
ar
X

iv
:1

90
2.

08
10

1v
1 

 [
m

at
h.

A
P]

  2
1 

Fe
b 

20
19

The inviscid limit of Navier-Stokes equations for vortex-wave data

on R
2

Toan T. Nguyen∗ Trinh T. Nguyen∗

February 22, 2019

This paper is dedicated to Walter Strauss
on the occasion of his 80th birthday, as token of friendship and admiration.

Abstract

We establish the inviscid limit of the incompressible Navier-Stokes equations on the whole
plane R2 for initial data having vorticity as a superposition of point vortices and a regular
component. In particular, this rigorously justifies the vortex-wave system from the physical
Navier-Stokes flows in the vanishing viscosity limit, a model that was introduced by Marchioro
and Pulvirenti in the early 90s to describe the dynamics of point vortices in a regular ambient
vorticity background. The proof rests on the previous analysis of Gallay in his derivation of the
vortex-point system.

1 Introduction

In this paper, we are interested in the vanishing viscosity limit of the incompressible Navier-Stokes
equations on the plane R

2 for irregular initial data; namely, we consider

∂tu
ν + uν · ∇uν +∇pν = ν∆uν,

∇ · uν = 0,
(1.1)

for fluid velocity uν(x, t) ∈ R
2 and pressure pν(x, t) ∈ R at x ∈ R

2 and t ≥ 0. The interest is to
understand the asymptotic behavior of solutions in the inviscid limit ν → 0.

It is straightforward to show that in the absence of spatial boundaries, regular solutions of
the Navier-Stokes equations converge in strong Sobolev norms to the regular solutions of Euler
equations as ν → 0 (e.g., [15, 31, 26]). The convergence (in L2 for velocity fields) also holds for
non-smooth solutions that include vortex patches [5, 6, 3, 26, 30]. The problem is largely open for
less regular data [2, 4], or even for regular data in domains with a boundary (e.g., [28, 18, 27, 14]
and the references therein).
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txn5114@psu.edu.
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For initial data whose vorticity consists of a finite sum of point vortices (Dirac masses), Gallay
[10] proved that the corresponding Navier-Stokes vorticity indeed converges weakly in the inviscid
limit to the sum of point vortices whose centers evolve according to the Helmholtz-Kirchhoff point-
vortex system. In this paper, we study the case when initial vorticity consists of one point vortex
and a regular part. The case of finitely many point vortices can be treated similarly in combination
of [10] where the vortex-point interaction is understood.

Let us now detail the problem. For velocity field uν = (uν1 , u
ν
2), let ω

ν = ∂x2u
ν
1 − ∂x1u

ν
2 be

the corresponding vorticity. Taking advantage of the divergence-free condition, we can recover the
velocity from vorticity through the so-called Biot-Savart law

uν = ∇⊥∆−1ων = K ⋆ ων , K(x) =
1

2π

x⊥

|x|2 , (1.2)

where K(x) denotes the Green kernel of ∇⊥∆−1, the ⋆ notation stands for the usual convolution
in variable x ∈ R

2, and a⊥ = (a2,−a1) for vectors a ∈ R
2. It follows from (1.1) that the vorticity

solves
∂tω

ν + uν · ∇ων = ν∆ων . (1.3)

We solve the vorticity equation (1.3), together with (1.2), for initial data of the form

ων|t=0
= δz0(x) + ωE0 (x), (1.4)

where δz0 denotes the Dirac delta function centered at x = z0 and ωE0 is the regular component
of vorticity that has compact support and vanishes in a neighborhood of z0. The existence and
uniqueness for 2D Navier-Stokes equations with such initial data, or in fact more generally, with
initial data of finite measures are known; see, for instance, [7, 12, 15, 9].

1.1 Vortex-wave system

In the inviscid limit, we do not expect the limiting solutions from (1.3)-(1.4) to satisfy Euler
equations, even in a weak sense∗, but rather the following so-called vortex-wave system coined by
Marchioro and Pulvirenti [23, 25] in the early 90s:

∂tω
E + (vE +H) · ∇ωE = 0

ż(t) = vE(t, z(t)),

ωE|t=0
= ωE0 , z(0) = z0,

(1.5)

in which vE = K⋆ωE and H = K(·−z(t)). That is, in the limit, the regular component of vorticity
is transported by the full velocity, while the location of point vortex is propagated by the velocity
vE generated by the regular vorticity ωE.

The global weak solutions of (1.5) in L1 ∩L∞ were already obtained in [23, 25] (see also [17, 8]
for an extension to Lp spaces), while their uniqueness is proved for Lipschitz or even bounded
data [29, 16], provided the ambient velocity is constant in a neighborhood of the point vortex. In
particular, let us recall the following theorem.

∗In fact, it is not known whether weak solutions to Euler equations exist with point vortex data [23, 25].

2



Theorem 1.1 ([16]). Consider initial data z0 ∈ R and ωE0 ∈ L1 ∩ L∞(R2). Assume that ωE0
has compact support and is constant in a neighborhood of z0. Then, there are a unique global
solution (z(t), ωE(t)) to (1.5) and a positive function R(t) so that ωE(t) remains constant in the
ball centered at the point vortex z(t) with radius R(t) for all times t ≥ 0. If we assume in addition
that ωE0 ∈W k,p for kp > 2 and p > 1, then for any T ≥ 0, there holds

sup
0≤t≤T

‖ωE(t)‖W k,p ≤ CT (1.6)

for some constant CT .

Theorem 1.1 assures that H = K(·−z(t)) remains regular in the support of ∇ωE(t). The stated
regularity (1.6) thus follows from that of Euler equations on R

2 ([19]).
The vortex-wave system (1.5) can be rigorously derived from Euler equations by replacing the

initial Dirac mass δz0 by ǫ−2χǫ, for χǫ being the characteristic function of the ball {|x − z0| ≤ ǫ}
and taking ǫ → 0. This was done in [24] (see also [1, 13]). It can also be derived from Navier-Stokes
equations in the small viscosity limit, provided that ν ≤ ǫα for α > 0, as done similarly for the
vortex-point system [20, 21, 22]. In this paper, we give a direct derivation of (1.5) as the inviscid
limit of the Navier-Stokes flows (1.3) with data (1.4).

1.2 Main result

Consider the viscous problem (1.3) with initial data (1.4). Following [9, 10], we first decompose the
vorticity into the so-called regular part ωE,ν and irregular part ωB,ν , both of which are advected
by the full velocity vector field uν = K ⋆ ων . Precisely, we write

ων = ωE,ν + ωB,ν , (1.7)

where ωE,ν and ωB,ν solve
∂tω

E,ν + uν · ∇ωE,ν = ν∆ωE,ν,

ωE,ν|t=0 = ωE0 ,
(1.8)

and
∂tω

B,ν + uν · ∇ωB,ν = ν∆ωB,ν ,

ωB,ν(t) ⇀ δz0 as t→ 0+.
(1.9)

Here and in what follows, the weak convergence for finite measures is understood in the following
sense: µn ⇀ µ if and only if ∫

R2

φdµn →
∫

R2

φdµ,

for all the continuous functions φ that vanish at infinity. A direct computation shows that the
decomposition preserves the mass:

∫

R2

ωE,ν(x, t)dx =

∫

R2

ωE0 (x)dx,

∫

R2

ωB,ν(x, t)dx = 1, (1.10)
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for all positive times. We shall prove that in the inviscid limit ωE,ν → ωE and ωB,ν is concentrated
near the point vortex z(t), transported by vE , yielding weak solutions to the vortex wave system
with the same initial data (ωE0 , z0). Precisely, our main theorem reads as follows.

Theorem 1.2. Let z0 ∈ R and ωE0 ∈ W 4,4(R2) that has compact support and vanishes in a
neighborhood of z0, and let (z(t), ωE(t)) and ων(t) be the unique solution to the vortex-wave system
(1.5) and to the Navier-Stokes equation (1.3), respectively, with initial data ω0 = ωE0 + δz0 . Then,
there exists a time T > 0, independent of ν, such that the vorticity ων(t) can be written as

ων(x, t) = ωE,ν(x, t) + ωB,ν(x, t),

where ωE,ν(t), ωB,ν(t) satisfy

sup
0≤t≤T

‖ωE,ν(t)− ωE(t)‖L4∩L4/3(R2) ≤ CT ν,

sup
0≤t≤T

t−1

∥∥∥∥ω
B,ν(t, x)− 1

4πνt
e−

|x−z(t)|2
4νt

∥∥∥∥
L1(R2)

≤ CT ν,

for some constant CT independent of ν. In particular, ωE,ν(t) → ωE(t) strongly in L4 ∩ L4/3 and
ωB,ν(t, ·) ⇀ δz(t)(·) weakly in the sense of finite measures in the inviscid limit.

Theorem 1.2 derives the vortex-wave system (1.5) as an inviscid limit of Navier-Stokes flows on
the whole plane, complementing the earlier derivation [24, 1, 13] from Euler equations. In addition,
we obtain:

T ≥ min
{
T−
∗ ,

1

5‖∇vE‖L∞

}

for T∗ being the smallest time when the point vortex z(t) meets the support of ωE(s) for some
s ∈ [0, t], recalling from Theorem 1.1 that w(t) never meets the support of ωE(t) for all times. See
Proposition 2.1 and Remark 3.15.

Let us now discuss some difficulties in proving the theorem. First of all, the initial data contain-
ing a Dirac mass are too singular to perform a direct proof from the standard L2 energy estimates.
One then needs to construct a good approximation of solutions to treat the singular part, and
control the remainder. The difficulty arises due to the presence of an vortex-wave interaction term
of the form

vE,ν(t, x) · ∇x

(
1

4πνt
e−

|x−z(t)|2
4νt

)
. (1.11)

Formally, this term blows up when x is near the point vortex z(t) and νt → 0. To treat this
singularity, we follow [10] to work in the vortex scaling variable, construct approximate solutions,
and perform weighted energy estimates to control the remainder. However, the weighted energy
estimates with the scaling variable ξ = x−z(t)√

νt
used in [10] are not enough to treat the interaction

term (1.11), as it leaves a remainder of order one, but not smaller. To overcome this difficulty, we
introduce an approximate viscous vortex wave system (Section 2), along with the new point vortex

z̃(t) = z(t) +O(νt) and the scaled variable ξ = x−z̃(t)√
νt

in order to close the estimate.
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Lastly, we remark that we assume the initial vorticity to be δz0 + ωE0 , where ω
E
0 is smooth and

compactly supported away from the point vortex z0. The regularity is needed in the construction of
the high order approximation of solutions. It would be interesting to further combine our analysis
with the viscous approximation near vortex-patch solutions constructed in [30] to treat the case
when ωE0 ∈ L1 ∩ L∞.

1.3 Notations

We will denote A . B to mean that |A| ≤ C0|B| for some universal constant C0 > 0 independent of
the viscosity ν. We write f = O(g) to mean that f . g, or simply O(g) to mean that the term can
be bounded by C0|g| for some constant C0 > 0 independent of ν. We define the norm ‖ · ‖L4∩L4/3

and ‖ · ‖L1∩L∞ of a function ω(x) in R
2 to be

‖ω‖L4∩L4/3 = ‖ω‖L4 + ‖ω‖L4/3 , ‖ω‖L1∩L∞ = ‖ω‖L1 + ‖ω‖L∞

We also denote by m(·) the Lebesgue measure on R
2.

Acknowledgement: The authors would like to thank Thierry Gallay and Christophe Lacave
for their many insightful discussions on the subject. The research was supported by the NSF
under grant DMS-1764119 and by an AMS Centennial Fellowship. Part of this work was done
while the authors were visiting the Department of Mathematics and the Program in Applied and
Computational Mathematics at Princeton University.

2 Approximate vortex wave system

Let (z(t), ωE) be the global solution to the vortex-wave system (1.5) with initial data ωE0 ∈ W 4,4

that has compact support and vanishes in a neighborhood of z0. We introduce an approximate
viscous vortex-wave system (z̃(t), ω̃E), given by

ω̃E(x, t) = ωE(x, t) + νw1,a(x, t)

∂tz̃ = ṽE(z̃(t), t) = K ⋆ ω̃E(z̃(t), t), z̃(0) = z0,
(2.1)

where the added vorticity component w1,a solves

∂tw1,a +

(
vE +

1√
νt
vG
(
x− z(t)√

νt

))
· ∇w1,a + v1,a · ∇ωE = ∆ωE (2.2)

with zero initial data. Here and in what follows, velocity and vorticity are defined through the

Biot-Savart law (1.2). For instance, v1,a = K ⋆ w1,a and vG(ξ) = 1
2π

ξ⊥

|ξ|2 (1− e−|ξ|2/4).
We obtain the following simple proposition.

Proposition 2.1. Let T∗ be defined by

T∗ = inf
t≥0

{
t : z(t) ∈ ∪0≤s≤tsupp(ω

E(s))
}
, (2.3)
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with T∗ = ∞ if z(t) never meets the support of ωE(s) for s ∈ [0, t]. Then, for any T < T∗, the unique
smooth solution w1,a(t) of (2.2) exists on [0, T ], has compact support, vanishes in a neighborhood
of z(t), and satisfies

m (supp(w1,a(t))) + ‖w1,a(t)‖W 2,4(R2) + ‖∂tw1,a(t)‖L∞(R2) + ‖v1,a(t)‖W 2,∞(R2) ≤ CT , (2.4)

for t ∈ [0, T ] and for some constant CT independent of ν. In addition, there holds

|z̃(t)− z(t)| ≤ CT νt for any t ∈ [0, T ]. (2.5)

Here, m denotes the Lebesgue measure on R
2.

Corollary 2.2. Let T∗ be defined as in (2.3). For any T < T∗, ω̃E(t) has compact support, vanishes
in a neighborhood of z̃(t), and satisfies

m

(
supp(ω̃E(t))

)
+ ‖ω̃E(t)‖W 2,4(R2) + ‖∂tω̃E(t)‖L∞(R2) + ‖ṽE(t)‖W 2,∞(R2) ≤ CT , (2.6)

for t ∈ [0, T ] and for some constant CT independent of ν.

Proof. The corollary is a direct consequence of Proposition 2.1 and Theorem 1.1.

Proof of Proposition 2.1. Recall from Theorem 1.1 that ωE(t) has compact support and vanishes
in a neighborhood of z(t). This remains valid for w1,a(t) for small times, due to the transport
structure of (2.2). Precisely, w1,a(t) is supported in ∪0≤s≤tsupp(ωE(s)). Since z(t) 6∈ supp(ωE(t))
for all positive times, we have T∗ > 0 by continuity. Thus, for any T < T∗, there is a positive
distance dT so that

|x− z(t)| ≥ dT > 0 (2.7)

for all x ∈ supp (w1,a(t)) and 0 ≤ t ≤ T , which yields

∣∣∣∣
1√
νt
vG
(
x− z(t)√

νt

)∣∣∣∣ =
1

2π|x− z(t)|

(
1− e−

|x−z(t)|2
4νt

)
≤ 1

2π|x− z(t)| ≤
1

2πdT
.

Similar estimates hold for derivatives of vG(·) for x away from z(t). It follows from (2.2) that

‖w1,a(t)‖L4 ≤
∫ t

0

(
‖∆ωE(s)‖L4 + ‖v1,a(s)‖L∞‖∇ωE(s)‖L4

)
ds

.

∫ t

0
(1 + ‖v1,a(s)‖L∞)ds,

which yields the estimate on w1,a, upon using the elliptic estimate ‖v1,a‖L∞ . ‖w1,a‖L4∩L4/3 and
the fact that w1,a is compactly supported. The derivative estimates follow similarly.

Finally, let us prove the estimate on z̃(t). By definition, we write

{
z̃(t) = z0 +

∫ t
0

(
vE(z̃(s), s) + νv1,a(z̃(s), s)

)
ds,

z(t) = z0 +
∫ t
0 v

E(z(s), s)ds,
(2.8)
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which gives

|z̃(t)− z(t)| ≤
∫ t

0

∣∣(vE(z̃(s), s)− vE(z(s), s))
∣∣ ds+ ν

∫ t

0
|v1,a(z̃(s), s)|ds

≤
∫ t

0
‖∇vE(s)‖L∞ |z̃(s)− z(s)| ds+ νt sup

0≤s≤t
‖v1,a(s)‖L∞ .

(2.9)

Applying the Gronwall’s lemma gives (2.5).

3 Inviscid limit for the irregular part

In this section, we give estimates on the irregular part of vorticity ωB,ν , solving (1.9). Let us recall
the equation:

∂tω
B,ν + uν · ∇ωB,ν = ν∆ωB,ν,

ωB,ν |t=0 = δz0 .
(3.1)

Here uν = vE,ν + vB,ν is the velocity field for the full Navier-Stokes equations. Following [10], we
introduce the change of variables

ξ =
x− z̃(t)√

νt

and write

vB,ν(x, t) =
1√
νt
v2(ξ, t), ωB,ν(x, t) =

1

νt
w2(ξ, t). (3.2)

Here, we recall that z̃(t) to be the solution to the approximate vortex wave system, given in (2.1).
Note that the change of variables is consistent with the Biot-Savart law: v2 = K ⋆ξ w2. Putting
the Ansatz into the equation (1.9) for ωB,ν , we get the following equation

Φ(w2, v
E,ν) := (t∂t − L)w2 +

√
t

ν
(vE,ν(z̃(t) + ξ

√
νt, t)− ∂tz̃(t)) · ∇ξw2 +

1

ν
v2 · ∇ξw2 = 0,

(3.3)
where L is defined by

Lw2 := ∆ξw2 +
1

2
ξ · ∇ξw2 + w2.

In the vanishing viscosity limit, we expect that the viscous regular velocity remains close to the
inviscid one: vE,ν → vE , and hence the irregular part should tend to the so-called Lamb-Oseen
vortex, which is defined by

G(ξ) =
1

4π
e−|ξ|2/4, vG(ξ) =

1

2π

ξ⊥

|ξ|2
(
1− e−|ξ|2/4

)
.

It follows that LG = 0 and vG · ∇ξG = 0. Therefore, the pair (G(ξ), vE,ν) solves (3.3), up to the
following error term tR1(ξ, t), with

R(ξ, t) :=
1√
νt

(
vE,ν(z̃(t) + ξ

√
νt, t)− ṽE(z̃(t), t)

)
· ∇G (3.4)
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which does not vanish in the inviscid limit, upon recalling that ∂tz̃(t) = ṽE(z̃(t), t). Roughly
speaking, R = O(1) in the small viscosity limit.

We shall construct better approximate solutions to the equation (3.3). Here we stress that the
equation (3.3) involves two unknown functions w2, v

E,ν which are coupled through the full velocity
uν . To leading order, let us take vE,νapp = ṽE for ṽE solving the approximate vortex-wave system
(2.1) and

w2,app(ξ, t) = G(ξ) + (νt)w2,a(ξ, t) (3.5)

where w2,a to be defined later. The pair (w2,app, v
E,ν
app ) thus solves (3.3), leaving an error of the form

Φ(w2,app, v
E,ν
app ) = t(Λ + ν(1− L))w2,a + νt2∂tw2,a + νt2v2,a · ∇w2,a

+
√
νt3/2(ṽE(z̃(t) + ξ

√
νt, t)− ṽE(z̃(t), t)) · ∇w2,a + tR1(ξ, t),

(3.6)

where R1(ξ, t) is defined as in (3.4) with vE,νapp = ṽE , and

Λw := vG · ∇ξw + v · ∇ξG, v = K ⋆ w.

To treat the order one remainder R1(ξ, t), we first solve (Λ+ ν(1−L))w2,a = −R1 to leading order
in ν. We recall the following proposition from [10], Lemma 5 and Remark 1.

Proposition 3.1. Let z = z(ξ) be a function of the form

z(ξ) = a1(r) cos(2θ) + a2(r) sin(2θ) + a3(r) cos(3θ) + a4(r) sin(3θ)

for ξ = reiθ. Assume that the coefficients satisfy

4∑

i=1

(|ai(r)|+ |a′i(r)|) ≤ C0P (r)e
−r2/4 ∀r > 0.

for some polynomial P (r). Then for any ν > 0, there exists a unique solution wν to the elliptic
equation

Λwν + ν(1− L)wν = z

such that
|wν(ξ)|+ |∇wν(ξ)| ≤ Cγe

−γ|ξ|2/4

for any γ ∈ (0, 1) and for some constant Cγ that is independent of ν.

3.1 Vortex-wave reaction term

In this section, we show that the leading term in the reaction term in (3.4) satisfies the assumption
of Proposition 3.1. Precisely, we introduce

R1(ξ, t) =
1√
νt

(ṽE(z̃(t) + ξ
√
νt, t)− ṽE(z̃(t), t)) · ∇G. (3.7)

We have the following lemma.
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Lemma 3.2. For any T > 0, there is a constant CT so that

|R1(ξ, t)−A0(ξ, t)| ≤ CT (νt)|ξ|4e−|ξ|2/4,

where

A0(ξ, t) =
1

16π2
|ξ|2e−|ξ|2/4

∫

R2

sin(2ψ)

|z̃(t)− y|2 ω̃
E(y, t)dy

− 1

16π2

√
νt|ξ|3e−|ξ|2/4

∫

R2

sin(3ψ)

|z̃(t)− y|3 ω̃
E(y, t)dy.

(3.8)

Here, ψ denotes the angle between ξ and z̃(t)− y.

Proof. Recalling (3.7) and G = 1
4πe

−|ξ|2/4, and using the Biot-Savart law (1.2), we have

R1(ξ, t) =
−1

8π
√
νt

(ṽE(z̃(t) + ξ
√
νt, t)− ṽE(z̃(t), t)) · ξe−|ξ|2/4

=
−e−|ξ|2/4

16π2
√
νt

∫

R2

ξ ·
(
(z̃(t) + ξ

√
νt− y)⊥

|z̃(t) + ξ
√
νt− y|2

− (z̃(t)− y)⊥

|z̃(t)− y|2
)
ω̃E(y, t)dy

=
−e−|ξ|2/4

16π2
√
νt

∫

R2

ξ · (z̃(t)− y)⊥
(

1

|z̃(t) + ξ
√
νt− y|2

− 1

|z̃(t)− y|2
)
ω̃E(y, t)dy

=: A1(ξ, t) +A2(ξ, t),

where A1(ξ, t), A2(ξ, t) denote the integral over {|ξ|
√
νt ≤ 1

2 |z̃(t)− y|} and {|ξ|
√
νt ≥ 1

2 |z̃(t)− y|},
respectively. Let us first treat A1(ξ, t). Applying Lemma A.2 for |ξ|

√
νt ≤ 1

2 |z̃(t)− y|, we have

1

|z̃(t) + ξ
√
νt− y|2

− 1

|z̃(t)− y|2 =
1

|z̃(t)− y|2
∞∑

n=1

(−1)n
|ξ|n

√
νt
n

|z̃(t)− y|n
sin((n+ 1)ψ)

sin(ψ)
.

Here ψ is the angle between ξ and z̃(t)− y. Thus we get

ξ · (z̃(t)− y)⊥
(

1

|z̃(t) + ξ
√
νt− y|2

− 1

|z̃(t)− y|2
)

=
∞∑

n=2

(−1)n+1(νt)
n−1
2

|ξ|n
|z̃(t)− y|n sin(nψ)

= −(νt)1/2
|ξ|2

|z̃(t)− y|2 sin(2ψ) + (νt)
|ξ|3

|z̃(t)− y|3 sin(3ψ) +
1√
νt

∑

n≥4

(−1)n+1 (|ξ|
√
νt)n

|z̃(t)− y|n sin(nψ),

in which we can estimate

∣∣∣
1√
νt

∑

n≥4

(−1)n+1 (|ξ|
√
νt)n

|z̃(t)− y|n sin(nψ)
∣∣∣ ≤ 2

(νt)3/2|ξ|4
|z̃(t)− y|4 ,
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since |ξ|
√
νt ≤ 1

2 |z̃(t)− y|. Hence, we have

A1(ξ, t) =
|ξ|2e−|ξ|2/4

16π2

∫

|ξ|
√
νt≤ 1

2
|z̃(t)−y|

1

|z̃(t)− y|2 sin(2ψ)ω̃
E(y, t)dy

−
√
νt|ξ|3e−|ξ|2/4

16π2

∫

|ξ|
√
νt≤ 1

2
|z̃(t)−y|

1

|z̃(t)− y|3 sin(3ψ)ω̃
E(y, t)dy

+O(νt|ξ|4e−|ξ|2/4)
∫

|ξ|
√
νt≤ 1

2
|z̃(t)−y|

1

|z̃(t)− y|4 sin(4ψ)ω̃
E(y, t)dy.

We note that all the integrals above are bounded by ‖ω̃E(t)‖L1 , since z̃(t) is bounded away from
the support of ω̃E(t) by Corollary 2.2. Therefore, defining A0(ξ, t) as in (3.8), we can write

A1(ξ, t) = A0(ξ, t)−
|ξ|2e−|ξ|2/4

16π2

∫

|ξ|
√
νt≥ 1

2
|z̃(t)−y|

1

|z̃(t)− y|2 sin(2ψ)ω̃
E(y, t)dy

+

√
νt|ξ|3e−|ξ|2/4

16π2

∫

|ξ|
√
νt≥ 1

2
|z̃(t)−y|

1

|z̃(t)− y|3 sin(3ψ)ω̃
E(y, t)dy +O(νt|ξ|4e−|ξ|2/4).

It remains to treat the integral over the domain {|ξ|
√
νt > 1

2 |z̃(t) − y|}. Since z̃(t) is bounded
away from the support of ω̃E(t), the above (explicitly written) integrals vanish for |ξ|

√
νt ≤ cT for

all t ∈ [0, T ], for some constant cT . On the other hand, for |ξ|
√
νt ≥ cT , we have

∣∣∣
|ξ|2e−|ξ|2/4

16π2

∫

|ξ|
√
νt≥ 1

2
|z̃(t)−y|

1

|z̃(t)− y|2 sin(2ψ)ω̃
E(y, t)dy

∣∣∣ ≤ CT νt|ξ|4e−|ξ|2/4‖ω̃E(t)‖L1 ,

for some constant CT . Similarly, we also have A2(ξ, t) = 0 for |ξ|
√
νt ≤ cT for all t ∈ [0, T ], for

some constant cT , while for |ξ|
√
νt ≥ cT , we have

|A2(ξ, t)| ≤ |A1(ξ, t)| + |A(ξ, t)|
≤ CT |ξ|2(1 + νt|ξ|2)e−|ξ|2/4‖ω̃E(t)‖L1 + CT (νt)

−1/2|ξ|e−|ξ|2/4‖ṽE‖L∞

≤ CT (νt)|ξ|4e−|ξ|2/4,

upon using Corollary 2.2 to bound ṽE and ω̃E. The lemma follows.

3.2 Construction of an approximation solution

We now construct w2,a that solves the following elliptic equation

Λw2,a + ν(1− L)w2,a = −A0(ξ, t) (3.9)

with A0(ξ, t) defined as in (3.8). We have the following.

10



Lemma 3.3. There exists a solution w2,a to (3.9) so that, for any γ ∈ (0, 1), there holds

|w2,a(t, ξ)| + |∇w2,a(ξ, t)| ≤ Cγe
−γ|ξ|2/4

uniformly in ν > 0. In particular, we have

‖v2,a(t)‖L∞ +

∫

R2

|w2,a(ξ, t)|2e|ξ|
2/4dξ +

∫

R2

|∇w2,a(ξ, t)|2e|ξ|
2/4dξ . 1. (3.10)

Proof. For each y ∈ R
2, we introduce

B0(ξ, y, t) =
−1

16π2
|ξ|2e−|ξ|2/4 sin(2ψ)

|z̃(t)− y|2 ω̃
E(y, t) +

1

16π2

√
νt|ξ|3e−|ξ|2/4 sin(3ψ)

|z̃(t)− y|3 ω̃
E(y, t),

(3.11)
recalling ψ the angle between ξ and z̃(t)− y. If follows from (3.8) that A0(ξ, t) =

∫
R2 B0(ξ, y, t) dy.

It is clear that for each y, B0(ξ, y, t) satisfies the assumption of Proposition 3.1 and hence we can
define

W2,a(ξ, y, t) :=
(
Λ+ ν(1− L)

)−1
B0(ξ, y, t),

stressing that y ∈ R
2 and t ≥ 0 play a role as independent parameters. The solution w2,a is thus

defined by the average of W2,a(ξ, y, t) with respect to y. The pointwise estimates follow directly
from Proposition 3.1 and the estimates on ω̃E. Taking γ > 1/2 and using the elliptic estimate
‖v2,a‖L∞ . ‖w2,a‖L1∩L∞ , we obtain the estimates (3.10).

3.3 Estimating the error term

Construct w2,a as in Lemma 3.3. Then, w2,app = G(ξ)+νtw2,a and vE,νapp = ṽE approximately solves
(3.3) in the following sense.

Proposition 3.4. For any γ ∈ (0, 1), there holds

∣∣Φ(w2,app, v
E,ν
app )(ξ, t)

∣∣ ≤ Cγνt
3/2e−γ|ξ|

2/4 (3.12)

for some constant Cγ.

Proof. Fix a γ ∈ (0, 1). Using (3.9) into (3.6), we write

Φ(w2,app, v
E,ν
app )(ξ, t) = νt2v2,a · ∇w2,a +

√
νt3/2(ṽE(z̃(t) + ξ

√
νt, t)− ṽE(z̃(t), t)) · ∇w2,a

+ νt2∂tw2,a + t(R1(ξ, t) −A0(ξ, t))

=:
4∑

i=1

Φi(ξ, t).

Let us estimate each term on the right. Using Proposition 2.1 and Lemma 3.3, we get

|Φ1(ξ, t)| ≤ νt2‖v2,a(t)‖L∞ |∇w2,a(ξ, t)| . νt2e−γ|ξ|
2/4.
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Similarly, using Corollary 2.2, we bound

|ṽE(ξ
√
νt+ z̃(t), t)− ṽE(z̃(t), t)| . |ξ|

√
νt‖∇ṽE‖L∞

and hence
|Φ2(ξ, t)| ≤

√
νt3/2|ṽE(ξ

√
νt+ z̃(t), t) − ṽE(z̃(t), t)||∇w2,a(ξ, t)|

. νt2|ξ|e−γ′|ξ|2/4

. νt2e−γ|ξ|
2/4,

upon taking γ′ from Lemma 3.3 so that γ′ > γ.
Next, we treat Φ3(ξ, t) = νt2∂tw2,a. Since

√
t∂t commutes with Λ and L, the equation (3.9)

gives
(ν(1− L) + Λ) (

√
t∂tw2,a) = −

√
t∂tA0(ξ, t).

To apply Proposition 3.1, it suffices to prove that
√
t|∂tA0(ξ, t)| . |ξ|2(1 + |ξ|)e−|ξ|2/4. (3.13)

Indeed, we recall from (3.11) that



A0(ξ, t) =

∫
R2 B0(ξ, y, t)dy

B0(ξ, y, t) = −1
16π2 |ξ|2e−|ξ|2/4 sin(2ψ)

|z̃(t)−y|2 ω̃
E(y, t) + 1

16π2

√
νt|ξ|3e−|ξ|2/4 sin(3ψ)

|z̃(t)− y|3 ω̃
E(y, t),

(3.14)

where ψ is the angle between ξ and z̃(t)−y. By Corollary 2.2, ω̃E(t) and ∂tω̃
E(t) are both bounded,

compactly supported, and vanishing in a neighborhood of z̃(t). In particular, |z̃(t)− y| is bounded
below away from zero for y in the support of ω̃E(t). The estimate (3.13) thus follows, upon recalling
that ∂tz̃(t) = ṽE(z̃(t), t) and ṽE is bounded (Corollary 2.2). Arguing similarly as in Lemma 3.3,
we obtain

|
√
t∂tw2,a(ξ, t)| ≤ Cγe

−γ|ξ|2/4.

Finally, the last term Φ4(ξ, t) = t(R1(ξ, t) − A0(ξ, t)) is already treated in Lemma 3.2. This
concludes the proof.

3.4 Equations for the remainder

Having introduced the approximate solutions w2,app and vE,νapp , let us now study the remainder.
Precisely, we search for solutions of (3.3) in the following form

{
w2 = G(ξ) + (νt)w2,a + (νt)w̄2

vE,ν = ṽE + ν3/2v̄1,
(3.15)

in which ṽE and w2,a are constructed in the previous sections. Putting this Ansatz into (3.3), we
have

(t∂t − L+ 1)w̄2 +
1

ν
Λw̄2 +

√
t

ν
(ṽE − ˙̃z) · ∇w̄2 + t(v̄2 · ∇w2,a + v2,a · ∇w̄2)

+
1√
t
(v̄1 · ∇G) + ν

√
t(v̄1 · ∇w2,a) + t(v̄2 · ∇w̄2) + ν

√
t(v̄1 · ∇w̄2) +

1

νt
Φ(w2,app, v

E,ν
app ) = 0,

(3.16)
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in which we stress that ṽE and v̄1 are functions of (x, t), while G,w2,a, and w̄2 are functions of ξ, t.
Again, velocity and vorticity are defined through the Biot-Savart law in their respective variables.

Our goal is to derive estimates for the remainder solution (w̄2, v̄1) in suitable function spaces.
Precisely, we shall work with the following weighted L2 norm

‖ω‖2L2
p
:=

∫

R2

|ω(ξ)|2p(ξ)dξ, p(ξ) = e|ξ|
2/4.

The weight function is natural in view of the following lemma.

Lemma 3.5. The operator L is self-adjoint in L2
p, while Λ is skew-symmetric in L2

p. In particular,
L ≤ 0, we have

〈Λω, ω〉L2
p
= 0

for any ω(ξ) in the domain of Λ.

Proof. The lemma follows from a direct calculation; see [11, Lemma 4.8].

Lemma 3.6 (Elliptic estimates). Let v̄2 = K ⋆ξ w̄2 be the velocity obtained from w̄2 by the Biot-
Savart law. There holds

‖v̄2‖L∞ . ‖w̄2‖L2
p
+ ‖w̄2‖1/2L2

p
‖∇w̄2‖1/2L2

p
.

Proof. By Hölder inequality and Sobolev embeddings, we have

‖v̄2‖L∞ . ‖w̄2‖1/2L4/3‖w̄2‖1/2L4 . ‖w̄2‖1/2L2
p

(
‖w̄2‖L2

p
+ ‖∇w̄2‖L2

p

)1/2

. ‖w̄2‖1/2L2
p

(
‖w̄2‖1/2L2

p
+ ‖∇w̄2‖1/2L2

p

)

= ‖w̄2‖L2
p
+ ‖w̄2‖1/2L2

p
‖∇w̄2‖1/2L2

p
.

The proof is complete.

3.5 Estimates for the remainder

This section is devoted to prove the following proposition.

Proposition 3.7. There are a positive constant κ and a positive time T so that

t
d

dt
‖w̄2(t)‖2L2

p
+ κ(‖(1 + |ξ|)w̄2(t)‖2L2

p
+ ‖∇w̄2(t)‖2L2

p
)

. t‖w̄2(t)‖5L2
p
+ νt‖v̄1(t)‖4L∞ + t−1‖v̄1(t)‖2L∞

(3.17)

uniformly in ν and in t ∈ [0, T ].

13



The proposition follows from weighted energy estimates. To proceed, using the equation (3.16)
for t∂tw̄2, we compute

t
d

dt
‖w̄2(t)‖2L2

p
=

∫

R2

(t∂tw̄2(ξ, t))w̄2(ξ, t)p(ξ)dξ =
9∑

i=1

Ei(t), (3.18)

where 



E1(t) =
∫
R2 p(ξ)(Lw̄2 − w̄2)(ξ, t)dξ,

E2(t) = − 1
ν

∫
R2 Λw̄2(ξ, t)w̄2(ξ, t)p(ξ)dξ,

E3(t) = −
√

t
ν

∫
R2((ṽ

E − ˙̃z) · ∇w̄2)w̄2(ξ, t)p(ξ)dξ,

E4(t) = −t
∫
R2(v̄2 · ∇w2,a + v2,a · ∇w̄2)w̄2(ξ, t)p(ξ)dξ,

E5(t) = −t
∫
R2 (v̄2 · ∇w̄2) w̄2(ξ, t)p(ξ)dξ,

E6(t) = −ν
√
t
∫
R2 (v̄1 · ∇w̄2) w̄2(ξ, t)p(ξ)dξ,

E7(t) = − 1
νt

∫
R2 Φapp(ξ, t)w̄2(ξ, t)p(ξ)dξ,

E8(t) = − 1√
t

∫
R2(v̄1 · ∇G)w̄2(ξ, t)p(ξ)dξ,

E9(t) = −ν
√
t
∫
R2 (v̄1 · ∇w2,a) w̄2(ξ, t)p(ξ)dξ.

Let us estimate each term Ei. Thanks to Lemma 3.5, we have E2(t) = 0, while E1(t) ≤ −‖w̄2(t)‖2L2
p
.

In fact, the following lemma gives a better coercive estimate for E1(t).

Lemma 3.8 (Diffusive term). There holds

E1(t) ≤ − 1

24

(
‖∇w̄2(t)‖2L2

p
+ ‖(1 + |ξ|)w̄2(t)‖2L2

p

)
.

Proof. Recalling L = 1 + 1
2ξ · ∇+∆ and integrating by parts, we compute

∫

R2

(Lw̄2 − w̄2)(ξ, t)p(ξ)w̄2(ξ, t)dξ

=

∫

R2

(
∆w̄2 +

1

2
ξ · ∇w̄2

)
w̄2(ξ, t)p(ξ)dξ,

= −
∫

R2

|∇w̄2|2p(ξ)dξ −
∫

R2

w̄2(∇p · ∇w̄2)dξ +
1

4

∫

R2

(
ξ · ∇(|w̄2|2)

)
p(ξ, t)dξ

= −
∫

R2

|∇w̄2|2p(ξ, t)dξ −
∫

R2

w̄2(∇p · ∇w̄2)dξ −
1

2

∫

R2

|w̄2|2p(ξ, t)dξ −
1

4

∫

R2

|w̄2|2(ξ · ∇p)dξ.

The second integral is treated by

−
∫

R2

w̄2(∇p · ∇w̄2)dξ ≤
3

4

∫

R2

|∇w̄2|2p(ξ, t) +
1

3

∫

R2

|∇p|2
p2

|w̄2|2p(ξ)dξ.

Recalling now the weight function p(ξ) = e|ξ|
2/4, we obtain the lemma at once.
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Lemma 3.9. There holds
E3(t) . t‖ξw̄2(t)‖2L2

p
.

Proof. Integrating by parts and using the fact that ṽE − ˙̃z is divergence free, we have

E3(t) = −
√
t

ν

∫

R2

(
(ṽE − ˙̃z) · ∇w̄2

)
w̄2(ξ, t)p(ξ)dξ

=
1

2

√
t

ν

∫

R2

(ṽE − ˙̃z) · ∇p(ξ)|w̄2(ξ, t)|2dξ.

Recalling ˙̃z = ṽE(z̃(t), t) and using Corollary 2.2, we estimate

|ṽE(ξ
√
νt+ z̃(t), t)− ˙̃z(t)| = |ṽE(ξ

√
νt+ z̃(t), t) − ṽE(z̃(t), t)| .

√
νt|ξ|.

The lemma follows, upon using ∇p = 1
2ξp(ξ).

Lemma 3.10. There holds

E4(t) . t
(
‖w̄2(t)‖2L2

p
+ ‖∇w̄2(t)‖2L2

p

)
.

Proof. We write E4(t) = −t (E41(t) + E42(t)), where
{
E41(t) =

∫
R2 (v̄2 · ∇w2,a) w̄2(ξ, t)p(ξ)dξ,

E42(t) =
∫
R2 (v2,a · ∇w̄2) w̄2(ξ, t)p(ξ)dξ.

Using Hölder’s inequality, we estimate

|E41(t)| ≤ ‖v̄2(t)‖L∞‖w̄2(t)‖L2
p

(∫

R2

|∇w2,a(ξ, t)|2p(ξ)dξ
)1/2

,

in which the integral is bounded by Lemma 3.3. As for ‖v̄2(t)‖L∞ , we use the elliptic estimate and
Sobolev embedding, giving

‖v̄2‖2L∞ . ‖w̄2‖L4/3‖w̄2‖L4 . ‖w̄2‖L4/3‖w̄2‖1/2L2 (‖w̄2‖L2 + ‖∇w̄2‖L2)1/2.

Recalling the weight function p = e|ξ|
2/4, we have ‖w̄2‖L4/3 . ‖w̄2‖L2

p
. Thus, we get

‖v̄2‖2L∞ . ‖w̄2‖3/2L2
p
(‖w̄2‖L2

p
+ ‖∇w̄2‖L2

p
)1/2 . ‖w̄2‖2L2

p
+ ‖∇w̄2‖2L2

p
, (3.19)

and so
|E41(t)| . ‖w̄2(t)‖L2

p
(‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p
) . ‖w̄2(t)‖2L2

p
+ ‖∇w̄2(t)‖2L2

p
.

On the other hand, the estimate on E42(t) is direct, since v2,a is bounded. The lemma follows.
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Lemma 3.11. There holds

E5(t) . t
(
‖w̄2(t)‖2L2

p
+ ‖w̄2(t)‖5L2

p
+ ‖∇w̄2(t)‖2L2

p

)
.

Proof. By Hölder’s inequality and (3.19), we get

|E5(t)| = t
∣∣∣
∫

R2

(v̄2 · ∇w̄2) w̄2(ξ, t)p(ξ)dξ
∣∣∣

≤ t‖v̄2(t)‖L∞‖w̄2(t)‖L2
p
‖∇w̄2(t)‖L2

p

. t
(
‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p

)1/4
‖w̄2(t)‖7/4L2

p
‖∇w̄2(t)‖L2

p
.

The lemma follows upon using Young’s inequality.

Lemma 3.12. There holds

E6(t) . νt‖v̄1(t)‖4L∞ + νt‖w̄2(t)‖4L2
p
+ ν‖∇w̄2(t)‖2L2

p
.

Proof. Again by Hölder inequality, we get

|E6(t)| = ν
√
t
∣∣∣
∫

R2

(v̄1 · ∇w̄2) w̄2(ξ, t)p(ξ)dξ
∣∣∣

. νt1/2‖v̄1(t)‖L∞‖w̄2(t)‖L2
p
‖∇w̄2(t)‖L2

p
,

which yields the lemma upon using Young’s inequality.

Lemma 3.13. There holds
E7(t) . t1/2‖w̄2(t)‖L2

p
.

Proof. Using the estimates from (3.12) for a fixed γ ∈
(
1
2 , 1
)
and Hölder inequality, we get

|E7(t)| ≤ (νt)−1

∫

R2

|Φapp(ξ, t)||w̄2(ξ, t)|p(ξ)dξ

≤ (νt)−1

∫

R2

(νt3/2)Cγe
−γ|ξ|2/4|w̄2(ξ, t)|p(ξ)dξ

≤ Cγt
1/2

(∫

R2

e−2γ|ξ|2/4p(ξ)dξ

)1/2(∫

R2

|w̄2(ξ, t)|2p(ξ)dξ
)1/2

. t1/2‖w̄2(t)‖L2
p
,

where we used γ > 1/2. This concludes the proof.

Lemma 3.14. There hold

E8(t) . t−1/2‖v̄1(t)‖L∞‖w̄2(t)‖L2
p
, E9(t) . νt1/2‖v̄1(t)‖L∞‖w̄2(t)‖L2

p
.
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Proof. We recall that

E8(t) = − 1√
t

∫

R2

(v̄1(ξ, t) · ∇G(ξ))w̄2(ξ, t)p(ξ)dξ

where G(ξ) = 1
4πe

−|ξ|2/4 and p(ξ) = e|ξ|
2/4. We have

|E8(t)| . t−1/2‖v̄1(t)‖L∞

∫

R2

|ξ||w̄2(ξ, t)|dξ . t−1/2‖v̄1(t)‖L∞‖w̄2(t)‖L2
p
.

The proof for E9(t) is identical, upon recalling the pointwise bound on ∇w2,a from Lemma 3.3.

Proof of Proposition 3.7. We are now ready to prove Proposition 3.7. Collecting and combining all
the estimates from the previous lemmas, we get

t
d

dt
‖w̄2(t)‖2L2

p
+ κ(‖(1 + |ξ|)w̄2(t)‖2L2

p
+ ‖∇w̄2(t)‖2L2

p
)

. t
(
‖(1 + |ξ|)w̄2(t)‖2L2

p
+ ‖w̄2(t)‖5L2

p
+ ‖∇w̄2(t)‖2L2

p

)
+ t1/2‖w̄2(t)‖L2

p

+ νt‖v̄1(t)‖4L∞ + νt‖w̄2(t)‖4L2
p
+ ν‖∇w̄2(t)‖2L2

p
+ t−1/2‖v̄1(t)‖L∞‖w̄2(t)‖L2

p
,

(3.20)

for κ = 1/24. Taking t and ν sufficiently small and using Young’s inequality, we obtain

t
d

dt
‖w̄2(t)‖2L2

p
+
κ

2
(‖(1 + |ξ|)w̄2(t)‖2L2

p
+ ‖∇w̄2(t)‖2L2

p
)

. t‖w̄2(t)‖5L2
p
+ νt‖v̄1(t)‖4L∞ + t−1‖v̄1(t)‖2L∞ .

(3.21)

This completes the proof of the proposition.

Remark 3.15. The constraint on the smallness of times T is precisely due to the term E3(t) treated
in Lemma 3.9. The remaining terms are treated using the standard Young’s inequality. Hence, we
in fact obtain

t
d

dt
‖w̄2(t)‖2L2

p
+ κ
(
‖w̄2(t)‖2L2

p
+ ‖∇w̄2(t)‖2L2

p
+ (1− 5t‖∇vE(t)‖L∞)‖ξw̄2(t)‖2L2

p

)

. t(‖w̄2(t)‖2L2
p
+ ‖w̄2(t)‖5L2

p
) + νt‖v̄1(t)‖4L∞ + t−1‖v̄1(t)‖2L∞

(3.22)

for all positive times, as long as the estimates from Proposition 2.1 and Corollary 2.2 on the
approximate vortex-wave solutions are valid. This yields a lower bound on the smallness of T so
that sup0≤t≤T 5t‖∇vE(t)‖L∞ ≤ 1.

Remark 3.16. One may try to improve the time interval by introducing a new weight function, as
done similarly in [10], pnew(ξ) = p(ξ)(1 + νtq(ξ, t)), where q(ξ, t) solves

vG(ξ) · ∇ξq =
1√
νt

(
vE(z(t) + ξ

√
νt, t)− vE(z(t), t)

)
· ξ,

whose solution is however unclear for large ξ
√
νt.
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4 Inviscid limit for the regular part

In the previous section, we have proved the apriori estimate for ωB,ν and vE,ν in the weighted
energy space with the re-scaled variable ξ = x−z̃(t)√

νt
. In this section, we derive estimates on the

regular vorticity component ωE,ν, which solves

∂tω
E,ν + uν · ∇ωE,ν = ν∆ωE,ν (4.1)

with the initial data ωE0 . We write:




ωE,ν(t, x) = ω̃E(t, x) + ν3/2w̄1(t, x),

vE,ν(t, x) = ṽE(t, x) + ν3/2v̄1(t, x),

vB,ν(t, x) = 1√
νt
vG
(
x−z̃(t)√

νt

)
+
√
νt(v2,a + v̄2)

(
x−z̃(t)√

νt
, t
)
,

uν(t, x) = vE,ν(t, x) + vB,ν(t, x),

(4.2)

where (z̃(t), ω̃E) is the solution to the viscous vortex-wave system introduced in Section 2, while vG

and v2,a are constructed in Section 3. Here, we note that the form of the common velocity uν(t, x)
is compatible with the form in (3.15) and (3.2) in the scaled variable ξ. The velocity v̄2 is kept

the same as in the previous section, with ξ is replaced by x−z̃(t)√
νt

and v̄2 = K ⋆ξ w̄2. It is natural to

work in the original variables (x, t) instead of (ξ, t), since ωE,ν(t) solves (4.1) with regular initial
data ωE0 . Hence one does not expect ωE,ν to have the localized behavior near the point vortex.
Roughly speaking, we want to get an apriori bound on ‖v̄1(t)‖L∞ (in terms of w̄2(t)) on a time
interval independent of ν. Precisely, we shall prove the following proposition.

Proposition 4.1. Let w̄1 solve the equations (4.1) and (4.2). There exists a positive time T ,
independent of ν > 0, such that

‖w̄1(t)‖L4∩L4/3 .

∫ t

0
s3/2(‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p
)ds+ ν1/2t

for t ∈ [0, T ].

4.1 Equations for the remainder

In this subsection, we derive the equations for the remainder w̄1 as well as v̄2 appearing in (4.1)
and (4.2). Putting the Ansatz (4.2) into equation (4.1) and using equation (2.2), we obtain the
following transport-diffusion equation for w̄1:

∂tw̄1 + uν · ∇w̄1 − ν∆w̄1 = f(x, t),

where f(x, t) are given by

f(x, t) = − 1

ν
√
t

(
vG
(
x− z̃(t)√

νt

)
− vG

(
x− z(t)√

νt

))
· ∇w1,a − v̄1 · ∇ω̃E −

√
t

ν
v̄2 · ∇ω̃E

−
√
ν(v1,a · ∇w1,a) +

1

2πν3/2
(x− z(t))⊥

|x− z(t)|2 e
− |x−z(t)|2

4νt · ∇ωE +
√
ν∆w1,a.

(4.3)

18



4.2 Estimating the forcing term f(x, t)

In this subsection, we prove the following proposition

Proposition 4.2. Let f(x, t) be defined as in (4.3). There holds

‖f(t)‖L4∩L4/3 . ‖w̄1(t)‖L4∩L4/3 + t3/2
(
‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p

)
+

√
ν.

We will give a proof at the end of this subsection, after proving some useful lemmas. First, let
us write f as:

f(x, t) = f1(x, t) + f2(x, t) + f3(x, t)

where 



f1(x, t) = − 1
ν
√
t

(
vG
(
x−z̃(t)√

νt

)
− vG

(
x−z(t)√

νt

))
· ∇w1,a −

√
ν(v1,a · ∇w1,a)

+ 1
2πν3/2

(x−z(t))⊥
|x−z(t)|2 e

− |x−z(t)|2
4νt · ∇ωE +

√
ν∆w1,a,

f2(x, t) = −v̄1 · ∇ω̃E,
f3(x, t) = −

√
t
ν v̄2 · ∇ω̃E,

In what follows, we bound ‖fi(t)‖L4∩L4/3 for each i ∈ {1, 2, 3}.

Lemma 4.3. There holds
‖f1(t)‖L4∩L4/3 .

√
ν

uniformly in ν > 0.

Proof. First we see that

∥∥∥∥−
√
ν(v1,a · ∇w1,a)−

1

2πν3/2
(x− z(t))⊥

|x− z(t)|2 e
− |x−z(t)|2

4νt · ∇ωE +
√
ν∆ω1,a

∥∥∥∥
L4∩L4/3

.
√
ν

thanks to the fact that ωE is supported away from z(t) and z̃(t), and w1,a is bounded in W 2,4, by
Proposition 2.1. Now for the first term in f1, it suffices to prove that

1√
νt

∣∣∣∣v
G

(
x− z̃(t)√

νt

)
− vG

(
x− z(t)√

νt

)∣∣∣∣ . νt for all x ∈ supp(w1,a). (4.4)

As long as the above claim is proved, we would get

∥∥∥∥
1

ν
√
t

(
vG
(
x− z̃(t)√

νt

)
− vG

(
x− z(t)√

νt

))
· ∇w1,a

∥∥∥∥
L4∩L4/3

.
√
ν‖∇w1,a(t)‖L4∩L4/3(supp(w1,a))

.
√
ν

by Proposition 2.1.
Now we shall prove the inequality (4.4). To this end, let us denote

η1 = x− z̃(t), and η2 = x− z(t) (4.5)
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The left hand side of (4.4) can be re-written as:

1√
νt

(
vG(

η1√
νt

)− vG(
η2√
νt

)

)
=

1

2π
(V1(η1, η2) + V2(η1, η2)) (4.6)

where 


V1(η1, η2) =

(
η⊥1
|η1|2 − η⊥2

|η2|2
)
,

V2(η1, η2) =
(
η⊥2
|η2|2 e

−|η2|2/4νt − η⊥1
|η1|2 e

−|η1|2/4νt
)
.

When x ∈ supp(ω̃E(t)), by the properties established in Section 2, we have a positive constant
cT , independent of ν, such that

|x− z(t)| ≥ cT and |x− z̃(t)| ≥ cT ∀t ∈ [0, T ]. (4.7)

This implies that |η1| ≥ cT and |η2| ≥ cT , upon recalling the notations (4.5). Thus, we get

|V1(η1, η2)| =
∣∣∣∣
η⊥1
|η1|2

− η⊥2
|η2|2

∣∣∣∣ ≤
∣∣∣∣
η⊥1
|η1|2

− η⊥2
|η1|2

∣∣∣∣+
∣∣∣∣
η⊥2
|η1|2

− η⊥2
|η2|2

∣∣∣∣

≤ |η1 − η2|
|η1|2

+ |η2|
∣∣|η2|2 − |η1|2

∣∣
|η1|2|η2|2

≤ c−2
T |η1 − η2|+

1

|η1|2|η2|
||η2| − |η1|| (|η1|+ |η2|) . |η1 − η2|

= |(x− z̃(t))− (x− z(t))| = |z̃(t)− z(t)| . νt (by the estimate (2.5)).

Hence
|V1(η1, η2)| . νt. (4.8)

Now for V2(η1, η2), note that we shall only consider x ∈ supp(ω̃E(t)), in which we get (4.7). In this
case we get

|V2(η1, η2)| ≤ |η2|−1e−|η2|2/4νt + |η1|−1e−|η1|2/4νt ≤ 2c−1
T e−c

2
T /4νt . νt (4.9)

Combining (4.6), (4.8) and (4.9), we get the desired inequality (4.4). The bound for the first term
is complete. This concludes the proof.

Lemma 4.4. There holds
‖f2(t)‖L4∩L4/3 . ‖w̄1(t)‖L4∩L4/3

Proof. We have

‖f2(t)‖L4∩L4/3 = ‖v̄1(t) · ∇ω̃E(t)‖L4∩L4/3 ≤ ‖v̄1(t)‖L∞‖∇ω̃E(t)‖L4∩L4/3 . ‖w̄1(t)‖L4∩L4/3

by Corollary 2.2 and Lemma A.1. The proof is complete.

Lemma 4.5. There holds

‖f3(t)‖L4∩L4/3 . t3/2
(
‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p

)
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Proof. We recall that

f3(x, t) =

√
t

ν
v̄2 (ξ, t) · ∇ω̃E(t, x), ξ =

x− z̃(t)√
νt

.

We shall only consider x ∈ supp(ω̃E(t)). Since ω̃E(t) is supported away from z̃(t), there exists
dT > 0 such that

|x− z̃(t)| ≥ dT for x ∈ supp(ω̃E(t)). (4.10)

Since
∫
R2 w̄2(ξ, t)dξ = 0, by Lemma (A.1), we get

‖(1 + |ξ|2)v̄2(t)‖L∞ . ‖(1 + |ξ|2)w̄2(t)‖L4 + ‖(1 + |ξ|2)w̄2(t)‖L4/3

. ‖w̄2(t)‖L2
p
+ ‖∇w̄2(t)‖L2

p
.

This implies that, for x in the support of ω̃E(t), we get

|v̄2(t, ξ)| .
1

1 + |ξ|2
(
‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p

)
. (νt)

(
‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p

)
.

Thus we get

‖f3(t)‖L4∩L4/3 .

√
t

ν
‖v̄2 (ξ, t) · ∇ω̃E(t, x)‖L4∩L4/3 . t3/2

(
‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p

)
.

The proof is complete.

We conclude this subsection by proving the Proposition 4.2

Proof of Proposition 4.2. The proof follows as a direct consequence of the previous lemmas for
fi, i ∈ {1, 2, 3} in this subsection.

4.3 Apriori estimates for the remainder

In this section, we give a proof for our main Theorem 4.1, stated at the beginning of this subsection.
We recall from Section 4.1 that w̄1 solves the heat transport equation

∂tw̄1 + uν · ∇w̄1 − ν∆w̄1 = f(x, t).

A standard L4 ∩ L4/3 estimate for the heat transport equation yields

d

dt
(‖w̄1(t)‖L4∩L4/3) . ‖f(t)‖L4∩L4/3

. ‖w̄1(t)‖L4∩L4/3 + t3/2
(
‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p

)
+

√
ν,

using Proposition 4.2. Now applying Gronwall lemma for the above inequality, we have

‖w̄1(t)‖L4∩L4/3 .

∫ t

0

(
s3/2(‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p
) +

√
ν
)
ds

.

∫ t

0
s3/2(‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p
)ds + ν1/2t.

(4.11)

The proof is complete.
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5 Proof of inviscid limit

In this section, we conclude the proof for inviscid limit, using the apriori estimates obtained from
the previous sections. Let us first prove the following proposition, before proving our main theorem,
stated in the first part of this paper.

Proposition 5.1. There exists a time T > 0, independent of the viscosity ν, such that

sup
0≤t≤T

(
‖w̄2(t)‖L2

p
+ ‖w̄1(t)‖L4∩L4/3

)
. 1,

uniformly in ν.

Proof. First, we recall the following estimates for ‖w̄2(t)‖L2
p
and ‖w̄1(t)‖L4∩L4/3 proven in Proposi-

tions 3.7 and 4.1.

d

dt
‖w̄2(t)‖2L2

p
+
κ

t
(‖(1 + |ξ|)w̄2(t)‖2L2

p
+ ‖∇w̄2(t)‖2L2

p
) . ‖w̄2(t)‖5L2

p
+ ν‖v̄1(t)‖4L∞ + t−2‖v̄1(t)‖2L∞

‖w̄1(t)‖L4∩L4/3 .

∫ t

0
s3/2

(
‖w̄2(t)‖L2

p
+ ‖∇w̄2(t)‖L2

p

)
ds+ ν1/2t.

(5.1)
Let

G(t) = ‖w̄2(t)‖2L2
p
+

∫ t

0
s−1(‖w̄2(s)‖2L2

p
+ ‖∇w̄2(s)‖2L2

p
)ds.

From the inequality (5.1), it is straight-forward that

‖w̄1(t)‖L4∩L4/3 . t5/2G(t)1/2 + ν1/2t. (5.2)

Thus, we have

G′(t) =
d

dt
‖w̄2(t)‖2L2

p
+ t−1

(
‖w̄2(t)‖2L2

p
+ ‖∇w̄2(t)‖2L2

p

)

. ‖w̄2(t)‖5L2
p
+ ν‖v̄1(t)‖4L∞ + t−2‖v̄1(t)‖2L∞ (by (5.1))

. G(t)5/2 + ν‖w̄1(t)‖4L4∩L4/3 + t−2‖w̄1(t)‖2L4∩L4/3

. G(t)5/2 + ν
(
t5/2G(t)1/2 + ν1/2t

)4
+ t−2

(
t5/2G(t)1/2 + ν1/2t

)2
(by (5.2))

. G(t)5/2 + νt10G(t)2 + ν3t4 + t3G(t) + ν.

By standard ODE theory, we have a time T > 0, which is independent of ν > 0, such that G(t) is
uniformly bounded for t ∈ [0, T ]. Since G(t) ≥ ‖w̄2(t)‖L2

p
, the proof for ‖w̄2(t)‖L2

p
is complete. The

bound ‖w̄1(t)‖L4∩L4/3 . 1 follows from the inequality (5.2).

We conclude this section by proving our main theorem, stated in the first part of this paper.
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Proof of theorem 1.2. We have proved that ‖w̄2(t)‖L2
p
is uniformly bounded in ν. We recall from

Section 3 that

ωB,ν(t, x) =
1

νt
w2(ξ, t) =

1

νt
(G(ξ) + (νt)w2,a + (νt)w̄2) =

1

νt
G(ξ) +w2,a + w̄2,

where G(ξ) = 1
4πe

−|ξ|2/4 and ξ = (x− z̃(t))/
√
νt. We compute

∥∥∥∥ω
B,ν(t, x) − 1

4πνt
e−

|x−z̃(t)|2
4νt

∥∥∥∥
L1
x

= ‖w2,a(ξ, t) + w̄2(ξ, t)‖L1
x

= νt‖w2,a(t) + w̄2(t)‖L1
ξ
. (νt)

(
‖w2,a(t)‖L2

p
+ ‖w̄2(t)‖L2

p

)

. (νt).

(5.3)

For simplicity of notations, we denote by Gz̃(t)(x) and Gz(t)(x) the Gaussians 1
4πνte

− |x−z̃(t)|2
4νt and

1
4πνte

− |x−z(t)|2
4νt , respectively. Our goal now is to compare the two Gaussians in L1 norm. To this

end, let us denote A = |x−z̃(t)|2
4νt and B = |x−z(t)|2

4νt . We have

Gz̃(t)(x)−Gz(t)(x) = e−A − e−B = e−B
(
eB−A − 1

)
.

We have

B −A = (4νt)−1
(
|x− z(t)|2 − |x− z̃(t)|2

)
= (4νt)−1

(
2x · (z̃(t)− z(t)) + |z(t)|2 − |z̃(t)|2

)

. (4νt)−1 (|x||z̃(t)− z(t)|+ |z̃(t)− z(t)|)

. |x|+ 1 (since |z̃(t)− z(t)| . νt)

≤ |x− z(t)| + |z(t)| + 1 .
|x− z(t)|√

νt
+ 1.

Here we used the standard fact of the vortex-wave system that |z(t)| . 1 for any fixed interval of
time. For, one can see that |z(t)| ≤ |z0|+

∫ t
0 |vE(z(s), s)|ds ≤ |z0|+ t‖vE‖L∞ . Hence we get

|Gz̃(t)(x)−Gz(t)(x)| . e
− |x−z(t)|2

4νt
+MT

|x−z(t)|√
νt for some MT > 0. (5.4)

Integrating both sides of the inequality (5.4) in x ∈ R
2, we have

‖Gz(t) −Gz̃(t)‖L1
x
.

∫

R2

e
− |x−z(t)|2

4νt
+MT

|x−z(t)|√
νt dx.

Making the change of variables y = x−z(t)√
νt

in the above integral, we thus obtain

‖Gz(t) −Gz̃(t)‖L1
x
. νt. (5.5)

Combining the inequalities (5.3) and (5.5), we get
∥∥∥∥ω

B,ν(t, x)− 1

4πνt
e−

|x−z(t)|2
4νt

∥∥∥∥
L1
x

. νt.

The inequality ‖ωE,ν(t)−ωE(t)‖L4∩L4/3 . ν follows directly from the expansion (4.2), the inequality
(5.2) and the uniform bound of G(t). The proof is complete.
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A Appendix

In this section, we collect several useful lemmas used in this paper.

Lemma A.1 (Elliptic estimates). Let v = K ⋆ ω be the velocity vector field obtained from the
vorticity ω on R

2. Define the norm ‖ · ‖L4∩L4/3 = ‖ · ‖L4 + ‖ · ‖L4/3 . There hold the following
inequalities

‖v‖L∞ . ‖ω‖L4∩L4/3 , ‖v‖L∞ . ‖ω‖L1∩L∞ .

Moreover, if
∫
R2 ω(x)dx = 0, then

‖(1 + |x|2)v‖L∞ . ‖(1 + |x|2)ω‖L4∩L4/3 .

Proof. From the Biot-Savart law (1.2), we estimate

|v(x)| .
∫

R2

|ω(y)|
|x− y|dy =

(∫

|x−y|≤R
+

∫

|x−y|≥R

)
|ω(y)|
|x− y|dy

.

(∫

|x−y|≤R
|x− y|−4/3dy

)3/4

‖ω‖L4 +

(∫

|x−y|≥R
|x− y|−4dy

)1/4

‖ω‖L4/3

. R1/2‖ω‖L4 +R−1/2‖ω‖L4/3 .

(A.1)

Thus choosing R =
‖ω‖

L4/3

‖ω‖L4
, we have ‖v‖L∞ . ‖ω‖1/2

L4/3‖ω‖
1/2
L4 , which gives the first inequality. As

for the second, we use ‖ω‖Lp ≤ ‖ω‖1/p
L1 ‖ω‖1−1/p

L∞ .
It remains to check the last inequality. We shall check it for v2, the second component of v.

The estimate on v1 is similar. First, we check

|x||v2(x)| .
∫

R2

1

|x− y| |y||ω(y)|dy. (A.2)

By Biot-Savart law and
∫
R2 ω(y)dy = 0, we have

|v2(x)| =
1

2π

∣∣∣∣
∫

R2

x1 − y1
|x− y|2ω(y)dy

∣∣∣∣ ≤
1

2π

∫

R2

∣∣∣∣
x1 − y1
|x− y|2 − x1

|x|2
∣∣∣∣ |ω(y)|dy.

Now we have
x1 − y1
|x− y|2 − x1

|x|2 =
1

|x|2|x− y|2
(
|x|2(x1 − y1)− x1|x− y|2

)
.

It follows that |x|2(x1 − y1)− x1|x− y|2 ≤ 4|x||y||x− y|. Hence,

|x|
[ x1 − y1
|x− y|2 − x1

|x|2
]
≤ 4|y|

|x− y| ,
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which gives (A.2). Now multiplying both sides of (A.2) by |x|, we have

|x|2|v2(x)| .
∫

R2

|x||y|
|x− y| |ω(y)|dy ≤

∫

R2

|y|+ |x− y|
|x− y| |y||ω(y)|dy.

=

∫

R2

1

|x− y| |y|
2|ω(y)|dy +

∫

R2

|y||ω(y)|dy

Let us first treat the first term in the above. Repeating the argument of (A.1) for ω = |y|2|ω(y)|,
we have ∫

R2

1

|x− y| |y|
2|ω(y)|dy . ‖(1 + |y|2)ω(y)‖L4∩L4/3 .

For the second term, using Hölder inequality, we get

∫

R2

|y||ω(y)|dy =

∫

R2

|y|
1 + |y|2 (1 + |y|2)||ω(y)|dy . ‖(1 + |y|2)|ω(y)‖L4/3 .

Thus
|x|2|v2(x)| . ‖(1 + |x|2)ω‖L4∩L4/3 .

The lemma follows.

Lemma A.2. Let z1, z2 ∈ C and ψ be the angle between z1 and z2. Assuming that |z1| < |z2| and
sin(ψ) 6= 0, there holds

1

|z1 + z2|2
− 1

|z2|2
=

1

|z2|2
∞∑

n=1

(−1)n
|z1|n
|z2|n

sin((n + 1)ψ)

sin(ψ)
.

Proof. Let z1
z2

= z = reiψ. We have

1

|z1 + z2|2
− 1

|z2|2
=

1

|z2|2
(

1

|1 + z|2 − 1

)
.

Now for |z| < 1, we have

1

|1 + z|2 =
1

(1 + z)(1 + z̄)
= (1− z + z2 − · · · )(1− z̄ + z̄2 + · · · )

= 1− (z + z̄) + (z2 + zz̄ + z̄2)− (z3 + z2z̄ + zz̄2 + z̄3) + · · · .

Now for each n, we have

zn + zn−1z̄ + · · ·+ zz̄n−1 + z̄n =
zn+1 − z̄n+1

z − z̄
= rn

sin((n + 1)ψ)

sinψ
.

This concludes the proof.
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[29] V. N. Starovŏıtov. Uniqueness of the solution to the problem of the motion of a point vortex.
Sibirsk. Mat. Zh., 35(3):696–701, v, 1994.

[30] F. Sueur. Viscous profiles of vortex patches. J. Inst. Math. Jussieu, 14(1):1–68, 2015.

[31] H. S. G. Swann. The convergence with vanishing viscosity of nonstationary Navier-Stokes flow
to ideal flow in R3. Trans. Amer. Math. Soc., 157:373–397, 1971.

27


	1 Introduction
	1.1 Vortex-wave system
	1.2 Main result
	1.3 Notations

	2 Approximate vortex wave system
	3 Inviscid limit for the irregular part
	3.1 Vortex-wave reaction term
	3.2 Construction of an approximation solution
	3.3 Estimating the error term
	3.4 Equations for the remainder
	3.5 Estimates for the remainder

	4 Inviscid limit for the regular part
	4.1 Equations for the remainder
	4.2 Estimating the forcing term f(x,t)
	4.3 Apriori estimates for the remainder

	5 Proof of inviscid limit
	A Appendix

