discrete linear operator
(16)

L(i, α, i′, α′) :=

∫

ΓM

∫

Dref

A(x̂,y)∇x̂ϕi(x̂)Pα(y)∇x̂ϕi′(x̂)Pα′(y) dx̂ dπM(y)

and the discrete right-hand side

F(i′, α′) :=

∫

ΓM

∫

Dref

f̂(x̂,y)ϕi′(x̂)Pα′(y) dx̂ dπM .

3.4. Residual based a posteriori error estimates. In the follow-
ing, we recall the residual based a posteriori error estimator derived
in [5, 6], adopted for the problem at hand. An efficient reformulation
in the tensor train format is postponed to Section 4. The basis for the
estimator is the residual R(wN) ∈ L2(Γ∞, π∞;X ∗) = V∗ with respect
to some wN ∈ VN and the solution u ∈ V of (6) given by

R(wN) := A(u− wN) = f̂ −A(wN).

It has an L2(Γ∞, π∞)-convergent expansion in (Pν)ν∈F given by

R(wN) =
∑

ν∈F

rν(wN)Pν ,

with coefficients rν ∈ X ∗ characterized by

(17) 〈rν , v〉 =
∫

Dref

f̂νv −
∑

(µ,κ)∈Υν

Aµ∇x̂wN,κβ
ν
µ,κ · ∇x̂v dx̂ ∀v ∈ X .
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Here, f̂ν , Aµ and wN,κ denote the coefficients in the Legendre chaos ex-

pansion of f̂ =
∑

ν∈F f̂νPµ, A =
∑

µ∈F AµPµ and wN =
∑

κ∈F wN,κPκ

and

Υν :=

{

(µ, κ) ∈ F × Λ : βν
µ,κ :=

∫

Γ∞

Pν(y)Pµ(y)Pκ(y) dπ∞(y) 6= 0

}

is the ν-relevant triple product tuple set.
We recall a central theorem from [5], which enables the derivation of

an error bound based on an approximation wN of the Galerkin projec-
tion uN of the solution u in the energy norm.

Theorem 3.1. Let VN ⊂ V be a closed subspace and wN ∈ VN , and let
uN ∈ VN denote the A Galerkin projection of u ∈ V onto VN . Then,
for some cA, cI > 0, it holds

‖u− wN‖2A ≤ č2
(

sup
v∈V

|〈R(wN), (id−I)v〉|
‖v‖V

+ cI‖uN − wN‖A
)2

+ ‖uN − wN‖2A.

Remark 3.2. The constant cI is related to the Clément interpola-
tion operator in V and č stems from the spectral equivalence such that
‖v‖A ≥ č‖v‖V . We refer to [5] for further details.

Remark 3.3. We henceforth assume that the data f̂ and A are exactly
expanded in a finite set ∆ with Λ ⊂ ∆ ⊂ F , i.e. with the approxima-
tion, there is no significant contribution from the neglected modes F\∆.
The residual can then be split into approximation and truncation con-
tributions

(18) R(wN) = RΛ(wN) +R∆\Λ(wN),

where RΞ denotes the restriction of the expansion to the set Ξ ⊂ F .
Computable upper bounds for the two residual terms and the algebraic
error ‖uN − wN‖A are recalled in the following.

For any discrete wN ∈ VN , we define the following error estimators
in analogy to the presentation in [5, 6] and [8]:

• A deterministic residual estimator for RΛ steering the adaptiv-
ity of the mesh T is given by

(19) η(wN)
2 :=

∑

T∈T

ηT (wN)
2 +

∑

S∈S

ηS(wN)
2,

with volume contribution for any T ∈ T
(20)

ηT (wN) :=

∥

∥

∥

∥

∑

ν∈Λ



f̂ν − div





∑

(µ,κ)∈Υν

Aµ∇x̂wN,κβ
ν
µ,κ







Pµ

∥

∥

∥

∥

L2(ΓM ,πM ;L2(T ))
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and facet contribution for any S ∈ S

(21) ηS(wN) :=

∥

∥

∥

∥

∑

ν∈Λ









∑

(µ,κ)∈Υν

Aµ∇x̂wN,κβ
ν
µ,κ









S

Pν

∥

∥

∥

∥

L2(ΓM ,πM ;L2(S))

.

• The stochastic truncation error estimator stems from splitting
the residual in (18), while considering the inactive part over
∆ \Λ. It is possible to construct the estimator, as in the deter-
ministic case, for every element of the triangulation and consider
different mesh discretisations for every stochastic multi-index.
Since we want to focus on a closed formulation and avoid techni-
cal details, the stochastic estimator is formulated on the whole
domain Dref . Nevertheless, for more insight we introduce a col-
lection of suitable tensor sets, which indicate the error portion
of every active stochastic dimension m = 1, . . . ,M (in fact, we
could even consider m > M),

∆m := {µ ∈ F | µj = 0, . . . , dj − 1, j = 1, . . . ,M,

j 6= m,µm = dm, µk = 0, k > M}.(22)

Then, for every wN ∈ VN , the stochastic tail estimator on ∆m

is given by

(23) ζm(wN) :=

∥

∥

∥

∥

∑

ν∈∆m

ζν(wN)Pν

∥

∥

∥

∥

L2(ΓM ,πM ;L2(Dref ))

,

where we define for every multi index ν ∈ F the residual portion

(24) ζν := f̂ν − div





∑

(µ,κ)∈Υν

Aµ∇x̂wN,κβ
ν
µ,κ



 ∈ X ∗.

The collection of sets {∆n}Mn=1 is beneficial in the adaptive re-
finement procedure but it does not cover the whole stochastic
contributions of the residual. For this, we need to compute the
global stochastic tail estimator over F \ Λ

(25) ζ(wN) := ‖
∑

ν∈F\Λ

ζν(wN)Pν‖L2(ΓM ,πM ;L2(Dref ))

which incorporates an infinite sum that becomes finite due to
remark 3.3.
• The algebraic error denotes the distance of wN to the VN best
approximation uN . In particular, this distance can e.g. occur
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due to an early termination of an iterative solver or an restric-
tion to another solution manifold M ⊂ VN . This error can be
bounded by

(26) ‖uN − wN‖ ≤ ι(wN),

where

ι(wN ) := ‖(LW − F )H−1/2‖F .
Here,W ∈ R

N,d1,...,dM denotes the coefficient tensor of wN ∈ VN ,
L is the discrete operator from (16) and ‖·‖F is the Frobenius
norm. Note that the rank-1 operator H is a base change oper-
ator to orthonormalize the physical basis functions, i.e.

(27) H := H0 ⊗ I ⊗ · · · ⊗ I, H0(i, i
′) =

∫

Dref

∇x̂ϕi(x̂)∇x̂ϕi′(x̂)dx̂.

The combination of these estimators in the context of Theorem 3.1
yields an overall bound Θ for the energy error similar to the refer-
ences [5, 6, 10] and [8]

Corollary 3.4. For any wN ∈ VN , the solution u ∈ V of the model
problem (1) and the Galerkin approximation uN ∈ VN in (15), there
exists constants cη, cζ , cι > 0 such that it holds

‖wN − u‖2A ≤ Θ2 :=
(

cηη(wN) + cζζ(wN) + cιι(wN)
)2

+ ι(wN)
2.(28)

Remark 3.5. Observing the residual in (17) it becomes clear that the
derived error estimators suffer from the “curse of dimensionality” and
are hence not computable for larger problems. However, the hierarchical
low-rank tensor representation introduced in the next section alleviates
this substantial obstacle and makes possible the adaptive algorithms de-
scribed in Section 5.

4. Tensor trains

The inherent tensor structure of the involved Bochner function space
V = X⊗M

m=1 L
2([−1, 1], πm) and the corresponding finite dimensional

analogue VN motivates the use of hierarchical tensor formats which
aim at an implicit model order reduction, effectively breaking the curse
of dimensionality in case of low-rank approximability of operator and
solution.
A representative v ∈ VN can be written as

(29) v(x̂,y) =
N
∑

i=1

∑

µ∈Λ

V (i, µ)ϕi(x̂)Pµ(y),
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where V ∈ R
N,d1,...,dM is a high dimensional tensor containing for ex-

ample the projection coefficients

V (i, µ) = EπM

[
∫

Dref

v(x̂, ·)ϕi(x̂)dxPµ(·)
]

.

Setting d = max{d1, . . . , dM}, the storage cost of V is O(NdM), which
grows exponentially with the number of dimensions M ∈ N in the sto-
chastic parameter space. To alleviate this major problem for numerical
methods, we impose a low-rank assumption on the involved objects and
introduce a popular tensor format as follows.
A tensor V ∈ R

N,d1,...,dM is called in tensor train (TT) format if every
entry can be represented as the result of a matrix-vector multiplication
of the form

(30) V (i, µ1, . . . , µM) =

r0
∑

k0=1

· · ·
rM−1
∑

kM−1=1

V0(i, k0)
M
∏

m=1

Vm(km−1, µm, km).

To simplify notation, set rM = 1. If the vector r = (r0, . . . , rM) is
minimal in some sense, we call r the TT-rank and (30) is the TT -
decomposition of V . It can be observed that the complexity of V
now depends only linearly on the number of dimensions, namely V =
O(dM max{r}2). In [24, 27] it was shown that many functions in nu-
merical applications admit a low-rank representation.
Given the full tensor description of V , one could compute the ten-

sor train representation by a hierarchical singular value decomposition
(HSVD) as described in [14]. However, this is usually unfeasible due to
the high dimensionality of V or because it is known only implicitly. In
that case, the utilization of high dimensional interpolation or regression
algorithm is advisible, see e.g. [15, 26].
In this work, we rely on a TT reconstruction approach and employ

it to obtain the representation of the transformed coefficient function
and the right-hand side (7). Opposite to an explicit (intrusive) dis-
cretisation of the linear system in tensor format as e.g. carried out
in [8,23], the reconstruction method relies on a set of random samples
of the solution. The non-intrusive algorithm used in the numerical ex-
periments is described in [9]. Similar ideas were presented in [3, 4, 26],
where a tensor cross approximation was used for the construction of the
algebraic system. In contrast to the tensor reconstruction, a selective
sampling of strides in the tensor has to be available to perform a cross
approximation. Consider [16] for a survey on the topic of low-rank
approximations methods.
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To sketch the reconstruction approach, we assume a set {y(k)}Kk=1 of
K parameter realisations and corresponding measurements of a func-
tion {v(·, yk) ∈ X}Kk=1

b = (v(·, y(1)), . . . , v(·, y(K)))⊺.

Recall that N is the dimension of the finite element space. We define
a linear measurement operator Â : RN×d1×···×dM → R

NK acting on a
tensor W ∈ R

N×d1×···×dM by

Â(W )j,k = (W ◦M (ξ
(k)
1 ⊗ · · · ⊗ ξ

(k)
M ))[j], 1 ≤ k ≤ K, 1 ≤ j ≤ N,

with a contraction ◦M over the M stochastic modes and

ξ(k)m :=
(

P1(y
(k)
m ) · · ·Pdm(y

(k)
m )

)⊺

.

The reconstruction problem is to find a tensor W with minimal TT-
rank such that Â(W ) = b. Details in particular of the numerical solu-
tion algorithm of the optimisation problem by an Alternating Steepest
Descent (ASD) can be found in [9].

4.1. Galerkin discretization in tensor train format. In the fol-
lowing, we assume an acessible tensor representations of the right-hand
side f̂ and the coefficient function A. To make this more precise, we
denote the low-rank approximations of e.g. f̂ in (7) by

(31) f̂(x̂,y) ≈ fTT(x̂,y) =
∑

µ∈Λf

N0
∑

i=1

F (i, µ)ψi(x̂)Pµ(y),

where F admits a TT representation of rank rf and Λf is a tensor multi-

index set with local dimension cap df = (df1 , . . . , d
f
M). Analogously,

every component of the symmetric matrix coefficient

(32) A(x̂,y) =





a1,1(x̂,y) · · · a1,d(x̂,y)
...

. . .
...

ad,1(x̂,y) · · · ad,d(x̂,y)





is approximated by aTT
i,j , i, j ∈ {1, . . . , d} as in (31) with TT-ranks ri,j.

Here, the order three component tensors in the TT-representation of
the approximated matrix entryATT|i,j = aTT

i,j are denoted by {ami,j}Mm=0.

Remark 4.1. Since, for the coefficient, the TT reconstruction is car-
ried out for every matrix entry in (32), the local dimensions di,j =
(di,j1 , . . . , d

i,j
M ) and tensor ranks can vary among those d2 tensor trains.

Here, we assume that every approximation has the same local dimen-
sions and the tensor multi-index set covering those indices is denoted
by Ξ ⊂ F , possibly different from (but larger than) the solution active
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set Λ. As stated in [8], it is beneficial (and in fact necessary) to chose
Ξ such that for all µ ∈ Λ also 2µ = (2µ1, . . . , 2µM , 0, . . .) ∈ Ξ. Due to
the orthogonality of the polynomial basis {Pν}, this feature guarantees a
well-posed discrete problem since additional approximations are avoided
and enables quasi-optimal convergence rates of the Galerkin method.

On VN , the Galerkin operator resulting from the transformed weak
problem in TT format is given as the sum of d2 TT operators such that
for all i, i′ = 1, . . . , N , and α, α′ ∈ Λ,

(33) L(i, α, i′, α′) =

d2
∑

j=1

Lj(i, α, i
′, α′),

each corresponding to one addend of the resulting matrix-vector prod-
uct in (16).
In the following, we illustrate the explicit construction of the TT

operator for the term L1. By denoting ∇ig the i-th component of the
gradient of a function g, for the first low-rank approximated bilinear
form addend one obtains
(34)

L1(i, α, i
′, α′) ≈

∫

ΓM

∫

Dref

aTT
1,1 (x̂,y)∇1ϕi(x̂)∇1ϕi′(x̂)Pα(y)Pα′(y) dπM(y) dx̂.

Using the multi-linear structure of aTT
1,1 , one can write L1 as

(35)

L1(i, α, i
′, α′) ≈

r1,1
0
∑

k0=1

· · ·
r1,1
M−1
∑

kM−1=1

L1
0(i, i

′, k0)
M
∏

m=1

L1
m(km−1, α, α

′, km),

where the first component tensor L1
0 depends on the physical discretiza-

tion in piecewise constant FE functions {ψi}N0

i=1 only, i.e.,

(36) L1
0(i, i

′, k0) =

N0
∑

ℓ=1

a01,1(ℓ, k0)

∫

Dref

〈∇1ϕi(x̂), ψℓ(x̂)∇1ϕi′(x̂)〉dx̂.

The remaining tensor operator parts decompose into one dimensional
integrals over triple products of orthogonal polynomials of the form
(37)

L1
m(km−1, α, α

′, km) =

d1,1m −1
∑

µm=0

am1,1(km−1, µm, km)

∫

[−1,1]

Pµm
PαPα′ dπm.

The evaluation is known explicitly thanks to the recursion formula for
orthogonal polynomials, cf. [1, 11].
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Remark 4.2. Due to the sum of TT operators in (33), the result can be
represented by a tensor with TT-rank: d2max{ri,j | i, j ∈ {1, . . . , d}}.

With the TT approximations of the data fTT ≈ f̂ and ai,j ≈ aTT
i,j ,

we replace the original system of equations that have to be solved for
U ∈ R

N×d1×...×dM , namely

(38) LU = F,

with a constrained minimization problem on the low-rank manifoldMr

containing all tensor trains of dimensionality represented by Λ and fixed
rank r,

(39) WTT = argminV ∈Mr

‖LTTV − F TT‖F .
Here, we take LTT and F TT as the TT approximations of L and F ,
respectively and ‖·‖F is the Frobenius norm.
To solve (39), we chose a preconditioned alternating least squares

(ALS) algorithm as described in [10, 22]. This eventually results in an
approximation of the Galerkin solution of (15)

(40) wN := w(Λ, T , r, τ) =
∑

µ∈Λ

N
∑

i=1

WTT(i, µ)ϕiPµ,

where τ is a place-holder for the inscribed parameters of the numerical
algorithm and r is the desired and predefined TT-rank of WTT.

5. Adaptive algorithm

The error estimator of Section 3.4 is formulated in a computable TT
representation in Section 5.1. It gives rise to an adaptive algorithm,
which refines the spatial discretization, the anisotropic stochastic poly-
nomial set and the representation format iteratively based on local error
estimators and indicators. This enables the assessment of the develop-
ment of the actual (unknown) error ‖u − wN‖A. The inherently high
computational cost of the error estimators can be overcome by means
of the tensor train formalism. In what follows, we examine the efficient
computation of the individual error estimator components in the TT
format and describe the marking and refinement procedure. For more
details and a more general framework, we refer to the presentations
in [5, 6, 8, 10].

5.1. Efficient computation of error estimators. We illustrate the
efficient computation of the deterministic error estimator ηT . For each
element T ∈ T of the triangulation, the error estimator is given by (20).
Due to the sum over Λ it suffers from the curse of dimensionality.
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However, employing the low-rank approximation ATT ≈ A, fTT ≈ f

and wN renders the computation feasible. To make this more explicit,
recall that

(41) ηT (wN) = ‖fTT − div(ATT∇x̂wN)‖L2(Γ,π;L2(T )).

This is evaluated by expansion of the inner product,

ηT (wN)
2 = ‖fTT‖2L2(Γ,π;L2(T ))−2〈fTT, div(ATT∇x̂wN)〉L2(Γ,π;L2(T ))

(42)

+ ‖div(ATT∇x̂wN)‖2L2(Γ,π;L2(T )).(43)

The first term is a simple inner product of a functional tensor train. It
reduces to a simple summation over the tensor components due to the
orthonormality of the polynomial basis, i.e.,

(44) ‖fTT‖2L2(Γ,π;L2(T )) =
∑

µ∈Λ

N0
∑

i′=1

N0
∑

i=1

F (i, µ)F (i′, µ)

∫

T

ψiψi′dx̂,

whereas the high-dimensional sum can be evaluated for every tensor
dimension in parallel using, for all i, i′ = 1, . . . , N0, that

∑

µ∈Λ

F (i, µ)F (i′, µ) =

rf
0

∑

k0=1

. . .

rf
M−1
∑

kM−1=1

rf
0

∑

k′
0
=1

. . .

rf
M−1
∑

k′
M−1

=1

F0(i, k0)F0(i, k
′
0)

(45)

M
∏

m=1

dm
∑

µm=1

Fm(km−1, µm, km)Fm(k
′
m−1, µm, k

′
m).(46)

Note that the iterated sum over the tensor ranks has to be interpreted
as matrix-vector multiplications. Hence, the formula above can be
evaluated highly efficiently. In fact, if the employed TT format utilizes
a component orthogonalization and fTT is left-orthogonal, the product
can be neglected and one only has to sum over k0 and k′0.
For the remaining terms in (42), one has to find a suitable represen-

tation of ATT∇x̂wN . Since the gradient is a linear operator, one can
calculate a tensor representation of this product explicitly, involving
multiplied ranks and doubled polynomial degrees. For a detailed con-
struction we refer to [8, Section 5]. The matrix-vector multiplication
due to entry-wise TT representation of ATT does not impose any fur-
ther difficulties but a slight increase in complexity since one needs to
cope with a sum of individual parts. Eventually, the mixed and opera-
tor terms are computed in the same fashion, using the same arguments
as for (45).



ADAPTIVE RANDOM DOMAIN TT SGFEM 19

5.2. Fully adaptive algorithm. Given an initial configuration con-
sisting of a regular mesh T , a finite active tensor multi-index set Λ ⊂ F ,
a (possibly random) start tensor WTT with TT-rank r and solver pa-
rameter τ , consisting e.g. of a termination threshold, rounding parame-
ter, iteration limit or precision arguments, we now present the adaptive
refinement procedure summarized in Algorithm 1.
On every level, we generate an approximation of the data fTT and

ATT by a tensor reconstruction. The procedure is e.g. described in [9]
and referred to as

(47) fTT, ATT ← Reconstruct[Ξ, T , Ns],

where the multi-index set Ξ can be chosen arbitrarily, but it is advisable
to consider Remark 4.1. The number of samples Ns can be related
e.g. to Monte Carlo samples or more structured quadrature techniques
such as Quasi Monte Carlo and sparse grid points. In what follows we
assume that the obtained approximations become sufficiently accurate.
The procedure for obtaining a numerical approximation wN ∈ VN is

denoted by

(48) wN ← Solve[Λ, T , τ,WTT].

The used preconditioned ALS algorithm is only exemplary to obtain
wN . Alternative alternating methods or Riemannian algorithms are
feasible as well.
To obtain the overall estimator Θ(η, ζ, ι), one has to evaluate the

individual components by the following methods

(ηT )T∈T , η ← Estimatex[wN , f
TT,ATT,Λ, T ],

(ζm)m∈N, ζ ← Estimatey[wN , f
TT,ATT,Λ]

ι← EstimateLS[wN , f
TT,ATT].

A weighted balancing of the global estimator values η, ζ and ι results
in the marking and refinement decision.

5.2.1. Deterministic refinement. In case of a dominant deterministic
error estimator η, one employs a Dörfler marking strategy on the mesh
T for a ratio constant θη(wN). In abuse of notation, we use (ηT )T∈T as
the local error estimator on every triangle, where the jump components
of (ηS)S∈F are distributed among their nearby elements. The method,
consisting of the marking process and the conforming refinement of the
marked triangles is covered by

(49) T ← Refinex[(ηT )T∈T , η, T , θη].
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5.2.2. Stochastic refinement. In case of a dominant stochastic error es-
timator ζ(wN), we apply a Dörfler marking on the set of local estimators
(ζm)m∈N until the prescribed ratio 0 < θζ < 1 is reached. The marked
dimensions in Λ are increased dm ← dm + 1 by the method

(50) Λ← Refiney[(ζm)m∈N, ζ,Λ, θζ].

Remark 5.1. As stated in Section 3.4, the global estimator ζ is not
just the sum of the individual estimators (ζm)m∈N since the coupling
structure is more involved. Hence, we use ζsum :=

∑

m∈N ζm in the
marking procedure. Due to the high regularity of the solution (Theo-
rem 2.3), for Λ large enough, one has ζsum ≈ ζ. Note that in the finite
dimensional noise case, we have ζm = 0 for m > M .

5.2.3. Representation refinement. In the end, if ι has the largest contri-
bution in the error estimator we improve the accuracy of the iterative
solver. For simplicity, we fix most of the solver parameter such as the
number of alternating iteration or the termination value to low values
that can be seen as overcautious. Nevertheless, in the low-rank tensor
framework, the model class is restricted by the TT-rank r. Hence, we
then allow r← r+1 and add a random rank 1 tensor onto the solution
tensor WTT. We summarize this approach in

(51) WTT, τ ← RefineLS[W
TT, τ ].

5.2.4. Adaptive algorithm. One global iteration of this algorithm re-
fines either the deterministic mesh T , the active stochastic polynomial
index-set Λ or the tensor rank r. Iteration until the defined estimator
Θ(η, ζ, ι) in Corollary 3.4 falls below a desired accuracy ǫ > 0 yields
the adaptively constructed low-rank approximation wN ∈ VN .

6. Numerical examples

This section is concerned with the demonstration of the performance
of the described Galerkin tensor discretisation and the adaptive algo-
rithm depicted in the preceding section. We consider the linear second
order model problem with a constant right-hand side and homogeneous
Dirichlet boundary conditions

(52)
− div

(

∇u(ω)
)

= 1 in D(ω),

u(ω) = 0 on ∂D(ω),

on two different reference domains in R
2, namely the unit circle and

the L-shape. The Karhunen-Loève expansion of the random vector
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Algorithm 1 Reconstruction based adaptive stochastic Galerkin
method

Input: Initial guess wN with solution coefficient WTT;
solver accuracy τ ;
mesh T with degrees p;
active index set Λ;
sample size Ns for reconstruction;
Dörfler marking parameters θη and θζ ;
desired estimator Θ accuracy ǫ.

Output: New solution wN with new solution coefficient W+;
new mesh T +, or new index set Λ+, or new tolerance τ+.
repeat

fTT,ATT ← Reconstruct[Ξ, T , Ns]
wN ← Solve[Λ, T , τ,WTT]
(ηT )T∈T , η ← Estimatex[wN , f

TT,ATT,Λ, T , p]
(ζm)m∈N, ζ ← Estimatey[wN , f

TT,ATT,Λ]
ι ← EstimateLS[wN , f

TT,ATT]
if max{η, ζ, ι} == η then

T ← Refinex[(ηT )T∈T , η, T , θη]
else if max{η, ζ, ι} == ζ then

Λ ← Refiney[(ζm)m∈N, ζ,Λ, θζ]
else

WTT, τ ← RefineLS[W
TT, τ ]

end if

until Θ(η, ζ, ι) < ǫ

return w+
N = wN ; T + = T ; Λ+ = Λ; τ+ = τ

field stems from a Gaussian covariance kernel of the form
(53)

Cov[V ](x̂, x̂′) =
1

1000

[

5 exp(−2‖x̂− x̂′‖22) exp(−0.1‖2x̂− x̂′‖22)
exp(−0.1‖x̂− 2x̂′‖22) 5 exp(−0.5‖x̂− x̂′‖22)

]

.

The random variables in the Karhunen-Loève expansion are assumed
to be independent and uniformly distributed on [−

√
3,
√
3], i.e. they

have normalized variance. Moreover, the mean is given by the identity,
i.e. E[V ](x̂) = x̂.
The computed spectral decomposition is truncated at a given thresh-

old ǫ̂, which takes different values in the computational examples. Ta-
ble 6 summarizes how the choice of the truncation parameter affects
the number of involved stochastic dimensions.
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tolerance ǫ̂ circle KL terms L-shape KL terms

0.7 2 3
0.5 5 6
0.1 21 21

Figure 1. Comparison of different KL truncation toler-
ances and their implication on the number of KL modes
M for the employed reference domains.

We are interested in the correct approximation of the solution mean

(54) E [u(x̂, ·)] =
∫

Γ

u(x̂,y)dπ(y)

and solution variance

(55) V (u(x̂, ·)) = E
[

u(x̂, ·)2
]

− E [u(x̂, ·)]2

by means of the adaptive low-rank Galerkin approximation. In order to
verify this, all experiments involve the computation of a reference mean
and variance, based on a sampling approach. To that end, we employ
the anisotropic sparse grid quadrature with Gauss-Legendre points1,
as described in [17]. The corresponding moments are then calculated
on a fine reference mesh, resulting from uniform refinement of the last,
adaptively computed, mesh T , having at least 105 degrees of freedom.
All experiments involve linear finite element spaces, i.e. Xp(T ) with
p = 1. The number of quadrature points is chosen differently for the
problems at hand. For ǫ̂ = 0.7 we take 53 adaptively chosen nodes.
Benchmarking the resulting mean from the sparse quadrature for this
choice of samples against an approximation with additional nodes does
not significantly improve the approximation quality (data not shown).
The same arguments apply for ǫ̂ = 0.5 and 301 nodes, as well as for
ǫ̂ = 0.1 and 4217 nodes. We denote the reference mean as Eref [u] and
the reference variance as Vref(u).

Remark 6.1. In the low-rank tensor train format, the mean of a func-
tion, given in orthonormal polynomials, is computed highly efficiently,
since the set of employed polynomials is orthonormal with respect to the
constant function. Since, the corresponding coefficient is already incor-
porated in the representation, computing the mean is a simple tensor

1The implementation can be found online: https://github.com/muchip/SPQR
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evaluation. More precisely, given u ∈ VN we compute

(56) E[u(x̂, ·)] =
N
∑

i=1

∑

µ∈Λ

U(i, µ)ϕi(x̂)E[Pµ(·)] =
N
∑

i=1

UTT(i, 0)ϕi(x̂).

Here, the evaluation of the tensor train UTT at the multi-index 0 =
(0, . . . , 0) consists of M matrix-vector multiplications.
Similarly for the variance, we can compute the second moment as

(57) E[u(x̂, ·)2] =
N
∑

i=1

N
∑

i′=1

∑

µ∈Λ

U(i, µ)U(i′, µ)ϕi(x̂)ϕi′(x̂).

This computation reduces even further, since in the tensor train set-
ting of U(i, µ) = U0(i) ⊗

⊗M
m=1 Um(µm), with U0 ∈ R

N,r0 and Um ∈
R

rm−1,dm,rm form = 1, . . . ,M it is common to impose left-orthogonality,
i.e.

∑dm
µm=1 Um(µm)Um(µm)

T = Irm−1
. Hence, the second moment reads

(58) E[u(x̂, ·)2] =
r0
∑

k0=1

N
∑

i=1

N
∑

i′=1

U0(i, k0)U0(i
′, k0)ϕi(x)ϕi′(x),

where it is advisable to not evaluate the matrix-matrix product over
k0 = 1, . . . , r0, since the resulting O(N2) matrix is usually not sparse
and exhibits available memory resources.

The considered quantity of interest is the error of the mean and
variance to the corresponding reference. Therefore, for any TT ap-
proximation wN ∈ VN using remark 6.1, we compute the relative error
of the mean in H1

0 (Dref) norm

(59) eE := ‖Eref [u]− E[wN ]‖H1
0
(Dref )‖Eref [u]‖−1

H1
0
(Dref )

and the relative error of the variance in W 1,1(Dref) norm

(60) eV := ‖Vref(u)− V(wN)‖W 1,1(Dref)‖Vref(u)‖−1
W 1,1(Dref )

.

Furthermore, we evaluate the rate of convergence of eE for the adaptive
and uniform refinement, as well as the rate of the estimator Θ. This is
done by fitting the function x 7→ c1e

−α to the individual values, with
respect to the number of degrees of freedom in the physical mesh. We
denote the corresponding rates αa

E , α
u
E and αΘ respectively.

The employed tensor reconstruction algorithm is implemented in the
open-source library xerus [30]. Every such approximated tensor is con-
structed on a set of Ns samples {y(i) ∈ Γ}i=1...Ns

as in the computation
of the reference mean and polynomial degrees that are determined by
the solution approximation as described in remark 4.1. In the consid-
ered examples, the tensor train solution employs constant and linear
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Figure 2. Adaptively refined mesh according to de-
terministic error estimator with mesh refinement ratio
θη = 0.2 and KL truncation tolerance ǫ̂ = 0.1.

polynomials in all dimensions only. This behaviour is based on the
stochastic estimator and reasoned in the complexity of the mesh ap-
proximation. For the assembling of the physical part of the bilinear
and linear form and the evaluation of sample solutions we make use of
the PDE library FEniCS [12]. The entire adaptive stochastic Galerkin
method is implemented in the open source framework ALEA [7].

6.1. Example 1. The first example is the random domain problem on
the unit circle. We use this problem as a reference, since the adaptive
refinement is expected to yield similar results to uniform mesh refine-
ment. Starting with an initial configuration of 16 cells, fixed polyno-
mial degree in the stochastic space of d1 = . . . = dM = 2 and tensor
rank r = 2, the described adaptive Galerkin FE algorithm yields the
adaptively refined mesh depicted in Figure 2.
For illustration purposes, we show the mean and variance of the

solution on the unit disc together with realisations of the transformed
reference domain for the adapted discretisation in Figures 4 and 5.
In Table 6.1 we show the corresponding rates of convergence and the
minimal reached error eE and eV . The maximal involved tensor ranks
are displayed in column rmax. The degrees of freedom are shown for
the physical mesh in column m-dofs and for the tensor train itself in
column tt-dofs. Note that the tensor train degrees of freedom refer to
the dimension of the corresponding low-rank manifold. As expected for
the unit circle, the adaptive refinement does not improve the already
optimal convergence rate.

6.2. Example 2. For the second example, we chose the L-shaped do-
main [−1, 1]2 \ {[0, 1] × [−1, 0]}. The corner singularity is a typical
example where adaptive refinement yields better approximation rates
with respect to degrees of freedom than a uniform refinement.
Starting with an initial configuration of 24 cells, fixed polynomial

degree in the stochastic space of d1 = . . . = dM = 2 and tensor rank
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ǫ̂ αΘ αa
E αu

E eE eV m-dofs tt-dofs rmax

0.7 0.46 0.44 0.45 1.91 · 10−4 1.37 · 10−2 97,346 3.89 · 105 4
0.5 0.46 0.44 0.45 3.84 · 10−3 1.63 · 10−2 76,740 5.37 · 105 7

Figure 3. Results for the unit circle. Computed rel-
ative error of the mean and variance together with the
rates of convergence for the error and the overall estima-
tor Θ. Compared are the truncation tolerance ǫ̂ = 0.7
and ǫ̂ = 0.5.

Figure 4. Computational mean (left) and variance
(right) of the unit circle problem for KL tolerance ǫ̂ =
0.1.

r = 2, the described adaptive Galerkin FE algorithm yields the adap-
tively refined mesh displayed in Figure 7. Again, we show the approx-
imated mean and variance together with some random realizations of
the transformed reference domain in Figures 6 and 8.
The obtained rates of convergence and error quantities are shown in

Table 6.2. Fortunately, the obtained rate for the estimator αΘ follows
the error rate αa

E , in contrast to the uniform refinement strategy, where
a slightly slower convergence is achieved.
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