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Abstract

We establish the inviscid limit of the incompressible Navier-Stokes equations on the whole
plane R? for initial data having vorticity as a superposition of point vortices and a regular
component. In particular, this rigorously justifies the vortex-wave system from the physical
Navier-Stokes flows in the vanishing viscosity limit, a model that was introduced by Marchioro
and Pulvirenti in the early 90s to describe the dynamics of point vortices in a regular ambient
vorticity background. The proof rests on the previous analysis of Gallay in his derivation of the
vortex-point system.

1 Introduction

In this paper, we are interested in the vanishing viscosity limit of the incompressible Navier-Stokes
equations on the plane R? for irregular initial data; namely, we consider

ou” +u” - Vu¥ + Vp¥ = vAuY, L1
V-u’ =0, (L.1)
for fluid velocity u”(z,t) € R? and pressure p”(z,t) € R at z € R? and ¢ > 0. The interest is to
understand the asymptotic behavior of solutions in the inviscid limit v — 0.

It is straightforward to show that in the absence of spatial boundaries, regular solutions of
the Navier-Stokes equations converge in strong Sobolev norms to the regular solutions of Euler
equations as v — 0 (e.g., [I5, 31, 26]). The convergence (in L? for velocity fields) also holds for
non-smooth solutions that include vortex patches [5] [0, [3, 26, [30]. The problem is largely open for
less regular data [2, 4], or even for regular data in domains with a boundary (e.g., [28, [I8], 27, [14]
and the references therein).
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For initial data whose vorticity consists of a finite sum of point vortices (Dirac masses), Gallay
[10] proved that the corresponding Navier-Stokes vorticity indeed converges weakly in the inviscid
limit to the sum of point vortices whose centers evolve according to the Helmholtz-Kirchhoff point-
vortex system. In this paper, we study the case when initial vorticity consists of one point vortex
and a regular part. The case of finitely many point vortices can be treated similarly in combination
of [I0] where the vortex-point interaction is understood.

Let us now detail the problem. For velocity field u” = (uf,u%), let w” = Oy,u} — Oy, uf be
the corresponding vorticity. Taking advantage of the divergence-free condition, we can recover the
velocity from vorticity through the so-called Biot-Savart law

1 zt

_ vla-1 _ _
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(1.2)
where K (x) denotes the Green kernel of V-A~!, the x notation stands for the usual convolution
in variable z € R?, and a* = (az, —aj) for vectors a € R2. Tt follows from (I.I)) that the vorticity
solves

Ow” +u” - Vw” = vAw”. (1.3)
We solve the vorticity equation (L3)), together with (I.2]), for initial data of the form
wir_y = 0z (%) + wi (), (1.4)

where §,, denotes the Dirac delta function centered at x = zy and w{ is the regular component
of vorticity that has compact support and vanishes in a neighborhood of z3. The existence and
uniqueness for 2D Navier-Stokes equations with such initial data, or in fact more generally, with
initial data of finite measures are known; see, for instance, [7, 12} 15], 9].

1.1 Vortex-wave system

In the inviscid limit, we do not expect the limiting solutions from ([3])-(L4]) to satisfy Euler
equations, even in a weak sens, but rather the following so-called vortex-wave system coined by
Marchioro and Pulvirenti [23] 25] in the early 90s:

o + (W + H) - VP =0

2(t) = vP(t, 2(t)), (1.5)
wfzo = wf, 2(0) = 2o,

in which v¥ = Kxw” and H = K (- —2(t)). That is, in the limit, the regular component of vorticity
is transported by the full velocity, while the location of point vortex is propagated by the velocity
vE generated by the regular vorticity w”.

The global weak solutions of (L)) in L' N L were already obtained in [23, 25] (see also [17, 8]
for an extension to LP spaces), while their uniqueness is proved for Lipschitz or even bounded
data [29] [16], provided the ambient velocity is constant in a neighborhood of the point vortex. In
particular, let us recall the following theorem.

“In fact, it is not known whether weak solutions to Euler equations exist with point vortex data [23] [25].



Theorem 1.1 ([16]). Consider initial data 2o € R and wf € L' N L>®(R?). Assume that w§
has compact support and is constant in a neighborhood of zy. Then, there are a unique global
solution (z(t),w(t)) to (LH) and a positive function R(t) so that w(t) remains constant in the
ball centered at the point vortex z(t) with radius R(t) for all times t > 0. If we assume in addition
that wéE e WkP for kp > 2 and p > 1, then for any T > 0, there holds

sup [|w® (#) lyer < Or (1.6)
0<t<T

for some constant Crp.

Theorem [Tl assures that H = K (- —z(t)) remains regular in the support of Vw®(t). The stated
regularity (IL6) thus follows from that of Euler equations on R? ([19]).

The vortex-wave system ([L5]) can be rigorously derived from Euler equations by replacing the
initial Dirac mass &,, by € 2x., for x. being the characteristic function of the ball {|z — zo| < €}
and taking € — 0. This was done in [24] (see also [I,[13]). It can also be derived from Navier-Stokes
equations in the small viscosity limit, provided that v < € for a > 0, as done similarly for the
vortex-point system [20} 21], 22]. In this paper, we give a direct derivation of (5] as the inviscid
limit of the Navier-Stokes flows (I.3]) with data (L.4).

1.2 Main result

Consider the viscous problem (L3) with initial data (L4]). Following [9} [10], we first decompose the
vorticity into the so-called regular part w®" and irregular part w??¥, both of which are advected
by the full velocity vector field ©¥ = K * w”. Precisely, we write

w’ = wBv 4BV, (1.7)
where wZ? and WP solve
PV 4 v V" = vAwPY,
(1.8)
Ewv _ K
w |t=0 =Wy,
and 5 5 5
Ow™’ +u” - Vw’ = vAw"", (1.9)

WwBY(t) — 6, as t—0T.

Here and in what follows, the weak convergence for finite measures is understood in the following

sense: , — w if and only if
[ o [ oa
R2 R2

for all the continuous functions ¢ that vanish at infinity. A direct computation shows that the
decomposition preserves the mass:

/ WP (z,t)dr = / wl (x)dz, / wBY (z,t)dr =1, (1.10)
R2 R2

R2



for all positive times. We shall prove that in the inviscid limit w®" — w® and w?" is concentrated
near the point vortex z(t), transported by v¥, yielding weak solutions to the vortex wave system
with the same initial data (wéE ,20). Precisely, our main theorem reads as follows.

Theorem 1.2. Let z5 € R and wéE € W*4(R?) that has compact support and vanishes in a
neighborhood of zy, and let (z(t),w®(t)) and w(t) be the unique solution to the vortez-wave system
(L5) and to the Navier-Stokes equation (L3), respectively, with initial data wy = w + 6,. Then,
there exists a time T > 0, independent of v, such that the vorticity w”(t) can be written as

W (z,t) = W (2, 1) + WP (2, 1),
where WP (t),wB " (t) satisfy
sup [[w"¥(t) — WP (t)ll anpas@e) < Crv,
0<t<T

1 _Jz—z@®)?
4vt

drvt €

sup ¢t 1 ||wWBV(t,x) —

0<t<T

< CT”?

L1(R2)

for some constant Cp independent of v. In particular, w®"(t) — wP(t) strongly in L* N L*® and
wB(t,-) = 8,)(-) weakly in the sense of finite measures in the inviscid limit.

Theorem [[.2] derives the vortex-wave system ([L5]) as an inviscid limit of Navier-Stokes flows on
the whole plane, complementing the earlier derivation [24] [I], [I3] from Euler equations. In addition,

we obtain: .
Ty min {1, L)
5[ VoE || Lo

for T, being the smallest time when the point vortex z(t) meets the support of w”(s) for some
s € [0, 1], recalling from Theorem [T that w(t) never meets the support of w¥(t) for all times. See
Proposition 2.1] and Remark

Let us now discuss some difficulties in proving the theorem. First of all, the initial data contain-
ing a Dirac mass are too singular to perform a direct proof from the standard L? energy estimates.
One then needs to construct a good approximation of solutions to treat the singular part, and
control the remainder. The difficulty arises due to the presence of an vortex-wave interaction term

of the form
vEr(t2) -V Le_‘x74zsz)‘2 (1.11)
’ Y\ druvt ' '

Formally, this term blows up when z is near the point vortex z(¢) and vt — 0. To treat this
singularity, we follow [I0] to work in the vortex scaling variable, construct approximate solutions,
and perform weighted energy estimates to control the remainder. However, the weighted energy

estimates with the scaling variable £ = 22 yged in [10] are not enough to treat the interaction

t
N
term ([LIT]), as it leaves a remainder of order one, but not smaller. To overcome this difficulty, we

introduce an approzimate viscous vortex wave system (Section [2), along with the new point vortex

Z(t) = z(t) + O(vt) and the scaled variable { = m_—\/? in order to close the estimate.



Lastly, we remark that we assume the initial vorticity to be d,, + w{’, where w{’ is smooth and

compactly supported away from the point vortex zg. The regularity is needed in the construction of
the high order approximation of solutions. It would be interesting to further combine our analysis
with the viscous approximation near vortex-patch solutions constructed in [30] to treat the case
when wg e L'nL>®.

1.3 Notations

We will denote A < B to mean that |A| < Cy|B| for some universal constant Cy > 0 independent of
the viscosity v. We write f = O(g) to mean that f < g, or simply O(g) to mean that the term can

be bounded by Cjy|g| for some constant Cy > 0 independent of v. We define the norm || - || aqz4/8
and || - || p1nze of a function w(x) in R? to be
lwllpanpas = lwllzs + lwllpas,  lwllziape = [wli + [l Lo

We also denote by m(-) the Lebesgue measure on R2.
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2 Approximate vortex wave system

Let (2(t),w®) be the global solution to the vortex-wave system (L5) with initial data wf € W44
that has compact support and vanishes in a neighborhood of zg. We introduce an approzimate
viscous vortex-wave system (Z(t), %), given by

O () = WP (2, 1) + vw oz, 1) (2.1)
8z =vE (), 1) = K «@P(Z(t),1),  Z(0) = 2, '
where the added vorticity component wy , solves
1 —z(t
Oyw1 q + (UE + \/y_tUG <a: \/j_t( )>> Vwi g +v1,4- VP = AwP (2.2)

with zero initial data. Here and in what follows, velocity and vorticity are defined through the
1
Biot-Savart law (I.2). For instance, vy , = K % w; , and Ve () = %éﬁ(l — e“5‘2/4).
We obtain the following simple proposition.

Proposition 2.1. Let T, be defined by

T, = %gg {t c2(t) € Uogsgtsupp(wE(s))}, (2.3)



with T, = oo if 2(t) never meets the support of w¥(s) for s € [0,t]. Then, for any T < Tk, the unique
smooth solution wi q(t) of (Z2) exists on [0,T], has compact support, vanishes in a neighborhood
of z(t), and satisfies

m (supp(wi,a(t)) + [[wra(t)lw2a@e) + 10w ()| Loe®2) + V1) w2eo@mey < O, (2.4)
fort € [0, T] and for some constant Cr independent of v. In addition, there holds
|Z(t) — 2(t)| < Crut for any t€[0,T). (2.5)
Here, m denotes the Lebesgue measure on R2.

Corollary 2.2. Let T, be defined as in (Z3). For any T < T, @ (t) has compact support, vanishes
in a neighborhood of Z(t), and satisfies

m (supp(@ (1)) + @7 (1) lw2s ey + [10:07 (1) | oo @) + 07 () [w2ee @2y < Cr,  (2:6)
fort € [0,T] and for some constant Cp independent of v.
Proof. The corollary is a direct consequence of Proposition [2.1] and Theorem L1l O

Proof of Proposition [21. Recall from Theorem [[LT] that w®(t) has compact support and vanishes
in a neighborhood of z(t). This remains valid for w; 4(t) for small times, due to the transport
structure of ([2.2)). Precisely, wy 4(t) is supported in Up<s<;supp(w®(s)). Since z(t) € supp(w®(t))
for all positive times, we have T, > 0 by continuity. Thus, for any 7" < T, there is a positive

distance dr so that
|z — 2(t)| > dr >0 (2.7)

for all € supp (w1,4(t)) and 0 <t < T, which yields

‘ 1 e <a:—z(t)>‘ B 1 (1 _e_z4z<:>2> - 1 < 1
N Vot - 2m|a — 2()] ~ 27mlx — ()| T 2mdr’

Similar estimates hold for derivatives of v¥(-) for z away from z(t). It follows from (Z.2)) that
t
w0 ()| s S/O (1AW ()]l 2t + [lor,a(s)l| oo [V (5)] 1) ds

t
< / (1+ [[o1.0(5) | )ds,
0

which yields the estimate on w4, upon using the elliptic estimate |[v1 4|1~ S [[wiallfanpa/s and
the fact that w; 4 is compactly supported. The derivative estimates follow similarly.
Finally, let us prove the estimate on Z(¢). By definition, we write

{z(t) = 20+ [¢ (vE(Z(s), s) + vo1,a(3(s), 5)) ds,
2(t) =z + fot v (2(s), s)ds,

6



which gives

20 20| < [ [P 5) = o (al) s ds v [ Jora(E(s),)lds
% ’ (2.9)
< [ 1906l 55) = ()] ds -+ vt sup o5

Applying the Gronwall’s lemma gives ([2.5]). O

3 Inviscid limit for the irregular part

In this section, we give estimates on the irregular part of vorticity w??”, solving (L9). Let us recall

the equation:

WP +u” - VP = vAwP?,
B (3.1)
w’ ‘t:O = (520.

Here u” = v 4+ vB" is the velocity field for the full Navier-Stokes equations. Following [10], we
introduce the change of variables

- x —Z(t)
WVt
and write ) )
'UBJ/(‘Ta t) = \/—I/_tv2(§7 t)a wBW(x? t) = E'wQ(Sa t) (32)

Here, we recall that Z(¢) to be the solution to the approximate vortex wave system, given in (2.1]).
Note that the change of variables is consistent with the Biot-Savart law: vy = K *¢ wo. Putting
the Ansatz into the equation (L) for w?", we get the following equation

O (w, v"™") = (t0 — L) ws + \/g (0PV(Z(t) + EVVt, t) — 9iZ(t)) - Vews + %m - Vews =0,
(3.3)
where L is defined by
Lwy = Agwy + %5 - Vews + wo.
In the vanishing viscosity limit, we expect that the viscous regular velocity remains close to the

inviscid one: v®¥ — ¥, and hence the irregular part should tend to the so-called Lamb-Oseen
vortex, which is defined by

1 2 1 &t e
s L Gley= =5 (1 _ e lelP/a
GO = e (g = g (1),
It follows that £LG = 0 and v“ - V¢G = 0. Therefore, the pair (G(£),v"") solves (3:3), up to the
following error term tR; (&, t), with

R(&,1) VBV (3(t) + eVt t) — TP (R(D), t)) VG (3.4)

1
::ﬁ<



which does not vanish in the inviscid limit, upon recalling that 9;2(t) = v¥(Z(t),t). Roughly
speaking, R = O(1) in the small viscosity limit.

We shall construct better approximate solutions to the equation (B.3]). Here we stress that the
equation (B3]) involves two unknown functions wsy, vP" which are coupled through the full velocity

u”. To leading order, let us take UE»,,’;,' = oF for ¥ solving the approximate vortex-wave system

1) and
Wo,app(§: 1) = G(§) + (Vw2 (€, 1) (3.5)

where wy, 4 to be defined later. The pair (wy app, Vi) thus solves (B3), leaving an error of the form

O (w2,apps vE 7)) =t(A+v(l - L))ws, + I/t2at’w27a + I/t2’U27a -Vwgq

VIR E() + VLY — TG0 - Vune + tRAED,

where Ry (&, 1) is defined as in (34) with vl = 0%, and
Aw::vG'ng—HJ-VgG, v=Kxw.

To treat the order one remainder R;(§,t), we first solve (A +v(1 — L))ws , = —Ry to leading order
in v. We recall the following proposition from [10], Lemma 5 and Remark 1.

Proposition 3.1. Let z = z(§) be a function of the form
2(€) = aq(r) cos(20) + as(r) sin(20) + as(r) cos(30) + a4(r) sin(30)

for &€ = re'?. Assume that the coefficients satisfy

4
S (ai(r)] + lal(r)]) < CoP(r)e™™ /" vr > 0.
=1

for some polynomial P(r). Then for any v > 0, there exists a unique solution w” to the elliptic
equation
A" +v(l - L)w” =z

such that 2
w” (€)] + [Vw” (€)] < Cye e/

for any v € (0,1) and for some constant C, that is independent of v.

3.1 Vortex-wave reaction term

In this section, we show that the leading term in the reaction term in ([3.4]) satisfies the assumption
of Proposition [3.1l Precisely, we introduce

Ru(6,1) = \/%(5]5(5(15) b eVt t) — TE(G(),1) - VG. (3.7)

We have the following lemma.



Lemma 3.2. For any T > 0, there is a constant Cr so that

IR1(£,1) — Ag(&,8)] < Cr(vt)|€|teIE1P/4,

where
2-lepin [ S2Y) o
el [ SnGBY) o |
R e

Here, 1) denotes the angle between & and Z(t) — y.

Proof. Recalling (7)) and G = £ e“ﬂ /4 and using the Biot-Savart law (L.2)), we have

Rl (67 t)

% cemlEl/
8\/—( P + eVt ) — 0P (2(1), 1)) - €141/

I A () R SV Rt N C O Rt ) A P

 Ton2vit Jae (IE(t)Jré\/v_—yP lz(t)—y!2> w1y
_—6\5\/4 £ ) — ) 1 B 1 L

= T Ju €O~ (e~ =) 2

= A1(£7 )+A2(£7 )7

where A;(€,t), A2(&,t) denote the integral over {|¢|v/vt < 1|Z(t) — y|} and {|¢|Vvt > $|2(t) — yl},
respectively. Let us first treat A;(¢,t). Applying Lemma [A2] for [£|v/vt < 1|Z(t) — y|, we have

! __ 1 2: rav7 sin((n + 1))
2(t) + &Vt —y|2 |28 —yl? [E( —yl2 —yl* sin(y)

Here 1) is the angle between £ and z(¢) — y. Thus we get

1 1 )
2(t) + Vvt —y2 [2() —yl?

€ ) - (

3 n+1 %1 & sin(n
=2 (-1 B — gy )

s P e e (VD
(0 g S + () Lsin(80) + s S G in)

in which we can estimate

gy (VIR el
[ 2 g = ] < 25



since [£|v/vt < $|Z(t) — y|. Hence, we have

et = lEPe T /
,t = 5 ISy ara—
' 1672 Jiejvwi<tizn -y 12() — yl?

Vgl / 1

1672 i<t -yl 1Z(E) — 9P

+ O(vtfg|te /4 / 1
el ) ElvrE< Lz —y) 12(t) — yI*

sin(2¢)0" (y, ) dy
sin(3¢)0" (y, t)dy
sin(40)oF (y, t)dy.

We note that all the integrals above are bounded by ||@(t)||:, since Z(t) is bounded away from
the support of @ (t) by Corollary Therefore, defining Ag(€,t) as in ([B.8]), we can write

M6t = e - L
1) = ) = == 12(4) — yl2
1 0 1672 €[vt> 1 |Z(t)—y| 2(t) — yl?

| Yrilge kT / !
167 €1Vt (5 —y) 12(t) — yl?

sin(2¢)% (y, t)dy
sin(30)@F (y, t)dy + O(wt[¢[ e E°/4),

It remains to treat the integral over the domain {|¢|v/vt > $|Z(¢) — y|}. Since Z(t) is bounded
away from the support of @ (t), the above (explicitly written) integrals vanish for |¢|v/vt < e for
all t € [0,T7], for some constant ¢y. On the other hand, for |{[v/vt > cp, we have

2,-€17/4
‘mei sin(20)&" (y, t)dy| < Crvtlé]*e G5 (1)1,

1
1672 /lﬁlx/ﬁzél’i(t)—yl 2(t) = yl?

for some constant Cp. Similarly, we also have Ag(€,t) = 0 for [¢|v/vt < cp for all ¢ € [0,T], for
some constant cr, while for |£|v/vt > cr, we have

< CrleP(1+ vtleP)e A GE )| 11+ Cp(vt) "2 |ele P[5 | 1
< Op(vt)fe|te 6P/,

upon using Corollary to bound v¥ and ©¥. The lemma, follows. O

3.2 Construction of an approximation solution

We now construct ws , that solves the following elliptic equation
Awz o + V(1 — Llwrq = —Ao(§, 1) (3.9)

with Ag(&,t) defined as in (B.8]). We have the following.

10



Lemma 3.3. There exists a solution wa 4 to B9) so that, for any v € (0,1), there holds
|wa.a(t, )] + |Vwaa (&, 1)] < Cye e/

uniformly in v > 0. In particular, we have
Hwawmm+/rwAam%““%+/NvWaam%““%sL (3.10)
R2 R2

Proof. For each y € R?, we introduce
—Je2/a_Sin(2¢) e Be-lez/a _Sn3Y) sin(3Y) ~p,
EQRTTe Here ™ e -y @D
(3. 11)

recalling 1 the angle between £ and Z(t) — y. If follows from (B8] that Ag(&,t) = [g2 Bo(&,y.t) dy
It is clear that for each y, By(§,y,t) satisfies the assumption of Proposition B.I] and hence we can
define

BO(£7y7 ) |£|2 (yv )

1672 162

-1
Waal€y,t) i= (A4 w(1= L)) Bol,y.0)

stressing that y € R? and ¢ > 0 play a role as independent parameters. The solution wa,q is thus
defined by the average of Ws (€, y,t) with respect to y. The pointwise estimates follow directly
from Proposition B.1] and the estimates on @”. Taking v > 1/2 and using the elliptic estimate
lva,allzee S ||w2allLinre, We obtain the estimates ([B.10]). O

3.3 Estimating the error term

Construct wy 4 as in Lemma B3l Then, wy app = G(§) + vtws , and vf;;; = ¥ approximately solves
B3) in the following sense.

Proposition 3.4. For any v € (0,1), there holds
| (wa,app, V) (€, )] < Cut¥/2e e/ (3.12)

for some constant C,.

Proof. Fix ay € (0,1). Using (3.9) into (3.6]), we write

q)(wQ,appv Uf];;;)(fa t) = Vt2'U2,a : Vw2,a + \/;t3/2 (17E (g(t) + 6\/V_t7 t) - ’ﬁE(E(t), t)) ’ V'wQ,a
-+ l/t2at’w2,a + t(Rl (57 t) - A0(£7 t))

4
=) ®i(&.t)
i=1

Let us estimate each term on the right. Using Proposition 2.1] and Lemma [3:3], we get

1B1(£,1)] < vt |[va,a(t)]| 1 [Vws (€, )] S wt2e TEP/A,

11



Similarly, using Corollary 2.2, we bound
[P (EVvt + Z(t), 1) = 0P (Z(t), )| S [EVVi][ V7| 1o

and hence
|2(6,1)] < VUt P[P Vvt + Z(1), 1) — TP (2(2), )| Vwza (€, 1))

< pt?|¢le e/

< pi2e /A
upon taking 7/ from Lemma 33 so that 7/ > ~.

Next, we treat ®3(¢,t) = vt20,wa,. Since 9, commutes with A and £, the equation (3.9)

gives

(v(1 — L)+ A) (Vtowaq) = =Vt Ao (€, t).
To apply Proposition B it suffices to prove that

Vila Ao (€. 1) S 1€+ [g)e . (3.13)
Indeed, we recall from (B.II]) that
A0(67t) = fR2 BO 5 Y, )dy
Bo(é.u.1) 6/ 2 B ) 4 L el SRGY g, gy 1Y

EGRE

where 1 is the angle between & and Z(¢) —y. By Corollary 2.2, @”(t) and 9,0 (t) are both bounded,
compactly supported, and vanishing in a neighborhood of Z(¢). In particular, |Z(¢) — y| is bounded
below away from zero for 3 in the support of @ (t). The estimate (3.13]) thus follows, upon recalling
that 0;z(t) = v (Z(t),t) and v¥ is bounded (Corollary 2.2)). Arguing similarly as in Lemma [3.3]
we obtain

’\/%atha(f,t)’ < 076—7\5\2/4'

Finally, the last term ®4(&,t) = t(R1(€,t) — Ao(€,t)) is already treated in Lemma This
concludes the proof. O

3.4 Equations for the remainder

Having introduced the approximate solutions ws p, and vfﬁg , let us now study the remainder.
Precisely, we search for solutions of ([B.3]) in the following form

{w2 = G(&) + () wa g + (V) Dy

3.15
vV =P 4 132, (3.15)

in which 9% and wy 4 are constructed in the previous sections. Putting this Ansatz into (3.3]), we
have

1 t :
(toy — L+ 1)ws + ;A?I)g + \/;(’UE —2) - Vg + t(02 - Vwa g + 24 - Vig)
1
) ) ) ) ) ) ) . (3.16)
+ —(7, - VG) + vVt(7y - Vwsq) + t(v2 - Vg) + vVt(Ty - Vibg) + V—t<I>(w2,app, Vapp) = 0,

-
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in which we stress that 7¥ and o, are functions of (z,t), while G, wa,q, and wq are functions of &, t.
Again, velocity and vorticity are defined through the Biot-Savart law in their respective variables.

Our goal is to derive estimates for the remainder solution (w9, ?1) in suitable function spaces.
Precisely, we shall work with the following weighted L? norm

oty = [ wOPpOdE o) =

The weight function is natural in view of the following lemma.

2

Lemma 3.5. The operator L is self-adjoint in Ly,

L <0, we have

while A is skew-symmetric in L129' In particular,

<AOJ,OJ>L =0

2
p
for any w(§) in the domain of A.

Proof. The lemma follows from a direct calculation; see [11, Lemma 4.8]. O
Lemma 3.6 (Elliptic estimates). Let Up = K ¢ Wy be the velocity obtained from wo by the Biot-
Savart law. There holds

_ _ _ 1/2 _ 1/2
[o2llze S lwalliz + lle ] Vel

Proof. By Holder inequality and Sobolev embeddings, we have

_ L2 2 o 1/2 () -~ 1/
loallzee S lallfallinl s S ool (ol + 1Vasllzs )

012 (- 1/2 172
S el (Nwall s + 9]
_ 1/2o - 1/2
= [[@2ll.z + ol 1V a5
The proof is complete. O
3.5 Estimates for the remainder

This section is devoted to prove the following proposition.

Proposition 3.7. There are a positive constant k and a positive time T so that
. A . ) (3.17)
S tlwa )7z + vto0 ()| Lee + ¢ [01(8) 7

uniformly in v and in t € [0,T].

13



The proposition follows from weighted energy estimates. To proceed, using the equation (B.16])
for t0ywy, we compute

a0l = [ (oma(e 0)m(e ope)ds - Ze (.19

where

(£1(t) = [po P(E) (L2 — w2) (&, 1)dE,

Et) = —2 [oo Awa(€, t)wa (&, t)p(€)dE,

Es(t) = —\/L fpa(TF = 2) - Vi) (€, p(€)d,

Ea(t) = —t [ro(V2 - Vwg o + ¥4 - Vi2)Wa(&, 1)p(§)dE,

Es(t) = —t [po (U2 - Vo) wa(&, t)p(&)dE,

Ee(t) = —vVt [go (01 - Vo) Wa (&, t)p(€)dE,

En(t) = 5 Jgo Papp (&, t)w2(€, t)p(€)dE,

Es(t) =~z Jua (01 - VG)@2(E, )p(€)dE,

(Eo(t) = =V [go (U1 - Vwa ) W (&, 1)p(€)dE.

Let us estimate each term &. Thanks to Lemma[35] we have &(t) = 0, while & () < —||wa(t)|]3,
P

In fact, the following lemma gives a better coercive estimate for & ().
Lemma 3.8 (Diffusive term). There holds

£1(t) < — 5 (IV@0l3, + 10+ lEhm (o)1)

Proof. Recalling £ =1+ %f -V 4+ A and integrating by parts, we compute
| (€02 = wa)(€. € maté. e
= [, (8t 56 V) ot i,
_ 2 — — 1 - |2
= [ IVasPolyic — [ wa(Tp-Vande+ 1 [ (€ Vi) ple0de
R2 R2 R2
_ 2 Y - R 2 1 2
—— [ IVasPoietjas [ wn(Tp-Vande — [ ot - 5 [ anl(e- Vo

The second integral is treated by

~ _ 3 2
~ [ waVp Vaae <3 [ wabaen g [

Recalling now the weight function p(§) = elél?/ 4 we obtain the lemma at once. O

IVpl

p(&§)dé.

14



Lemma 3.9. There holds
Ex(t) < tllema(t)s.

Proof. Integrating by parts and using the fact that v% — Zis divergence free, we have

&s(t) = —\/E/R2 ((5E -2) V@) wa(&, t)p(§)dg
- %\/g /]R @F = 2) - Vp(&)|wa (&, t)]dE.

Recalling z = oF (z(t),t) and using Corollary 22] we estimate
[B7 eVt + (), t) — Z(t)] = 07 (€t + Z(t),1) — 07 (Z(2), )| S Vtl¢].
The lemma follows, upon using Vp = %ﬁp(ﬁ). O

Lemma 3.10. There holds
eat) S t (I3, + IVal3; )
Proof. We write E4(t) = —t (E41(t) + Ea2(t)), where

{541 (t) = [go (T2 - V) w2 (&, t)p(€)dE,
En(t) = [po (vo,0 - Vig) wa(&,t)p(§)dE.

Using Holder’s inequality, we estimate

1/2
(0] < ol loalig ( [ FwzateOPpee)

in which the integral is bounded by Lemma 3.3l As for ||02(t)||zo<, we use the elliptic estimate and
Sobolev embedding, giving

2 < e _ <l /2 Vi 1/2

102]|700 S [@2l passllwall 4 S @2l passllwall " (@2l 2 + VD2l £2)™~.

Recalling the weight function p = el¢*/4, we have [@2l /s < [[@2]|p2. Thus, we get
_ _13/2/ - _ _ _
192]1F0 S Hw2HL/12, (l@2l22 + I V@2llr2)? S 021172 + V273, (3.19)

and so
(€ (B)] S w2 ()l 2z (lw2() | 22 + (V@2 ()] 12) S ||w2(t)\|%g + IIsz(t)H%g-

On the other hand, the estimate on &£42(t) is direct, since vy, is bounded. The lemma follows. [

15



Lemma 3.11. There holds

&(t) St (IT®3; + 2012, + IVos(0)]3; )
Proof. By Hélder’s inequality and (3.19]), we get

o)l =] [ (o2 V) aale, 0p(6)e]

<t o2 ()| oo [@2(8)]] 2 [ Va2 (t) || 2

<t (1)l + 1V02(0)z3) 1190203
The lemma follows upon using Young’s inequality.
Lemma 3.12. There holds

E6(t) S Tl + t|a(t) 43 + VIV D] 2.
Proof. Again by Holder inequality, we get

o) = vVA] [ (51 Vi) walé, (e
S vt 2[00 ()| oo | 02(8) | 22| VD2 (1) 2.

which yields the lemma upon using Young’s inequality.

Lemma 3.13. There holds
En(t) S /2 @2(1)] 2

Proof. Using the estimates from ([B.12) for a fixed v € (%, 1) and Holder inequality, we get
801 < (1) | | @aan€. ) (6, DI
< (i)™ / (i) Cre 1 wa &, 1)l p(€) d
R2
, 1/2 1/2
cot ([ e2iinga) ([ ot o)
R2 R2
< 2 ()l 12,

where we used v > 1/2. This concludes the proof.

Lemma 3.14. There hold

Es(t) St (B)l|zoo a2, Eolt) S vt ([oa(t) ]| poe |2 ()] 2
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Proof. We recall that

) = ——= | (@0 VE(E)male. Dp(6)de

where G(&) = ﬁe_m?/‘l and p(&) = elé*/4. We have

[Es(D)] S ¢ o (8)]| /}R2 [Ell@2(&,0)lde < 712101 (8) | e | @2(8) ] 13-

The proof for & (t) is identical, upon recalling the pointwise bound on Vws , from Lemma B3 O

Proof of Proposition [3.7. We are now ready to prove Proposition 3.7l Collecting and combining all
the estimates from the previous lemmas, we get

d
t= @202 + w1+ [EDwa(t) |7 + [ Vaa(t)[7:)
St (10 + lghwa(®)I12, + lwa @I, + V@23, ) + 2 lwa(t)22 (3.20)

+tl|or ()| L + vt @2() 72 + vIV@2(0)1 72 + 2[00 (0) Lo [[02(8) ] 12,

for k = 1/24. Taking ¢t and v sufficiently small and using Young’s inequality, we obtain

d _ 2 K _ 2 — 2
t= 027z + S A + DD ()72 + [Vw2(t)llz) (3.21)
S tlwa(®)122 + vtlon@)l[z0 + 7 o187
This completes the proof of the proposition. O

Remark 3.15. The constraint on the smallness of times T is precisely due to the term Es(t) treated
in Lemmal3.9. The remaining terms are treated using the standard Young’s inequality. Hence, we
in fact obtain

d, _ _ _ _
e Ol +r(lo20l; + Vel + 0 -5V Ollenlly)
Sl (0)]25 + [2)]13) + w011 [ 4w+ o (D]

for all positive times, as long as the estimates from Proposition 21 and Corollary on the
approximate vorter-wave solutions are valid. This yields a lower bound on the smallness of T so
that supg< <7 5t[| V¥ (t)|| = < 1.

Remark 3.16. One may try to improve the time interval by introducing a new weight function, as
done similarly in [10], pnew(§) = p(§)(1 4+ vtq(&,t)), where q(&,t) solves

VO (€) - Veq = \/Ly_t (P (2(0) + Vo, t) — P (2(0).1)) - €,

whose solution is however unclear for large £/ Vt.
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4 Inviscid limit for the regular part

B,v Ev

In the previous section, we have proved the apriori estimate for w

i and v™" in the weighted
energy space with the re-scaled variable & = m_—\/'%t) In this section, we derive estimates on the

regular vorticity component w, which solves
QB + ¥ - VWP = vAwEY (4.1)

with the initial data Wo We write:

wBv(t,x) =of(t,x) + V3/21Z)1(t, x),
vVt x) =Pt x) + 320 (L, x), @3)
,UB’V(t’ l‘) = \/%UG <m\—/%t)) + \/V_t(v2,a + 2_}2) <:B—i(tt) ) t) ) .

w(t,x)  =vBr(t )+ 0B (L),

<

where (Z(t), ) is the solution to the viscous vortex-wave system introduced in Section B, while v
and vg , are constructed in Section [3l Here, we note that the form of the common velocity u” (¢, z)

is compatible with the form in ([3.I3]) and (3.2 in the scaled variable {. The velocity vy is kept
—Z(t)

the same as in the previous section, with ¢ is replaced by % N and vy = K *¢ ws. It is natural to

work in the original variables (z,t) instead of (£,t), since w¥(t) solves (@) with regular initial

data w}’. Hence one does not expect w®" to have the localized behavior near the point vortex.

Roughly speaking, we want to get an apriori bound on ||o;(t)||ze (in terms of wz(t)) on a time
interval independent of v. Precisely, we shall prove the following proposition.

Proposition 4.1. Let w; solve the equations [@I)) and [E2). There exists a positive time T,
independent of v > 0, such that

t
s i S [ 2Ol + [9o2(0)13)ds + v

fort e ]0,T].

4.1 Equations for the remainder

In this subsection, we derive the equations for the remainder w; as well as U9 appearing in (I])
and (42). Putting the Ansatz (42]) into equation (41l and using equation (2.2)), we obtain the
following transport-diffusion equation for w;:

Oywy +u” - Vo, — vAw, = f(l‘,t),
where f(x,t) are given by
1 G fﬂ—z(t)) G(x_z(t)>> g Vi _ g
)= ——— T72) ¢ (22N ) o Vw, — 5y - VP - g,V
flx,t) i <v < it v it wyq — U1 - VW U2 VW

1 (z— z(t))l ez
- a’ \Y a
Ve Vo) + o s T

(4.3)
-Vw + \/_Awl a:

18



4.2 Estimating the forcing term f(x,t)

In this subsection, we prove the following proposition

Proposition 4.2. Let f(z,t) be defined as in [@3]). There holds

1 Ollganzars S 1010 angars + 72 (l@2(8)] 3 + V2012 ) + V.

We will give a proof at the end of this subsection, after proving some useful lemmas. First, let
us write f as:

f(ﬂ?,t) = fl(:Evt) + f2(x’t) + f3($7t)

where
At =5 (v (5) —° () - T = Plona- )
rea())L _lz—z@®)|?
+27w13/2 (|:c—z((?))|2 € we Vol + \/;Awl,ay
fg(:E,t) = -1 - V(:JE,
faz,t) = Loy V&P,

In what follows, we bound || f;(t)|| an4/s for each ¢ € {1,2,3}.

Lemma 4.3. There holds
11O panpars S VY

uniformly in v > 0.
Proof. First we see that

1 (z—2z2(0)t _—ew? B
— 4vt . v A
27”/3/2 |l‘ — Z(t)|2 (& w™ + \/; Wi,a

SZ

LANLA/3

H_\/;('Ul,a -Vwr,)

thanks to the fact that w is supported away from z(t) and Z(t), and w4 is bounded in W24, by
Proposition 2.1l Now for the first term in f7, it suffices to prove that

\/1715 e <a: ;_ift)) —@ (L\/j_ft)) ‘ Swvt forall z € supp(wia). (4.4)

As long as the above claim is proved, we would get

(5 - (52 oo

LANLA/3
S ﬁ”vwl,a(t)||L4OL4/3(supp(u)1,a)) 5 \/;
by Proposition 2.1l
Now we shall prove the inequality ([4.4]). To this end, let us denote
m =z — z(t), and 79 =z — 2(t) (4.5)
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The left hand side of ([44]) can be re-written as:

\/% <”G(%) - ”G(j—i—t)> = % (Vi(m,m2) + Va(mi, m2)) (4.6)

where

1 1
Vi(n,m) = (\:7771\2 - |:7772|2> ’

1 L
— . — 2 /4t n — 2 /vt
‘/’2(77177’,2) — ( 7]22‘ e |772| / _ Wg ‘771‘ / ) .

2

When x € supp(w(t)), by the properties established in Section 2 we have a positive constant
cr, independent of v, such that

lx — 2(t)] > er and |z —Z(t)| > er vt € [0,T]. (4.7)

This implies that |n;| > ¢p and |n2| > ep, upon recalling the notations ([@3]). Thus, we get

Vi) = | | | g
Iml[*  [maf? Im|?  |ml? mP nal?
Im = e | |M
— o ImP DR

_ 1
< P m = el + —— lln2l = Imul| (Ime| + |n2]) < mx — el
7112 |m2]

=|(x—2z(t) — (x — 2(t)| = |2(t) — 2(t)| S vt (by the estimate (Z3])).

Hence
Vi, m2)| S vt. (4.8)

Now for Va(n1,72), note that we shall only consider x € supp(@w”(t)), in which we get ([&7). In this
case we get

|V2(771,’I72)| < |,’72|—1e—\772\2/41/t + |,’71|—1e—|771|2/41/t < 267_116_6%/4% ,S vt (49)

Combining (4.6]), (£.8) and (£.9), we get the desired inequality (£4). The bound for the first term
is complete. This concludes the proof. O

Lemma 4.4. There holds
1f2(O)llzanpars S 018l panpass
Proof. We have
1 f2() Lanzars = 101 (8) - VT )l parpars < (010 VS (@) panzars S 1018 parpass
by Corollary and Lemma [AJl The proof is complete. O

Lemma 4.5. There holds

sl anzaa S 72 (lwa(®)llzg + I902(8)122)
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Proof. We recall that

fa(w,t) = ?vz 1) Vil =220

We shall only consider z € supp(@”(t)). Since @ (t) is supported away from Z(t), there exists
dr > 0 such that
lv —2Z(t)| > dr for x € supp(@F(t)). (4.10)

Since [ Wa(€,t)d¢ = 0, by Lemma (AT), we get

(1 + €202l Lo S N1+ €17 ) @2 ()] Lo + 111+ €13 2 (D)[| o
S w2 ()2 + Vw2 (t)]| p2-

This implies that, for = in the support of @ (t), we get

_ 1 _ _ _ _
m@m5;@ﬁ@wW@+WwW@%ﬂmme@+Ww®M)
Thus we get
Vi _ ) ]
s @lanzas S oIl (€:8) - VO ()l parzan S 72 (I (®llzz + [ V2(0)llzz ) -
The proof is complete. O

We conclude this subsection by proving the Proposition
Proof of Proposition [{.3. The proof follows as a direct consequence of the previous lemmas for
fi, i€ {1,2,3} in this subsection. O
4.3 Apriori estimates for the remainder

In this section, we give a proof for our main Theorem [4.1] stated at the beginning of this subsection.
We recall from Section [4.1] that w; solves the heat transport equation

oy +u¥ -V, — vAw, = f(l‘, t).
A standard L* N L*3 estimate for the heat transport equation yields

d . _
— o1l anras) S N Ol panpars

dt
S 1@l g + 72 (30l + V0022 ) + V7,

using Proposition Now applying Gronwall lemma for the above inequality, we have

[@1() | anpas S / (83/2(\|w2(t)lng + [V (t)]|22) + ﬁ) ds
0 (4.11)

t
§A§WWﬂMgWWMWW@+W%

The proof is complete.
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5 Proof of inviscid limit

In this section, we conclude the proof for inviscid limit, using the apriori estimates obtained from
the previous sections. Let us first prove the following proposition, before proving our main theorem,
stated in the first part of this paper.

Proposition 5.1. There exists a time T > 0, independent of the viscosity v, such that

sup (Jlwa(®)l1r3 + 01 (B)ll sz ) S 1.
0<t<T

uniformly in v.

Proof. First, we recall the following estimates for ||ws(t)||rz and ||wy(t)|| anz4/s Proven in Proposi-

tions B.7 and [A.11
d 2 _ 5 _ 4 -2~ 2
5 1@t )HLz + - (H(l + [€])wa (t )HLz + IV ()l72) S w27z + vIo1(@) L + 77 [[01(0) |2

t
Jor@lgsnsss S [ ¥ (loalo)lcp + V(o)) ds + v/
0

(5.1)
Let .
6(t) = sy + [ 57 a(o)E + Vw5 ).
From the inequality (5.0)), it is straight-forward that
[o1(8) | panpare S PG + vt (5.2)

Thus, we have

G'(1) = Lma(t) 2 + 1 (Ima0)3 + V(1))
Sllwa()lIz; + vllo1 (O~ + 20107~ (by GI)
<G@)P°* + Vle(t)”iztmmm + t‘szl(t)Hiwm
<G 4v <t5/2g(t)1/2 I V1/2t)4 e <t5/2g(t)1/2 n V1/2t)2 (by B)
<G +ut'°G ()% + A + 3G (t) + v

By standard ODE theory, we have a time 7' > 0, which is independent of v > 0, such that G(t) is
uniformly bounded for ¢ € [0,7]. Since G(t) > ||w2(t)||Lg, the proof for ||1D2(75)||L% is complete. The
bound [|w1(t)|| panpas S 1 follows from the inequality (5.2)). O

~

We conclude this section by proving our main theorem, stated in the first part of this paper.
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Proof of theorem [L2 We have proved that [[w2(¢)]|zz is uniformly bounded in v. We recall from

Section [3] that
B,V — i — i 7 _ T3
w?(t,x) = Vth(&t) = (G(§) + (vt)wa,q + (vt)ia) = th(g) + w2, + W2,
where G(&) = ﬁe“ﬂz/‘l and ¢ = (x — Z(t))/v/vt. We compute

‘ wBY (t, ) —

1

1 _z—zw?
e 4vt
4t

= l[w2a(€.1) + Da(E 1)
Ly
9.3
= vtwgat) + w2y S 1) (loza®ll g + lo2®)llz) >

< (vt).
le—2(t)|2

For simplicity of notations, we denote by Gz (z) and G (v) the Gaussians ﬁe‘ i and

_lz—z@®)?

47T1Vte i, respectively. Our goal now is to compare the two Gaussians in L' norm. To this
2 _ 2
end, let us denote A = o 4Z(t)| and B = %. We have
Gz () — Gy () = e e B=¢B (eB_A -1).
We have

B—A=(4awt)™! (J= — 2(t)]* — |z — z(t)|2) (4vt) ™t (22 - (2(t) — 2(t) + |z(t)|* — |Z(t)|2)
< () (J2]Z() — 2()] + [2() — 2(1)])
S|+ 1 (since |Z(t) — z(t)| S vt)

|z —2(@t)|

Vit

Here we used the standard fact of the vortex-wave system that |z(¢)| < 1 for any fixed interval of
time. For, one can see that |2(t)] < |zo| + fg [ (2(s), 8)|ds < |z0| + t|[vF| L. Hence we get

<o —2(0)] +12(0)] + 15 +1.

_le—z()|? lz—z(t)]
|Gz () = Gy () Se M for some Mg > 0. (5.4)

Integrating both sides of the inequality (5.4) in 2 € R2, we have
_Jz—z(®)|? lz—z(t)]
1G.) — Gzl S /R2 Ol el

Making the change of variables y = x\_/%t) in the above integral, we thus obtain

1G24ty — Gzl S vt (5.5)
Combining the inequalities (5.3)) and (5.5]), we get

‘ WP (t ) —

The inequality [|w" (t) —w? (t)|| Lanpass S v follows directly from the expansion (@2), the inequality

~

(52) and the uniform bound of G(t). The proof is complete. O

1 _e—e@)?
e 4vt
At

< vt.
Lt

x
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A Appendix
In this section, we collect several useful lemmas used in this paper.

Lemma A.1 (Elliptic estimates). Let v = K xw be the velocity vector field obtained from the
vorticity w on R%. Define the norm || - || anpass = || - lza + || - ljass. There hold the following
inequalities

[ollzee S lwllpanzars, vl S lwllprazee-

Moreover, if [, w(x)dx =0, then
I+ |2 )ollzee S 1A+ 2wl pappars-

Proof. From the Biot-Savart law (.2), we estimate

()] < / w4, — / +/ Ll ,,
Rr2 |7 — Y| lz—y|<R lz—y|>R lz —y
3/4 1/4 (A1)
S </ |z — y|_4/3dy) lwllpa + </ |z — y|‘4dy) wll /s
lz—y|<R lz—y|>R

S R wlipa + RV o] pas.

Thus choosing R = ”ﬂliff’ we have ||v||pe < ||w\|2/42/3||w\|i/42, which gives the first inequality. As
L
for the second, we use ||w|[zr < ||w\|i/1p\|w||1L;1/p.

It remains to check the last inequality. We shall check it for vy, the second component of v.
The estimate on vq is similar. First, we check

alloa@)| 5 [ | = lull(w)lds. (A2)

By Biot-Savart law and fRZ w(y)dy = 0, we have

1 r1— Y1 1 11—y X
)l = 5| wiy)dy| < = — Iy ldy.
2 | Jre o — y? 21 Jre ||z —y>  |xf?
Now we have
T1— Y1 1 1

S L (aP ey — 1) — o — ).
ey P PP )

It follows that |z|?(z1 —y1) — 21|z — y|? < 4|z||y||z — y|. Hence,

]a:\ r1— Y1 r1 } < 4|y|

2 —y2 Jz2l Tz -yl
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which gives (A2)). Now multiplying both sides of (A.2)) by |z|, we have

|z]ly| lyl+ |z —yl
oPloaa)l 5 [ ety < [ Myl

2|z —y lz -y

1
=/ \y!2\w(y)!dy+/ lyllw(y)|dy
R2 ’33 - y! R2

Let us first treat the first term in the above. Repeating the argument of (AT for w = |y|?|w(y)],
we have

1
/R 4 PP lw@)ldy S 1+ [y @)l pangs.

2 |x

For the second term, using Holder inequality, we get

/|ww Wy—/ %H(Lﬂmmwwwwsnu+wmwwmmm
Thus
22loa(@)] < 11+ 22l parso-

The lemma follows. O

Lemma A.2. Let 21,29 € C and ¢ be the angle between z, and zo. Assuming that |z1| < |z2| and
sin(v¢) # 0, there holds

1 _ |z1|" sin((n + 1)¢)
Z |z2|" sin(y)

o1 + 22 |Zz|2 B |Z2|2

Proof. Let 21 =z =re'. We have

1 11 ( 1 1)
1+ 22l el el \[1+ 2] '
Now for |z] < 1, we have

1 1
1+z2 (I+2)(1+2) Qg2 )1 — 4Pt )

=1-(z+2)+ (P2 +22+2) - (B + 222 +2224+ 28+

Now for each n, we have

Sl gy el an ontl %n—i-l _ r”sm(@ + 1)¢)‘
z—z sin

This concludes the proof. O

25



References

[1]

2]

[14]
[15]

C. Bjorland. The vortex-wave equation with a single vortex as the limit of the Euler equation.
Comm. Math. Phys., 305(1):131-151, 2011.

R. E. Caflisch and M. Sammartino. Vortex layers in the small viscosity limit. In “WASCOM
2005”—13th Conference on Waves and Stability in Continuous Media, pages 59-70. World
Sci. Publ., Hackensack, NJ, 2006.

J.-Y. Chemin. A remark on the inviscid limit for two-dimensional incompressible fluids. Comm.
Partial Differential Equations, 21(11-12):1771-1779, 1996.

P.-H. Chen and W.-L. Wang. Roll-up of a viscous vortex sheet. J. Chin. Inst. Eng., 14:507-517,
1991.

P. Constantin and J. Wu. Inviscid limit for vortex patches. Nonlinearity, 8(5):735-742, 1995.

P. Constantin and J. Wu. The inviscid limit for non-smooth vorticity. Indiana Univ. Math.
J., 45(1):67-81, 1996.

G.-H. Cottet. Equations de Navier-Stokes dans le plan avec tourbillon initial mesure. C. R.
Acad. Sci. Paris Sér. I Math., 303(4):105-108, 1986.

G. Crippa, M. C. Lopes Filho, E. Miot, and H. J. Nussenzveig Lopes. Flows of vector fields with
point singularities and the vortex-wave system. Discrete Contin. Dyn. Syst., 36(5):2405-2417,
2016.

[. Gallagher and T. Gallay. Uniqueness for the two-dimensional Navier-Stokes equation with
a measure as initial vorticity. Math. Ann., 332(2):287-327, 2005.

T. Gallay. Interaction of vortices in weakly viscous planar flows. Arch. Ration. Mech. Anal.,
200(2):445-490, 2011.

T. Gallay and C. E. Wayne. Global stability of vortex solutions of the two-dimensional Navier-
Stokes equation. Comm. Math. Phys., 255(1):97-129, 2005.

Y. Giga, T. Miyakawa, and H. Osada. Two-dimensional Navier-Stokes flow with measures as
initial vorticity. Arch. Rational Mech. Anal., 104(3):223-250, 1988.

0. Glass, C. Lacave, and F. Sueur. On the motion of a small light body immersed in a two
dimensional incompressible perfect fluid with vorticity. Comm. Math. Phys., 341(3):1015-1065,
2016.

E. Grenier and T. T. Nguyen. L™ instability of Prandtl layers. larXiv:1805.11024), 2018.

T. Kato. The Navier-Stokes equation for an incompressible fluid in R? with a measure as the
initial vorticity. Differential Integral Equations, 7(3-4):949-966, 1994.

26


http://arxiv.org/abs/1803.11024

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

C. Lacave and E. Miot. Uniqueness for the vortex-wave system when the vorticity is constant
near the point vortex. SIAM J. Math. Anal., 41(3):1138-1163, 2009.

M. C. Lopes Filho, E. Miot, and H. J. Nussenzveig Lopes. Existence of a weak solution in L?
to the vortex-wave system. J. Nonlinear Sci., 21(5):685-703, 2011.

Y. Maekawa. On the inviscid limit problem of the vorticity equations for viscous incompressible
flows in the half-plane. Comm. Pure Appl. Math., 67(7):1045-1128, 2014.

A. J. Majda and A. L. Bertozzi. Vorticity and incompressible flow, volume 27 of Cambridge
Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002.

C. Marchioro. On the vanishing viscosity limit for two-dimensional Navier-Stokes equations
with singular initial data. Math. Methods Appl. Sci., 12(6):463-470, 1990.

C. Marchioro. On the inviscid limit for a fluid with a concentrated vorticity. Comm. Math.
Phys., 196(1):53-65, 1998.

C. Marchioro. Vanishing viscosity limit for an incompressible fluid with concentrated vorticity.
J. Math. Phys., 48(6):065302, 16, 2007.

C. Marchioro and M. Pulvirenti. On the vortex-wave system. In Mechanics, analysis and
geometry: 200 years after Lagrange, North-Holland Delta Ser., pages 79-95. North-Holland,
Amsterdam, 1991.

C. Marchioro and M. Pulvirenti. Vortices and localization in Euler flows. Comm. Math. Phys.,
154(1):49-61, 1993.

C. Marchioro and M. Pulvirenti. Mathematical theory of incompressible nonviscous fluids,
volume 96 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994.

N. Masmoudi. Remarks about the inviscid limit of the Navier-Stokes system. Comm. Math.
Phys., 270(3):777-788, 2007.

T. T. Nguyen and T. T. Nguyen. The inviscid limit of Navier-Stokes equations for analytic
data on the half-space. Arch. Ration. Mech. Anal., 230(3):1103-1129, 2018.

M. Sammartino and R. E. Caflisch. Zero viscosity limit for analytic solutions of the Navier-
Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Comm. Math.
Phys., 192(2):463-491, 1998.

V. N. Starovoitov. Uniqueness of the solution to the problem of the motion of a point vortex.
Sibirsk. Mat. Zh., 35(3):696-701, v, 1994.

F. Sueur. Viscous profiles of vortex patches. J. Inst. Math. Jussieu, 14(1):1-68, 2015.

H. S. G. Swann. The convergence with vanishing viscosity of nonstationary Navier-Stokes flow
to ideal flow in Rs. Trans. Amer. Math. Soc., 157:373-397, 1971.

27



	1 Introduction
	1.1 Vortex-wave system
	1.2 Main result
	1.3 Notations

	2 Approximate vortex wave system
	3 Inviscid limit for the irregular part
	3.1 Vortex-wave reaction term
	3.2 Construction of an approximation solution
	3.3 Estimating the error term
	3.4 Equations for the remainder
	3.5 Estimates for the remainder

	4 Inviscid limit for the regular part
	4.1 Equations for the remainder
	4.2 Estimating the forcing term f(x,t)
	4.3 Apriori estimates for the remainder

	5 Proof of inviscid limit
	A Appendix

